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REGULARITY OF BINOMIAL EDGE IDEALS OF CERTAIN BLOCK

GRAPHS

A. V. JAYANTHAN, N. NARAYANAN, AND B. V. RAGHAVENDRA RAO

Abstract. We obtain an improved lower bound for the regularity of the binomial
edge ideals of trees. We then prove an upper bound for the regularity of the bino-
mial edge ideals proposed by Saeedi Madani and Kiani for a subclass of block graphs
called clique-path graphs. As a consequence we obtain sharp upper and lower bounds
for the regularity of binomial edge ideals of the class of trees called lobsters.

1. Introduction

Let G be a simple graph on the vertex set [n]. Let S = K[x1, . . . , xn, y1, . . . , yn] be
the polynomial ring in 2n variables, where K is a field. Then the ideal J(G) generated
by {xiyj − xjyi | (i, j) is an edge in G} is called the binomial edge ideal of G. This was
introduced by Herzog et al., [9] and independently by Ohtani, [12]. Recently, there have
been many results relating the algebraic properties of the binomial edge ideals and the
combinatorial data of the graphs, see [1], [2], [4], [10], [13], [14], [15]. In particular, there
have been active research on relating algebraic invariants of the binomial edge ideals
such as Castelnuovo-Mumford regularity, depth, betti numbers etc. with combinatorial
invariants associated with graphs such as length of maximal induced path, number of
maximal cliques, matching number etc. Matsuda and Murai proved that ℓ ≤ reg(S/JG) ≤
n−1, where ℓ is the length of the longest induced path in G, [10]. They conjectured that if
reg(S/JG) = n−1, then G is a path of length n. Ene and Zarojanu proved this conjecture
in the case of closed graphs, [5]. A graph is said to be closed if the binomial edge ideal
has a quadratic Gröbner basis. Choudhry et al. proved that if T is a tree whose longest
induced path has length ℓ, then reg(S/JT ) = ℓ if and only if T is a caterpillar, [1]. In
[13], Saeedi Madani and Kiani proved that for a closed graph G, reg(S/JG) ≤ c(G), where
c(G) is the number of maximal cliques in G. Later they generalized this result to case
of binomial edge ideal of a pair of a closed graph and a complete graph, [14]. Further,
Saeedi Madani and Kiani proposed that if G is any graph, then reg(S/JG) ≤ c(G).

In this article, we show that the bound proposed by Saeedi Madani and Kiani holds
for a subclass of block graphs which we call clique-path graphs, see Definition 2.2. We
prove in Theorem 3.4 that if G is a clique-path graph with a path P of length ℓ and r
maximal cliques of size at least 3, then reg(S/JG) ≤ ℓ+ r. Note that if G is a clique-path
graph as given above, then it has ℓ + r maximal cliques, namely ℓ edges of P and r
maximal cliques of size at least 3. We then obtain, in Theorem 3.7, an upper bound for
the regularity of the binomial edge ideals of lobsters (see Section 2 for definition). Lobsters
are well studied objects in graph theory. They are the most natural generalization of the
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caterpillar graphs. Lobsters occur very often in the graph theory literature, especially
in the context of well-known graceful tree conjecture, [11], [6]. We also obtain a precise
expression for the regularity of binomial edge ideals of a subclass of lobsters in Theorem
3.9.

From [10], it follows that the regularity of the binomial edge ideal of a tree is bounded
below by the diameter of the tree. We improve this bound to show that the regularity
of the binomial edge ideal of a tree is lower bounded by the number of internal vertices,
Theorem 3.3.

2. Preliminaries

In this section, we set up the basic definitions and notation needed for the main results.
Let T be a tree and L(T ) = {v ∈ V (T )| deg(v) = 1} be the set of all leaves of T . We

say a tree T is a caterpillar if T \ L(T ) is either empty or is a path.
Similarly, a tree T is said to be a lobster, if T \ L(T ) is a caterpillar, [7]. Observe that

every caterpillar is also a lobster. A longest path in a lobster is called a spine of the
lobster. It is easy to see that given any spine, every edge of a caterpillar is incident to it.
With respect to a fixed spine P , the pendant edges incident with P are called whiskers.
It is easy to see that every non-leaf vertex u not incident on a fixed spine P of a lobster
forms the center of a star(K1,m, m ≥ 2), and each such star is said to be a limb with
respect to P . More generally, given a vertex v on any simple path P , we can attach a
star (K1,m, m ≥ 2) with center u by identifying exactly one of the leaves of the star with
v. Such a star is called a limb attached to P .
Note that the limbs and whiskers depend on the spine. Whenever a spine in a graph is

fixed, we will refer to them only as limb and whisker.

Example 2.1. Let G denote the given graph on 10 vertices:
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G

In this example, G has many longest induced paths. The path
induced by the vertices {0, 1, 2, 3, 4}, {0, 1, 2, 6, 9} are two such
(there are more) paths. Let P denote the path induced by the
vertices {0, 1, 2, 3, 4}. Then (1, 5) is a whisker with respect to P .
Also the subgraph induced by the vertices {2, 6, 7, 8, 9} is a limb
with respect to P . If we consider {0, 1, 2, 6, 9} as spine P , then
{(1, 5), (6, 7), (6, 8)} are whiskers with respect to P and the path
induced by {2, 3, 4} is a limb.

Here we define a new subclass of block graphs called clique-path graphs.

Definition 2.2. A clique-path graph G is the union P ∪C1∪· · ·∪Cr where P is a simple
path on the vertices {v0, . . . , vℓ} and C1, . . . , Cr are cliques such that

(1) |Ci| ≥ 3 for all i;
(2) Ci ∩ Cj ⊂ P and |Ci ∩ Cj| ≤ 1 for every i 6= j;
(3) |Ci ∩ P | = 1.
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Figure 2. Clique-Path Graph

It follows from Proposition 1.2 in [9] that not all clique-path graphs are closed graphs.
In fact, any clique-path graph that has at least one clique attached to an internal vertex
of the path P is not closed. See Figure 2 for an example.

3. Bounds on the regularity

In this section, we obtain sharp bounds on the regularity of the binomial edge ideals of
certain classes of graphs. It was shown in [1] that if G is a Cℓ graph, then reg(S/JG) = ℓ.
While Cℓ graph can be seen as a graph obtained by arranging cliques along a path, a
clique-path graph is obtained by attaching cliques to a path. We first obtain a lower
bound for the regularity of binomial edge ideals of trees. We then prove an upper bound
for the regularity of binomial edge ideals of clique-path graphs. As a consequence, we
obtain an upper bound to the regularity of the lobsters.
We begin by making a general observation about Betti numbers of quotients of graded

ideals.

Remark 3.1. Let I be a graded ideal of a polynomial ring S = K[x1, . . . , xn] and f be
a homogeneous element of S of degree d which is a regular element modulo I. Then we
have an exact sequence

0 −→ S/I[−d]
µf

−→ S/I −→ S/(I, f) −→ 0,

where µf denote the multiplication by f . Correspondingly, for each m ≥ 0, there is a
graded long exact sequence of the Tor functor

· · · −→ TorSi (K,S/I)m−d

µf

−→ TorSi (K,S/I)m −→ TorSi (K,S/(I, f))m

−→ TorSi−1(K,S/I)m−d

µf

−→ · · · .

Since the multiplication maps on Tor are zero, for each i, we have short exact sequences

0 −→ TorSi (K,S/I)m −→ TorSi (K,S/(I, f))m −→ TorSi−1(K,S/I)m−d −→ 0

and consequently

βi,m(S/(I, f)) = βi,m(S/I) + βi−1,m−d(S/I).

Corollary 3.2. Let G be a simple finite graph on [n] with a free vertex, say n, and
G′ = G ∪ {(n, n + 1)}. Let S = K[x1, . . . , xn, y1, . . . , yn] and S ′ = S[xn+1, yn+1]. Then
βi,i+j(S

′/JG′) = βi,i+j(S/JG)+βi−1,i+j−2(S/JG). In particular, reg(S ′/JG′) = reg(S/JG)+
1.
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Proof. Since n is a free vertex in G, by Lemma 21 of [15], xnyn+1 − xn+1yn is a regular

element on S ′/JG. Note that TorSi (K,S/JG) ∼= TorS
′

i (K,S ′/JG). Hence by Remark 3.1,
we get βi,i+j(S

′/JG′) = βi,i+j(S/JG)+βi−1,i+j−2(S/JG). Therefore it follows directly from
the betti table that reg(S ′/JG′) = reg(S/JG) + 1. �

Now we obtain a lower bound on the regularity of the binomial edge ideals of trees in
terms of the number of internal vertices. Given a tree T , it is easy to see that one can
construct T from the trivial graph by adding vertices vi to Ti−1 at step i to get Ti so that
vi is a leaf in in the tree Ti. Such an ordering of vertices is called a leaf ordering.

Theorem 3.3. If G is a tree with m internal vertices, then reg(S/JG) ≥ m+ 1.

Proof. Let v1, . . . , vr be a leaf ordering of the vertices of G, and let Gi be the subgraph of
G induced by v1, . . . , vi. Let mi denote the number of internal vertices of Gi. We argue
by induction on i. If i = 2, then G2 is an edge and reg(S/JG2

) = 1. Therefore, the result
holds. Assume the result for Gi. Then Gi+1 is obtained by adding a leaf vi+1 to some
vertex v of Gi. If v is a leaf in Gi, then v is a free vertex in Gi, and hence by Corollary
3.2, reg(S/JGi+1

) = reg(S/JGi
) + 1. Further, v becomes a new internal vertex in Gi, i.e.,

mi+1 = mi + 1, and therefore the result holds. If v is an internal vertex in Gi, then
mi+1 = mi and since Gi is an induced subgraph of Gi+1, reg(S/JGi+1

) ≥ reg(S/JGi
) ≥

mi + 1 = mi+1 + 1 as required. �

Now we prove an upper bound for the regularity of the binomial edge ideals of clique-path
graphs.

Theorem 3.4. Let G be a clique-path graph having a path P of length ℓ on vertices
{v0, . . . , vℓ} and cliques C1, . . . , Cr attached to P . Then reg(S/JG) ≤ ℓ + r.

Proof. Let G be a graph as given in the statement of the theorem. We prove the assertion
by induction on ℓ + r, i.e., the number of maximal cliques in G. If r = 0, then G is
a path and hence the result holds. Let p = min{j | vj /∈ Ci for all i}. If p ≤ ℓ − 2,
then by removing vp+2, . . . , vℓ, the resulting graph G′ satisfies the property reg(S/JG) =
reg(S/JG′)+ℓ−p−1, by repeated application of Corollary 3.2. Therefore, we may assume
that p ≥ ℓ − 1. Let F1, . . . , Fm be a leaf-ordering of the maximal cliques in G such that
Fm is either the edge (vℓ−1, vℓ) or Fm = Ci for some i and vℓ ∈ Ci. Let Fi1 , . . . , Fiq be
such that Fij ∩ Fm = {vk}, where k ∈ {ℓ− 1, ℓ} and Fm ∩ P = {vk}. Let G

′ be the graph
obtained by inserting a clique on the vertices Fm ∪ Fi1 ∪ · · · ∪ Fiq and G′′ be the graph
induced by [n]\{v}. Then as in the proof of [4, Theorem 1.1], we have the exact sequence:

0 −→
S

in<(JG)
−→

S

in<(JG′)
⊕

S

(xi, yi) + in<(JG′′)
−→

S

(xi, yi) + in<(JG′)
−→ 0. (1)

Note that G′ is a clique-path graph with number of maximal cliques ℓ + r − q, q ≥ 1.
Therefore, by induction, reg(S/JG′) ≤ ℓ + r − q ≤ ℓ + r − 1. It can also be seen that
G′′ has q + 2 connected components, namely F ′

i1
, . . . , F ′

iq
, F ′

m, G
′′

1, where F ′

j is either an

isolated vertex or Cj \ {vk} for some j and G′′

1 = G \ (Fi1 ∪ · · · ∪ Fiq ∪ Fm). Therefore
reg(S/JG′′) =

∑q

j=1
reg(S/JF ′

ij
) + reg(S/JF ′

m
) + reg(S/JG′′

1
). It is easy to see that G′′

1 is a
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clique-path graph with a path of length ℓ− 1 and with either r− q or r− q− 1 cliques of
size at least three depending on whether Fm is an edge or not. By induction hypothesis,
reg(S/JG′′

1
) ≤ (ℓ−1)+r−q, if Fm is an edge or reg(S/JG′′

1
) ≤ (ℓ−1)+r−q−1 otherwise,

in which case reg(S/JF ′

m
) = 0. Therefore, reg(S/JG′′) ≤ ℓ + r. Now it follows from the

short exact sequence (1) that reg(S/JG) ≤ reg(S/ in<(JG)) ≤ ℓ+ r. �

Corollary 3.5. If G is a clique-path graph with a path P of length ℓ, r maximal cliques
of size at least 3 and t limbs attached to P , then reg(S/JG) ≤ ℓ+ r + t.

Proof. We prove by induction on t. If t = 0, then the result follows from Theorem 3.4.
Let t ≥ 1. Let v be a leaf on a limb and N(v) = {u}. Let G′ be the graph obtained by
adding a clique on the vertices on N(u) ∪ {u} and G′′ be the graph induced on [n] \ {u}.
Note that G′ has r+1 maximal cliques of size at least three and t−1 limbs. By induction,
reg(S/JG′) ≤ ℓ+ (r+1)+ (t− 1) = ℓ+ r+ t. Moreover, G′′ has r maximal cliques of size
at least three and t − 1 limbs. Therefore, by induction reg(S/JG′′) ≤ ℓ + r + t − 1. By
the exact sequence (1), we have reg(S/JG) ≤ ℓ+ r + t. �

Example 3.6. This is an example to show that the bound given in Theorem 3.4 is sharp.

b b b

b bb b
b

G

Let G be a graph as given here. Then G is a clique-path
graph with path P of length ℓ = 2 and r = 2 cliques. It
can be seen that reg(S/JG) = 4 = ℓ + r.

Now we prove the regularity bound for a subclass of trees, namely the lobsters.

Theorem 3.7. If G is a lobster with spine P of length ℓ with t limbs and r whiskers
attached to the spine P , then reg(S/JG) ≤ ℓ+ t + r + 2.

Proof. Let G be a graph with spine P of length ℓ with t limbs and r whiskers attached to
the spine P . Let G′ be the graph obtained from G by extending each whisker to a limb
by adding a new edge to a new distinct vertex. Then the spine length of G′ will be either
ℓ or ℓ+1 or ℓ+2, depending upon whether there is a whisker attached to the penultimate
vertices of each side of the spine. Note that G′ can have at most two new whiskers. Then
we have the following cases:

Case I: Suppose G′ has no new whiskers. Then G′ is a graph with no whiskers and t+ r
limbs. By Theorem 3.4, reg(S/JG′) ≤ ℓ + t + r. Since G is an induced subgraph of G,
reg(S/JG) ≤ reg(S/JG′).

Case II: Suppose G′ has only one new whisker. Then extend this whisker to a limb as
done above and obtain a new graph G′′ with spine length ℓ+1, t+r limbs and no whiskers.
Then by Theorem 3.4, reg(S/JG′′) ≤ ℓ+ t+ r+1. Since G is an induced subgraph of G′′,
we have reg(S/JG) ≤ reg(S/JG′′).

Case III: Suppose G′ has two new whiskers. As done earlier, extend these two whiskers
to limbs to obtain G′′. Then G′′ has spine length ℓ + 2, t + r limbs and no whiskers.
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Therefore by Theorem 3.4, reg(S/JG′′) ≤ ℓ + t + r + 2. As G is an induced subgraph of
G′′, we have reg(S/JG) ≤ reg(S/JG′′).

Hence reg(S/JG) ≤ ℓ+ t+ r + 2. �

Example 3.8. This is an example of a lobster which achieves the upper bound given in
Theorem 3.7.
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This graph G has many different
longest induced paths. Fixing any
one of them, one can see that G
has spine length ℓ = 4, t =
4 limbs and r = 2 whiskers at-
tached to the spine. A computa-
tion on Macaulay2 shows that the
reg(S/JG) = 12 = ℓ+ t + r + 2.

Below, we obtain a precise expression for the regularity of the binmoial edge ideal of a
subclass of lobsters.

Theorem 3.9. If G is a lobster with spine length ℓ and t limbs of the form K1,2 attached
to the spine, then reg(S/JG) = ℓ+ t.

Proof. Let G be a lobster with spine P of length ℓ and t limbs of the form K1,2 attached
to the spine P . Let G′ be the caterpillar graph obtained by deleting all the leaves of G
which are not on the spine P of G. Then reg(S/JG′) = ℓ, [1]. Let m be a leaf of G
and (m,m + 1) be an edge in G. Let G′′ denote the graph G′ ∪ {(m,m + 1)}. Then by
Corollary 3.2, reg(S/JG′′) = ℓ + 1. Observe that G is obtained by iterating the above
procedure of attaching a vertex to a leaf t-times. Since a vertex is attached to a leaf, the
regularity increases exactly by one at each step. Therefore, reg(S/JG) = ℓ + t. �

Corollary 3.10. Let G be a lobster with spine P of length ℓ, t limbs and r whiskers.
Then ℓ+ t ≤ reg(S/JG) ≤ ℓ+ t + r + 2.

Proof. The upper bound is proved in Theorem 3.7. To prove the lower bound, note that
G has a subgraph G′ with spine P , t pure limbs and without any whiskers as an induced
subgraph. By Theorem 3.9, reg(S/JG′) = ℓ+ t as required. �

Acknowledgement: We thank Nathann Cohen for setting up SAGE and giving us initial
lessons in programming. We have extensively used computer algebra software SAGE, [3],
and Macaulay2 [8] for our computations. Thanks are also due to Jinu Mary Jameson
who provided us with a lot of computational materials. This research is partly funded by
I.C.S.R. Exploratory Project Grant, MAT/1415/831/RFER/AVJA, of I.I.T. Madras.



REGULARITY OF BINOMIAL EDGE IDEALS OF CERTAIN BLOCK GRAPHS 7

References

[1] Faryal Chaudhry, Ahmet Dokuyucu, and Rida Irfan. On the binomial edge ideals of block graphs.
An. Stiint. Univ. “Ovidius” Constanta Ser. Mat., 2015. To Appear.

[2] Marilena Crupi and Giancarlo Rinaldo. Binomial edge ideals with quadratic Gröbner bases. Electron.
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