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USING AN ENCOMPASSING PERIODIC BOX TO PERFORM NUMERICAL
CALCULATIONS ON GENERAL DOMAINS

PATRICK GUIDOTTI

ABSTRACT. This paper shows how numerical methods on a regular grid in a box can be used to
generate numerical schemes for problems in general smooth domains contained in the box with
no need for a domain specific discretization. The focus is mainly be on spectral discretizations
due to their ability to accurately resolve the interaction of finite order distributions (generalized
functions) and smooth functions. Mimicking the analytical structure of the relevant (pseudo-
differential) operators leads to viable and accurate numerical representations and algorithms.
An important byproduct of the structural insights gained in the process is the introduction of
smooth kernels (at the discrete level) to replace classical singular kernels which are typically
used in the (numerical) representations of the solution. The new kernel representations yield
enhanced numerical resolution and, while they necessarily lead to significantly higher condition
numbers, they also suggest natural and effective ways to precondition the systems.

1. INTRODUCTION

It is the primary goal of this paper to develop a framework which allows one to extend the
benefits of numerical spectral methods from boxes to arbitrary geometry domains. The idea is
to simulate problems on domains Q C B located inside a periodicity box B = [—m, 7|™ by using
spectral approximation of generalized functions (distributions). This is best illustrated in the case
of boundary value problems, which are also an important application of the method. Consider the
boundary value problem

Au=f inQ,
Bu =g on 0,

for some generic differential operator A and boundary operator B. It is no restriction to assume
that the operators and the data be defined everywhere in the box B. One obtains a numerical
approximation for the boundary value problem in the following manner. First discretize the period-
icity box B by a regular grid G™ = {x}” . j € Z™} with 2™ points if working in dimension n € N,
then, independently, discretize the boundary I" of the domain 2 by a subset I = {y1,...,y»} C T.
Choose a discretization A™ of the operator A which operates on the grid G™ and find a solution
™ G™ = R of

in G™ for a discretization of f. With that in hand, generate numerical approximations for functions
Yt G™ = R, k=1,...,n, in the kernel of the operator Aq on 2 and try to adjust the solution
v™ by a linear combination

wm,n _ wm;nw;cn
= k
k=1
of these kernel elements in order for u™"™ = v +w™™ to satisfy a discretization B™"u™"™ = g" of
the boundary condition for a discretization g" : I'* — R of g. Choosing B to be the trace operator
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~r at first for ease of presentation, this can be done as follows. Approximate d,, for k =1,...,n
by its spectral representation d;; on the periodic grid G™ and insist that

<5Z,um’">qm =g, j=1...,n,

where (-,-),m is the discrete duality pairing (scalar product) discretizing the continuous duality
pairing (-,-)p, p, between periodic distributions and testfunctions. Details will be given in the
rest of the paper. Following the strategy outlined above leads to a system for the unknown w™ ™
of the form

n
<5$’wm7n>q’" = Z< uwwk "’wk Z wgb’n = 9] <6ZJL Um>q""7 j=1...,n,
k=1
One can think of ¢;" as the discrete kernel of the trace operator yp. It is therefore possible to deal
with a more general boundary operator B by deriving a “natural” numerical approximation By
of its distributional kernel for j = 1,...,n. This would lead to the system
n
(B, w™ ) gm =Y (By', i) gmw™ = gt — (By' ™) gm, j=1,...,m,
k=1

In order to obtain a numerical method it remains to generate the kernel functions ;" for k =
1,...,m. This can be done in many different ways. In order to, at first, make a connection explicit
to pseudo-differential operators, again consider B = 4 and procede in the following manner. Take
the spectral approximation 4, for kK =1,...,n and set

o= (Am) e,
Since the Dirac distribution is “supported” on the singleton {ys}, the function ¢}* will indeed “lie”

in the kernel of A™ over 2. Since these functions are “peaked” at different locations yy, they will
be linearly independent. The matrix M in the system for the unknown w”™™ is therefore given by

jk‘ - <5m (Am)iléz?ﬁqma jv k= ]-7 .
Latter can be recognized as the discrete counterpart of
m(y,n) = {6y, A'6,), y,n €T,

the distributional kernel of a pseudodifferential operator on the boundary curve I'. This connection
is made more precise in the rest of the paper and provides a framework in which to obtain analytical
proofs for the numerical methods introduced. For implementation purposes, however, it is best to
proceed in a somewhat different way when constructing the kernel functions ;*. Instead of using
the “rougher” Dirac distributions used above, it is better to replace them by smooth functions ¢y,
which are supported outside of  with support “centered” at §r = yx + dvr(yg) for § > 0 where
vr(yg) is the unit outer normal to the boundary I' at the point yi. After discretization this leads
to the alternative matrix

My = (85, (A™) Lo hgm, Gik=1,...,n,
which is the discretization of a smoothing operator with kernel

m(y,n) = (6,, A" '¢5), y,n € T.

As such, M will be easier to capture numerically (fast convergent expansion of its kernel function)
but also badly conditioned (as a smoothing and thus compact operator with unbounded inverse).
In spite of this, “natural” and effective preconditioning procedures can be devised which com-
pletely remove this drawback. The rest of the paper is organized as follows. In the next section
some preliminary results are obtained which highlight the main features of the underlying spectral
approach to approximating generalized functions and testfunctions in the context of periodicity
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and for boundary value problems, in particular; in Section 3 details are given about the discretiza-
tions used in the concrete examples studied in Section 4. The following section is dedicated to
the specifics of the numerical implementation and to numerical experiments which illustrate the
main theoretical insights and the advantages of the proposed method. A brief conclusion ends the

paper.

2. PRELIMINARIES

2.1. Setup. Before working with the relevant discretizations, the stage is set by fixing the ana-
lytical context which will very much guide the numerical procedures developed in the rest of the
paper. Let B = [—m, 7)™ be the periodicity box bounding the area of interest. Extensive use will
be made of distributions and of testfunctions. Latter are periodic smooth functions belonging to
one of the following useful spaces

D, (B) =D, = {¢ € C*(R")| ¢ is 2m-periodic } (2.1)
DI(B) =D = {¢ € C™(R") | ¢ is 2m-periodic} (2.2)
Dy(B) =Dy = {p € C*(R") | supp(¢) CC B} (2.3)

where m € N. The first space carries its standard locally convex topology generated by the family
of seminorms {p,, : m € N} given by

Pm(p) = sup [|0°¢]lco,

o] <m
the second is a Banach with respect to the norm p,,, and the last carries the natural inductive
limit-Fréchet topology, i.e. the coarsest topology which makes the inclusions
Dk (B) = {p € C*(R") | supp(p) C K} < Dy(B)
continuous for all K = K CC B. Notice that Dk (B) is endowed with the locally convex topology
induced by the seminorms

Pm.ic(-) = sup [[0% - [|oo. s,
lal<m

where the additional subscript indicates that the supremum norm is taken over the set K. The
space

D, (B) =D, = {u: Dy — K|u is linear and continous}
is then the space of K(= R, C)-valued distributions dual to D,. On L2 = L2(B) = L*(B) there is
a natural orthonormal basis (ex)gen given by

1

ek(x) == Weik‘ﬁU? x € B, ke Zn,

consisting of eigenfunctions of the periodic Laplacian —A,. It is well-known that

FiL2 5 (Z), o= Y érer > (Pr)ren
keZn

is an isometric isomorphism where

Br = /B o(@)er(z) dz = (p, ) = (plex).

In particular one has that [|¢|[r2 = ||(#x)kenlliz(z») and Parseval’s identity

(@Iw):/Bwifdfc: 3" Gtk = (2ld) for g, € L2.

kezn
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Notice that the formulae above use the notations (-, -) and (-|-) for the duality pairing and the scalar
product, respectively. The former is clearly motivated by the natural duality pairing between
distributions and test functions

() : D x Dr = K, (u,0) = (u, ) = ufyp).
Observe that, if ¢ € Dy, then 9%p € L2 for all @ € N and thus
0% Y drer =0% =Y (0%¢)ex = »_ (ik)*rer,
kezn kezn kezn

with convergence in Lfr, owing to well-known properties of the Fourier transform. Introducing the
periodic Bessel potential spaces via

Hy =H;(B) ={ueD,| > (1+]kP*)*a; < oo},
kezn
for s € R and 4y, = (u,e) = (uleg), it follows easily that
Z prer — @ as N — oo,
kI<N
in H; for any s > 0 if ¢ € D,.. By the well-known embedding
H} — C' = C(B), (2.4)

valid for s > n/2 4+ m, it then follows that the convergence of the Fourier series actually takes
place in the topology of D,. An important consequence of this fact is the validity of the following
generalized Parseval’s identity

(u,0) = (u, Y @rer) = Y (u,ex) G = > s, (255)

kezn kezn T kezn
(ulg) = (ul Y drer) = Y (uler)dr = (2l@) (2.6)
kezn kezn

for u € DL, ¢ € Dy, and (ulex) = (u,ér) = (u,e_g). A distribution v € D, is said to be of finite
order m € N if it admits an estimate of the form

[{u, )| < cpm(p), ¢ € D,

for a non-negative constant ¢ but not for m replaced by m — 1. It follows from a density argument
combined with the embedding that any finite order distribution belongs to H_® for some
finite s > 0. The upshot of this is that can be used to evaluate the action of a finite order
distribution on a testfunction by a fast converging series since (G )ren is polynomially bounded and
(¢r)ken decays faster than the reciprocal of any polynomial in k. This combined with the choice
of appropriate discretizations will be exploited later to derive highly accurate representations of
various operators (not even necessarily supported on the discretization grid itself). Indeed many
useful basic operations such as differentiation, integration, evaluation/interpolation are distribu-
tions of finite order. It also turns out that, for many interesting distributions u € D’ it will be

T

possible to compute their Fourier coefficients either exactly or in a highly accurate manner.

2.2. Simple Illustrative Examples. Consider first 6., for o € B which is a zero order distri-
bution. Later é,, will be discretized on a regular grid but z, will be allowed to be any point in
the domain B. Then it holds that

Oy = Z (Ozqs € )EK = Z (ulek)ex.

kezn kezn
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Indeed
<6w07§0> = <6107 Z 92719) = Z <5zoaek><§0>ék> = < Z (S:Eo)kéb@)a

kezn kezn kezn

where (6,), = ex(x0). The convergence of this evaluation series
<§w0780> = Z ek(x())@k,
kezn

is clearly very fast and its coefficients are known either exactly or to a high degree of accuracy.
This seemingly very simple observation will play a crucial role in the derivation of a highly accurate
representation of higher dimensional kernels related to boundary value problems.

Remark 2.1. While in this paper it will be enough to deal with the evaluation of smooth func-
tions, such as test functions, in [I] modifications are presented (in a non-periodic context) which
make it possible to retain good convergence properties also for piecewise smooth functions, another
important class of functions in applications.

The next example shows how the considerations of Subsection 2.1 provide an abstract framework
in which to understand spectral methods (after discretization). Let ¢ € D, and consider computing

0%p(wo) = {(~=1)'*10%84,, )

at a point z¢ € B. In this case

0% o(x0) = (~1)1*0%,0,0) = S (~1)1(98,, )nn

kezn
= Y 0%ex(wo)pr = Y [(ik)*@rler(o).
kezm kezn

It is again clear that the main advantages lie in the fact that ¢ is smooth and that the Fourier
coefficients of %9, are known exactly.

The next is an example of integration. Take xg < 7 in the one dimensional box B. Of interest
is the computation (eventually numerically) the integral

re) = [ el

]

between the end points given (which are not necessarily on a numerical grid). Since I € D/ is a
zero order distribution, it is possible compute its Fourier coefficients

T o 1 ikx ikx
Ik<Iaek>/$O ek(z)dfﬁzw%[e T et

again obtaining an explicit formula. Then

/ p(x)de =" Ipx,

0 keZ

will provide a fast converging series representation.

2.3. A simple Boundary Value Problem. This section concludes with a simple example that
will make the advantages and basic principle of this approach apparent. They will reappear in the
higher dimensional context with the appropriate adjustments. Consider the following two point
boundary value problem

2.7
u(z;) =u; for j=0,L1 @7)

{—amu =f on (zg,71) C B,
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Notice that it will be considered as a problem embedded in the periodicity box B (which will later
be discretized by a regular grid). Assume that f € D, be given along with u; € R for j = 0, 1.
Choose a function 9 € D, satisfying

1[)0 = ]-a 1- T/’ € DO(B)a Supp(ﬂ’) - [:EO;:CI}C7
and define
Pyf=1[f—fov

for the datum f and accordingly for any distribution in D). This way, a function Py f is obtained
with vanishing average which coincides with f on (2, z1). When applied to a general distribution
u that is compactly supported inside the box, this operation produces a modified distribution Pyu
which coincides with the original u on its supp(u) if, without loss of generality, it is assumed that
supp(u) Nsupp(¢y)) = 0. Next define the operator G, acting on f via

— 0 k=0
Gﬂ' _ & )

so that
_aévaﬂ'(f) = G‘n’(_awwf> =f- Po(f),

for Pof = f — foeo is the orthogonal projection onto average free functions. A solution of (12.7)
can be looked for in the form

u = Gﬂ(ow) + v,
where v satisfies
Opzv = 0 and v(z;) = u; — G (P,l,f) (), 7=0,1
All that remains is to find two linearly independent elements vy, v1 in the kernel of —9,,, on (z¢, z1)

and look for v in the form v = agvg + a1vy. In order for the boundary conditions to be satisfied,
one needs that

Oéo’Uo(l‘j) + 0411}1(.13]') =u; — Gx (ow) (JTJ) =: ﬁj, 7 =0,1.

By choosing vy = G (Py0,,) for k =0, 1, this leads to the matrix M = [vg(x;)]; r=0,1 with

Mj = 0z, Gx(Pybs,.)), (2.8)
which is a kind of Green’s function “M = M(z;,zx)”, j,k = 0,1. The crucial observation is
that all ingredients d,;, G, Pyds, allow for spectral representations in the periodicity interval
B (regardless of whether z; for j = 0,1 are or are not grid points after discretization). The
convergence is, however, limited by the fact that, in (2.8, d,, is of zero order and that G (0., )
is of limited smoothness (slightly better than H}r) This, however, can be alleviated by replacing
Pd,émk by either P¢(5ik with

Ty = + ov(xy) for v(zy) = (~1)* and k =0, 1,
or, even better, by Pz, for a smooth test function ¢z, € Dy supported in a neighborhood Uy, of
T with U N (29, 21) = 0 and U, Nsupp(¢)) = 0 to obtain
Mjk = <6I37G71'(<)55ik)>

It is easily checked that M is invertible for zy # x;. Taking Zj;, not too far from x;, and ¢z, ~ 0z, ,

it follows that M ~ M is also invertible. The upshot is, clearly, that M allows for a fast converging
representation of its entries. To conclude this simple example one has that

u=Gr(Pyf) + [vo 1] M8,
for B=[Bo A1]".
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Remark 2.2. It is to be observed that, after discretization, all basic ingredients 6., Gr, Pypz,, "
will have highly accurate grid representations, even if x;,T1 do not lie on the grid. Owing either
to the availability of exact Fourier coefficients or to their smoothness, the additional discretization
error incurred when going to a finite dimensional representation is as small as can be hoped for.

3. DISCRETIZATION

3.1. One Dimension. In order to rip the benefits of the above considerations the interval B; =
[—,7) is discretized at m € N (even) equidistant points (27");=o,...,m—1 Where

™
mo__ . .

zj ——7T+E],]—O,...,m—1.

This will be sometimes referred to as the grid G of size m in dimension n = 1. As pointed
out in [I], the choice of grid has to be complemented by an appropriate choice of corresponding

quadrature rule ¢"™ = (q}”)jzoyu_,m,l such that

m—1
(™, M) gm =1 gm P =q" ™ = Z el — o(z) dx as m — 00, ¢ € Dy,

=0 B

for the constant function 1 with value 1 and for

©™ = Pp(p) = (gp(xgn))jzo,...,mfl’

the (physical space) projection of the test function ¢ on the grid. It is also required that the
quadrature rule satisfy

e;n qm é};n:(sjk’ Oéjvkéma

for the basis vectors e;, j = —m/2,...,m/2 — 1, where again the superscript indicates projection
(by evalutation) on the grid.

Definition 3.1. A discretization pair (x™,q™) on B; satsfying the above properties is called

faithful discretization.

The trapezoidal rule, for which it holds that

m_ 2T

1,...,1

m ( ) ) )7

has this property of preserving the duality pairing and the orthogonal structure of the continuous
setting. Many basic, useful distributions, such as d,, for any xg € [—m,7), cannot be directly
evaluated at points (short of obtaining a vanishing projection for all non-grid points xg). It is then
better to use an approximation based on Fourier coefficients and given by

m/2—1 m/1-2
u™ = Pr(u) = Z el = Z U Pp(ex), u € Dy.
k=—m/2 k=—m/2

The reason for this is that, in practice, one often has analytical knowledge of the coefficients @ or
the ability to compute them to a high degree of accuracy.
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Remark 3.2. Observing that 6, = 21:/3;1/2 er(xo)en and assuming that xg = z is one of the
grid points, one has that
m/2—1 m/2—1
O (1) = Y enlafen(@)) = Y e (a)e; (e T
k=—m/2 k=—m/2
m/2—1
= 0T N g (e () = €0 ITe g T
k=—m/2
m
= % jjo
since ) )
€k($§n) _ —= —ikm+ik2Tj Tﬂ-ei(j—k)ﬂeij(—n-&-%k) _ ei(j—k)wej(xzn).

It is seen that Pr(dy,) evaluates exactly (to the discrete Dirac function) if xo is a grid point, while,
for xg € [-m,7) \ GY*, it has oscillatory character. In any case one has that

(0ns, @™ gm = (0ay, @) = @(z0) as m — o0,

xo?

for any ¢ € Dy, with fast convergence.

Remark 3.3. The alternating point trapezoidal rule of quadrature given by ¢™ = (2,0,...,2,0)
can also be used instead of the reqular trapezoidal rule as it has been observed to have the required
properties in [1].

Definition 3.4. The discrete Fourier transform F,, : C™ — C™ is defined by
Fm(v) = (v “qm ézl)szm/2,..‘,m/271’ veCm.

Remark 3.5. As the discretization is faithful, F,, is an isometric isomorphism. In fact it is easy
to prove that

Vogm W= Fp (V) - Frn(w)
so that Parseval’s identity carries over exactly to the discrete setting. Notice that the standard
FEuclidean inner product is used in the right-hand side.

Proposition 3.6. For a finite order distribution u € D, and a test function ¢ € Dy, it can be
shown (see [1, Theorem 4.2] and the considerations preceding it) that, given any N € N, one has

that
1

|<u790> —u™ qm™ (pm| < C(P,U,QP)W.

Notice that, while this result is proved in [I] only for compactly supported distribution and
compactly supported test functions, the same arguments apply in the current context since the
compact support condition is not needed in the periodic context where no boundary is present and,
hence, no boundary effects (read convergence slowdown due to boundary mismatch) can occur.

Remark 3.7. At the continuous level, one can think of the series
1 .

as the (generalized, since it converges in the sense of distributions only) kernel i of the identity
map on L2 since clearly

1 ) 2T i , 2 )
o) = 5 e [T e aay = [ i) o € D
2m keZ 0 0
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In this context, a discretization which respects the duality pairing and the orthogonality structure as
decribed above yields “natural” spectral discretizations for a variety of important operators which
will be exploited later. In particular, it delivers such a discretization i for the identity map given

by

m/2—1
(0710 = (0,87 )qm = D en(@)ep () (el e )om
kk=—m/2
m/2—-1 | M
= Z 6k(1’)é;€(y)5kk:% Z elk(ﬂﬂfy):Z'm(x’y)7 (3.9)
k:,fczfm/Q k=—m/2

which is clearly the truncation of the series representation of the kernel i itself. Notice that x,y
need not be grid points and that the approximation is thus “grid blind” and the error incurred is
caused only by truncation of the series and by evaluation of the exponential function at the points
of interest. If the kernel is evaluated on the grid points only, then it coincides with the kernel of
discrete identity map, i.e. with the identity matrix
Zm(x;n’xzn) = Ojk-

3.2. Higher dimensions. In higher dimensions, the periodicity box B = B,, is discretized anal-
ogously in each direction by equidistant points to obtain the grid

m __ ym o __ ym m
G™ =G =G x G,
N—_———

n-times

with corresponding quadrature rule ¢ = (%)nlm, where now, 1™ is thought of as a vector
of length m™. This way, a faithful discretization respecting duality pairing and orthogonality is
obtained. In particular, it follows that

(ex's € ) gm = Opps

for ex(x) = W@ik'z for x € R", k € Z™ and, again, €}’ = eg|,,. Dirac delta functions are
approximated by tensor products

6;373 = 33(1] ® 6;?}’
of the corresponding one dimensional representations 677, j = 1,...,n where zo = (x%)j:17___7n. As

far as test functions ¢,, supported in a neighborhood of a point z¢ € B go, many choices can be
made. The specifics will be given in the numerical experiments performed later. For now it is only
important to know that such test functions can be given explicitly by an analytical formula which
allows for accurate evaluation anywhere.
Consider now a general pseudodifferential operator a(x, D) with symbol (a(z, k))k czn defined

by

a(z,D)p = Z eFTa(x, k),

kezn

and where a(-,k) : B — C is assumed to be smooth and periodic for each k € Z". Its Schwartz
kernel is given by

kaw,y) = 3 eFEVa(a, k),

kezn
for which one has that
a(z, D) = (ka(z,-),¢) for ¢ € Dy.

More suggestively one can write that

ka(2,y) = (0z|a(z, D)dy),
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justified by the validity of the formal Parseval’s identity

(6-la(x, D)8,) = (§.|a(z, D Z et @ gz, k).

kezn
If a(x,-) is polynomially bounded (for each x), convergence in the sense of distributions can be
established. For well-known classes of symbols [2], it can be shown that &, is smooth away from the
diagonal [z = y], where cancellations are responsible for the faster convergence of the series. This
is the case for general differential operators and the corresponding solutions operators appearing
in common boundary value problems, for instance. It turns out that, what was observed above for
a =1 (leading to the identity map) in one space dimension, is valid for general pseudodifferential
operators.

Theorem 3.8. Given a pseudodifferential operator a(xz, D) with kernel k,, it is natural to approz-
imate it by the truncated series expansion

ki (x,y) = ) ala, k)™ @),

kezn,
where 72, = {k ez ki=-m/2,....m/2—1 fori=1,... ,n}. In this case one has that
ki (w,y) = (0 la™ (x, D)d;"), (3.10)

for a™(z, D) = F,;ta™(z, ) Fm and
m(ka) = a(m,k) ke ZZL
Proof. In one dimension, the extension of (3.9) to general symbols amounts to

(67 1a™ (2, D)8,") = (Fom (07" }.7-' (xz,D) 5’” Z R oz, k)e *Y = k™ (2, y),
keZrn,

m

since the term §,; in (3.9) is simply replaced by a(z, l;)ék,;. The rest follows from this and the fact
that, in higher dimensions, one has that

ot =00 ®---®4; and
ex(z) =ep, (1) Q- ®ex, (2n), z € R™

While only real valued symbols are considered here (because of the applications of interest), stan-
dard modification would allow to include the compex case as well. O

This simple observation is quite useful and shows how to produce grid independent “spectral”
approximations of operators through an approximation of their kernels. The structure of the kernel
made apparent in provides a blue print as to how to obtain numerical approximations to
kernels of discrete operators K™ by simply computing (85 |K™4d;"). This is of interest when K™ is,
for instance, the numerical inverse of the discretization A™ of an operator A for which no analytical
inverse is available.

Remark 3.9. For solution operators, the convergence of the series can, in general, be quite slow
even if it is stronger than in the sense of distributions. This is due to the (mildly) singular behavior
of the kernel on the diagonal and typically requires special care in the numerical evaluation process.
Representation , however, suggests natural ways in which to do this by regularization of the
kernel through
(o7 |a™ (2, D)),

where Dy 3 @5 ~ 05 and § ~ y is conveniently located. In some cases, this modification can be
carried out to obtain an alternate exact representation by a smooth kernel with no approximation
inwvolved. See the boundary value problem example in the next section.
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4. Two DIMENSIONAL EXAMPLES

Two examples in two space dimensions are presented here which illustrate the benefits of the
proposed approach.

4.1. Integration. Consider a (smooth or piecewise smooth) domain @ C B and the numerical
task of approximating the integral

I(p) = / o(x) dz, ¢ € D,
Q
of a smooth function ¢. Since I is a finite order distribution, one has that

I= Z (I, ex)er = Z Iy.ér,

keZ? kez?

and I(p) = > ez L. If I}, can be computed /approximated accurately by I:IT on G™, then a
numerical quadrature I™ for integration over 2 could be obtained by setting

"™y =Y I{'ei,
keZ?2

m

where Q7' = (@™, € )gm = Fm(®)r can be computed using the Fast Fourier transform. The
notation Z2, is used, as before, for the appropriate set of indeces corresponding to the discretization
level considered. While it appears that the problem of computing () has simply been replaced
by that of evaluating I(ey) for k € Z2,, the analytical knowledge of the bases functions and of their
properties becomes useful. Indeed for k = (0,0) one has

~ 1 1 . [T 1
Iy = — dr = — [ div dr = — | (x1v1 + wov) dorp ()
27T O 47T O To 47T T

1 2m

=i, [ (£)A2(t) — 41 ()2 (t)] dt, (4.11)

where I' = 9, v is the outward unit normal to I', and (v1(-),72(-)) is a parametrization of T
Here it assumed for simplicity that I" is connected. If, on the other hand, k # 0, then

- 1 . 1 ;
I, = —/ e dp = 7/ —AetF? dy
271' Q 27T|k7|2 Q
1 ik 1 i
_ Vek T dor = ——— [ k. v]e*®d
27T|k|2/r1/ Ve or e /F[ vle or

. 27

= ﬁ /0 (ko (£) — kada ()] €7D dt. (4.12)
Thus, given a representation of Q via its boundary T, either as a list of points (from which the
relevant geometric quantities can be computed) or via an analytic expression (often available even
in pratice), the computation reduces to that of a periodic one dimensional integral which can be
performed to high accuracy as already noted earlier. The advantage of this approach is that the
integrand lives on B, or on G™, and only a simple discrete representation I'™ of I" is needed in
order to perform the calculation. Notice that the grids G™ and I'™ do not need to have any relation
whatsoever to one another. In fact, when u is smooth, m can be kept small while n will need to
be chosen large in order to get a good approximation of the highly oscillatory (in general) line
integral. The advantage clearly lies in the line integral being one dimensional.
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4.2. Boundary Value Problems. Let again 2 be a smooth domain inside the box B and consider
the classical boundary value problems

—Au = in
{ u=/ g (4.13)
u=g on I,
and
u—Au=f in§, (4.14)
du=yg onT,
where it can be assumed that the data are given as f: B — R and g : I' — R. Using
1
G(zr,y) =Gz —y) = %bg(\x —y|) for z,y € R2,
and the classical Green’s identity
/ (uAG — GAu) dx = /(ua,,G — GO,u) dor, (4.15)
Q r

solution representations can be obtained from

u(z) = / G, y) f(y) dy — / G, y)dyuly) dor(y) + / 9(4)0,G (z,y) dov (y),
/Gmy dy+/()8G(xydap /Gmy y) dor(y),

once the boundary functions u and 0,u are recovered, depending on whether one considers the
Neumann or Dirichlet problem, respectively. While the single and double layer potentials terms

S(u)(z) = /FG(z, y)0,u(y) dor(y), © € R*\ T, (4.16)

D(u)(z) = /Fu(y)ayG(x,y) dor(y), v € R*\T. (4.17)

are important to understand and will appear later for their mapping properties, the construction
of solutions, both analytical and numerical, presented here will proceed slightly differently. The
following facts [2] will be useful

S(u)(x) = F%i}n S(u)(z) = / G(z,y)0,u(y)dor(y), z € T, (4.18)
r—x I
1
Op+S(u)(z) = hm 0,(2)S(u)(z) = qi;u(x) + N(u)(x), z €T, (4.19)
LR
where Ot = Q and 9~ = R? \ Q, respectively, and the normal to I' is extended continuously in a

neighborhood of I', and

Nw)@) = [ ) Gla ) doe(y). o € T
The starting point consists in observing that the function G(-,y) is a harmonic function in Q for
any y € B\  and for any fundamental solution G. For the Dirichlet problem therefore take
GP(z,y) = G ((z — y) mod 27 — 1),
to be the Green’s function for the periodicity box B characterized by its symbol

. 0 k=0
ao (k) = { ’ ’
ﬁ% 0+#keZ?
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and, for the Neumann problem, GV with symbol
_
1+ k|2

If f is a mean zero function, i.e. if fo = 0, then GPx f = fB GP (-, y) f(y) dy satisfies
~AGP x f=finQ,

GN (k) = ke 72

T

as desired. One also has that

G2 « (—Au) =u— Py(u),
where Py = (-|eg)eq is the orthogonal projection onto the subspace consisting of constant functions.
Similarly for the Neumann problem where
(1-A)GY « f=fand GY * (u— Au) = u.

A solution to the boundary value problems can therefore be sought in the form
u(z) = G * f(x) /Gbxy y)dor(y), 2 €Q, b= D, N,

where the second term is a “harmonic” function in €2 and can be thought of as a superposition along
the boundary of functions in the kernel of Ag or 1 — Agq, respectively, which generate the desired
boundary behavior for the solution. The function A can indeed be determined by the requirement
that u = g or ,u = g on the boundary I', respectively, that is by insisting that

g(@) = (0u,u) = (82, GE % f) + (02, G * (hér)), x €T,
and that
9(x) = (—v(x) - Vo, u) = —(0y(2)0u, GR * f) = (85, GY  (hdr)), = €T,
where
H 4 (hdv) = [ H(oy)h(y) dor(y),
r

for H =GP 0, GY. The above is justified by the fact that
2

Opu(z) = (b, 0pu) 6,6,21/]8 U Z vjdy, Oju)

Jj=1

[
]

(vj(2)dz, ju) = —(v(z) - Vg, u)

1
7<al/(w)6mau>a zel.

<.
Il

This ylelds an equation
— (5.7 (;ﬂ. * 5

for an operator M on I given by

with kernel function defined by

b(x y) = {mD(I,y) = (0, (_Aﬂ)ilpwdy%
, ’ITLN(.T, y) = <8l/(x)5177 (1 — Aﬂ-)ilpw(sy%
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for the Dirichlet and Neumann problem, respectively. Here the more transparent notation (—A,)~!
and (1 — A;)~! are used for the operation of convolution with GP and G¥, respectively. P,u
denotes the projection onto mean zero functions/distributions given by

Pw’u =Uu-— ’&01/) =Uu— ﬂ0¢7 (422)
for a nonnegative function ¢ € D, satisfying
supp(¥) € Q° and g = 1. (4.23)

Remark 4.1. Using the suggestive notation

0
dor(y) = |(dy, 25) dt,

for (dy, %> = 4(t) when y = ~(t) to evoke the validity of

[odort) = [ ob@)miar
I 0

for any parametrization v of I' and for any smooth integrand v : I' — R, allows for the factor
|{dy, %)\ to be assimilated into the unknown function h to yield |(dy, %Hh as the new unknown.
This s particularly convenient when working at the discrete level, where one is only eventually
interested in the function

T /FGZ(w,y)h(y) dor(y) =

and the determination of h or |(dy, %Hh are equivalent.

27 a
GY (z,y)h(y)|(dy, 5p)ldt Q=R
0

The kernels mp and my in (4.21)) have the form of those considered in the previous section and
are of exactly the same type as in the earlier one dimensional toy boundary value problem. Just
as in that case, §, can be replaced by d; for

g=y+ov(y),yer,
where § > 0 can be chosen such that a tubular neighborhood
TS = {x € B|d(z,T) < 26}
of T' can be found with well-defined coordinates (y, s) € T’ x (=24, 2J) satisfying
x=y+ sv(y) for y =Y (x) and s = d(z,T).

This corresponds to replacing I' by r = {g]y € T} in the evaluation of the kernel (but not in
that of the boundary integral). Notice that latter distinction is immaterial at the discrete level
where the boundary measure is assimilated in the unknown function h as described above. An
even better choice is obtained by replacing J, by

vy € Dy with supp(pz) C Q° and supp(pz) Nsupp(y) = 0. (4.24)

The kernel modification is shown pictorially in Figure [I]

The upshot is that the operator M® with singular kernel is replaced by the operator M? with
smooth kernel given by

mD(xay) = <5m7(_A7T)71P¢SOQ>a b:
7,ﬁN("Eﬂy) = <8V(r)5a:a(1_Aﬂ')_1P’l/isoﬂ>u b=
By choosing ¢y localized enough (read close to a Dirac delta function) it follows that

M — M~ 0,

D
" for z,y € T
N,
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supp(py)

FIGURE 1. A pictorial illustration of the proposed kernel construction.

in the strong operator sense. Notice that the projection procedure (4.23)) ensures that the support
of Pypy lies completely outside of € and does thus still generate functions in the kernel of Aq.

Remark 4.2. The operator MY can be shown to be smoothing of one degree of differentiability in
the Dirichlet case, and of none in the Neumann case. For a proof based on symbol analysis see e.g.

2].

Remark 4.3. While it is often convenient to work with an explicit fundamental solution for —A
and use it in order to derive the necessary boundary kernels (to be used in a numerical imple-
mentation of boundary integral type), the approach described above does not rely on the explicit
knowledge of a Green’s function. Indeed at the discrete level, the kernel functions, G2 = (—=A,)~!
and GY = (1 — A,;)~! in the examples, can be replaced by (AR)~! and (AR)~! for any dis-
cretizations Ap* to the grid G™ of a differential operator Ay obtained by spectral or finite difference
methods for b= D, N. In the above example A™ would be a standard spectral or finite difference
approximations of the periodic A and 1— A operators on the box B. This opens the door to applying
the method to nonconstant coefficient operators and to constant coefficient operators for which no
explicit Green’s function or symbol is available.

Next an illustrative analytical result is proved in the Dirichlet case which will play an important
role in obtaining invertibility results for the numerical schemes derived later.

Lemma 4.4. The operator MP defined in (&.20)) with kernel mp given by ([&.21) is invertible.

Proof. First notice that G2 is a fundamental solution on the space of mean zero distributions. It
follows either from Poisson’s summation formula or from the theory of pseudodifferential operators
[2] that GP is smooth away from the diagonal [x = y] and that

1
G2 (w,y) = 5 log(lz — yl) = G(a,y), w=y € B,

i.e., it has the same singular behavior of the full space fundamental solution G. It indeed differs
from it by a smooth kernel only. Now one has that

ik-x 1 —ik- 7 ik-x 1 —ik- n
mD(xay):Zek W(e MY ) = Z e W(e MY — )
kez? 0#£keZ2
and thus that

mp(a,y) = Gr(ey) = 3 M =GR (@y) — (@)
0#£k€eZ?
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where 7 is a smooth function. Consequently one sees that

5 = [ G2ty dor) = nte) [ bio) dor (o)
This means that S enjoys the same classical jump relations as S given by

S(h) = / G-, y)h(y) dor (y),
i.e. it holds

{ﬁ§(h) =5 S(h) =S (h), (4.25)

8ur+§(h) ~0,- S(h) = h,

where the superscripts + indicate limits taken from within and from without €, respectively, just
as in ([4.I8). It also follows (see e.g. [2]) that MP is Fredholm and that it continuously maps
H*(T) to H*T!(T) for any s € R. Tt is therefore enough to show that M?P is injective “on smooth
functions”, i.e. that

1w 8(h) = /F mp (- y)h(y) dor(y) =0 = h =0,

for smooth h : I' — R. Since S(h) is defined for all z € B and is harmonic in B \ I, unique
solvability of the Dirichlet problem in Q yields that S(h)|Q = 0. By construction it holds that

/B S(h)dz =0,

so that Poincaré’s inequality

§(h)2das:/ S(h)? dx < c/ IVS(h)| da :c/ |VS(h)?| dz,
B\Q B B B\Q

entails that, if g(h)| B\Q is constant, then it has to vanish identically. Since

0=— S(h)AS(h) dx = / (VS(h)[* da — / S(h) 8,5 (h) dor,
B\Q B\Q P~
it therefore follows that g(h)| ma =0 Finally this shows that
GU;S(h)\B\Q =—h=0,
thus establishing the claim. O

Proposition 4.5. The modified operator MP s injective provided § ~y and vy ~ 5 fory € I.

Proof. The operator MP has smooth kernel and is therefore compact. Given any smooth h # 0,
it follows from the previous lemma that yrS(h) # 0. Now it holds that

(00, (—Ar) "' Pypg) = (0o, (—Ar) "' Pydy) as 5 — by,
pointwise everywhere in z,y € I' (in fact, uniformly). On the other hand, one also has that
dg = 0y as § — vy,
uniformly in y € T in the sense of distributions (or in the sense of measures) so that

(% (_AW)_1531> = (0, (_Aw)_15y> as y — 9,
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pointwise for = # y, i.e., almost everywhere. Since the limiting kernel is integrable in view of
its logarithmic behavior in the singularity and provides a bound for the approximating kernels,
Lebesque’s theorem yields that

<§:Ev (—Aw)_15§> - mD(m7 y) in Ll (Fv dJF(y))v
uniformly in « € T', and, in fact, uniformly in |z — y| > € for any € > 0. Consequently
MP(h) = MP(h) asT =T,

uniformly in [||A]l2 = 1] due to the mild (in particular square integrable) singularity of mp on the
diagonal. This then entails that

ker(MP) = {0},
for ' close enough to T O

This useful property will remain valid after discretization, which is just an additional approxi-
mation, even if, as will be demostrated in the numerical examples, the modified and the original
boundary are not that close to each other.

Remark 4.6. The result shows that the functions wy : 8 = R given by
wy(x) = / GP(x,2)Pypy(2)dz fory €T
B

are “linearly independent” elements of ker(Agq) sz ~ T and @y ~ 65. This is intuitively clear for
I' =T and ¢z ~ 0, since, then, wy are functions with singularities at different locations x = y,
yielding a “diagonally dominant” kernel (or matriz, at the discrete level).

Remark 4.7. When dealing with the Neumann problem in the classical way, the fact that the
normal derivative of S is not continuous across I' as clearly indicated by , does require care
in obtaining the correct numerical formulation. By using the kernel generation procedure described
in this paper, however, the problem is completely avoided, since the relevant kernel my is smooth
thanks to the replacement of 6, by @y in its construction.

Remark 4.8. Notice that the proposed kernel construction effectively replaces a pseudo-differential
operator of type —1 or type 0 for b = D or b = N, respectively, with an infinitely smoothing
operator. Incidentally, an operator of type k is a bounded linear operator which maps, in the
above context, L*(T') to H™*(T). This has important consequences. One is that the approzimating
operator is compact with unbounded inverse (more so that the approzimated operator), i.e. it does
not enjoy the same “functional” mapping properties. At the numerical level this will be reflected
in a significant increase in the condition number of the discretized operator. It will, however,
be possible to use natural “rougher” discretizations of the same operator as preconditioners, thus
completely curing the conditioning issues, while maintaining the highly desirable fast converging
numerical discretizations to the approximate smooth kernel and, consequently, accuracy.

5. NUMERICAL IMPLEMENTATION AND EXPERIMENTS

The periodc box B = [—m, n1]? is discretized by a uniform grid G™ of 2™ points by discretizing
each direction by

J o
Z;n:_w+27ﬁ,]:0,,2m—1,

where z = x1,22. The boundary value problems will be posed on the unit circle centered at the
origin, i.e. Q@ =B(0, 1) and the padding function ¢ of (4.23) is defined by

¢($1, "EQ) = 6_200 Sinz[%(an—ﬂ')] sinz[%($2_ﬂ.)] .
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While it is not analytically compactly supported away from 2, it numerically vanishes outside a
neighborhood of the boundary of the periodicity box B as show in the contourplot below. The
boundary of the domain 2 is discretized by n equidistant points

y; = (cos(6;),sin(6;)), j =0,...,n —1,

where 0; = QW%, yielding the set I'". Wherever required, the analytical knowledge of the boundary
T" of Q will be used to obtain numerical quantities such as, e.g., normal and tangent vectors. In
some applications these might need to be replaced by their numerical counterparts.

Padding Function

Normal Derivative of Testfunction

1.0 3

0.6

U3 aw 1 -0.58

-4.20

0.2

-7.82

0.0

At the chosen discretization level m, the discrete Laplace operator —A™ on the periodicity box is
represented spectrally via discrete Fast Fourier transform F,, via

Fo diag[(|k[*)kezz,, ] Fn-
The projection Py of (4.22) is discretized by

_ Fm(u™)(0,0)
Fn(¥™)(0,0)
where v is a grid vector, i.e. a function defined on the grid G™ and %™ is the evaluation of 1) on

it. The testfunctions ¢y supported about the point § € B\  used in the set up of the kernel are
chosen of two different types: symmetric and non-symmetric. The former are defined through

(™) = u" o,

@g(z) —e @ sin®[1 (21—71)] Sing[%(zzfﬂz)], 2€B

and are discretized by evaluation on the grid G™ and setting o = 2™%2 in order to make the
testfunction “sharper” compatibly with the resolution power of the grid. For reasons to be ex-
plained later, non-symmetric and “sharper” testfunctions are useful. Given a point y € I' = S,
let 7 = 7(y) and v = v(y) denote the corresponding unit tangent and normal vector, respectively.

Then consider
&,cpg, (526)
where the reader is reminded that
g=y+ov(y),yerl.

This type of testfunction, depicted in the contourplot above, has the added adavantage of auto-
matically having vanishing average, and plays an important role in deriving efficient numerical
discretizations (see Subsection [5.2.2)).
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TABLE 1. Relative error for the Fourier quadrature rule at different discretization levels.

m n emn m n emn
32 128 3.78e-03 | 128 128 4.30e-08
256  3.78e-03 256 4.33e-08
512 3.78e-03 512 4.33e-08
64 128 1.80e-04 | 192 128 3.07e-07
256 1.80e-04 256 2.58e-07
512 1.80e-04 512  2.58e-07
96 128 8.73e-06 | 256 128 1.81e-08
256 8.73e-06 256 4.05e-08
512 8.73e-06 512  4.05e-08

5.1. Bulk Integrals. As a first example consider the domain integral as described in Section {4.1
Letting Q = B(0,2) and computing the Fourier coefficients I, of the distribution I = yg just as
explained in — by using the trapezoidal rule for the angular parametrization of S%, one
obtains a quadrature rule for integration over 2. Table [I| summarizes the results obtained when
applying the quadrature to the function

u= cos(%rQ), r>0.

It appears that the number of discretization points n has less of an impact on the accuracy than
the bulk discretization level m as can be expected since the integrand is radially symmetric.

5.2. Dirichlet Problem. Consider now the Dirichlet Problem on B(0, 1) and take the right hand
side to be f = 1 defined on whole square B. In a first step, a function a grid vector v™ is determined
satisfying
ATy = 1.
This can be done simply by taking
o™ = Fotdiag (97 (k)kezz,, | Fm (P)1(A™)) = G (1™),
where 1™ is the constant grid function with value 1 and

R [0} if k= (0,0),
gn' (k) = {|k2, if k€ 22,\{(0,0)}.

Next the boundary weight vector w™ is determined such that
<5;'J’.,vm + ZwﬂG?(gog;»qm =0fork=0,...,n—1.
k=1

This leads to a system of equations for the entries of w”™ characterized by the matrix M with entries

Mjk = <§maG:rn(90g;)>qmv ]7k = 1,...,77,,

Yi
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TABLE 2. Numerical Results for the Dirichlet Problem, § = 0.4

m n e es”™  cond(M) |m n e ey cond(M)
6 64 21205 3.18¢-05 2.6e4+03 | 8 128 2.17e-11 1.71le-11 1.7e+06
80 1.33e-05 2.90e-05 1.7e+04 144 1.61e-11 4.83e-12  8.3e+06
96 1.10e-05 2.75e-05 1.1e+05 160 3.0le-11 7.16e-12  3.9e+07
112 6.11e-05 1.42e-04 1.1e+08 | 9 64 1.30e-06 1.10e-06 2.5e+403
7 64 1.03e-06 1.01e-06 2.5e+03 80 5.44e-08 4.74e-08 1.3e+04
80 1.94e-07 1.62e-07 1.3e+04 96 2.43e-09 2.14e-09 6.9e+04
96 2.07e-07 9.92e-08 7.0e+04 112 1.14e-10 9.89%e-11  3.5e+05
8 64 1.26e-06 1.10e-06 2.5e+03 128 5.48e-12 4.68e-12  1.7e+06
80 5.43e-08 4.74e-08 1.3e+04 144 2.75e-13 2.24e-13  8.3e+06
96 2.32¢-09 2.13e-09 6.9e+04 160 2.38e-14 6.39e-15  3.9e+07
112 1.17e-10 1.01e-10  3.5e+05 176  2.44e-14 6.30e-15 1.8e+08

following the blueprint laid out in the previous section. It can be viewed as being close to the
spectral discretization

k™ (,y) = (07, (~A™) TP (85")) g, @y € T C ST
of the smooth kernel
k(z,y) = (02, (=28) " Py(35)), x,y € Sh.
As mentioned earlier this discretization k™ is actually independent of the grid G™ and can be
evaluated anywhere in B x B, in particular on I' x I'". It follows from Proposition that M

is invertible for appropriate choices of § for y € I'" and of testfunctions ¢3. Once the grid vector
w™ is found, a numerical solution of the Dirichlet problem is given by

m, m,n E
rou w spyk

where 7’ denotes the restriction (of functions defined on B or of vectors defined on the grid G™)
to G™ N Q. The numerical results presented in Table [2| provide information about the relative lo
and I, errors e;”" and ™" computed as follows

g — gl

& ulls,

%
m,n __

p

tp for p = 2, 00,

This is done for various combined discretization levels (m,n), various distances of § from y € T,
and types of testfunctions in Tables Recorded is also the condition number of the obtained
matrix M. The results with fixed distance § = 0.4 are summarized in Table [2| It appears clearly
that accuracy tends to grow for a given grid parameter m with increasing number of boundary
discretization points n. This happens until the boundary discretization becomes too fine compared
to the given, fixed discretization of the periodicity box. Notice that, if the parameter n is kept
fixed, the accuracy improves also as a function of the discretization size m. Similarly gains stop
accruing when the box discretization becomes too fine compared to the fixed boundary resolution.
As the operator approximated by M is of negative order 1, the condition number of M is expected
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TABLE 3. Dependence on § = dist(I', ') for m = 8

n 0 e es”™  cond(M) | n 5 e ey cond(M)

64 0.15 9.06e-04 8.69e-04 9.6e+01 | 80 0.5 2.59¢-09 2.09e-09 6.2e+04
0.2 2.28e-04 2.18e-04 1.9e¢+02 0.6 1.54e-10 1.05e-10 2.7e¢+05
0.3 1.58e-05 1.45e-05 7.1e+02 0.7 3.84e-11 1.12e-11 1.2e+406
0.4 1.26e-06 1.10e-06 2.5e+03 0.8 2.95e-11 1.06e-11 4.9e+406
0.5 1.15e-07 9.33e-08 8.3e+03 | 144 0.15 6.10e-06 1.02e-05 3.9e+03
0.6 1.20e-08 8.90e-09 2.7e+04 0.2 4.13e-08 3.81e-08 1.9e+04
0.7 1.42e-09 9.41e-10 8.6e+04 0.3 1.0le-10 1.02e-10 4.3e+05
0.8 1.80e-10 9.65e-11  2.6e+05 0.4 1.6le-11 4.83e-12 8.3e+06
0.9 6.59e-11 2.09e-11  7.9e+05 | 192 0.15 2.85e-08 1.40e-08 2.9e+04

80 0.15 2.42e-04 2.06e-04 2.1e+02 0.2  3.95e-10 3.63e-10 2.5e+05
0.2 4.24e-05 3.77e-05 5.1le+02 0.3 1.04e-13 7.99e-14 1.6e+407
0.3 1.40e-06 1.24e-06 2.7e+03 0.35 1.94e-14 2.96e-15 1.3e+08
0.4 5.43e-08 4.74e-08 1.3e+04

to grow linearly in the discretization size. Indeed increasing n enlarges the condition number. This
effect is, however, compounded by the matrix M becoming less and less diagonally dominant as
the boundary discretization points become denser while the support of the testfunctions remains
unchanged for fixed discretization level m. Notice that, for fixed n, the condition number of
M remains virtually unchanged as m changes. The “optimal” value (for the specific choice of
testfunction type and support size) was chosen based on the results found in Table [3| where the
arbitrary but still representative choice of m = 8 is made and a variety of discretization levels n
are shown. The distance is steadily increased until it no longer leads to an improvement in the
approximation quality. It can be seen that the accuracy improves with distance and that optimal
distance decreases as the box discretization gets finer, thus allowing for a stronger resolution power
and, consequently, a better approximation of the testfunctions. There appears to be a trade-off
between condition number of M and accuracy of the outcome, where the best accuracy is obtained
at the cost of a high condition number. In perfect agreement with the theoretical analysis, the
condition number of M is the least when using Dirac delta functions located along the discrete
boundary I'™ in the numerical representation of the kernel. This is clearly evident in the data
shown in Table [ for two choices of discretization level, m = 7,8. Again the low condition number
comes at the price of a reduced accuracy (if the comparison is carried out at the same discretization
level m).

5.2.1. Preconditioning. Given the dramatic increase in condition number resulting from the use of
the proposed smoother kernels, it is natural to ask whether it can be mitigated by some precondi-
tioning procedure. Denote by M, and M; the matrix obtained discretizing the smooth kernel and
the singular kernel, respectively, i.e.

M, = <5m GT(@g»qm, i k=1,...,n,

Y57
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TABLE 4. Kernel based on Dirac delta functions supported along T'.
m n  cond(M) emn" 2" |m n cond(M) @ emm o
7 64 10.9 5.49e-02 4.93e-02 | 8 96 14.34 4.43e-02  4.67e-02
80 15.05  4.06e-02 2.72¢-02 112 18.06  3.46e-02 3.46e-02
96 21.16 2.59e-02  1.57e-02 124 21.49 2.74e-02 2.51e-02
112 26.01 1.25e-02  7.50e-03 144 25.58 2.32e-02  1.81e-02
128 31.88 7.06e-03 2.31e-03 160 29.83 2.17e-02  1.36e-02
144 38.78  1.05e-02 7.72e-03 176 36.52  1.58e-02 1.03e-02
8 64 8.42 8.27e-02  9.57e-02 192 42.51 1.20e-02  7.80e-03
80 11.26 6.09e-02 6.61e-02 208 47.22 1.13e-02  5.66e-03
and

It seems natural to use the better conditioned but “rough” approximation My as a preconditioner
for the highly accurate but badly conditioned M. In Table EI the condition numbers of M, Ms,
and C = M, 1M¢ are shown for a few discretization levels. They clearly point to an enormous
benefit of preconditing. The plots in Figure [2| gives a more visual characterization of the effect of

Ms = <5Z;aG7rm(5L'Z)>qm B k=1,...,n.

preconditioning on the diagonal dominance of the corresponding matrix.

120 '

The matrix Mphi

120

100

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

—-0.0005

The matrix C

r
l
(] 20 40 60 80 100 120

The matrix Mdirac

0.00056

0.00048

0.00040

0.00032

0.00024

0.00016

0.00008

0.00000

—0.00008

FIGURE 2. Contour plot of M,, M;s, and C = Mé_le for m = 8, n = 128, and

0 =0.4.
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TABLE 5. Preconditioning effect of Mgl on M, when § = 0.4.

(m,n) cond(M,) cond(Ms) cond(M;'M,)
(7,64)  2.51e403  1.09e+01  5.24e+00
(8,128) 1.72e+06 2.15e+01  1.0le+01
(9,256) 4.02e+11  4.27e+01 1.96e+01

It can therefore be concluded that smoother kernels lead to higher order resolutions and more
accurate numerical results at the cost of at the apparent increased condition number. Latter can,
however, be completely avoided by a simple and natural preconditioning procedure.

5.2.2. Effective Numerical Implementation. The necessity to project a datum onto the subspace
of mean zero functions in the above procedure effectively destroys the translation invariance of
the constant coefficients equation on the periodic box. This makes it necessary to compute a box
solution for each entry of the matrix M. While it was chosen to illustrate the ideas using test-
functions ¢y approximating Dirac distributions d, in order to harvest the benefits of the theoretical
analysis ensuring injectivity (and thus invertibility) of M, it is clear that other choices are possible,
such as normal derivatives of testfunctions. These are particularly suited since they are mean zero
functions supported in a small neighborhood of their “center-point”. As such they do not require
to be projected onto the mean free subspace. It is therefore enough to compute

2
(=Ar) 'Oy 05 = Z vi(y)(—Ar) 10505

j=1
for one point y € I' only since
(_Aﬂ)ilajwﬂ-i-v = (_AW)ilTv(ﬁjgpﬂ) = TU(_Aﬂ)ilaﬂpQ? J=12,

where 7,u = u(- — v) is the translation of a periodic function w. This also gives insight into the
“circulant” structure of the matrix M.

It is also possible to replace the test-function centers {§ : y € I'} by nearby or closest (box)
grid points in G™ so that the translations required to obtain the kernel from the knowledge of,
say, (—Aw)’la,,(yl)cpgl, can be implemented efficiently (i.e. in physical space).

Remark 5.1. Notice that, if A is replaced by a more general elliptic non-constant coefficient
differential operator, the kernel construction given above is still viable and would deliver a purely
numerical boundary integral method which which does not rely on the explicit analytical knowledge
of a fundamental solution for the differential operator. It even allows replacing the “discrete”
fundamental solution by a smooth kernel which can more accurately be captured numerically. Re-
markably this can be done at effectively not cost due to the availability of the natural preconditioning
procedure described above.

Remark 5.2. The proposed construction of smooth kernels also suggests that iterative parallelized
methods can be used in the computation of the entries of the matrix M with a small number
of iterations in the case of a mon-constant coefficient differential operator A, at least when the
coefficients vary smoothly. This is due to the fact that the building blocks Aﬁflcpg will be locally
close to each other thus providing excellent initial guesses for an iterative solver.
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5.2.3. Kernel Functions. Ultimately the accuracy of the method rests on its ability to faithfully
compute linearly independent functions in the kernel of the Laplacian AJ on the domain 2. These
are known explicitly for Q = B(0,2) and given by

r

¢k(’r7 9) = (2

in polar coordinates. Using the method described above, it is possible to compute a numerical
approximation of these functions defined on G™. Tables [6] and [7] give the relative errors observed
for the first 33 kernel functions at two distinct discretization levels.

Veetk? e 0,2], 0 € [0,27), k €N,

TABLE 6. Resolution of the first 33 kernel functions for m = 7, n = 80, and § = 0.4.

loo-err fo-err {so-erT {o-err { so-€rT fy-err

1 | 1.84e-07 8.11e-08 || 912 | 1.08e-05 9.60e-06 || 123 | 1.43e-03  9.88e-04
Yo | 1.72e-07  9.16e-08 || 113 | 2.14e-05 1.39e-05 || 124 | 2.05e-03 1.57e-03
3 | 3.45e-07  2.08e-07 || 114 | 3.65e-05 2.28e-05 || 125 | 3.68e-03 2.36e-03
s | 5.99e-07  3.60e-07 || 915 | 5.80e-05 3.13e-05 || 1o6 | 4.40e-03  3.51e-03
Y5 | 1.21e-06  5.73e-07 || 916 | 7.81e-05 5.81e-05 || 127 | 6.87e-03  5.60e-03
Ye | 1.23e-06  8.65e-07 || 117 | 1.10e-04 7.28e-05 || 125 | 1.17e-02  9.09e-03
Y7 | 2.53¢-06  1.32e-06 || 115 | 1.60e-04 1.04e-04 || 129 | 1.97e-02 1.32e-02
Yg | 4.29¢-06  2.66e-06 || Y19 | 2.99e-04 1.72e-04 || 130 | 2.76e-02 2.14e-02
g | 5.50e-06 2.92e-06 || 120 | 3.10e-04 2.63e-04 || 931 | 3.84e-02 3.08e-02
¥10 | 5.59e-06 4.38e-06 || 191 | 6.44e-04 4.12e-04 || 132 | 4.99e-02  4.63e-02
P11 | 1.26e-05  6.32e-06 || 122 | 1.07e-03  6.35e-04 || 933 | 9.99e-02  7.05e-02

5.3. Neumann Problem. Next, using the same notations and discretization procedure, the Neu-
mann problem

(5.27)

u—Au=f in Q=D3(0,2),
Oyu=0 on T =2S',

for f(z) = cos(Zr)(1+ %2) + Zsin(5r)/r, r = \/21 + 23 and « € B. This problem has the exact
solution u given by u(x) = cos(57(z)), # € Q. In order to show that the method is robust in the
sense that it does not depend on the exact choices of its ingredients, a different cutoff function is
used in order to modify the right-hand-side f to make it into a doubly periodic function which fits
the periodic framework. More specifically, take

5

—5[1" — (= 0.2)2])},

which essentially vanishes close to the the boundary of B and takes the value 1 on €. Replace then
f by f = f1 to obtain a periodic function which coincides with f on €. In numerical experiments,

P(r) = %{1 + tanh(
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TABLE 7. Resolution of the first 33 kernel functions for m = 9, n = 256, and § = 0.4.

f so-€rT fy-err {so-err {5-err { so-€1T fy-err
1 | 1.24e-13  1.09e-14 || 912 | 1.57e-13  5.68e-14 || 193 | 6.23e-13  2.63e-13
Uy | 9.17e-14  1.10e-14 || th15 | 1.90e-13  5.43e-14 || 1o | 7.15e-13 4.11e-13
Y3 | 1.29e-13  1.63e-14 || 114 | 1.34e-13 5.18e-14 || 925 | 9.98e-13  4.19e-13
s | 1.23e-13  1.90e-14 || 915 | 2.03e-13  6.65e-14 || 126 | 1.25e-12  5.38e-13
s | 1.22e-13  2.00e-14 || Y16 | 2.73e-13  8.48e-14 || 1)o7 | 1.52e-12 6.23e-13
Yo | 1.04e-13  2.24e-14 || 17 | 2.65e-13  9.30e-14 || 1og | 1.48e-12  7.26e-13
Y7 | 1.31e-13  2.58e-14 || 91 | 3.68e-13 1.15e-13 || 19 | 1.99e-12  9.46e-13
Yg | 1.14e-13  2.87e-14 || 119 | 3.73e-13 1.16e-13 || 130 | 1.80e-12 1.04e-12
g | 1.23e-13  3.03e-14 || 1o | 4.03e-13 2.01e-13 || ¥31 | 2.77e-12 1.27e-12
P10 | 1.10e-13  3.18e-14 || 91 | 5.31e-13  1.82e-13 || 932 | 3.38e-12  1.80e-12
P11 | 1.74e-13  3.64e-14 || 1pao | 4.84e-13 2.58e-13 || ¢33 | 3.50e-12  1.83e-12

this is clearly performed on the grid, i.e. by replacing f™ by fm =™ f™. The solution procedure
is parallel to that employed for the Dirichlet problem. First the function

. 1 -
m:lm_Am71 m:]:-fld. L fm m
v ( ) f m la’g((1+ ‘k|2)k€Z72,n) (f )
is computed. Then the kernel matrix M is obtain as
Mk = = (Ou(wydy,) " (A" = D™ TG0 ) s Gk =1, m,
where
~(ButuBu,)"™ = 1 (5) ()" D3 — vy @ (8)™

is used as a discretization of the normal derivative operator at the point (yjl, y?) =y, € I'". Finally
the weight vector w™ is determined by solving

(= uydy,) " 0™ + Y wp (I = A™) o) =z 4 Muw" =0,
k=1

where z; = (—(0y(y,)0y,)" s v™)gm for j = 1,...,n. Results of similar numerical experiments to
those performed for the Dirichlet problem are summarized in Table

Remark 5.3. Notice that in all numerical experiments, radially symmetric functions were used.
One reason is that radial symmetry is not readily compatible with periodicity in that it cannot be
represented with very few periodic modes. Another is that explicit formule are available.

Remark 5.4. While it might appear that in the construction of the matriz kernel M, one needs to
solve n problems in the discretized periodicity box, this is not always the case. As for the Dirichlet
problem, the operator 1 — /\ is translation invariant. It follows that it is enough to solve one such
problem, e.q. for k =1 since all other solutions would be a translate of the solution for k = 1. This
is true because the datum pg, is a translate of @y, . To make sure that the translation be compatible
with the grid G™, the theoretical location § = y + dvr(y) would have to be replaced by the closest
grid point in G™ (for instance).
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TABLE 8. Numerical experiments for the Neumann problem ([5.27]).

m n § cond(M) e es’™ |m n & cond(M) emm" eq"
5 32 0.3 3.3le+00 4.84e-03 2.97e-03 | 7 64 0.3 2.82e+01 2.59e-04 2.55e-04
0.4 6.04e4+00 8.67e-03 4.94e-03 0.4 9.83e4+01 2.12e-05 2.02e-05

0.5 9.61e4+00 3.99e-03 3.86e-03 0.5 3.27e4+02 6.24e-06 4.44e-06

48 0.3 9.98¢+00 1.31e-02 1.20e-02 | 8 64 0.3 2.84e+01 2.65e-04 2.56e-04
0.4 2.85e+01 1.22e-02 9.84e-03 0.4 9.82e+01 1.91e-05 1.84e-05

0.5 1.79e402 3.37e-03 2.35e-03 0.5 3.26e4+02 1.53e-06 1.47e-06

6 32 0.3 3.14e4+00 2.18e-02 2.08e-02 128 0.3 2.46e+03 3.41e-08 3.34e-08
0.4 5.45e4+00 5.58e-03 5.57e-03 0.4 3.33e4+04 4.41e-10 1.75e-10

0.5 9.38e4+00 2.39e-03 2.19e-03 0.5 4.08e4+05 5.96e-10 3.87e-10

48 0.3 9.36e4+00 1.70e-03 1.36e-03 | 9 128 0.3 2.46e+03 3.43e-08 3.35e-08
0.4 2.33e4+01 5.51le-04 3.24e-04 0.4 3.33e+04 2.65e-10 1.93e-10

0.5 5.35e4+01 2.94e-04 1.42e-04 0.5 4.08e4+05 1.05e-10 3.95e-11

64 0.3 2.90e+01 1.38e-04 5.22e-05 256 0.3 1.88e+07 1.76e-10 7.73e-11
0.4 9.89e+01 6.46e-04 5.20e-04 0.4 3.88e+09 1.76e-10 7.72e-11

0.5 3.48e+02 3.98e-04 3.53e-04 0.5 6.47e+11 1.76e-10 7.72e-11

6. CONCLUSIONS

An effectively meshless approach to boundary value problem in general geometry domains is
proposed based on the use of uniform discretizations of an encopassing computational box. Ex-
ploiting a pseudodifferential operator framework, relevant kernels can be replaced by smoother
kernels which allow for more accurate numerical resolution. No explicit knowledge of the kernels is
required beyond their analytical structure which is used in an essential way in order to construct
their numerical counterparts. While the smooth kernels, which correspond to infinitely smoothing
compact operators, and their associated discretization matrices are badly ill-conditioned, they can
very effectively be preconditioned by use of their “rougher” counterparts with singular kernels in
an arguably natural way at minimal additional cost. The methodology proposed is very general
and can be employed in three space dimensions as well as to more general linear and nonlinear
boundary value problems. The fact that no remeshing is required makes this method particularly
appealing for free and moving boundary. These extensions will be the topic of forthcoming papers.
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