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Abstract. Information processing techniques based on sparseness have been actively studied
in several disciplines. Among them, a mathematical framework to approximately express a
given dataset by a combination of a small number of basis vectors of an overcomplete basis is
termed the sparse approximation. In this paper, we apply simulated annealing, a metaheuristic
algorithm for general optimization problems, to sparse approximation in the situation where
the given data have a planted sparse representation and noise is present. The result in the
noiseless case shows that our simulated annealing works well in a reasonable parameter region:
the planted solution is found fairly rapidly. This is true even in the case where a common
relaxation of the sparse approximation problem, the ℓ1-relaxation, is ineffective. On the other
hand, when the dimensionality of the data is close to the number of non-zero components,
another metastable state emerges, and our algorithm fails to find the planted solution. This
phenomenon is associated with a first-order phase transition. In the case of very strong noise,
it is no longer meaningful to search for the planted solution. In this situation, our algorithm
determines a solution with close-to-minimum distortion fairly quickly.

1. Introduction

The success of compressed sensing [1, 2, 3, 4] has triggered interest in the utilization of sparseness
in signal processing techniques [5, 6, 7, 8, 9, 10, 11, 12, 13]. Sparseness is the property whereby
data can be represented, on a proper basis, by some combination of a small number of non-zero
components. This property is useful for practical applications such as data compression and data
reconstruction from a small number of observations, the latter of which is simply compressed
sensing.

Usually, obtaining a sparse representation from a given dataset is formulated as an
optimization problem. We refer to this as the sparse approximation problem [14, 15, 16, 17, 18].
This is sometimes recast in a probabilistic formulation by statistical physicists [10, 12, 13] using
Bayesian techniques or statistical mechanics. In this paper, we employ such a probabilistic
formulation to search for an “optimal” solution with the minimum distortion between the given
and reconstructed data.

Unlike previous approaches, we do not use a message passing algorithm [10]. Instead, we
use the well-known “simulated annealing” (SA) heuristic. The motivation for using SA comes
from our recent theoretical analysis of “entropy” [12, 13], which is the exponential rate of the
number of combinations of non-zero components yielding a given level of distortion. Our analysis
indicates that entropy exhibits some nice analytical properties, in contrast to other optimizations
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such as the k-satisfiability problem [19, 20]. This implies a simple structure of the “phase space,”
the space of possible combinations of non-zero components, and hence SA is expected to work
well. Based on this expectation, the actual performance of SA is reported through numerical
experiments.

2. Formulation and algorithm

2.1. Combinatorial optimization formulation

Let us suppose a signal vector y ∈ R
M is generated from an appropriate sparse representation

or a planted solution, x̂, through

y = Ax̂+ ξ, (1)

where A = {ai}
N
i=1 ∈ R

M×N is an overcomplete matrix with M < N called a dictionary; ξ ∈ R
M

is a noise vector, each component of which is drawn from the zero-mean normal distribution
with variance σ2

ξ , N (0, σ2
ξ ). The appropriate representation x̂ is “sparse,” and is assumed to be

generated from the following Bernoulli–Gaussian distribution:

P (x̂i) = ρ̂
e
− 1

2σ2
x
x̂2

i

√

2πσ2
x

+ (1− ρ̂)δ(x̂i). (2)

We also assume that each component of A is independent and identically distributed from
N (0, 1/N). The aspect ratio of the matrix, α = M/N , is assumed to lie within (0, 1).

The sparse approximation problem is to approximate y by a linear combination of a restricted
number of column vectors of A. There are various formulations, one of which is based on the
following optimization:

x∗ = argmin
x

{E(x|y, A)} subject to ||x||0 ≤ Nρ, (3)

where ||x||k = (
∑

i |xi|
k)1/k denotes the ℓk norm and the ℓ0 norm is equal to the number of

non-zero components of x; the parameter ρ(< α) controls the sparseness of x (and is called
the sparsity in this paper); and E denotes the distortion between y and a reconstructed signal
through a representation x:

E(x|y, A) =
1

2
||y −Ax||22. (4)

2.2. Probabilistic formulation

Eq. (3) is a commonly used formulation, but it has the limitation that it only provides the
information of the minimum-distortion solution. To get a wider perspective, it is better to treat
all possible combinations of the column vectors. For this, we use a probabilistic formulation.
Suppose that a binary vector c = {ci = 0, 1}Ni=1, which we call the sparse weight, represents the
column vectors used to represent y: if ci = 1, the ith column of A, ai, is used; if ci = 0, it is not.
Once these columns have been determined by c, the optimal coefficients of the chosen columns
are evaluated by solving

x(c) = argmin
x

||y −A(c ◦ x)||22, (5)

where (c ◦ x)i = cixi represents the Hadamard product. The corresponding distortion is

E(c|y, A) = Mǫ(c|y, A) =
1

2
||y −A(c ◦ x(c))||22. (6)



The components of x(c) for the zero components of c are actually indefinite, and we set them
to be zeros. The definite part of x(c), which we denote x̃(c), has the compact analytic form

x̃(c) =
(

ÃT(c)Ã(c)
)−1

ÃT(c)y, (7)

where Ã(c) denotes the submatrix of columns chosen by c.
Let us regard E as an “energy,” and introduce an “inverse temperature” µ. A Gibbs–

Boltzmann distribution is thus defined as

P (c|µ;y, A) =
1

G(µ;y, A)
δ

(

∑

i

ci −Nρ

)

e−µE(c|y,A), (8)

where G is the “partition function”

G(µ;y, A) =
∑

c

δ

(

∑

i

ci −Nρ

)

e−µE(c|y,A). (9)

Our strategy is to generate c according to eq. (8). Changing µ allows us to sample different
sparse solutions with different distortion values.

This formulation provides several options to treat the sparse approximation problem. For
example, sampling in µ < ∞ produces solutions with distortion greater than the minimum.
These “finite temperature” solutions may be more suitable for capturing the planted solution x̂

than x∗ in eq. (3) in the presence of noise σξ > 0, as suggested in [13].
In this probabilistic formulation, the optimization (3) is recovered as a sampling problem in

the limit µ→∞. We pursue this direction in this paper, and propose an algorithm to solve eq.
(3). The performance of our technique is examined in numerical experiments, and is compared
with some known analytical results [7, 12, 13].

2.3. Simulated annealing

Our algorithm is a variant of SA, which is a metaheuristic to find the global minimum of a cost
function. The outline of the algorithm is as follows: starting from a random initial configuration
of c at very high temperature T = 1/µ≫ 1, the algorithm randomly updates the configuration
c→ c′ in a Monte-Carlo (MC) manner, while gradually decreasing the temperature. Eventually,
the temperature becomes very low, T ≈ 0, and the configuration is no longer updated. This final
configuration is expected to be very close (or identical) to the true solution, i.e., x∗ ≈ c ◦ x(c).

The Metropolis criterion is adopted in our simulation: an MC move c → c′ is judged to be
accepted or not according to the probability

paccept(c→ c′) = max(1, e−µ(E(c′)−E(c))). (10)

For a fixed value of ρ, the configurations generated by the algorithm should always satisfy
∑

i ci = Nρ. Given an initial configuration satisfying this condition, we generate trial moves
c→ c′ by “pair flipping” two sparse weights, one equal to 0 and the other equal to 1. Namely,
choosing an index i of the sparse weight from ONES ≡ {k|ck = 1} and another index j from
ZEROS ≡ {k|ck = 0}, we set c′ = c, except for the counterpart of (ci, cj) = (1, 0), which is given
as (c′i, c

′
j) = (0, 1).

The pseudo-code of our MC algorithm is given in Alg. 1, and that of our SA procedure is
presented in Alg. 2. The lines marked with # are not necessarily needed for SA, but have
been inserted for later convenience. For Alg. 2, we have a set of inverse temperature points

{µa}
Nµ
a arranged in ascending order (0 =)µ1 < µ2 < · · · < µNµ

(≫ 1) and the waiting times



Algorithm 1 MC update with pair flipping

1: procedure MCpf(c, µ,y, A) ⊲ MC routine with pair flipping
2: ONES← {k|ck = 1}, ZEROS← {k|ck = 0}
3: randomly choose i from ONES and j from ZEROS
4: c′ ← c

5: (c′i, c
′
j)← (0, 1)

6: (E , E ′)← (E(c|y, A), E(c′|y, A)) ⊲ Calculate energy
7: paccept ← max(1, e−µ(E ′−E))
8: generate a random number r ∈ [0, 1]
9: if r < paccept then

10: c← c′

11: end if

12: return c

13: end procedure

Algorithm 2 SA for sparse approximation problem

1: procedure SA({µa, τa}
Nµ

a=1, ρ,y, A)
2: Generate a random initial configuration c with

∑

i ci = Nρ
3: for a = 1 : Nµ do ⊲ Changing temperature
4: for t = 1 : τa do ⊲ Sampling at µ = µa

5: for i = 1 : N do ⊲ Extensive number of MC updates
6: c← MCPF(c, µa,y, A)
7: end for

8: # Calculate energy ǫt = ǫ(ct|y, A) of the current configuration ct = c

9: end for

10: # Calculate the average energy ǫa = (1/τa)
∑τa

t=1 ǫt
11: end for

12: return c

13: end procedure

{τa}a at those points. Hence, as the algorithm proceeds, the temperature of the system T = 1/µ
decreases step by step. It is known that, if the rate of decrease of the temperature obeys

T (t) >
A(N)

log(t+ 2)
(11)

for some time-independent constant A(N), then the output of SA is guaranteed to be
optimal [21]. This is a very slow schedule of decrease for T , and is generally overcautious so as
to include the worst-case scenario. Faster schedules are known to work in practical situations.
We report the results for such a rapid annealing below.

3. Results

We now present the results of SA according to eq. (8). System sizes of N = 100, 200, and 400
will be examined. The annealing schedule is fixed as

µa = µ0 + ra−1 − 1, τa = τ, (a = 1, · · · , 100). (12)

We set τ = 5, µ0 = 10−8, and r = 1.1 as default parameter values. Thus, the maximum value
of µ is µ100 ≈ 1.3× 104.



To determine whether the SA process is proceeding well, we consider the lines marked with
# in Alg. 2. If our schedule is sufficiently slow, the ct obtained during annealing are typical
samples from eq. (8), and the values of physical quantities of typical samples should be very
close (in the limit N → ∞ almost surely identical) to the thermal averages. This implies the
following relation

ǫa =
1

τa

τa
∑

t

ǫ(ct) ≈ 〈ǫ(c|y, A)〉µa
, (13)

where 〈· · ·〉µ denotes the average over eq. (8) with the inverse temperature µ. Fortunately, the
right-hand side is analytically assessed in the present case with a random matrix dictionary A
in the N → ∞ limit [12, 13]. Hence, we compare Ea with the analytically evaluated 〈E〉µa

to

determine how well our annealing process follows the correctly distributed samples from (8). For
clarity of comparison, we take an average over a different Nsamp = 100 samples of x̂, ξ, A in the
numerical experiments. The error bar is given by the standard deviation among those samples
divided by

√

Nsamp − 1.
As well as the distortion, we calculate the mean squared error (MSE) between the planted

and inferred representations

M(c) =
1

N
||x̂− c ◦ x(c)||22. (14)

This metric provides direct information about the reconstruction of the planted solution.

3.1. Noiseless case

Let us start with the noiseless case σ2
ξ = 0. In this subsection, we fix σ2

x = 1.
The easy reconstruction region, where α is sufficiently larger than ρ̂, is a good starting point.

Fig. 1 plots ǫ (left, middle) and the MSEM (right) against the temperature for α = 0.8, ρ = 0.4,
and ρ̂ = 0.2. The numerical results show a fairly good agreement with the analytical curve.
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Figure 1. Distortion (left, middle) and MSE (right) plotted against temperature T = 1/µ for
α = 0.8, ρ = 0.4, and ρ̂ = 0.2. The middle panel is a magnified view of the left panel for a
small region of T . The solid black curve shows the analytical values, and the color plots give
the numerical results. Our numerical results clearly reproduce the correct average values over
eq. (8).

This means our SA algorithm follows the equilibrium state up to the zero-temperature limit
reasonably well, even though the annealing defined by eq. (12) is very rapid. The MSE goes to
zero as T decreases, and so the planted solution is correctly reproduced.



Figure 2. Phase diagram describing typical reconstruction limits in the noiseless case [7]. The
straight line ρ̂ = α is the limit attained with eq. (3), whereas the curve is the limit for the relaxed
problem in which the ℓ0 norm in eq. (3) is replaced with the ℓ1 norm. Above these boundaries,
the solutions of corresponding optimization problems reconstruct the planted solution x̂.

Next, we consider harder cases. It is known that the properties of the problem drastically
change as α gets closer to ρ̂. The phase diagram in Fig. 2 demonstrates this. The curve is
the reconstruction limit of the ℓ1-relaxed version of (3), which is employed in many realistic
cases and has considerable importance. Hence, we first examine the behavior of SA below this
ℓ1 reconstruction limit. Fig. 3 plots ǫ and M against T for α = 0.8, ρ = 0.55, and ρ̂ = 0.5,
where we are below the ℓ1 reconstruction limit (the boundary is located at αc(ρ̂ = 0.5) ≈ 0.831).
The MSE vanishes as T decreases, meaning that x̂ is perfectly reconstructed. Hence, SA can
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Figure 3. Distortion (left) and MSE (right) plotted against temperature for α = 0.8, ρ = 0.55,
and ρ̂ = 0.5 (below the ℓ1 boundary). Our numerical results accord with the analytical result
(black line) and achieve a perfect reconstruction of x̂.

outperform the ℓ1 method of reconstruction, even under the present rapid schedule.
In harder situations, SA cannot always give a perfect reconstruction, even though it exists.

Fig. 4 shows plots of T -ǫ and T -M for α = 0.75, ρ = 0.65, and ρ̂ = 0.5. In this case, there are
two stable thermodynamic states at low temperatures: one is connected to the planted solution
and is the true equilibrium state in the zero temperature limit, whereas the other is metastable
at low temperatures, but is the dominant equilibrium state at higher temperatures [13]. There is
a first-order phase transition at a critical temperature Tc ≈ 3× 10−4. Through the SA process,
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Figure 4. Distortion ǫ (left) and MSEM (right) plotted against temperature for α = 0.75, ρ =
0.65, and ρ̂ = 0.5. The analytical result shows a first-order phase transition around Tc ≈ 3×10−4,
and the equilibrium state (black solid line) suddenly decreases for both ǫ and M. However, a
metastable state, which continues analytically to the equilibrium state for T > Tc, survives
below Tc, and the numerical results follow this; hence, the planted solution is not reached.

the system state follows the equilibrium up to T > Tc. After the transition, the equilibrium state
changes drastically, but the system cannot follow such a jump. Instead, the system remains in
the same metastable state in T < Tc. Hence, SA cannot find the planted solution in this case,
as clearly seen in the non-vanishing MSEM of Fig. 4. Of course, if τ is large enough, SA can
eventually find the planted solution as proved in [21]. In the presence of the first-order phase
transition, however, the required τ to do this is scaled with the system size N and rapidly grows
as N increases, which prevents reaching the optimal solution in practical times.

Although the system is in the metastable state, the distortion ǫ seems to go to zero in Fig. 4,
but unfortunately this is not the case. If we go lower temperatures, the value of ǫ will get stuck
at a certain critical temperature and remains a constant below it. This is a freezing transition
of this metastable state: the entropy of it becomes zero at the transition temperature. With the
present parameters, our analytical solution provides the transition temperature as T ≈ 1.3×10−7

and the constant value of distortion is ǫ = 8.6 × 10−9 which is the achievable limit by our SA
algorithm in practical times. This limiting value is not exactly zero although it is still negligibly
small. For reference, we have plotted the “free energy” g = (1/N) logG and the entropy in Fig.
5 for the present parameter values.

Finally, we examined the effect of the parameter ρ, which can be set to any value for a given
y and A. Fig. 6 is the counterpart of Fig. 4 with common values of (α, ρ̂) = (0.75, 0.5) and a
different value of ρ = 0.55. In contrast to Fig. 4, the metastable state is absent. We commonly
observed the suppression of this metastable state as ρ decreased [13]. Thus, SA was naively
expected to yield the planted solution in the zero temperature limit. The upper panels of Fig.
6 represent the rapid schedule τ = 5, and exhibit a clear deviation from the equilibrium state
at low temperatures. A slower schedule, corresponding to τ = 100, is represented in the lower
panels, and these numerical data are consistent with the analytical curve of the equilibrium
state. The present choice of parameters is in the harder region, so it is unsurprising that the
rapid schedule τ = 5 is not sufficiently slow, although it was for Figs. 1-3. Note that this increase
in τ is qualitatively different from that caused by the emergence of the metastable state in Fig.
4. The latter is macroscopic, namely, the required waiting time τ increases significantly as N
grows to reach the planted solution.

In summary, SA outperforms the ℓ1 result and can correctly find the planted solution in a
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Figure 5. Free energy g = (1/N) logG (upper) and entropy (lower) plotted against
temperature for α = 0.75, ρ = 0.65, and ρ̂ = 0.5. Right panels are the same plots as the
left panels but with a semi-logarithmic scale. Two different branches are shown, and the same
colors denote the same branches in all panels. A phase transition (where two branches of g
cross) can be observed at Tc ≈ 3 × 10−3. The larger branch yields the equilibrium state. The
entropy vanishes at a finite value of T , as clearly shown in the lower-right panel. Branch 1, the
red solid curve, is connected to the planted solution.

wider region of parameter space, even under our rather rapid rate of decrease of T . However,
for harder regions where α is close to ρ̂, the phase space is separated into two distinctive states.
The state that is not connected to the planted solution becomes the equilibrium state in the
high-temperature region. This prevents SA from correctly finding the planted solution, as the
system becomes trapped in the wrong state. Tuning ρ may be a crucial factor in overcoming
this. As long as ρ > ρ̂, smaller values of ρ are better. This is because the emergence of the
metastable state tends to be suppressed as ρ becomes smaller, but such fine tuning requires a

priori knowledge about the value of ρ̂, which is not available in most situations. This problem
is of considerable importance, and requires further consideration.

If we do not insist on finding the planted solution, even the metastable state may be desirable,
as it shows small distortion. In this case, larger values of ρ are better, because they yield smaller
values of distortion, though the compression ratio decreases as ρ increases. Hence, the value of
ρ should be chosen according to the requirements of the information processing application.



T
×10-3

0 2 4 6 8

ǫ(
T

)

×10-3

0

0.2

0.4

0.6

0.8

1

1.2
α=0.75, ρ=0.55, rhoh=0.5, σ

ξ

2=0

N=100
N=200
N=400
N=∞,Equilibrium

T
0 0.01 0.02 0.03 0.04 0.05 0.06

M
(T

)

0

0.1

0.2

0.3

0.4

0.5

0.6
α=0.75, ρ=0.55, rhoh=0.5, σ

ξ

2=0

N=100
N=200
N=400
N=∞,Equilibrium

T
×10-3

0 2 4 6 8

ǫ(
T

)

×10-3

0

0.2

0.4

0.6

0.8

1

1.2
α=0.75, ρ=0.55, rhoh=0.5, σ

ξ

2=0

N=100
N=200
N=400
N=∞,Equilibrium

T
0 0.01 0.02 0.03 0.04 0.05 0.06

M
(T

)

0

0.1

0.2

0.3

0.4

0.5
α=0.75, ρ=0.55, rhoh=0.5, σ

ξ

2=0

N=100
N=200
N=400
N=∞,Equilibrium

Figure 6. Distortion ǫ (left) and MSEM (right) plotted against temperature for α = 0.75, ρ =
0.55, and ρ̂ = 0.5. In contrast to Fig. 4 with ρ = 0.65, there is no phase transition. The upper
panels correspond to a rapid schedule with τ = 5, whereas the lower ones correspond to τ = 100.
At low temperatures, the rapid case does not follow the equilibrium state, whereas the slower
one is well matched.

3.2. Case without planted solutions

Next, we examine the opposite case with σ2
ξ = 1 and σ2

x = 0. There is now no planted solution,
and we focus solely on how small ǫ becomes. For comparison, we present a number of values
of ǫ achieved by different methods. The symbol ell1 denotes the ℓ1 method in [12], in which
the ℓ1-relaxed version of eq. (3) is solved and the resultant solution of x is inserted in eq. (4).
Similarly, the symbol ell1+LS corresponds to the method in [12], which gives ǫ obtained by
eq. (6), but with the substituted support c determined by solving the ℓ1-relaxed version of eq.
(3). The symbol OMP denotes the results given by orthogonal matching pursuit [22, 23]. The
OMP result is not obtained by analytical methods, but by numerical experiments with the same
parameters as SA for N = 400.

Fig. 7 plots ǫ against temperature T . Note that the thermal average of the distortion stops
decreasing at a certain value of T . Below this, ǫ remains constant, giving the achievable limit of
the value of distortion in the present case [12], as seen in the analytical result (black solid curve).
Over a longer temperature range (left panel), the numerical results seem to agree well with the
analytical curve, but over a tighter range of low temperatures (right panel), the numerical data
exhibit a systematic deviation from the analytical curve. This is likely to be a result of the
rapid nature of our annealing schedule. A slower schedule will improve the achievable value of
distortion, as in Fig. 6. Regardless, we can see that the SA result is already better than the
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Figure 7. Distortion plotted against temperature for α = 0.5, ρ = 0.2 for the case without a
planted solution. The right panel is a magnified view of the left one at low temperatures. The
black solid curve represents the analytical value of ǫ. Values of ǫ given by different algorithms
are also displayed as horizontal lines with different symbols. See the main text for details.

values achieved by the other methods, demonstrating the effectiveness of SA. For reference, the
distortion values obtained by ℓ1, ℓ1 + LS, OMP, and SA at µ = µ100 ≈ 1.3 × 104 and N = 400
were ǫℓ1 = 0.214, ǫℓ1+LS = 0.0966, ǫOMP = 0.0365 ± 6.7 × 10−4, ǫSA = 0.0272 ± 6.2 × 10−4,
respectively. The achievable limit was ǫ0 = 0.00919.

We also examined other parameter values, but the qualitative behavior was the same as that
of Fig. 7, and so the results are not shown here.

4. Discussion

4.1. Computation time and its order

For reference, we give the actual computation times for one run of SA under the schedule in
eq. (12): for α = 0.5 and ρ = 0.2, approximately 6, 15, and 38 seconds were required for
N = 100, 200, and 400, respectively. This experiment was performed on a 1.7 GHz Intel Core
i7 with two CPUs using MATLABR©.

As well as these practical results, we can estimate the order of the computation time.
Formally, this can be written as O(NµτNNMC), the last factor of which is the computational
cost of each MC update. The most expensive part is the matrix multiplication and inversion
required to calculate the energy. If we use simple multiplication and Gauss elimination in the
inversion process for each step, NMC = O(M(Nρ)2 + (Nρ)3). However, we have employed pair
flipping in each update of the sparse weights, meaning that the change in the relevant matrices
in each move is small and successive. This implies that we can reduce the computation time by
successively updating those matrices while employing the matrix inversion formula.

Provided that Gt+1 is decomposed as

Gt+1 =

(

Gt gt+1

gT
t+1 gt+1

)

, (15)

the matrix inversion formula gives

G−1
t+1 =

(

G−1
t + γt+1G

−1
t gt+1g

T
t+1G

−1
t −γt+1G

−1
t gt+1

(−γt+1G
−1
t gt+1)

T γt+1

)

≡

(

Ut ut+1

uT
t+1 ut+1

)

≡ Ut+1, (16)



where γt+1 = gt+1 − gT
t+1G

−1
t gt+1. We use this as follows. Write Gt+1 as (ÃT(c)Ã(c)), and

assume that we are given both Gt+1 and G−1
t+1 = Ut+1. First, we treat the deletion part of the

MC move, ci = 1→ c′i = 0. We want to calculate G−1
t from G−1

t+1. This is given by

G−1
t = Ut − ut+1u

T
t+1/ut+1, (17)

which has a computational cost of O((Nρ)2). The corresponding Gt is obtained by deleting
the ith column and row from Gt+1. Next, we move to the addition part cj = 0 → c′j = 1.

We now have Gt and G−1
t . Extending the matrix, Gt → Gt+1, involves adding an appropriate

column and row to Gt. The kth component of the added column vector can be calculated
as gt+1(k) =

∑M
l=1A(l, k)A(l, j), where k runs over the indices of ONES, and thus the

computational cost is O(MNρ). Similarly, we can calculate gt+1 =
∑M

l=1 A(l, j)A(l, j), and
hence the computational cost of calculating Gt+1 is O(MNρ). Now, we can easily calculate G−1

t+1

by eq. (16) from G−1
t , gt+1, and gt+1. The computational cost of this operation is O((Nρ)2).

This completes the successive update of G = ÃTÃ and G−1.
In summary, the factor NMC can be reduced to

NMC = O((Nρ)2 +MNρ) = O(N2αρ), (M = Nα ≥ Nρ). (18)

Thus, the total computational cost of our SA algorithm is O(αρτNµN
3). As long as Nµ does

not scale with the size of the system, we have only third-order dependence on system-size, which
is comparable to that of versatile convex optimization solvers used in the ℓ1-relaxed version of
the sparse approximation problem. Hence, our SA algorithm can solve the sparse approximation
problem at a computational cost that is of the same order as the ℓ1-relaxed version, without any
need to relax the problem.

4.2. Advantages, disadvantages, and possible extensions

Our study indicates that SA reliably determines a solution with small distortion both in the
presence and absence of noise, and has a reasonable computational cost. As long as noise and
the metastable state are absent, the solution identified by SA is approximately equal to the
planted solution. These findings encourage the use of SA in practical applications of the sparse
approximation problem.

To conclude, we summarize the advantages and disadvantages of the present SA algorithm.

Advantages:

• Easy to implement for any y and A.

• Necessarily stops (message passing can be unstable and sometimes does not converge,
especially in the presence of noise).

• Solutions at finite temperatures ({ct}t) can be obtained by one iteration of SA. These
may be more useful than the optimal solution with minimum distortion, especially in the
presence of noise.

Disadvantages:

• Emergence of metastable states in the hard parameter region.

• Presence of ρ. Tuning this parameter is not trivial: larger values of ρ are better for
determining the planted solution and decreasing the level of distortion, but are more likely
to yield the metastable state.



• Annealing schedule is arbitrary, and it is not a priori clear how long the algorithm requires
to reach a desired solution.

These disadvantages may be overcome using a range of techniques. Seeding [10] is a good
candidate for avoiding trapping in the metastable state. What we should do is to change the
matrix A to a structured one as described in [10]. Beyond the pair flipping process, we may
flip more sparse weights to generate trial moves, which should shorten the time required for
efficient sampling. Multicanonical methods may also be beneficial. For example, simulating
different values of ρ simultaneously enables a wider region of the phase space to be sampled,
which may help escaping from the metastable state. In this way, the second disadvantage will
be also diminished. Developing extensions extensions for the present formulation of SA will be
helpful to control the sparse approximation problem.
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