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Inter-tier Interference Suppression in Heterogeneous
Cloud Radio Access Networks
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Abstract—Incorporating cloud computing into heterogeneous radio heads (RRHSs), the C-RAN facilitates the implementa-
networks, the heterogeneous cloud radio access network (H-tion of centralized coordinated multi point (COMP) transmi
CRAN) has been proposed as a promising paradigm to enhance gjon [4]. With such an architecture, mobile operators caityea

both spectral and energy efficiencies. Developing interfence . . T
suppression strategies is critical for suppressing the imr-tier expand and upgrade their networks by deploying additional

interference between remote radio heads (RRHs) and a macro RRHS, and thus the corresponding operational costs can be
base station (MBS) in H-CRANSs. In this paper, inter-tier in- greatly reduced. Unfortunately, one of the main restritgion
terference suppression techniques are considered in themiexts  the implementation of C-RANSs is the non-ideal fronthaulhwit

of collaborative processing and cooperative radio resoue al- limited capacity and long time delay. Overcoming the nagati

location (CRRA). In particular, interference collaboration (IC) . . -
and beamforming (BF) are proposed to suppress the inter-tie impact of the constrained fronthaul on spectral efficierglg)

interference, and their corresponding performance is evalated. and energy efficiency (EE) is not straightforwalrd [5].

Closed-form expressions for the overall outage probabilies, .
system capacities, and average bit error rates under thesevb The heterogeneous cloud radio access network (H-CRAN)

schemes are derived. Furthermore, IC and BF based CRRA has recently been proposed to decouple the control plane
optimization models are presented to maximize the RRH-acesed and user plane to enhance the existing C-RAN concept, in
users’ sum rates via power allocation, which is solved withanvex \hich the functions of control plane are only implemented
optimization. Simulation results demonstrate that the deived in traditional macro base stations (MBSS) [6]. In H-CRANS,

expressions for these performance metrics for IC and BF are ) . . .
accurate; and the relative performance between IC and BF RRHs are used to provide high bit rates for users with

schemes depends on system parameters, such as the numbefliverse QoS requirements in hot spots, while the MBS is
of antennas at the MBS, the number of RRHSs, and the target deployed to guarantee seamless coverage and deliver the

signal-to-interference-plus-noise ratio threshold. Futhermore, it  control signalling of the whole network. User equipments
is seen that the sum rates of IC and BF schemes increase almost(UES) can access RRHs transparently in H-CRANSs, which
linearly with the transmit power threshold under the proposed I UEs t t inal ier f ' d
CRRA optimization solution. allows s to operate over a single carrier frequency an
) at low cost. In comparison with C-RANs and heterogenous
_Index Terms—Heterogeneous cloud radio access network, netyorks (HetNets)[]7], H-CRANs have been demonstrated
interference suppression, interference coordination, aaperative to achieve sianificant performance aains throuah advanced
radio resource allocation. - g p g 9 9
collaborative signal processing. However, because MB$8s an
RRHs are underlaid with the same carrier frequency in the
|. INTRODUCTION same coverage area, severe inter-tier interference isratu

. . . . which degrades the performance of H-CRANSs significantly.
To meet the rapidly growing mobile data volume driven

by applications on platforms such as smartphones and sablet Unlike the traditional HetNets, the intra-tier interfecen
the next generation of wireless networks face significaat-chamong dense RRHs in H-CRANs can be fully eliminated by
lenges in improving system capacity and guaranteeing 'usd@ige-scale cooperative processing through the fronthdile
quality of service (QoS)|1]. Cloud radio access networks (¢he inter-cell interference between adjacent BSs in HetNet
RANSs) have been proposed to provide high bit rates, whighould be mitigated by the distributed CoMP techniques
reducing both capital and operating expenditures [[2] [3]. gthrough backhaul. Furthermore, the inter-tier interfesemo
migrating the baseband functionalities of base statio@sjBo the RRH user equipments (RUEs) in H-CRANs can be co-
a centralized baseband unit (BBU) pool and distributed tem@rdinated through spatial multiple-input and multipletjmut
(MIMO) processing in the MBS with multiple antennas [8],
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A. Related Work on reception reliability.
Besides the IC and BF schemes in the physical layer,

M.uch recent attention has been paid to interference collgRier-tier interference can be suppressed by cross-laRRAC
oration and CRRA for C-RANs. One of the key advantages g{chniques in the upper layers. The significant cloud comput
the C-RAN architecture is that it provides the BBU pool fofyg capability in the BBU pool enables the use of advanced
joint baseband signal processing across the multiple RRHS¢oss-layer CRRA. Traditional radio resource allocation f
both uplink and downlink, and thus it achieves significantlyg|iular networks is largely based on heuristics and there i
higher data rates than conventional cellular networksnkba |5k of theoretical understanding of how to design crogsfla
to the large-scale collaborative processing in the BBU, theRRA in an H-CRAN, which is usually more challenging
intra-tier interference across RRHs can be fully elimidatethan that in traditional cellular and C-RANs due to pradtica
Such large-scale collaborative processing is often refeto jsgyes such as fronthaul capacity limitations, non-ideahael
asnetwork precoding or CoMP in HetNets. state information (CSI), and the parallel implementatidn o

Numerous studies of network precoding for MIMO sysalgorithms.
tems, HetNets and C-RANs have been described in previouSome optimization objectives like weighted sum rate (WSR)
works [10]- [15]. For example, performance analysis undésr CRRA involve multi-user interference, causing non-
various linear precoding schemes has been presentéd|in [£8hvexity and making the problems hard to solve. Fortugatel
which can be directly applicable to H-CRANs. The authofie weighted minimum mean square error (WMMSE) method
in [11] have analyzed the throughput of multiuser MIMO fohas proven to be effective in transforming such non-convex
distributed antenna systems based on zero-forcing beamfobptimization problems into convex optimization problems.
ing (BF); however, the closed-form expressions for ergod@pecifically, for the WSR problem with beamforming vec-
capacity therein have been presented with approximatiaags as variables, the objective function is non-convehwit
instead of exact results. In addition, in_[12], two coordéth regard to the vectors. However, it has been shown that WSR
BF designs have been taken into consideration in multicelaximization and WMMSE minimization are equivalent for
networks: the QoS BF, and the max-min signal-to-interfeeen the MIMO interference channel [18], in the sense that the
plus-noise ratio (SINR) BF. The goal of QoS BF is tawo problems have the same optimal solution. Moreover,
minimize the total power consumption while guaranteeirad ththe obtained WMMSE minimization after equivalent trans-
the received SINR of each user is above a pre-determin@émation is convex with respect to each of the individual
threshold, while the max-min SINR BF aims to maximizgptimization variables, and hence this non-convex protikem
the minimum received SINR among all users under per-basgnsformed into a more tractable convex problem. As a tesul
station power constraints. Furthermore, there are twoskofd the WMMSE method has been widely applied to handle non-
precoding schemes for MIMO, namely interference collaborgonvex power consumption minimizatioh [19], joint power
tion (IC) [13] and BF [14]. In[[13], an adaptive transmissiorand antenna selection optimization|[20], and weightedesgst
strategy to switch between IC and BF is proposed; howevéiroughput maximizatiorn [21]. Nevertheless, all of the abo
the analytical results are restricted to the scenario witly o studies focus only on downlink transmission. [n][22], the
one low power node. Essentially, BF aims to maximize thglink transmission is taken into consideration, and atjoin
received signal strength for the desired users when the edgfvnlink and uplink user-RRH association and precoding
SINR is low, while IC is preferred when the edge SINR iglesign scheme is proposed to minimize the system power con-
relatively high and the interference should be suppresE&(d [ sumption, in which the joint downlink and uplink optimizaiti
Inspired by [11]- [15], in this paper both IC and BF schemgsroblem is transformed into an equivalent downlink problem
are extended to H-CRANSs as advanced collaborative processd the WMMSE method is used to transform the non-convex

ing approaches to suppress the inter-tier interferenattfe® downlink problem into a convex problem with respect to the
overall outage probability, system capacity, and average bntries of the precoding matrix.

error rate (BER) under IC and BF are used to evaluate theirmoreover, thelyp-norm is often applied to express RRH
performance under different configurations. selection, which leads to integer programming problems. To
In addition, to exploit the performance of C-RANSs, thd@ransform such non-convex problems into convex problems,
ergodic capacity performance of the single nearest ldnd /;-norm approximation can be used. In_[[21], the authors
nearest association strategies with varying transmit pa#e investigate re-weighteld-norm approximation in the fronthaul
RRHSs in C-RANSs is compared in [1L6]. The best RRH selectiorapacity constraint. In thé;-norm approximation method,
scheme needs only a single RRH and hence reduces dlagh coefficient in the precoding matrix is assumed to be
system overhead by avoiding coordination of the distridbutéendependent; however, such independence does not always
RRHSs, while resulting in a certain performance loss. With thhold in C-RANs. For example, one user is always served by
employment of precoding schemes, large-scale collalverata selected cluster of RRHs, which means that the elements
processing gains can be achieved in C-RANs with denset belonging to these RRHSs in the precoding matrix are set
RRHSs. It is indicated that no more than four RRHs shoultd zero [22]. Besides, one RRH can be switched off when
be associated for each UE to balance performance gains afidbf its coefficients in the precoding matrix are set to zero
implementation cost. In_[17], different performance nedyi [23]. In these cases, the coefficients of precoding matrices
such as outage probability, are used to compare downliskould be optimized jointly rather than individually, artis
beamforming and antenna selection, as well as their impattie {;-norm approximation cannot be used directly because
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the zero entries of the precoding matrices may not align in SUMMARY OF ABBREVIATIONS

the same RRH. To cope with this problem, the mied,- CRRA cooperative radio resource allocation

norm approximation method can be adopted to induce group csl channel state information

sparsity. In [[22] and[[23], mixed, /I,-norm approximation energy efficiency

methods are adopted to handle a group sparse based RR etNet heterogenous network

selection problem. In[[22], a traditional mixed/i,-norm H-CRAN  heterogeneous cloud radio access network
method is used to transform group sparse bakedorm interference collaboration

constraints. In[[23], a three stage group sparse precoding Karush-Kuhn-Tucker

design algorithm is proposed to minimize the network energy MBS macro base station

consumption of C-RANSs. The non-convigxnorm constraints MIMO multiple-input and multiple-output

are transformed into convex forms by a weighted miked,- UE MBS user equipment

norm method. However, CRRA in H-CRANSs for suppressing QoS quality of service

inter-tier interference when the precoding techniqueh Vaitv H remote radio head

complexity such as IC and BF are used in the physical layer RUE RRH user equipment

has not been addressed.

RV random variable
MT mobile terminal
B. Contributions SE spectral efficiency
With the development of H-CRANS, the design of effective SINR signal-to-interference-plus-noise ratio

user equipment
WMMSE weighted minimum mean square error
WSR weighted sum rate

large-scale collaborative processing and cross-layer LRR
schemes for suppressing both intra-tier and inter-tieerint
ference to improve SE is a key need. Considering the large-
scale centralized collaborative processing in the BBU pibel
intra-tier interference among RRHs can, in principle, biéyfu
eliminated when the number of RRHs is not too large. Through high SINRs of the MBS, while the IC based CRRA
the IC or BF based CRRA, the inter-tier interference in H-  outperforms the BF based CRRA in the regime of the
CRANS can be further suppressed. The major contributions of 10w SINRs of the MBS.

this paper can be summarized as follows. The remainder of this paper is organized as follows. Section

« To mitigate the inter-tier interference between the MB# describes the H-CRAN system model and formulates the
and RRHs in H-CRANS, IC and BF precoding schemayoblem of interest. Section Il analyzes the distributioh
are employed at the multiple-antenna MBS. Performan&NR for MUEs and RUEs under IC and BF precoding
metrics, including outage probability, system capacitgchemes. The outage probability, average BER, and system
and average BER are analyzed for both IC and B$um capacity under IC and BF schemes are derived in Section
schemes. In particular, closed-form expressions for difV. Section V presents the BF and IC based CRRA optimiza-
ferent performance metrics under IC and BF are deriveiion problems and the corresponding solutions. The sinauiat

« Based on the derived closed-form expressions undésults for both collaborative processing in the physiagef
IC and BF, the key factors, such as the number @nd the CRRA in the upper layer are introduced in Section
antennas on the MBS, the number of RRHs, and th8. Section VII summarizes this paper. For convenience, the
SINR threshold, impacting the overall outage probabilit@bbreviations are listed in Table I.
system capacity, and average BER are evaluated and
compared.

o Under the proposed IC and BF precoding schemes,
CRRA to optimize RUES’ sum rates while guarantee- Unlike in C-RANs, the MBS in H-CRANSs delivers the
ing the rates of MUEs is examined. The correspondirgpntrol signaling for the whole network, which decouples th
optimization problems based on both IC and BF angser plane and control plane. Furthermore, to alleviate the
formulated as non-convex problems, which are solved lneavy burdens on the fronthaul, some UEs with high mobility
transforming them into convex problems and applyingr with real-time traffic are given high priority to acces® th
the Karush-Kuhn-Tucker (KKT) conditions. Based omMBS. As a result, we can limit our attention to one MBS
the transformed Lagrangian function, the optimal powén the H-CRAN, under which multiple distributed RRHs are
allocation algorithms for both RRHs and the MBS arenderlaid within the same coverage of the MBS. Thus, as
developed. illustrated in Fig[l, the H-CRAN of interest consists of one

« The analytical and simulation results suggest that the MBS and M RRHs. For any typical radio resource block,
and BF schemes should be adaptively switched betweE&nsingle-antenna MUESs are served by the MBS, while only
based on the system configuration and the adopted pene single-antenna RUE is associated with each RRH. To
formance metrics. Meanwhile, the proposed CRRA solgerve multiple MUEs simultaneously and suppress the inter-
tions can achieve the optimal throughput by optimizintier interference at RUEs in the downlink, the MBS is equippe
the transmit power. We see that the BF based CRR#ith Np antennas /g > M + K), while each RRH is
outperforms the IC based CRRA in the regime of thequipped with a single antenna.

II. H-CRAN SYSTEM MODEL



BBU Pool respectively. Since the interference is much larger than th
%% - noise in an interference-limited H-CRAN, the noise could be

N

B S \, Fronthaul ignored herein. Thug2) can be approximated as

< .
Fronthaul i Backhaul 5
’ / - ) Parr|hagag, Wi

- -ante}lpas YM M;, ~ e M .
) 2 2
> Pyl W™+ > Prlhr |
J=1#k i=1
The intra-tier interference among MUEs and inter-tier

interference between MUEs and RUEs can be suppressed by
precoding schemes in the MBS with multiple antennas.

(4)

IIl. INTER-TIER COLLABORATIVE PRECODING SCHEMES

In this section, we describe two collaborative precoding
schemes employed at the MBS with multiple antennas: IC
and BF. The IC scheme enhances the performance gain by
suppressing the interference to the RUEs and other MUEs,

The transmit power per antenna in the MBS and RRHs \¢hile BF based processing aims at maximizing the signal
assumed to bePy, and P, respectively. The transmissiondain at the intended user and does not coordinate intederen
symbols for thej-th MUE and the RUE associated with theVe |nvest|gat_e the distribution of the SINR at the RUE_and
ith RRH ares,, ands;, respectively, which are normalizedMYUE, respectively, under these two precoding schemes in the

asE[||sns, ||2] = E]||s;]|’] = 1. The received signal at theth following subsections.
MUE and a typical RUE associated with tih RRH can be
written as

Fig. 1. System model of an H-CRAN with one MBS and RRHs

A. Interference Collaboration (IC)
When the IC scheme is used at the MBS, the precoding

K M
P /Py g W s v+ /Prh A SR, vectorw, is chosen by nulling the interference to the RUEs
YMMy XJ: MMM T3 =M XZ: [T M MM and other MUES, which meang, e Null(Gg), whereG;, =

K (oY R Y7 IVELLI Y0 VPR RN 1V V3 VANREY VS VSRR 1 VAVo
M+K— N N . _
YRR, = PRgRRiSi_FZ‘/PMg]wRinSI\Ij + NRR;, e (C( JFH 1) x B, NUH(Gk) : {V c CNsx1. GV = O},
; and ()" denotes the conjugate transpose. Furthermore,

_ ) gygrwr =0, andhya,wy = 0 (V5 € K,j # k). Thus
respectively, wherdé,,,, € C1*N& represents the radio link vrr; in @) andyaps, in @) under IC can be simplified as
between the MBS and the-th MUE, andhg, s, represents

Ic  __ 2
the interference link from thé-th RRH to thek-th MUE. Vrr, = PrlgrR|",
Our, € CV5 represents the interference link between o Pulhangwil? (5)
the MBS and the RUE associated with thth RRH, and TMMy = M Polh 2
>iz1 PrlhR; 0, |

grr, represents the radio link between thtéh RRH and its
served RUE. Note that the inter-RRH interference amongsttence from )75, ~ PrXkr,(2), Where xkp, (2)
RRHs in H-CRANs can be ignored due to the centralizedgnotes a chi-squared random variable with two degrees of
signal processing in the BBU pool through the ideal fronthafreedom. If the dimension aull(Gy) is greater thar, i.e.,

We assume the radio links experience independent Rayleitjim (Null(Gk)) > 1, the transmit precoding vectar;, could
fading, so the components ofi/ys, andg,, . are indepen- be further optimized in the sense of maximizing the term
dentCN(0,1), hg,m, ~ CN(0,1), and grr, ~ CN(0,1).  |hysar, Wi|?. This optimization problem can be formulated as
ny v, andngg, are independent normalized additive zero-

opt 2
mean Gaussian noises experienced atitle MUE and the Wy = argmax [Aaa, Wi |
typical i-th RUE, respectively, i.eqnan, ~ CN(0,1), and st wel? =1, (6)
nrr, ~ CN(0,1). w; € CN&*! represents the precoding Wy € Null(Gy).

vector applied at the MBS for thgth MUE. ~
According to [1), the received SINR for thieth MUE and | DgnotmgCT :t %[\IUH(G’“)’ the original optimization prob-
the typical RUE can be expressed as em IS equivaient to

_ 2
J T |2 Xopt = argmax |Nasaz, CrX|

— )
e S Purlhain w2+ Palhman 41 @ st =1,
=k MMM EIL T g SRR where x satisfiesw, = Cpx. This problem is convex with
) X = (harar, Cr) ¥ ie
Prlgrr, Pt Thara Gl T
YRR; = ) (3) H
X 2 opt (hI\IMka)
Py Z ‘gMRi,Wj‘ +1 W, = Cpr———. (8)
i [lharar, Cr



Following [18], pt\z ~

LYEYAY Xo(Np—(K+M—1))

hran|* ~ X% 10, (2). As a result, the received SINR il (4)

under IC is statistically equivalent to

N PMXz(NB (K+M-1))
PRX2M

Ic
'71\/11\/1,C

9)

Before starting the performance analysis, we present th

following lemmas.

Lemma 1 ConS|der independent random variables (RV
X ~ x3, andY ~ x3,,. The cumulative distribution function

(CDF) OfZ - %“rb |S

Sy
M—1'Z ch< >
(az + 1)~ (k+M= l)F(k—i—M—z).

Proof: See Appendix A.
According toLemma 1, the CDF ofv{f), can be directly
derived as

Fz(z) =1-

(10)

Np—K—M k

(a2)
2
k=0
(11)

wherea = 5_5- Meanwhile, the CDF oh7f5, follows the
chi-square distribution, i.e.,

e 1

P’WWIWk (ZC): 1- m (aZ+ 1)7(k+A'{)Hk+M),

PIC (z)=1—¢ Tx.

YRR;

(12)

B. Beamforming (BF)

In the single-cell scenario, eigen-beamforming is optifoal
the multiple-input single-output syste [24]. For th¢h user,

. . hil o,
the precoding matrixv,, can be expressed ag, = ”h““kH.
M My,

Therefore, we can ha\/|dam“4kwk|2 ~ ngB. Accounting for
the term|hMMkwj|2, since the design of the precodes is

The expressior {15) can be approximately obtained as
o—bNz L1 (az)k k .<bN)i
Cil —
(M_1)!kZ:O k! ; "\ a (17)
(az +1)"FFM=DD (k4 M — ).
Proof: See Appendix B.
e|-|ere by comparing the SINR distribution in_{13) with

e RVs defined inLemma 2, the CDF of 4/}, can be
pproximately expressed as

Fz(Z) ~1-—

7([(71):C Np—1 k k _ 7
BF e (ax) (K -1
e D IR WL
k=0 =0
(az + 1)~ FEM=ID(k 4 M —4),
(18)
wherea = If—j;. Meanwhile, according themma 1, the CDF

of 7R, can be directly obtained as
-K
e—bm(z + 1) ,
a
whereb = -

Compareg with IC, the above analytical results suggest
that the received signal power at an MUE under BF changes
from ax3 n, _(arx_1y) RV 10 ax3y, RV with increased
degrees of freedom (DoFs). Meanwhile, the RUE interference
power is increased from 0 to g3, RV. Thus the effects
of the precoding schemes on the system performance are not
immediately clear. In the following sections, three perfance
metrics, i.e., outage probability, average BER, and system
capacity, are characterized when the MBS employs these
precoding schemes.

BF
P’YRR

(z)=1- (19)

IV. PERFORMANCEANALYSIS OF PRECODING SCHEMES

In this section, we analyze system performance gains under
the two precoding schemes. From the distribution of the SINR

independent ofh,/,, andw; is a normalized vector with for the MUE and RUE, we see that the interference experi-

unit-norm, we can easily g¢||11\4Mkwj|2 ~ x3. Thevyaras, in
(@) is statistically equivalent to

PrXan,
PMX%(KA) + PrX3y

BF
/YZ\/IZ\/I)C

(13)

Sinceg,,r, andw; are independent anfw;||* = 1, we
also have]gl\miwj]2 ~ X3, (2). Accordingly, we have

BF

Pr - X%
’}/RR,L PM . X% 1 ( )

Lemma 2: Consider independent RV$ ~ x3;, Y1 ~ x2,,,

andYz ~ y3y. The CDF ofZ = X is
2 gMpNgL-1
Fz(z) = /0 mI(M, N,L,a,b,z)dx, (15)
where
100 B )= [
i (16)

1 1
151 (M;N-l—M;—(E - E)y)dy

enced by the RUE is eliminated at the expense of sacrificing
the spatial degrees of freedom of the MBS. Therefore, the
effects of the precoding schemes on system performance is
the focus of the following paragraphs, i.e., we characteriz
the outage probability, system sum capacity and average BER
when the MBS uses the different precoding schemes.

A. Overall Outage Probability

A system outage occurs when any received SINR of any
potential link for the MBS-association and RRH-associatio
falls below a threshold SINR. We use the overall outage
probability to evaluate the performance of these two praapd
schemes[[13]£[15], which can be formulated as

Pour = Pr{min(yaras, -+ s VMM s YRR -+ > YRRar ) <Yth }
=1—Pr{yaman, >Yen, -+ YMMg >Vehs
YRRy >Yths - - - YRR >Vth )
(20)

where~,;, is the SINR threshold.
Considering that all elements of the channels for the variou
pairs of transmitters and receivers are independent, (20) c



be rewritten as

Py =1- H Pr{yaa, >ven } H Pr{vrr,>vn}

M

Proof: Given two independent RV& ~ x32,, Y ~ x3,,
and a>0,b>0, by defining Z = %, its CDF can be
expressed as [25]

- e (21) .
=1—[1— Py (un) ¥ [L = Py, ()™ Fy(z) = / Fx (ayz + bz) fy (y)dy
0
Due to the substantial differences between the aforemen- by L-1 kK b
tioned P,,,,, and P, , closed-form expressions fd?,,:

with the two precoding schemes are presented independently

as follows.

IC: Substituting [(Il1) and_(12) int¢_(R1), the overall outage
probability of the IC scheme in H-CRANs can be derived as

PIC o —

out

wherea =
BF: Substituting [(IB) and_(19) intg_(R1), the overall outage

K
F(k—i—M)] e Pa

:

A7th —(k+M)
Y Z —(@n +1)
M-1)! & k!

Pr
Py

Np—K—-M
N (ave )k

(22)

_ _i (26)

(az—i—l) (kJrM Z)F(k:—i—M—z).

With this CDF expression, we have

1 o0 1-— FZ z

1 M k
T In2(M —1)! Z 7l ch
(o) k —bz
I‘(k—i—M—i)/ —dz.
0 (z41)(z4 LM

probability of the BF scheme in H-CRANs can be derived as (27)

pBF _

out

K
(thh+1)_(HA4_i)F(k+M—i)} [ePLR (M—H)

Both (22) and[{28) show that the overall outage probabilit

(K=1)7tn Ns—

M—1)!
k=0

[

a%h ch K- 1

—KM

a

(23)

strictly depends onVg, K, M, ~,, and the ratio ofPg to
Pys. It is hard to directly determine which precoder is better,
and thus we will show performance comparisons for these two  E[log, (1 + 2)]

methods when taking different configurations into account. L1 v K
The precoding scheme is adaptively selected to minimize the-

overall outage probability.

By applying the decomposition

1
(z+1)(z + 1M
(1_ 1)i—M—k k—it M (L 1)i+j—M—k—1 (28)
N z+1 a ; (2 + %)-7

¥|e ergodic capacity in(27) can be rewritten as

1
m2(M — 1) ]
k=0

0o /1 1 i—M—k . _p, k—i+M k
. [ / i) - Y Yoy
B. Sum Capacity 0 Z+ j=1 m=0
The sum capacity of the entire system can be expressed as 1 HmM=k=1 o0 1 fmm=i
pacty Y P Y (——)m/ (c+-) e ]
M a a 0 a
R= Z]E logy (1 +vars, )] + > E[logy(1+ vrr,)]- L=l i-m K )
k=t = 24 ~ o —1'2 k! ZC Pk +M =)
Before analyzing the sum capacity under IC and BF k=0 =0 T
schemes, we present the following lemmas. 1 Mk b <
Lemma 3: Consider independent RVE ~ x2, andY ~ [(5 -1 eT(k+ DIk Z; Z:OO’“ _5
X3:» and defineZ = 2. We have b q "
a FHMHITLe D (k — i — j 41, =) (= — )it Mokl
A a a 30
Ri(a,b, L, M) = Ellog, (1 + Z)] (30)

z M k
= 21 —1'Z i ch Tk + M =)
[(1—1) MR (k1T (—k k§A{i cm(—=
a ‘T o a
a M T (k — i — j 41, g) (% — 1) Moke1]

(25)

where [29) is obtained by performing binomial expansion on
the term(z + 1 — 1)k Then [30) is obtained according to Eq.
3.383.10 and Eq. 3.382.4 in [26].

Lemma 4: For an RVX ~ x3, andY = 6X,§ > 0, we
have

Ro(6) 2 Ellogy (14 Y)] = ¢ El( 5), (31)

whereE; (z) = [° %dt is the exponential integral function



of the first order. where 5; and 3; are coefficients that depend on the mod-

Proof: According to the chi-squared distribution, we havelation mode, and)(x) = \/% = exp(—“;)du is the tail

the CDF ofY is probability of the standard normfal distribution.
Fy(y) =1 _ ¥ (32) For simplicity,. we consider Binar_y Phase Shift Keying
(BPSK) modulation in this paper, which correspondgio=
and thus B3> = 1. For other modulation formats, similar results could
1 /oo 1— Fy(y) also be obtained. Note théi(x) is monotonically decreasing
0

Eflogy (1 +7Y)] = Tydy = whenz > 0. Thus, the average BER can be approximated as

L 33) -~
L DL L N Bom—— bt P (»)dz,  (39)
m2f, 1+y™7 " m2" N5 ) UK+ M)V Sy e
Due to the differences between the aforementiongd,;, where
andygrg,, using Lemma 3 and Lemma 4, closed-form expres-
sions for sum capacity® under these two precoding schemes

are presented as follows. The CDF ofy, can be expressed as
« IC: Substituting the distribution of;f,, andvi%, into  p
(4), the sum capacity under the IC scheme in H-CRANs

Ye = min{Yaras, s ooy YM My s YRRy » -+ YRRas }- (40)

(2) = Pr{min(yaras, o, YMMic» YRRy s s YRR ) <2}

K M
can be derived as =1—[1= Py, (2)] 1= Pypp, (2)]
P, (41)
RIC =R, (—R 0,Np — M, M) + Ry (PR), (34)
P Due to aforementioned differences imsa, and vgreg,,

where R;(-) and Ry(-) follow (25) and [(31). the expressions foB. under the two schemes are presented
« BF: Substituting the distribution of %}, andZf into separately as follows.

(24), the sum capacity under the BF scheme in H-CRANS. IC: Substituting [1) and[712) intd(81), and further
can be derived as .

p P 1 into (39), the average BER under the IC scheme can be
BF R M .
= Y K—1Ng M X~ 1K obtained as
R RI(PM’ s 4V B, )+R1(PR’PR’ ) )a

(35) BIC A, 1 e ”

+oo
2(K + M)ﬁ/o NE

PlC(z)dz,  (42)
where R, (-) follows (23).

Similar to the overall outage probability results [nl(22xan
(23), the derived sum capacity strictly depends ¥p, K, I 1 az
M, and the ratio ofPr to Py. It is hard to directly judge Py, (2) =1~ [(M—l)! Z k!
which precoder is better, as this depends on the specifierayst k=0

M=z

K
configurations. ['(k + M)} e Pr (43)

where
N-K-M )k
(az + 1)—(1@-’-]\4)

with o = £z

« BF: Substikfuting [(IB) and[(19) intd_(41), and further
The average BER is defined as the average BER of all radio into (39), the average BER under the BF scheme can

C. Average Bit Error Rate

links, which can be expressed as be obtained as
A 1 (& ok N BBF L /m C _PpBF(1)dz, (44)
bt (e ). e e NG VAT
a where

where B, is the BER of the link between the MBS and the
k-th MUE, and B, is the BER of the RRH-RUE link in the PBF () =1
i-th cell. e

e~ (K= Bl (az)* ; s K—1,
(M—1)! ; k! ;Ck( .

Note that the average BER of two end nodes is dominated K . - —KM
by the worst one[[25]; therefore, we can rewrite the average (az—i—l)(kJrMﬂ-)F(k—i-M—i)] [e_Pzé(——l-l)
BER approximately as a (45)
1
B, ~ i max{B};,- -, B, Bk, ,Bi }.  (37) The aforementioned expressions for IC and BF suggest that

] the average BER depends on the system configuration, such as
For commonly used modulation schemes, the BER of eagy, numpber of RRH#, the number of MUEK, the transmit

link B, can be written in the form power per antenna in the MBB,;, and the transmit power
oo ) ) .
per antenna in the RRHPg. It is hard to directly compare
By = E[51Q(V/2B27)] = 51Q(v/2822)p, (2)dz, which is better betweefi (#2) arld [44), and such comparisons

0 (38) will be based on the numerical results shown in Section VI.



V. INTER-TIER COOPERATIVERADIO RESOURCE in (48) can be reformulated as
ALLOCATION M

Jmax - Ry = > logy(1 + Pr,|grr,[*)
(P, Pri} i=1

Under the inter-tier collaborative precoding schemes IC st. Py < Pus,

and BF, CRRA can be used to further suppress the inter-tier Pr, < Pgrs,, 1=1,2,...,M,
interference to optimize the throughput of H-CRANS. Since M
the MUE prefers to access the MBS for seamless coverage, ZPRi < Pgg,
while the RUE often associates with RRHs to achieve high i=1
bit rate, we can maximize the RUES’ aggregated rates while logo(1 +vma,) > Rus, k=1,2,., K,
guaranteeing the MUES’ summarized bit rates to model the opt 12
through imizati - I Par|harag, Wi |
ghput maximization problem. Furthermore, we can as VoM, = —a s, k=1,2,.,K.
sume that the power of each RRH is different to make the > i1 Prilhr v
power allocation for each RRH flexible. Hence, the throughpu (49)
maximization problem for H-CRANSs can be formulated as Noting that the RUES’ sum ratégf%c are only determined
M by the RRH'’s powetPr,, we have the following proposition.
max Rpr=» logy(1+7rr,) Proposition 1: Let {Py*, P;*'} denote the solution to
= opt |2
st Py < PA145, problem [49). Defined, = % Then Py}t =
Pp, < Prs,, i=1,2,.., M, (ag) Thsand
M PJ%Pt = Kl 2 : 2 (50)
Z Pg, < Pgs, Yo+ vkl l9RR,|
=1 where \;, i, v, are chosen elaborately such that (49)-(54).
logy(1+vmm,) = Rus, k=12, K, Proof: Since the MBS powerP,; occurs only in the

where Ryss is the QoS threshold of each MU, s and constraints and does not affect the RUES’ sum &S in the
Prs, are respectively the power limits of the MBS and RRHC scheme, an optimaP,, can be achieved in the following
i, and Prg is the total power threshold of the RRHs. Notdimitation under a fixedPr, :

that problem[(4b) is feasible only if the following conditio (2Rws _ 1) M 2
holds for thek-th MUE: [ =L ,PMS] (51)
27?,1%5 1< M (47) ’hMI\,kak ‘
- Py ' However, considering the maximization of the MBS'’s cover-

age, we denote the optiméal, asPI‘\’}Dt = Pyrg. Substituting

This condition indicates that the QoS thresholds for thpopt into the original problem{49)[(39) can be simplified to
MUEs should not be too high. This can be intuitively underthe following problem:

stood since the QoS constraints must at least be satisfied whe
the maximum allowable power of the MBB,,s is applied. 9
Therefore, throughout the rest of the paper, we assume that {52 Zlog?(l + Prilgrr”)

(47) always holds for any MUE, which guarantees that an o=l )

optimal power allocation exists. st. Pr, < Prs, 1=12..,M,

M

(52)
Z PR, < Prs,
=1
M
> Prlhran )’ < Ak, k=12, K.
A. Interference Collaboration i=1

It is observed that[{32) is a typical convex optimization
When the IC scheme is used at the MBS, the precodn_?_lfblem which can be solved by employing KKT conditions.

vector is chosen to eliminate the inter-tier interferercether refore, the Lagrangian function ¢f{52) is defined as
MUEs and RUEs, i.e.,

M
H L(PRia/\ivﬂaVk)zlnzzlogQ( 12)
opt —Cp (h]\fkaCk) (48) =1
INasns, Crl| M M

+ ZM(PR&- — Pg,) + u(Prs — ZPRT:)

Hence,vrg, in (B) can be substituted intg_(46), and the p P

transmit bit rate threshold for the MUR ;s can be further K ,
derived if (48) is substituted intgasas, in (B). Accordingly, + ZVk(Ak _
the throughput maximization problem for the IC based CRRA ,




where\; > 0, p > 0, andy, > 0 are the non-negative La- corresponding SINRs for RUEand MUE &, as follows:

grange multipliers associated with the constraint$ i .(52g 2

Pr,

KL(T_conditions can be applied on the Lagrangian function to »yggi = = IRR: ; , 1=1,2,..., M,
obtain . Pr 32 |9aer, Wy +1
aL(PRiaAivﬂa Vk) _ |gRRi opt =
OPg _1 + Popt 2 /\i BF P]\4|h]\,{]\4kwk|2
i R; |9RR: Vvimy, = % , M .
K
. Py Y0 [haae,W;i°+ " Pr,|hr, |
— 1t = " v b, P =1k ' =1 '
k=1 k=1,2,... K.
= 0, (53)
Hence the sum rates optimization problem for the BF
AP (PR, — PP =0, i=1,2,.., M, (54) scheme can be formulated as
P;%pt <PRS'7 i:1721“'1M1 (55) BF z BF
i ¢ max Rp' = log, (1 + .
M t (Par-Pr.} R Zl ga( WRRI)
opt _ opty _ i=
W (Prs Z;Pp% /=0, (56) s.t. Py < Puys,
M PRi SPRSH 7::1727"'7M7 (61)
> PPt < Prs, (57) M
i=1 Z Pr, < Pgs,
M i=1
opt opt 2y _
Vi (Ak_ZPPw |h’RiMk| )_07 k_lvza"'aKv (58) 10g2(1+71\{Mk) ZRI\157 k:1723-"aK'
=1
M . ) Finding the optimal power allocation for such a nonconvex
> PP hgan P < Ax, k=12, K, (59) problem is a very challenging task, sin¢el(61) is not jointly
i=1 convex in{ Py, Pg, }. However, despite this difficulty, we can
where A°P*, ;P and »2P* are optimal solutions to the provide a stationary solution fdr (61) since it is convex atle
Lagranglian function. variable and can be transformed into a convex problem:

Based on[(53), an optimal solution fo {52) can be obtalned,. Optimal Py, under fixed Py For fixed Py, RET is

Le., concave inPg, since
92 RBF sz
povt _ 1 L (60 - P =
o 5. (60) oP, (14 CiPg,)

/\(i)pt + :uopt + Zf:l Ul(c)pt|hRiMk |2 |9RR1:| i . .
and [61) can be simplified into

Note that an optimal solution needs to satisfy (49)-(54). o

; opt opt opt
However, opUmaIi\gt P ano! v,> are no_t easy to max Zlogg(l‘i‘CiPRi)
find. Fortunately,P”" is monotonically decreasing in each {Pr;}

multiplier, which makes it possible to compute the optimal

: e th st. Pp < Prs,, i=12 ..M,
AP poPt andvyP*. The following lemma provides intervals i = TRS:

.. . T M
containing the optlm-al multzphers. S ZPRi < Pps.
Lemma 5: The optimal\;®", u°Pt, andy,”" satisfying (44)- im1
(49) are respectively withif0o, A}, [0, u™®], and [0, v, M
where A" = |gpp |2, 1 = min;{|grg,|*}, and M = > Prlhnon|? < B, k=1,2,...K,
. |QR,R73|2 } i=1
— { |hRiA4k |2 ' (62)
Proof: The results follow from the fact tha‘ﬂP}}‘jt > 0. where
2
Ci=—p l9rR, . i=1,2,.., M,
2
Py Zl ‘gMRTWJ‘ +1
j=
. K
B. Beamforming Parlharns Wk|2 2
By, = W Py Y [yl
J=1,j#k
When the BF scheme is used at the MBS, the precoding k=1,2,.. K.
vector of MUE k is determined by thé,, g, , i.e., w, = . . o
h2a, It is not difficult to see that[(62) has a similar form to

With precoding vectorsv;, fixed, we can obtain the (2), and according to the solution 10 152), we give the

[IPaca |



optimal solution to[(6R) as follows:
opt _ 1 i
BN et S P e, [P G

(63)

with optimal Lagrange multipliers®®* > 0, u°Pt > 0,

10

is O(M K) mainly due to the computation of,. With these
three multipliers obtained, the rate computation procednr
Step 4 requires a computational complexity in the order of
O(K%Npg), which mainly depends on the optimal MBS's
transmit power desigh (¥0). In Step 5, the additional comput
tional complexity for updating all the optimal powerd¥ M).

and Vopt > 0. Similarly, the optimal solution needs toThe last Step 6 of computing the achievable RUES’ sum rate

sat|sfy the following constraints:

AP (PRrs, — POPt) =0, (64)
Popt < PRS , (65)
opt PRS _ Z Popt (66)
Z P < Pps, (67)
i=1
M
opt Bk - ZPOPt|hR Mk| ) (68)
i=1
M
Z Pl%?t|hR1:]Wk |2 < Bk. (69)

=1

RBF needs a computational complexity with(M K Ng).
ConS|der|ng a typical network scenario witfiz > M > K,

the computational complexity of Algorithfd 1 per iteratios i
O(MKNpg), which mainly comes from the calculation of
the optimal MBS's transmit powel_(¥0). Actually, under a
proper initialization of{Pg,, Pys} and the determined step
size of multipliers, the number of iterations is not largel an
the proposed algorithm can quickly converges, which has bee
demonstrated in the following simulation results.

VI. NUMERICAL RESULTS

In this section, the performance of collaborative precgdin
IC and BF algorithms in the physical layer is first evaluated.
Then, the IC and BF based CRRA solutions are simulated and
discussed. In particular, several performance metridsidireg
the system outage probability, sum capacity, and average

In this case, we also provide a lemma concerning tgER are presented for the collaborative precoding IC and

intervals containing the optimal multiplier.

Lemma 6: The optimal \*", u°Pt, and v P" satisfying
(53)-(58) are respectively withifd, \'*], [0, ™}, and
0,7, where \T® = C;, ™ = min;{C;}, and

max __ 3.
v = min,; o arr]

Optimal Py, under fixed Pg,: With the P, fixed, RE"
is monotonically decreasing iR,;. The optimal Py, is
achieved at

P]c\)ft = maX{PEaHd},

M 2
(Q’RMS —1) Z PRi|hRiMk|
Pcand _ =
. =

2 K 2
Iharar Wi ™ — (2Rvs — 1) 37 [hagar, Wyl
=17k
k=12

g Ly eeny

K.
(70)

The algorithm can be summarized as follows.

Algorithm 1 The RUES’ sum rate optimization for BF.

1:
2: repeat
3:
4

Initialize All primal variablesPg,, and Py,.

Step 3: Compute the multipliers\;, x, andvy;

Step 4: Compute thePg, and P,; according to [(68)
and [70);

Step 5: Update the optimaPyr*, PpP";

Step 6: Compute the achievable RUES’ sum rRE;

. until Convergence.

BF algorithms. The RUES’ aggregated rates under IC and
BF are considered to evaluate the proposed CRRA solution’s
performance. To match well with the concerned system model,
it is assumed that an H-CRAN scenatrio consisting of one MBS
with one MUE, andM RRHs with M RUEs is considered.
The MBS is located in the center of the cell area with a
radius of500 meters, while the RRHs and MUE are uniformly
distributed in the coverage area of the MBS. The RUE is
uniformly distributed in the coverage area of each accessed
RRH with a radius 0650 meters.

Fig.[d shows the system outage probability under different
precoding schemes as functions of the SINR threshgjid
and the system outage probability grows of course as the
threshold of SINR increases. The number of antennas on the
MBS is set to six, and one MUE is considered. The Monte
Carlo simulation results match well with those indicated oy
presented closed-form overall outage probability expoess
When M is set to3, BF outperforms IC due to its capability
to increase the received signal power strength. However,
when M is 5, IC is preferred because it can alleviate the
dominating interference. The outage probability gap for IC
betweenM = 3 and M = 5 is larger than for BF, which
suggests that IC is more sensitive to the number of RRHSs.

Next, the impact of the number of antennas on the MBS is
shown in Fig[B, where we sétf = 2, v, = 0 dB and one
MUE is considered. The overall outage probability decrease
with an increasing number of antennas on the MBS. WNgn
is relatively large, IC becomes better with the optimizatio
(6). When Np is relatively small, BF outperforms IC. This
result demonstrates that a large number of antennas at ti&e MB

In Algorithm [I, each step can be done with a closeds preferred to increase system reliability when the nunafer

form manner and the value of each variable can be easdlytennas at the RRHs is fixed.
calculated, which makes the proposed algorithm efficiently Fig. [4 shows the system sum capacity under the two
work. In Step 3, the complexity of computing the multiplierprecoding schemes versus SINR at the MBS wlith= 2 and
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Fig. 5. Average BER under IC and BF schemes versus the SINIR 4tB
i . the MBS for H-CRANSs.
Np = 6, where the system capacity obviously grows as the

MBS’s SINR increases. The Monte Carlo simulation results

match well with those indicated by the presented system sy threshold, as we expect, can increase the RUES’ sum rates
capacity expressions. Moreover, the BF scheme outperforms the results showed, the RUES’ aggregated rates increases
the IC scheme in the low SINR region due to its capabilitith the power limit of each RRHPgs, for both IC and BF.
of enhancing signal power strength. However, the IC schemfjs is reasonable since a larger power threshold makes the
is preferred at medium to high SINR because it can alleviag@ailable power range larger, which leads to larger sunsrate
the dominating interference to other MUEs and RUEs.  Besides, under the assumption of the same power limit on
Furthermore, the impact of SINR at the MBS on theach RRH, a larger total power threshdfs also makes it
average BER is depicted in F[d. 5. The average BER decreagessible to obtain better performance.
obviously as the SINR of the MBS increases. We can concludeAs shown in Fig. 4, it is not clear which precoding scheme
that in the relatively high SINR region, the average BER undeutperforms the other one since the dominating factors may
IC is lower than that under BF due to the elimination of intelchange under different SINRs. Fortunately, comparing with
tier interference from the MBS to the RUEs. Fig.[@ and Fig[J7 for IC and BF, respectively, the sum rate
Fig.[d and Figll7 show the RUEs’ aggregated rates under therformance of IC is often better than that of BF under
two precoding schemes versus the power threshold Witk  the relatively high SINRs of the MBS because the inter-
2, K =3, Ng = 6, and Py;s = 1000mW. It is observed that tier interference has become the biggest challenge impacti
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the capacity performance when the SINR at the MBS is

sufficiently high as shown in Fig. 4. Note that in the regime dhe remote radio heads in heterogeneous cloud radio access
low SINRs at the MBS, BF based CRRA often outperformgetworks (H-CRANS) in both the physical layer and the upper
IC based CRRA because the desired signal strength is Id@yer. In particular, the interference collaboration (I&)d
which dominates the performance of inter-tier interfeeendeamforming (BF) precoding schemes have been presented
suppression.

50

to suppress the inter-tier interference in the physicakday
and cooperative radio resource allocation (CRRA) has been
optimized in the upper layer. Furthermore, expressions for

—B—Pgg8OmwW | + the overall outage probability, system capacity, and aera
T gl | = A= Pe=140 mW T A bit error rate under IC and BF precoding schemes have been
> L PRg=220 mW _--""_n derived. Optimal CRRA solutions based on IC and BF have
) L been proposed. Both analytical and simulation results have
3 4 | shown that whether IC or BF provides better performance
4 depends on the H-CRAN configuration, including the number
fafc; 44 ] of antennas on the macro base station, the number of remote
> radio heads, and the target signal-to-interference-phise
§ 421 . ratio threshold.
7 40t 1 APPENDIX
4 A. Proof of Lemma 1
3% i i i
100 150 200 250 P ~ V2 ~ V2
Power Threshold for each RRH (mW) GIVGf_]IX XaL and}./ Xonm: the CDF of X' and the
probability density function (PDF) oY can be expressed as
Fig. 7. RUEs’ aggregated rates under the BF scheme versupatluer L-1 zk
threshold (mW) for H-CRANS. Fx(z)=1—¢"" Z PR
' (71)
Although a rigorous theoretical proof for the convergence Ly yM 1
of the proposed algorithm is not yet available, the RUES’ fry)=e (M —1)I’

aggregated rates under IC have been shown in [Hig. 8 to
demonstrate the proposal can quickly converge. It is showgspectively. By deflnln@ aYer, its CDF can be expressed
that the proposed algorithm can converge with rougbly- 30 as
iterations under anyPps,, Ppg) set, which indicates that the
proposal can work efficiently with low complexity.

Fr(z) = /0 " Fx(ayz +b2)fy (9)dy

_Z1 |Z ch<b>i (72

(az + 1) UHM Z)F(k + M —1i).

VII. CONCLUSION =

In this paper, we have considered techniques for suppgessin
the inter-tier interference between the macro base statioh



B. Proof of Lemma 2 [4]

Consider three RVSC ~ x3,,Y1 ~ x3,,, andYs ~ x2,

and definel/ £ aYr,V 2 bY>. Then the PDFs ot/ andV
are given by

(5]

(6]

1 L ul\lfl 1 . UN71
folu) = —pee m,f\/(v) = N€ @73)
7
-
respectively. By defining” 2U+ V, its PDF is obtained as 7
1 y
= G 8]

(M
y

/ qul(y—u)N_lef(%f%)“du. El
0

Following 3.383.1 in[[26],

u [10]

/ e u—a)" e’ de=B(u, v)utt L Fy (05 4 v; fu),
0 (75) (11

where

Fiaiy:z) = 1+ 22, ala+1) 2% alat1)(a+2)2* [12]
141 7, - - a1

YU (v +1) 20 (1) (v +2) 31

(76) 13
is a confluent hypergeometric function. Eg.1(74) can be ttewri
ten as

1 ,
b
T(M + N)aMpn © Y

1 1
F(M:N+M;—(=—2)y).
1 1( § IV + M (a b)y)

M+N-1 [14]

fr(y) =
(77)

[15]

By defining Z = % since X andY are independent, the (16]
CDF of Z can be expressed as

2 gMpNgL-1 [17]
P2 = || mprars g (6N Babads (79
[18]
where
I(M,N,L,a,b,x) = /OO MAN+L=1,—(y+3)y
Y ) ) ) b] 19
0 (79) [19]

1 1
Fi | M;N+ M;—(-— )y |dy.
11( T IV + ’(a b)y)y [20]
To obtain a closed-form CDF expressidghcan be approxi-
mated asZ ~ m% Then according to Lemma 1, the CDH21]
of Z can be approximately expressed as
—(K-1)z NB—1 k k /bN %
(EM —1)! D (a;) ZC’Q(T) 80
T k=0 T =0 (80)
(az +1)"FFM=0D (k4 M — ).

[22]
Fp(z)=1-

(23]

[24]
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