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MODEL COMPARISON FOR DEPENDENT GENERALIZED LINEAR MODEL

SHOICHI EGUCHI

ABSTRACT. The classical Bayesian information criterion (BIC) is derived through the stochastic ex-
pansion of marginal likelihood function under suitable regularity condition when models are correctly
specified. However, despite of its popularity, mathematical validity of BIC for possibly misspecified
models with complicated dependence structure is often ignored. Thus it is important to extend the
reach of the classical BIC with rigorous theoretical foundation with allowing model misspecification and
asymptotic mixed normality of estimator. In this paper, we will prove the stochastic expansion of mar-
ginal quasi-likelihood function associated with a class of possibly misspecified generalized linear models
for dependent data.

1. INTRODUCTION

Generalized linear model (GLM, McCullagh and Nelder [22]) is an extension of a linear regression
model. This model depends on canonical parameter and dispersion parameter, where the former is
represented by the link function determined by the conditional distribution of the response variable given
the explanatory variable. Moreover, GLM has, among others, the following applications and extensions:

e Actuarial Science (Antonio and Beirlant [3], Haberman and Renshaw [14]):
— Insurance pricing, loss reserving, estimating claim settlement values, territorial rating, mod-
eling accident frequencies.
e GLMixedM in risk management (McNeil and Wendin [23]):
— Credit Risk.
e Generalized Additive Models (Berg [1], Hastie and Tibshirani [15]):
— Predictive modeling, real estate appraisal.

We consider data (y;,z;)7_; = (yj,2j1,...,%jp)7_;, where y;’s and x;’s are realizations of the re-
sponse variables Y,, = (Y1,...,Y,) and the explanatory variables X,, = (Xi,...,X,)’, respectively,
where the notation / means the transpose. Furthermore, we will assume that the conditional distribu-
tion of Y,, given X,, is given by a GLM. Then the conditional distribution is assumed to belong to an
exponential family, for example normal, binomial, Poisson and so on. In this paper, we will a result
about the stochastic expansion the stochastic expansion of marginal quasi-likelihood function associated
with a class of possibly misspecified GLMs for dependent data. Based on the expansion, we propose the
quasi-Bayesian information criterion, which is the extension of the generalized BIC given by Luv and Liu
[20].

Suppose that we are given M Bayesian candidate models 9ty,...,9ty,. Each 9,, is described by
{(pm, Tm (6), Hm,n(é')) |9 IS @m}, where p,,, is the non-zero prior relative occurrence probability of mth-
model among the M Bayesian models, 7, is the prior-probability density on 0, and H,, ,, is the logarith-
mic quasi-likelihood function. The conventional Bayesian principle of model selection for 9y, ..., M,y is
to choose the model that is most likely in terms of the posterior probability, i.e. to choose model 9,,,

such that mo = argmax,,c1, arp P(Mnlyn), where
(o, XD {Fnn(8)} 1 (6)d0 )
S22 (o, exp{En(6)}mi(6)d0 )

where [ exp{Hy, »(0)}mm(0)df is called the marginal quasi-likelihood function. When the prior plau-

P(Dﬁmb’n) =

sibilities on the M competing models would be equal, we select the model that maximizes the marginal
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quasi-likelihood function; even if the prior probabilities are not equal, we can trivially correct the selection
manner by the factors p,,,. Hence we focus on the logarithm of the marginal quasi-likelihood function

log </@exp{Hm7n(9)}7rm(9)d9>

as the principle of model selection.

As was explained in [20], another interpretation of model selection is possible through the Kullback-
Leibler divergence (KL divergence). The KL divergence between the true conditionnal model g,, and the
marginal quasi-likelihood function [y exp{H,,,(6)}m,,(0)d6 is given by

I(gn; / exp{Hm,nw)m(e)cze)) =Euoggn<vn|xn>]+E[— [ et @a].

where the expectation is taken with respect to the true distribution G,,. Because of (1), we see that
— Jo exp{Hp (0)} 7 (0)d0 is an unbiased estimator of I(gy; [ exp{H,(0;-)}7(0)df) except for a con-
stant term free of §. Note that (1) holds true regardless of whether or not the true model is in the set
of candidate models, implying that Bayesian principle of model selection can be restated as choosing
the model that minimizes the KL divergence of the marginal quasi-likelihood function from the true
distribution.

In particular, assume that X,, is absent and that H,, ,(0) = 2?21 log fmn(y,;0) for the case of
independent observations with correctly specified regular models, then Schwarz [24] showed that the
marginal quasi-likelihood, log( [ exp{Hm (0)}m,, (#)df) admits the stochastic expansion

log (/@exp{Hm,n(H)}ﬂm(é’)dG) = ;bg fm,n(yj;é%?f) B 1_2? logn + O, (1), @

with é%];lE denoting the maximum likelihood estimator of #, under some regularity conditions. Due to
(2), we obtain the classical Bayesian information criterion for model selection:

n
BIC = fQZlog Fmon (Y55 é%H;LE) + plogn.
j=1

In the past, many authors have investigated the information criteria for model selection in various
settings; see, for example, Burnham and Anderson [0] for an account of these developments. Bozdogan [5]
showed that Akaike information criterion (AIC, Akaike [1], [2]) has a positive probability of overestimating
the true dimension. Casella et al. [7] and Fasen and Kimmig [13] as well as the references therein studied
the model selection consistency of BIC. Moreover, various extensions of AIC and BIC have been proved;
for example, the extended BIC for large model spaces (Chen and Chen [9]), the generalized information
criteria (Konishi and Kitagawa [18]), the generalized BIC in misspecified GLMs for independent data (Lv
and Liu [20]) and the information criteria in the case of dependent data (e.g. Sei and Komaki [25] and
Uchida [26]).

The rest of the paper is organized as follows. In Section 2, we describe our working model, notations
and assumptions. We also discuss the asymptotic properties of the quasi-maximum likelihood estimator.
Section 3 presents the stochastic expansion of the logarithmic marginal quasi-likelihood in possibly mis-
specified GLM for dependent data and the consistency of the model selection with respect to the optimal
model. In Section 4, we illustrate the performance of model selection criterion in both correctly specified
and misspecified models. Section 5 presents the proofs of our results.

2. QUASI-MAXIMUM LIKELIHOOD ESTIMATION OF DEPENDENT GLM

Let Y,, = (Y1,...,Y,)" be the n-dimensional random vector and X,, = (X1,...,X,) be the n x p
random time series. We write X; = (X,1,...,X;,) for any j. We assume that the unknown true
distribution of (X,,,Y,) has the density g, with respect to some dominating o-finite measure:

9n (Xnv Yn) = 9gn (Xn)gn (Yn |Xn)7

where x, = (z1,...,2n), ; = (j1,...,25p) and yn = (Y1, ..., Yn)’



MODEL COMPARISON FOR DEPENDENT GENERALIZED LINEAR MODEL 3

2.1. Model setup. We assume possibly misspecified M candidate models to estimate the true model
G,,. Each candidate model has density function

n
fmn(Xns Yn3 0) = fo(Xn) fnn(Yn[Xn; 0) = fo(xn) H fmon,i(yjlz50)
j=1
with 8 = (61,...,0,,,) € O, where the mth parameter space 0,, C RP™ is a bounded convex domain
and p,, < p. This model assumes that Y7,...,Y, are (Xq,..., X, )-conditionally independent and that
each (Xjy,...,X,)-conditional distribution of ¥; depends on only X;. We also assume that the true
unknown distribution of X,, does not depend on the parameter and the candidate model. Therefore, we
consider only the true conditional distribution of Y,, given X,, and use GLM 91,, as our working model,

with respect to some dominating measure:

fm,n(yn|xn; 9) = H fm,mj(yjle? 0) = H exp (ijg‘e - bm(l‘;ﬂ) + Cm(yj))’ (3)
j=1 j=1

where, for brevity, we write 250 = 30" x; 4, (m)0i with {di(m),...,d,, (m)} C {1,...,p} for any m,
bm () and ¢y, (+) are determined by each assumed conditional distribution of Y, given X,, and b,,(-) is
a sufficiently smooth convex function defined on R; for example, by, (0) = 6*/2 (Gaussian regression)
and b, () = log(1 + €’) (Logistic regression). Moreover, we assume that by(6) = --- = by(#) and
c1(y) = -+ = epm(y). For any n-dimensional random vector Z,, whose conditional distribution given X,
is (3), the characteristic function is given by

/eit’z,l H exp (zj:cgﬂ — bm(zée) + cm(zj))dzn
j=1

= /exp ((zt + Xnt?)/zn — b (x,0) + cm(zn))dzn

= xp (b (it + X0) — b (x,6)) / exp (it + x70)/ 2 = b (it + x00) + € (20)) dzn
— exp (byn (it + %,0) — by (x,0)),

where t is an n-dimensional vector. Because of this characteristic function, we have in the correctly
specified case

Ep[Z;|X;] = 0bm (X0),
Vil Zi|X;] = 8%bi (X.0),

where Oby, () = Zbm (0)],_, -
Since any candidate model 9, is possibly misspecified and ¢, (+) of (3) is independent of 8, we may

and do define the logarithmic marginal quasi-likelihood function H,, ,, by

n

Hyn i (0) =Y (Y; X0 — b (X0)). (4)

Jj=1

Any random mapping émm such that

O, € argmaxH,, ,,(0)
feO

is called the quasi-maximum likelihood estimator (QMLE) associated with H,, ,. Clearly, when b is
differentiable, émm is the solution to the quasi-score function

OpHm i (0) =Y (V; = 0bm(X]0)) X; =0,

j=1

where 0y = 0/00.

For notational brevity, from now on we will omit the model index “m” from the notation.
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2.2. Asymptotic behavior of the QMLE. Fahrmeir and Kaufmann [12] studied the consistency and
asymptotic normality of the maximum likelihood estimator in correctly specified GLMs. In this section,
we will show that the asymptotic properties of the QMLE in misspecified GLMs with the dependent
observations.

Let F; = o(Y;, Xi;i < j) denote the o-field representing the data information at stage j. If @ and b
satisfy a < Cb for some constant C' > 0, we write a < b. We introduce the following conditions:

Assumption 2.1. For some constant C >0 and C' >0, (i) Iaaxs 10'b(z)| <14 ||,
i€
(it) E[|Y;]°|F;- 1\/0(X)}<1—|—|X|C a.s. for any j € N,

(iii) ?EIEE“X]PCJFC ] < oco.

Assumption 2.2. There exists a measurable function F : RP — R such that E[Y;|F;—1Vo(X;)] = F(X;)
for every j € N.

Assumption 2.3. Denote (; = (X;,Y;) for any j. For some c > 0,
alk) < cle=eF
for all k € N, where
a(k) :=sup sup |P[AN B] — P[A]|P[B]].

JEN  Aco((i3i<y)
Beo(Ci3i>j+k)

When Assumption 2.3 holds, {¢;;j = 1,2,...} is called exponential a-mixing. In particular, Assump-
tion 2.3 implies that 1); := (Y] — F(Xj))Xj, 7 € N, is exponential a-mixing.

Assumption 2.4. There exists a non-degenerate probability measure v such that the following holds.
n

(i) sup (F(X;)Xj0 —b(X}0)) — / (F(z)2'0 — b(2'0))v(dz) Io.
peo |

(ii) sup lia%(xf.o)x-x'. - / 02b(x'0)aa’v(dz)| L 0
(4] ”j:1 ’ Y '

Remark 2.5. The $-mizing coefficients of {(;} are defined by
809 =sw | s |P(Blo(Gai <) - P(B)]|
JEN L Beo(Cisi>j+k)
If B(k) = O(e=*) for some a > 0 and for all k € N, then {(;} is called exponential B-mizing (e.g.
Davydov [10] and Liebscher [19]). The exponential B-mizing property implies the exponential a-mizing
property. When we replace Assumption 2.3 by the condition that {(;} is exponential B-mizing under

some appropriate moment condition, the following conditions follow on applying an obvious discrete-time

e
e

counterpart of Masuda [21, Lemma 4.3]: (i) For some constant 81 > 0 and ¢1 > 0,

supEan’l sup |— zn: 1)X10—b(X0)) — /(F(z)x’@ —b(2'0))v(dz)

n>0 6co

(ii) For some constant B2 > 0 and g2 > 0,

sup K [ (nﬂ2 sup
n>0 0cO

282 (X50)X; X} — /82 b(z'0)za'v(dx)

Then, if g1 and gz can be taken large enough, we may deduce almost surely

n

sup 1 Z (F(X;)X}0 — b(X}0)) — / (F(z)2'0 — b(2'9))v(dz)| — 0,
hee |1 =
slelg E I*b(X;0)X; X — /6 b(z'0)za'v(dx)| —
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Assumption 2.4 (i) gives that + S i1 (F(X;)X}0 —b(X}0)) = [ (F(x)2'0 — b(z'0))v(dx) + 0,(1) for
each 6. Under Assumptlons 2.1-2.4, we have

Z¢9+ Z{ X;) X0 - b(X}0))}

1 ’ _.
_o( )+HJZ{ $)X10 —b(X10)) }—>/ 2)z'0 — b(2'0))v(dx) =: Ho(0), (5)

where the notation —» means the convergence in probability. Here, the proof of the tightness of
{ﬁ 2?21 ¥;} is given in the proof of Lemma 5.2 (i).

Since b(-) is a convex function, —95Ho(0) = [ 8%b(2'0)zz'v(dx) is a positive definite for any 6 € ©.
Thus, the equation

OpHo(0) = / (F(z) — 0b(2'8))zv(dz) = 0

admits a unique solution. Then we may define the optimal parameter 6y as the unique maximizer of
HQ(@)Z

{0p} = argmaxHy(0)
0O

Assumption 2.4 (i) gives that =37, 0*b(X}0)X; X} = [0%b(2'0)za’v(dx) + 0,(1) for each 6. In
0) =

particular, the quasi-observed information is given by I'y := —<97H,, (6 L300, 9Pb(X[0)X; X, so

that T',, satisfies the equation
Iy, =T+ o0p(1),
where [y := [ 82b(2/0)za’v(dx).
Theorem 2.6. Under Assumptions 2.1-2.4, the QMLE satisfies
0, L5 0,
as n — oo.
Assumption 2.7. (i) {X;;j =1,2,...} is strictly stationary.

(ii) For some S > 0, %EH zn: (v; - ab(Xgeo))Xj}{ znj (v, ab(x;eo))xj}/] N

j=1 j=1
Theorem 2.8. Under Assumptions 2.1-2.4 and 2.7, the asymptotic distribution of the QMLE is normal:
Vi, — 05) £ N(0,T; ST ).

When the candidate model is correctly specified, then F(x) = db(x'0y), and 3¢ = I, i.e. /n(0, —
60) 5 N(0,T51).

3. QUASI-BAYESIAN INFORMATION CRITERION FOR DEPENDENT GLM

3.1. Stochastic expansion. We use the GLM as our working model to choose the optimal model, so
we consider the stochastic expansion of the marginal quasi-likelihood in GLM.

Assumption 3.1. Z — Ob(X00)) X; = Op(1).

Assumption 3.2. There exists a function b: RP — (0,00), (i) for any z, 1nf 0*b(z'0) > b(x),

1 n
(ii) for some constant Ao > 0, lim supP{ mm<— Z ') < )\0} = 0, where Amin(+) denotes
n

n—roo

the smallest eigenvalues of a given matriz.

The next theorem shows the asymptotic behavior of the log marginal quasi-likelihood function.
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Theorem 3.3. Assume that Assumptions 2.1-2.4, 3.1 and 3.2 hold and that the following conditions are
satisfied:

(i) 7(6p) > 0, sup7(f) < 0.
0cO

(ii) For every M >0, sup — 0 as n — oo.

. |u| <M 7T(90 - ﬁ) - W(GO)
(iii) logm(0,) —logm(fy) = op(1).

Then we have the expansion

log ( /@ exp{Hn(H)}ﬂ(Q)d9>

- ; 5 p p 1 1 7 j
= Z (V; X0, — b(X}6,)) — 3 logn + 3 log 27 — 3 log det - Z@Qb(Xj’»Gn)XjXJ’») + log m(0,,) + 0p(1)

1 j=1

<
Il

~ ~ P 1 n 9 ~ ~
(Y; X350, — b(X}6,)) + 3 log 27 — 3 log det (Z@ b(X]{Hn)XjXJ’») +logm(6,,) + 0p(1).

j=1

I
NE

1

<.
Il

Remark 3.4. Suppose that we replace Assumptions 2.4 and 3.2 (ii) by the following conditions:

n

(i) — g (F(X;)Xj0 —b(X}0)) — / (F(z)2'0 — b(x'0))v(dz) almost surely as n — oo, uniformly in
n
i=1

0€0o.

1 n
(i) — Z@Qb(X;-H)XjX; — /82b(x’9)xx’u(dac) almost surely as n — oo, uniformly in 0 € ©.
n

j=1

n—oo

1 n
(iii) For some constant Ao > 0, P[lim SUP Amin (ﬁ ZQ(Xj)Xng) < )\0} =0.
j=1
Then, as in Cavanaugh and Neath [8, Section 3], we can show that the log marginal quasi-likelihood

function almost surely satisfies the expansion similar to Theorem 3.3, i.e. almost surely

(Y; X160, — b(X[0,)) — ]—2) logn + 1—2) log 27
1

J

g ([ explEn@)r(0)09) =

n

1 1< R .
~3 log det (ﬁ Z@Qb(XJ’ﬂn)XjXJ/) +logm(6,) + o(1).

j=1

Due to Theorem 3.3, we define the quasi-Bayesian information criterion (QBIC) and BIC for dependent
GLM by

QBIC = —2) " (Y;X}0, — b(X}0,)) + log det (ZaQb(X;én)ijg),
j=1 j=1

BIC = —2) (VX0 — b(X0n)) + plogn.

Let QBIC(l), ceey QBIC(M) be the QBIC for each candidate model. We calculate QBIC(l), ey QBIC(M)
and select the best model 9M,,, having the minimum-QBIC value:

mo = argmin QBIC™.
me{l,..,M}
We can also select the best model by using BIC in a similar manner. As directly seen by the definition, the
QBIC have more computational load than the BIC. Since the QBIC involves the observed-information
matrix quantity, which is directly computed from data, the QBIC would more effectively take data
dependence into account.
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3.2. Model selection consistency. Let ©; C RP* and ©; C RPJ be the parameter space associated
with 9; and 90, respectively. If p; < p; and there exist a matrix A € RP*Pi with A’A = I, «p, as well
as a ¢ € RPs such that H; ,,(0) = H;, (A0 + ¢) for all § € ©;, we say that ©; is nested in ©;.

Under Assumptions 2.1-2.4, when mg satisfies

{mo} = argmax H,, o(6mo0) = argmax /(F(z)x’@mofbm(z’t?myo))z/(dx),
me{l,...,M} me{l,...M}

we say that 9,,, is the optimal model.

Theorem 3.5. Assume that Assumptions 2.1-2.4, 3.1 and 3.2 are satisfied and that there exists a unique
mo € {1,..., M} such that M,,, is the optimal model. For any fixed m € {1,..., M}\{mo}, if Onm, is
nested in O, or Hy, 0(0) # Hing.0(0mg,0) for any 0 € O, then

lim P[QBIC™) — QBIC™ < 0] = 1.

n—r oo

This theorem implies that BIC also has the (weak) consistency for the model selection.

4. EXAMPLES AND SIMULATION RESULTS

In this section, we conduct simulations to evaluate finite sample performance of the model selection
by using QBIC, BIC and formal AIC (fAIC). Since we do not deal with the theoretical part of AIC in
this paper, we use the word fAIC as AIC, i.e. fAIC of mth model is defined by

FAICT™ = —2H,, 0 (Brmn) + 2Dm-
Let 0* be the true value. We here set the initial value as the value generated from uniform distribution

U(0* — 1, 0* + 1) to use optim at software R for numerical optimization.

4.1. Model selection in correctly specified model. We assume that the explanatory variables
Xj1,...,Xj 4 are given by

Xji=1({=1),

Xi2=1, X;0=05X;_12+¢€j2, (j>2),

X13=0, X;3=—-07X,_13+¢;3, (j>2),

Xia=-1, X;3=08X,_14+¢€4, (>2),
where the error vector (eg, €3,¢€4) ~ N(0,%) with ¥ = (0.5%=); ,_; 5 3. Moreover, the response variable
Y; is obtained from the true model defined by the linear logistic regression model

exp(X'0*
Y; ~ B(l, #{Xﬂ(;*)), (6)
where the true value 0* = (0,—3,0,1). We consider this model for the following combination of X;:
Model 1: X; = (X;1,X,2,X,3,X;4); Model 2: X, = (X;1,X,2,X;3);

Model 3 : X; = (X;1,X,2,X;4); Model4: X; = (X;1,X,3,X;4); Model5: X; = (
Model 6 : X; = (X;1,X,2); Model 7: X; = (X;1,X;3); Model 8: X, = (X, 1,X;4)
Model 9 : X; (X]27Xj 3); Model10: X, = (X2, X;4); Model 11 : X; = (X3, X, 4);
Model 12 : X; = X, 1; Model 13 : X; = X, 9; Model 14 : X; = X;3; Model 15: X; = X/ 4.

X2, Xj3, Xj4);

Then the true model is Model 10, and Models 1, 3, 5 contain the true model.

In the present situation, the function b defined in (3) is given by b(6) = log(1 + €?). We simulate
the number of the model selected by using QBIC, BIC and fAIC among the candidate Models 1-15 over
10000 simulations. For example, in the case of Model 1, QBIC, BIC and fAIC given by

n 4 R 4 R mn exp (Z?:l ijzéz)XjX]/
QBIC=-2) {Yj 3 Xi0; — log (1 + exp (ije)) } +logdet [ S R
j=1 i=1 i=1 j=1 (1 + exp (2?21 Xmﬂi))




TABLE 1. The number of models selected by QBIC, BIC and fAIC in Section 4.1 over 10000 simulations
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for various n (1-15 represent the models, and the true model is Model 10)

Criteria n =50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
QBIC 1489 65 2084 0 1260 201 O O 56 4666 0 0 172 0 0
BIC 99 18 531 0 562 222 0 0 8 7720 0O O 762 0 O
fAIC 479 55 1310 0 1424 192 0 0 93 6242 0 0 205 0 0
Criteria n =100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
QBIC 208 2 1483 0 989 10 O O 4 7206 0 O 8 0 O
BIC 19 1 323 0 397 15 0 0 8 9179 0 0 58 0 0
fAIC 347 1 1380 0 1367 7 0 0O 2 6895 0 0 1 0 0
Criteria n =200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
QBIC 8 0 910 0 616 O O O O 88 0O O 0 0 O
BIC 5 0 235 0 222 0 00 0 938 0 0 0 0 0
fAIC 281 0 1314 0 1414 0 O O 0 6991 0 O O O O

n 4 4
BIC = -2 {Yj S X;.0; — log (1 +exp (ije)) } +4logn,
j=1 i=1 i=1
n 4 4
fAIC = —22 {ij ZXj,iéi — IOg (1 + exp (ZXJJHAZ))} +4 x 2.
j=1 i=1 i=1

Table 1 summarizes the comparison results of the frequency of the model selection. Model 10 is selected
with high frequency for all criterions and n. Moreover, the probability that Model 10 is selected by QBIC
and BIC becomes higher as n becomes larger. In Table 2, the differences between the true value and
the estimators in specified models are getting small when n gets increased. From these results, we can
observe the consistency of the estimators and the model selection consistency of QBIC and BIC.

4.2. Model selection in misspecified model. We use the same conditions as in the previous section
except for the true model. In this simulation, the response variable Y; is obtained from the true model
defined by

Y; ~B<1,c1>(X]’-9*)),

where ®(z) = [*_ \/% exp(fg)dt. Then Models 1-15 are misspecified models.

From Table 3, we obtain similar results even though the candidate models do not include the true
model. Table 4 summarizes the mean and the standard deviation of estimators in each model. Since the
optimal parameter value is not given here, we can not see the differences between the optimal parameter
value and the estimators, although the standard deviations become smaller when n become larger.

4.3. Model selection in univariate time series model. Let X; = (Z;,Z;_1,...,Z;_(,—1))" be the
explanatory vector for any j € {1,...,n}, where for every i € {2,...,n}, Z; is given by
Z,nJrQ == ZO == 0, Z1 == 1, ZZ == 0.621'71 + [

where €; ~ N(0,1). The response variable Y; is obtained from the true model defined by
exp(X'0*
yj ~ B(1, M ,
1 + exp(X[6*)

where the true value 0" = (3, —1,2,1). For simplicity, we here focus on the hierarchical models as the

(7)

candidate models:
Model 1: X; = (Z;); Model 2: X; = (Z;,Z;_1); Model 3 : X, =(Z;,Z;_1,Z;_2);
Model 4: X; = (Z;,Z;-1,Zj—2,Z;j_3); Model b : X, =(Z;,Z;-1,Z;-2,Zj-3,2Zj_4); -~
Then the true mode is Model 4.
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TABLE 2. The mean and the standard deviation (s.d.) of estimator él, ég, 93 and é4 in each model
for various n (1-15 represent the models, and the true parameter (67,63, 63,65) = (0, —3,0,1))

n = 50 n = 100 n =200
0, 0y 05 0, 0, 0y 05 0, 0, 0y 03 0,

1 | mean || -0.0793 -8.3409 -0.0219 2.7990 | 0.0004 -3.3727 -0.0057 1.1266 | 0.0023 -3.1642 0.0004 1.0542

s.d. 8.1943 35.1378 5.9571 12.8200 | 0.3895 0.8918 0.2889 0.3744 | 0.2425 0.4946 0.1807 0.2123
2 | mean || -0.0505 -2.7481 0.1061 - -0.0425 -2.1878 0.0867 - -0.0167 -2.0734 0.0856 -

s.d. 2.0544  7.9339 1.3571 - 0.4653 0.5332 0.2141 - 0.3146  0.3336  0.1395 -
3 | mean || 0.0355 -5.7372 - 1.8913 | 0.0001 -3.2941 - 1.0993 | 0.0021 -3.1332 - 1.0441

s.d. 4.6176 23.3197 - 8.1816 | 0.3763 0.8210 - 0.3508 | 0.2397 0.4804 - 0.2078
4 | mean || -0.0999 — -0.2581  0.3139 | -0.0451 — -0.2364 0.2852 | -0.0168 - -0.2250 0.2746

s.d. 0.4791 — 0.2318 0.3193 | 0.3109 — 0.1453  0.1940 | 0.2100 - 0.0976 0.1264
5 | mean - -5.6381  0.0219  1.8650 - -3.2928 -0.0052 1.0989 - -3.1336  0.0003 1.0442

s.d. - 22.5995 3.7461  7.8695 - 0.8333  0.2792 0.3465 - 0.4835 0.1787 0.2057
6 | mean || -0.0635 -2.4621 -0.0429 -2.1293 -0.0169 -2.0324

s.d. 1.8364  4.1725 - - 0.4578  0.5074 - - 0.3127  0.3232 - -
7 | mean || -0.1086 - -0.1960 - -0.0518 - -0.1808 - -0.0217 - -0.1723 -

s.d. 0.4591 - 0.2093 - 0.3188 - 0.1351 - 0.2227 - 0.0921 -
8 | mean || -0.1006 0.2681 | -0.0453 0.2483 | -0.0170 0.2415

s.d. 0.4660 — - 0.3022 | 0.3063 — - 0.1875 | 0.2081 - - 0.1230
9 | mean - -2.3773  0.1058 - - -2.1041 0.0878 - - -2.0342  0.0860 -

s.d. - 5.2112  1.0538 - - 0.5008  0.2061 - - 0.3263  0.1372 -
10* | mean -4.2068 1.3952 -3.2211 1.0741 -3.1037 1.0344

s.d. - 13.1535 - 4.3787 - 0.7702 - 0.3259 - 0.4699 - 0.2013
11 | mean - - -0.2546  0.3124 - - -0.2350 0.2855 - - -0.2243  0.2747

s.d. - - 0.2218  0.2851 - - 0.1424 0.1840 - - 0.0967 0.1230
12 | mean || -0.0695 -0.0368 -0.0179

s.d. 0.3186 0.2548 0.1936
13 | mean - -2.6475 - - - -2.5688 - - - -2.5278 - -

s.d. - 0.3694 - - - 0.3052 - - - 0.2789 - -
14 | mean -0.1525 -0.1528 -0.1517

s.d. 0.1694 0.1218 0.0901
15 | mean - - - 0.5703 - - - 0.5507 - - - 0.5394

s.d. - - - 0.2553 - - - 0.2478 - - - 0.2477

TABLE 3. The number of models selected by QBIC, BIC and fAIC in Section 4.2 over 10000 simulations
for various n (1-15 represent the models)

Criteria n =100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
QBIC 965 0 2025 0 1321 0 0 O O 5689 O O O 0O O
BIC 41 0 435 0 398 0 0 0 0 9125 0 0O 1 O O
fAIC 443 0 1452 0 1538 0 0 0O O 657 O O O O O
Criteria n =200

1 2 3 4 5 6 78 9 10 11 12 13 14 15
QBIC 223 0 1338 0 915 0 0 O O 7524 0 O O O O
BIC 9 0 278 0 274 0 0 0 0 9439 0 O O 0 O
fAIC 349 0 1436 0 1414 0 0 O 0 6801 O O O O O
Criteria n = 300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
QBIC 108 0 1009 0 694 0 0O 0O O 88 0 0 0 0 O
BIC 5 0 190 0 216 0 0 0 0 9589 0O O 0O 0 O
fAIC 205 0 1352 0 1388 0 0 0 0 6965 O O O O O

We simulate the number of the model selected by using QBIC, BIC and fAIC among the candidate
models over 10000 simulations. First, we calculate QBIC(I) and QBIC(Q). If QBIC(U < QBIC(Q), Model
1 is selected as the best model. When QBIC(U > QBIC(Q), we calculate QBIC(3) and compare QBIC(2)
with QBIC(B). We repeat similar procedures to stop at the best model. Furthermore, we select the best
model by BIC and fAIC in a similar manner.

Table 5 summarizes the comparison results of the frequency of the model selection. The best model
is searched among Models 1-11 for all cases. Model 4 is selected with the highest frequency as the best
model. Moreover, the frequency that Model 4 is selected by QBIC and BIC is getting higher when n gets
increased. From this result, we can observe that QBIC and BIC have the consistency for model selection.
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TABLE 4. The mean and the standard deviation (s.d.) of estimator él, ég, 93 and é4 in each model

for various n (1-15 represent the models)

n =100 n = 200 n = 300
0, 0y 05 0, 0, 0y 03 0, 0, 0, 05 04

1 | mean || 0.0020 7.6472 -0.0028 -2.5525 | -0.0031 5.8988 -0.0009 -1.9640 | 0.0038 5.6861 -0.0006 -1.8975

s.d. 1.7319 14.4366 1.2513 5.0473 | 0.3440 1.1541 0.2541 0.4378 | 0.2599 0.8285 0.1914 0.3118
2 | mean || 0.0596 2.8857 -0.1171 — 0.0255 2.6805 -0.1079 - 0.0176 2.6080 -0.1066 -

s.d. 0.5917 0.7518 0.2335 — 0.3873 0.4610 0.1501 - 0.3069 0.3574 0.1168 -
3 | mean || 0.0104 6.7840 - -2.2605 | -0.0030 5.7925 - -1.9290 | 0.0036 5.6262 - -1.8772

s.d. 1.0092 9.8524 - 3.4170 | 0.3351 1.0856 — 0.4150 | 0.2561 0.8056 - 0.3038
4 | mean || 0.0525 - 0.2555 -0.3135 | 0.0218 — 0.2448 -0.2959 | 0.0157 — 0.2415 -0.2931

s.d. 0.3315 - 0.1409  0.2024 | 0.2209 — 0.0938 0.1314 | 0.1781 — 0.0756  0.1048
5 | mean - 6.7809  0.0061 -2.2594 - 5.7915 -0.0008 -1.9285 - 5.6255 -0.0007 -1.8771

s.d. - 9.5017 0.8186  3.3869 - 1.0916 0.2479  0.4130 - 0.8008 0.1886  0.3009
6 | mean || 0.0594 2.7967 0.0256  2.6226 0.0177 2.5586

s.d. 0.5801 0.7108 - — 0.3839 0.4437 — - 0.3053 0.3487 - -
7 | mean || 0.0619 - 0.1933 - 0.0276 - 0.1866 - 0.0189 - 0.1838 -

s.d. 0.3385 - 0.1298 - 0.2324 - 0.0877 - 0.1902 - 0.0712 -
8 | mean || 0.0527 -0.2728 | 0.0220 -0.2591 | 0.0158 -0.2574

s.d. 0.3260 - - 0.1951 | 0.2182 — — 0.1276 | 0.1761 — - 0.1019
9 | mean - 2.7283 -0.1163 - - 2.6104 -0.1073 - - 2.5642 -0.1064 -

s.d. - 0.6923  0.2218 - - 0.4446  0.1466 - - 0.3506 0.1151 -
10 | mean 6.2763 -2.0919 5.6925 -1.8959 5.5676 -1.8575

s.d. - 6.7882 - 2.4910 — 1.0309 — 0.3934 — 0.7797 - 0.2936
11 | mean - - 0.2535 -0.3120 - - 0.2438 -0.2954 - - 0.2409 -0.2929

s.d. - - 0.1375  0.1922 - - 0.0927  0.1277 - - 0.0751  0.1028
12 | mean || 0.0457 0.0218 0.0165

s.d. 0.2639 0.1971 0.1677
13 | mean - 2.7922 - - - 2.7190 - - - 2.6821 - -

s.d. - 0.3799 - - - 0.3080 - - - 0.2692 - -
14 | mean 0.1636 0.1630 0.1631

s.d. 0.1182 0.0885 0.0756
15 | mean - - - -0.5569 - - - -0.5398 - - - -0.5376

s.d. - - - 0.2432 - - - 0.2439 - - - 0.2466

TABLE 5. The number of models selected by QBIC, BIC and fAIC in Section 4.3 over 10000 simulations
for various n (1-11 represent the models, and the true model is Model 4)

Criteria n = 100

1 2 3 4* 5 6 8 9 10 11
QBIC 2814 0 670 4739 1240 385 113 28 8 2 1
BIC 4144 0 1732 3934 176 14 o 0 0 o0
fAIC 0 0 594 6091 2195 764 259 69 23 4 1
Criteria n = 200

1 2 3 4* 5 6 8 9 10 11
QBIC 1458 0 136 7278 962 149 16 1 0 0 O
BIC 2148 0 585 7089 175 3 o 0 0 o0
fAIC 0 0 40 6599 2344 753 210 35 16 3 O
Criteria n = 300

1 2 3 4* 5 6 7 8 9 10 11
QBIC 812 0 14 8324 787 55 7 1 0 0 0
BIC 1267 0 116 8447 168 2 0 0O 0 0 o0
fAIC 0 0 0 6775 2261 744 177 32 10 1 O

In Table 6, the differences between the true value and the estimators in specified models (Models 4-6)
become smaller as n becomes larger, and the standard deviations have the same tendency. Hence, the

consistency of the estimators can be observed.

Remark 4.1. If {Z;;5 = 1,2,...} is a Markov chain of finite order, the situation of this section is

included in the original model setting given in Section 2.

Remark 4.2. If we assume the time series structure of {Z;}, such as the autoregressive structure, we can
treat the choice of the time-lag p only by observation data of {Z;}. However, we here use the GLM as our
working model and solely focus on the contribution of {Z;} to Y, through the conditional distribution,
so that the Bayesian model selection is possible even if the distribution of {Z;} itself is not explicitly
specified.
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TABLE 6. The mean and the standard deviation (s.d.) of estimator él, ég, ég, é4, s and fg in each
model for various n (1-6 represent the models, and the true parameter (67,63,65,605) = (3, -1,2,1))

n = 100
0, 02 03 04 0s 0s
1 mean 2.5215 — — — — —
s.d. 0.2898 — — — — —
2 | mean 1.6753 0.2916 — — — —
s.d. 0.4177 0.2991 — — — —
3 | mean 2.9516 -0.9883 2.5467 - - -
s.d. 0.9033 0.5533 0.8261 — — —
4* | mean 3.7809 -1.2687 2.5303 1.2561 — —
s.d. 5.8555 2.2454  4.1243 2.2728 — —
5 | mean 4.2422 -1.4158 2.8469 1.4337 -0.0701 -
s.d. 9.0993 3.4290 6.5145 3.7175 2.0928 —
6 | mean 4.5331 -1.5110 3.0487 1.5316 -0.0649 -0.0209
s.d. 10.9366 4.2403 8.0397 4.3018 2.3890 2.2203
n = 200
01 02 03 04 5 Os
1 mean 2.5039 — — — — —
s.d. 0.2862 — — — — —
2 | mean 1.6091 0.2974 - - - -
s.d. 0.2727 0.2027 - — — -
3 | mean 2.7420 -0.9105 2.3747 — — —
s.d. 0.4869 0.3359 0.4473 — — —
4* | mean 3.2226 -1.0696 2.1499 1.0757 - -
s.d. 0.6336 0.3882 0.5101 0.3467 - -
5 | mean 3.2675 -1.0841 2.1792 1.0929 -0.0025 —
s.d. 0.6578 0.3992 0.5268 0.3995 0.2995 —
6 | mean 3.2940 -1.0896 2.1954 1.1048 -0.0039 -0.0007
s.d. 0.6801 0.4120 0.5439 0.4087 0.3582 0.3068
n = 300
01 02 05 04 s 0s
1 mean 2.5039 — — — — —
s.d. 0.2857 - - - - -
2 | mean 1.5956 0.2923 — — - —
s.d. 0.2189 0.1613 — — — —
3 | mean 2.6921 -0.8964 2.3322 - - -
s.d. 0.3762 0.2630 0.3416 - - -
4* | mean 3.1360 -1.0462 2.0945 1.0472 — —
s.d. 0.4719 0.2966 0.3812 0.2703 — —
5 | mean 3.1620 -1.0548 2.1121 1.0569 -0.0019 -
s.d. 0.4800 0.3003 0.3874 0.3093 0.2319 -
6 | mean 3.1808 -1.0590 2.1227 1.0684 -0.0070 0.0019
s.d. 0.5004 0.3111 0.4054 0.3221 0.2790 0.2390
5. PROOFS

We will make use of the following lemmas for the proofs of theorems. Recall that 1; is given by
¥; = (Y; — F(X;))X, for all j € N.

Lemma 5.1. Assume that Assumption 2.3 is satisfied and that sup;cy [|¥;]]2 < oo, then
i 2
S| | <.

1
sup — F { sup
=1

n>0 N 1<i<n

Lemma 5.1 follows from a direct application of Yoshida [28, Lemma 4]. We write A,, = ﬁ@an (00) =
77 2= (V5 = 0b(X00)) X
Lemma 5.2. Assume that Assumptions 2.1-2.} and 3.1 are satisfied, then the following claims are
established:

(i) A, =0,(1).

1
ii) sup | —=03H,,(0)| = 0,(1).
(i) sup | =038, = 0,1
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Proof. (i)
sup E[[4;1%] = sup E[|(Y; — F(X;))X; "]
JjEN jeN
<sup B[|Y; — F(X))"|X; "]
JEN
<Ssup B[(|v;2 + | F(X,)|) | X5 7]
JEN
< sup BI(|Y; [ + EIIY; | F5-1 v o(X)]) X il’]
J

Ssup E[(1+ 1357 |X; 7] < oo
jeN

Because of this inequality, we can apply Lemma 5.1 to obtain

Jew

} < sup — E{ sup
n>0 T 1<i<n

Z b

Jj=1

SRS

n>0
Therefore, ﬁ > =1 ¥ = Op(1), and A, satisfies the equality

A, = %é% 1n zn: — Ob(Xj00)) X; = Op(1).

J:1

(ii) For some C > 0,

N

n—\l/ﬁaSH"w)‘ < n\l/_ sup ( i }30i39k<992Hn(9)|2>

sup
" 0e® i,k =1
1 p
. b(X10)X;,: X6 X
SavEn 2 Z XXX
1 P .
< s 30 3 OG0,
ik, 0=1 j=1
p n
! 3
= e /n P X' X
_H%:ﬂn\/ﬁ;?elg ( J )|| J‘
P Lo
SOFETOMEREDTe
ik, 0=1 j=1
P Lo
,%;1 n\/ﬁ; p(1) = 0p(1)
We write Uy, (6p) = {u € R?; 90+f€9} and Z,(u )—eXP{Hn(Qo—F%)_Hn(QO)}-

Lemma 5.3. If Assumptions 2.1-2.4, 3.1 and 3.2 hold, then
/ Zon(w)du = 0p(1)
Un (60)N{|u|>Mn}

for any M, — oc.

Proof. We have that

1 _
/ L (u)du = / exp {U’An + —ulaan(Hn)u}du
Un (00)N{|u|>M,} Un (00)N{|u|>M,.} 2n

1 ,/1< -
= exp {u’An — = (— 0*b(X0,)X
/Un<eo>m{|u>Mn} 2 \n ; ’

X;)u}du,
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where 6, = 0y + &(0y + % —6g) =06+ 5% for some ¢ satisfying 0 < ¢ < 1. From Assumption 3.2 (i),
there exists a function b such that

1, (1, ~
exp {u’An - 5@/(% jzzla b(X]’On)XjX]’-)u}du
/ exp {u'An — 1u'(liQ(Xj)XjX]’-)u}du
Un (60){lul>Ma ) 2 \ni;

1 ,/(1<
< exp {u’An — —u’(— b( X, X<X'-)u}du.
L 3 (7 e,

/Un,(Go)ﬂ{IUZMn}

<

J
Fix any € > 0. For Ao > 0 given in Assumption 3.2 (ii),

P[/ Zo (u)du > e]
Un(00)N{|ul>Mn}

1,1
<P / eXp{u/An— —u/(— E b(X; X»X’»)u}du>e}
[ lul>M, 2" \ 7 2 XN

Jj=1

1,1 1<
=P A, — =u'| = (X)X, X! d s Amin | — b( X)X, X! A
{/|u>Mnexp{u 2" <”Z_( i J)u} v (nz_( DX ]>< O}
+P/ exp < u'A —lu’ lib(X-)X-X{ u pdu > € Ay lib(X—)X—X( >\
> M n 2 n Y Ay J<g y Aman n g\Aj g ] = A0

J=1 Jj=1
n

< P{)\mm (l Zl_)(Xj)XjXJ/) < )\0] + P[/ exp {U’An - %)\ou’u}du > e} (9)
n |u|>M,,

j=1
There exists a constant K > 0 such that

1
P{/ exp {u’An — —)\Ou'u}du > 6:|
|ul>M,, 2
1
= P[/ exp {u’An - —)\Ou’u}du > 6 |ALl > K]
[ul> M, 2

1
+ P[/ exp {U/An — —)\Ou’u}du > e |Al < K}
Jul =M, 2

[ AfrzAn >‘0 -1 ! —1
§P[|An|>K}+P exp | ——— expq — —(u—X; An) (u— Ay Ay) pdu > €A, | <K
I 2Xo u|> Mo 2

[ ALA, A
P[|An| >K} + P|exp <”—>/ exp{—ot’t}dt>e;|An| SK}
L 20 [t4+2g " An|> M, 2

<plian > k] +p| K AL
< P||A,| >K|+Plexp| — _expq — - t'tedt > €.
I 2X0 ) Jitj>Mn—2; 1K 2

Because of Lemma 5.2 (i), for some N,

K2 )\0 €
Pl|lA,| > K +P|:6X (—)/ ex {——t't}dt>e} < = 10
18] > K] P(20) fyorr o P13 - (10)
for every n > N. Due to Assumption 3.2 (ii), (9) and (10),

P{/ Zn(u)du>e} <e
Un (00)N{|ul>Mn}

for all n > N. Thus, / Zy,(u)du converges to 0 in probability. O
Un (60)N{|ul>Mn}

5.1. Proof of Theorem 2.6. Denote Y, (¢) = < (H,(6) — H,(6)). Since 0, € argmaxycg H,(6) if and
only if 6, € argmaxgcg Y, (6), we consider Argmazx theorem (van der Vaart [27, Theorem 5.56, Corollary
5.58]) for Y, (0). Under Assumptions 2.1-2.4, it is enough to show that there exist a f-uniform limit in
probability of Y,, and a unique 6y maximizing the limit. Because of (5), we have

Y, (0) s / (F(z)x’(@ — ) — (b(2'0) — b(x’@o)))y(dx) = Yo(6).
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From Assumptions 2.1, 2.2 and (8),

1 n
supE[sup |89Yn(9)|} = supE[sup - Z (Y; — 0b(X}0)) X, ]
n>0 SC) n>0 SC) 7Lj:1
1 n
supE[sup - (YjF(Xj)JrF(Xj)ab(XJ’»@))Xj]
n>0 0co anI
1< 1<
<sup=S B[] +sup=S " E|sup |(F(X;) — 9b(X'0 X”
n>%n; [1451] n>1(>)n]; sup|(F(X;) — 9b(X}0)) X,

Ly . 15~ gf _ / _
< ii%ﬁ;E“%H +sup - ;E_(IF(X])} +sgg}8b(Xj9>|)lel]

(10 + @+ 10|

1 < 1 «
< _ . _
Sy 2 Bl +sw s B

< 0.

Then for any € > 0 and for some K > 0,

P[ sup ‘(Yn(éﬁ) - Y0(91)) - (Yn(92) _Y0(92))’ > K}
|01 —02]<5

< P[(S sup |0gY,(0)| + sup |Yo(01) — Yo(62)| > K}
E) 61 —62|<5

K K
< P[(S sup |0g Y, (0)] > —] + P[ sup  |Yo(61) — Yo(62)] > —}
6e0 2 616> < 2

) K
5 l?{sup|6b¥ﬁ(9)@ +—P[ sup |$QK91)—-$QK92)|>’??]
[C) [61—602|<6

as 0 — 0. Hence, in view of the Arzela-Ascoli criterion we obtain
sup [Y,.(0) — Yo ()] 2> 0.
0co
Moreover, 99Yo(6) = OgHo(0) is satisfied for any § € ©, so {fy} = argmaxycg Ho(0) = argmaxgcg Yo().
5.2. Proof of Theorem 2.8. It will be shown in Section 5.3 that
V0, —00) = Tyt Ay + 0,(1).

In view of Herrndorf [16, Theorem, Corollary 1], A,, converges to the normal distribution N(0,Xy) in
law if we show the following four conditions:

(i) E[(Y; — 0b(X}60)) X;] = 0, B[(Y; — 9b(X}6,)) "X} X;] < oo for all j € N.
(ii) %EH (Y- ab(xgeo))xj}{ (Y- ab(Xgeo))Xj}'} — %o as n — .
(i) > ren a(k)s < oo.
(iv) limsup,, . E[|(Yn — 8b(XT'190))Xn|3} < 0.
Then, (ii) is ensured by Assumption 2.7 (ii).
(i) Because of Assumptions 2.2, 2.7 (i) and the definition of 6y, we have
E[(Y; - 0b(X}00)) X;] = E[(Y; — F(X)))X; + (F(X;) — 9b(X[60)) X;]
=0+ / (F(x) — 0b(2'b0)) xv(dx)
=0
for any j € N. Furthermore, from Assumption 2.1,

sup E[(Y; — 9b(X100))° X1 X,] S s_upE[(|Yj|2 + |ab(X;.90)|2) |Xj|2}
JEN JjEN

< sup B[ ((1415517) + 1+ 1,197 X,
Jje
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(iii) Assumption 2.2 gives

(iv) In a similar way as (11), we can show that

supEU (Y; — 8b(Xj/-90))Xj|3} < 00
jEN
Hence, (iv) is satisfied.

5.3. Proof of Theorem 3.3. In what follows, we consider the zero-extended version of Z,, and use the

/ Zon(u)du = 0.
RP\U» (60)

By using the change of variable 8 = 6y + \/iﬁ, the log marginal quasi-likelihood function becomes

log (/@exp{Hn(ﬂ)}ﬁ(Q)dQ) — H,(6p) — glogn +log { /Un(eu) Zn(u)w(ﬂo + %)du}

=H,(0y) — glogn

+1og{/Un(90) T (1) (w(eo + %) —W(GO))du—f—ﬂ(Go)/Rp Zn(u)du}.

First we consider the asymptotic behavior of fUn(Go) L () (m (60 + %) — m(0p))du. Because of (ii) of
Theorem 3.3, Assumption 3.2 (i) and Lemma 5.3, we can take M > 0 large enough so that

‘/U (60) ( (90 + \/—) _77(90)>du

same notation:

u
< Zn(u)|m(0g + —=) — w(0p)|du
/[U (60) ( \/ﬁ)
u u
= Zp(u)|m( g+ —=) — 7w(00) du+/ Zp(u)|m( 0o+ —=) — 7w(60)|du
/Un(eo)ﬂ{|u<M} ( \/ﬁ) Un(60)N{|u|>M} ( \/ﬁ)

< sup

s (60 + %) — 7(60)
= 0,(1) x sup {exp <u’An — %u/<% ia%(x;én)xjxg)uﬂ +0,(1) x 0,(1)

|u|<M

<o0,(1) x sup {exp<uA %u< zn: XX) >}+op(1),

|u|<M

sup Zn(u)+28up7r(9)/ Zp(u)du
|u| <M 0O Up (60)N{|u|>M}

where 6,, = 6, —l—f ~ for some satlsfylng 0 < &< 1. Since aa {u/An =30/ (L Z? 1 b(Xj)Xng)u)} =0
if and only if u = (% S b(XG)X; X)) "A,, we have

j=1
A, b(X <1A’ ! an X, X/ _1A
u ——U Z U_§ n ﬁ;‘( )X X n-

From Assumption 3.2 (ii) and Lemma 5.2 (i), for any € > 0 and for some L > 0,

1
limsup P| su ex — —u’< b(X )u)} > L}
naoop Lugw{ P < 2 Z

, 1 & ! 1 &
< hmsupP[eXp{ Al (E ZQ(XJ-)XJ-XJ/) An} > L;)\mm<ﬁ l_)(Xj)XjX]’-) < )\0]

n—00 j=1 Jj=1
n

1
+ limsupP[exp {EA’ <

n—oo
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1 n
< limsupP[ mm(—z ) < )\0} +1imsupP{eXp{—A’ An} > L}
n =1

<e, (12)
so that supy <oy { ex0 (A — 300 (5 57, G, X]) )} = Oy(1). Hence, fy g Zn) (m(Bo-+ ) —
71'(90)) converges to 0 in probability.

Next we will prove that [, Zy (u)du = [, exp(W'A, — u'Tu)du + 0,(1). For each K > 0,

1
‘ / w)du — / exp (u’An — —u’Fnu) du
RP RP 2

1
< / Zn(u) — exp (u'An — —u'Fnu)
RP 2
du +/
|u|>K

du

/u|<K

Due to Assumption 3.2 and Lemma 5.3, we can take K large enough so that

/|uzK

1,1
§/ Zn(u)du+/ exp{u'An — —u'<— °b(X;60) X, X) }d
|u|>K lu|>K 2 n

Jj=1

B R

1 1
Zn(u) — exp (u'An — §u'1"nu) Zn(u) — exp (u’An — §u'1"nu) du.

1
Zn(u) — exp (u’An — §u’1"nu) du

In the same way as (12), for the same K,

1
/ Z,(u) — exp (u/An - —uTnu) du
u| <K 2
1 1<
< sup |exp (u/An — —uTnu) { exp (— ——=0p,0p,,0p, H ( )uzukue) — 1}'
|lu|<K 2 6 i,lg 1 n\/ﬁ s
1,1
sup exp <u'An — §UI<E ZaQb(X]’.QO)XjX]’-)u> exp < Z \/_89 0p,, 0p, H ( )uzukw> — 1‘
|lu|<K J=1
1 ,/1< 1 &1 .
< sup exp (u'An — —u'(— b(X; X»X’-)u) exp (— ——0y, 09,09 Hn(é’n)uiukw) — 1‘
IU\<K 9 n; ( J) J<*g 61,7];@:171\/5 kb
1 1 & -t 1 & 1
/ / 0
< exp {§An (5 ;Q(Xj)Xij) An} ‘jllili( exp (5 i ]%::1 n—ﬁaeiaekaeeHn(Hn)uiukw) - 1‘

— 0,(1) % 0p(1) = 0,(1).
Therefore, we obtain that [;, Z,(u)du = [, exp(u’A, — 2u/Tu)du + 0,(1). Moreover,
U o l U _ l —% 2 o l -1 l -1
/]Rp exp (u JANS 5 U Fnu)du = exp (QHFn Ayl ) . exp( 2(u r,"A,)Ty(u—T, An))du
1 -1 P _1
= exp (§|\rn 2An|\2)(27r)2 det(T,,)~ 3
s0 log ([ exp{Hy(0)}7(0)dh) is given by
log (/ exp{Hn(G)}ﬂ'(H)dH) = H,(6p) — glogn + 1og{ (Ao) exp (—||1" 2A, ||)( 5 det(I,) "2 + op(l)}
e

=H,(0y) — glogn + log m(6o)

3

_Hr 2AL2 + 1og2ﬂ'+1ogdet( n) 7%+ 0p(1).
Finally we replace 6y by the QMLE 6,,:

1
An == ﬁaGHn(QO)
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= (v, — 90))’< - %agﬂn(én)) ,

where 0,, = 0,, + (0o — én) for some 7; satisfying 0 < n; < 1. Because of Lemma 5.2, there exists a 7
satisfying 0 < 72 < 1 such that

BB (B) = T~ (VA — 00))' (=088, (00 + i — 00) )

=T, - (1 - 771)(\/5(971 - 90))I(n—\1/ﬁaan (90 + 772(971 - 90)))
= Fo + Op(l).

Furthermore, we can show that + =i WX ) n) X XG =Ty 4 0p(1) = Lo + 0p(1) in the same way, so we
have

HH(GO) = Hn(én) - %(\/ﬁ(én - 6’0))11—‘0 (\/ﬁ(én - 6’0)) + O;D(l)

= Ho(0n) — 5 (T 'A,) To(TgtA,) +0,(1)
7] L3 2
= H,.(6,) — 5”1—‘0 Anll® + op(1).
Thus, the asymptotic behavior of the log marginal quasi-likelihood function is given by

A p A~
log </@exp{Hn(9)}7r(9)d9) =H,(0,) — 5 logn + log 7 (6,,)

P 1 1 & N
+ 5 log 27 — - log det (5 > b(X]’.en)XjX]’.) + 0,(1).
j=1

5.4. Proof of Theorem 3.5. We basically follow the scenario of Fasen and Kimmig [13].
(i) O, is nested in ©,,. Define the map a : ©,,, — O,, by a(d) = Af + ¢, where A and c satisfy that
Himg,n (0) = Hypyn (a(8)) for any 6 € ©,,,. Then the equation Hip,,0(0) = Hy,o(a(6)) is also satisfied for
every 0 € O,y If a(0m4.0) # 0m.0s Hing,0(0me,0) = Hm,o(a(é’mmo)) < H,y,,0(0m,0) and assumption of the
optimal model is not satisfied. Hence we have a(0,,,,0) = Om.0-

By the Taylor expansion of H,, ,,

Hmoyn(émoyn) = Hy, n(a(émg n))

= HO) = 5O — )Y 282 XXX ) (VO = a(Or)

where 6,, = émyn + f(a(émoyn) — émn) for some ¢ satisfying 0 < £ < 1 and 0, 2, Om,0 as n — o0.
Therefore, the difference between QBIC(™) and QBIC™ is given by

QBIC™) — QBIC™ = {\/n (0,0 — alOmen)) } ( 282 X'6 XjX§>{\/ﬁ(ém,na(émo,n))}

+ log det ( — 0} mo’n(émo,n)) — log det ( — agHm,n(émm)).
We consider the behavior of the émm — a(émo,n). Because of the chain rule, we have

aOng,n(emo,O) == A/aeHm,n(em,O);
Oy Hongn(0) = A'OFH,, 1 (a(0)) A.

Moreover,

N >)_1 (200G )

= {A’( - %agHmm (a(én)))A}_lA’ (%(%Hm,n(@mo))
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{ ( 252 XX)A}_lA’<%69Hm7n(9m7O))

- (A’meoA) A’<%89Hm,n(9m,o)) +op(1),

where 6,, = émg,n + U(9m0,0 — émo,n) for some 7 satisfying 0 < n < 1 and a(én) £, a(0mgy.0) = Om,o as

n — 00. These equalities and Theorem 2.8 give

\/ﬁ(em,n - a(émo,n)) = \/ﬁ(ém,n —0Om,o0) — A\/_( Amo, — Omg,0)
S ol — A(ATwoA) A'} (0, 520)

=N,, (0, {F;jo —~ A(A’Fm,OA)7 A’}EO{F;:O B A(ATWOA)lA/}) N

Thus,
P[QBIC(™) — QBIC™ < (]
1 . 1 ¢
— P[N/(E Za%m(xjf,en)xjxg)N + log det (5 Z b (X Omon) X, X )
= j=1
— log det ( 282 mn)X i X ) (Pm —pmo)logn}
— P|N'T,,0N + log det (T 0) — logdet (Tm,0) < o]
as n — oo. From Imhof [17, (1.1)], N'T,, (N = p’" L Ajx; in distribution, where (x3) is a se-

quence of independent x? random variables with one degree of freedom and \; are the eigenvalues of
T2 o{Tonly = A(AT0A) T A S0 {T; ) — A(A'T,0A4) T A'YTE, . Furthermore, log det (T 0) = O(1)
and logdet (I'y,0) = O(1). Hence,

Pm
P[NTWON + log det (Fmo,o) — log det (Fmﬁo) < oo} > P[ max _\j Zx? < oo} =1.

J€{1,ccspm }

(i) Hyp.0(0) # Hong.0(Omg.0) for every § € ©,,. Because of Lemma 5.2 (i) and the consistency of 6,
and émm, we have

1 1

EHMO,n(Qmo,n) = EHmoyn(emo,O) + Op(l) = Hiny,0(0mo.0) + Op(l)a
1 A 1
EHm,n(Qm,n) = EHmyn(om,O) + Op(l) = Him,0(0m.0) + Op(l)-

Since H,y,0(0mg.0) s lager than H,, ¢(05,,0), we obtain

P[QBIC™) — QBIC(™) < (]

- p{_ 2 1 (Omg ) + 2Hos (O ) + log det ( 262 X Ormon) X X )
— log det ( Z b (X0 ) X; X ) (Pm — Pmo) logn]
—9 . .
=P|—(H —H 1 b, (X0 X, X!
=2 E o D) ~ Hi ) + ol 1 Za O ) X5

1 2, _ . ylogm
nlogdet< Z@ mn)X X) (Pm — Prmo) ]

n

- P[ — 2(Hinp,0(0mo,0) = Hin,0(0mo 0)) < 0} =1

as n — o0.
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