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On the Scaling Exponent of Polar Codes for
Binary-Input Energy-Harvesting Channels

Silas L. Fong and Vincent Y. F. Tan

Abstract

This paper investigates the scaling exponent of polar ctatdsnary-input energy-harvesting (EH)
channels with infinite-capacity batteries. The EH processharacterized by a sequence of i.i.d. random
variables with finite variances. The scaling exponertf polar codes for a binary-input memoryless
channel (BMC)qy | x with capacityI(¢qy|x) characterizes the closest gap between the capacity and
non-asymptotic achievable rates in the following way: Fdixad average error probability € (0, 1),
the closest gap between the capadityy|x) and a non-asymptotic achievable rdtg for a lengthn
polar code scales as '/, i.e., min{|I(gy|x) — Ra|} = ©(n~'/#). It has been shown that the scaling
exponenty for any binary-input memoryless symmetric channel (BMS@hw (¢y|x) € (0,1) lies
between 3.579 and 4.714, where the upper bouth was shown by an explicit construction of polar
codes. Our main result shows thaT14 remains to be a valid upper bound on the scaling exponent for
any binary-input EH channel, i.e., a BMC subject to add#iolBH constraints. Our result thus implies
that the EH constraints do not worsen the rate of convergencapacity if polar codes are employed.
The main result is proved by leveraging the following threesting results: scaling exponent analyses
for BMSCs, construction of polar codes designed for binaput memoryless asymmetric channels,
and the save-and-transmit strategy for EH channels. Anliagxicontribution of this paper is that the

upper bound on: holds for binary-input memoryless asymmetric channels.
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I. INTRODUCTION

A. Energy-Harvesting Channels

The class of energy-harvesting (EH) channels we consideénhignpaper have binary input
alphabetsX’, output alphabet9’ that are finite but otherwise arbitrary, and infinite-capaci
batteries. The channel law of an EH channel is charactebyeal transition matrix, | x where
X € X andY € )Y denote the channel input and output respectively. At eashretie time
i € {1,2,...}, a random amount of energly; € [0,00) arrives at the buffer and the source

transmits a binary symboX; € {0, 1} such that
> X, <) E, almost surely 1)
/=1 =1

This implies that the total harvested enerwl}:1 E, must be no smaller than the “energy”
of the codeword>™,_, X? = 3_/_, X, at every discrete time for transmission to take place
successfully. We assume thék, }7°, are independent and identically distributed (i.i.d.) non-
negative random variables, whef8E,| = P and E[E?] < +o0o. The destinationl receives
Y; from the channel output in time sloétfor each: € {1,2,...}, where(X,,Y;) is distributed
according to the channel law such that|x, (vi|z:) = qvix (yi|x;) for all (z;,y;) € X x Y. We
refer to the above EH channel as thi@ary-input EH channellt was shown by Fong, Tan and
Yang [1] that the capacity of the binary-input EH channel is

2 , .
C(P) = pxgl&)fzpl(x Y)  bits per channel use )

where P = E[FE)] is the expectation of the energy arrivals which is asymeadiff the admissible

peak power of the codeword™. The capacity result in (2) was proved in [1] using the saveé-a

transmit strategy introduced by Ozel and Ulukus [2] for agmg the capacity of additive white
Gaussian noise (AWGN) channels. The binary-input EH chianmedels practical situations
where energy may not be fully available at the time of trassion and its unavailability may
result in the transmitter not being able to put out the ddst@deword. This model is applicable
in large-scale sensor networks where each node is equipjitedaw EH device that collects
a stochastic amount of energy. See [3] for a comprehensieweof recent advances in EH

wireless communications.



B. Polar Codes

This paper investigates the scaling exponent of polar cgdsr the binary-input EH channel.
The scaling exponent of polar codes for a binary-input memoryless channel (BM{) with

capacity
I(CIY|X) = H;?(X I(X;Y) (3)

characterizes the closest gap between the channel capauitya non-asymptotic achievable
rate R,, in the following way: For a fixed decoding error probability= (0,1), the closest gap
between the capacity(qy|x) and a non-asymptotic achievable rdtg for a lengthn polar code
scales ag~V/#, i.e.,min{|I(qy|x)— R.|} = ©(n~/#). It has been shown in [4,5] that the scaling
exponent of any binary-input memoryless symmetric cha@®ISC) with 7(gy|x) € (0, 1) lies
between 3.579 and 4.714, where the upper bouit4 is shown by an explicit construction of
polar codes. It is well-known that polar codes are capaaityieving for binary-input memoryless
asymmetric channels [6]-[9] and AWGN channels [10], andait be easily deduced from the
aforementioned results that polar codes are capacityewacig for BMCs with cost constraints.
However, scaling exponents of polar codes for AWGN chanaets BMCs with cost constraints
have not been investigated yet. Therefore, we are motivatestiudy the scaling exponent of

polar codes for BMCs with EH cost constraints.

C. Main Contribution

Our main result shows that for the binary-input EH channeictvitan also be viewed as a
BMC subject to additional EH cost constrainds714 remains to be a valid upper bound on the
scaling exponent of polar codes. Our result thus implies ttia EH constraints do not worsen
the rate of convergence to capacity if polar codes are employhis main result is proved
by leveraging the following three existing results: scgliexponent analyses for BMSCs [4],
construction of polar codes designed for binary-input metess asymmetric channels [8], and
the save-and-transmit strategy for EH channels [1]. Ourareling strategy is to design the
energy-saving phase to be sufficiently short so as not tataffee scaling exponent, yet long
enough so that the error probability of the resultant codaaoisseverely degraded relative to

the case without EH constraints. An auxiliary contributathis paper is that.714 is also an



upper bound on the scaling exponent of polar codes for bimgyt memoryless asymmetric
channels.

The main difficulty in this work is extracting and modifyinge key elements in the three
aforementioned works [1,4,8] which are themselves preseahder different settings. We have
to perform several non-trivial modifications so that thehteques and results in [1,4,8] can be
applied to our problem. More specifically, the three différsettings can be briefly described as
follows: (i) The scaling exponent analyses in [4] are perfed for symmetric channels rather
than asymmetric channels; (ii) The polar codes designedasgmmetric channels in [8] are
fixed-rate codes under the error exponent regime ratherfikedrerror codes under the scaling
exponent regime; (iii) The save-and-transmit codes usefljirare random codes with i.i.d.

codewords (where each codeword consists of i.i.d. symbateer than structured codes.

D. Paper Outline

This paper is organized as follows. The notation used in phiser is described in the next
subsection. Section Il states the formulation of the binaput EH channel, save-and-transmit
polar codes and scaling exponents and presents our mairethe8ection Ill proves our main
theorem, which states that 4.714 is an upper bound on themg@&dponent of save-and-transmit

polar codes for the binary-input EH channel. Concludingasks are provided in Section IV.

E. Notation

We let1{£} be the indicator function of the sé€t We use the upper case lett€rto denote an
arbitrary (discrete or continuous) random variable withhabetX’, and use a lower case letter
x to denote a realization oX. We useX™ to denote the random tupleX;, Xs, ..., X,,) where
eachX; is in X. We will take all logarithms to basg throughout this paper unless specified
otherwise. The logarithmic functions to basand base are denoted bjog andin respectively.
The set of natural numbers, real numbers and non-nega@®entenbers are denoted by, R
andR, respectively.

The following notations are used for any arbitrary randomaldes X andY and any real-
valued functiong with domain X'. We let pyx and pxy = pxpy|x denote the conditional
probability distribution ofY" given X and the probability distribution ofX,Y") respectively.

We letpxy(z,y) andpy|x(y|z) be the evaluations gfyy andpy x respectively a{X,Y) =



(z,y). To make the dependence on the distribution explicit, wePlet, {¢g(X) € A} denote
Jocr Px(2)1{g(z) € A} dz for any setd C R. The expectatio(X) is denoted a, [¢(X)].
For any(X,Y, Z) distributed according to soms vz, the entropy ofX and the conditional mu-
tual information betweerX andY givenZ are denoted by{,, (X) and/,, , ,(X;Y|Z) respec-
tively. For simplicity, we sometimes omit the subscript afc@ation if it causes no confusion. The

total variation distance betweery andgy is denoted bylpy —gx|| = 1 Y, 5 [px(2) —gx ().

[I. PROBLEM FORMULATION, PRELIMINARIES AND MAIN RESULT
A. Binary-Input EH Channel

We follow the formulation of EH channels in [1]. The binaryput EH channel consists of
one source and one destination, denoted Agdd respectively. Node transmits information to
noded in n time slots as follows. Nodechooses messadE and send$l’ to noded, wherell is
uniformly distributed ovef 1,2, ..., M} and M denotes the message size. The energy-harvesting
process is characterized Wy, Fs, ..., E,, which are i.i.d. real-valued random variables that
satisfy Pr{E; < 0} = 0, E[E;] = P andE[F}] < co. Then for each € {1,2,...,n}, nodes
transmitsX; € {0,1} based onW, E*) and noded receivesY; € ) in time sloti where) is
an arbitrary finite alphabet. We assume the following forheae {1,2,...,n}:

(i) E; and (W, £t X1 V=1 are independent, i.e.,

Pw,gi xi-t)yi-1 = PE,PW,Ei-1 Xi-1yi-1 (4)

(i) Every codewordX™ transmitted by should satisfy

(=1 (=1

for eachi € {1,2,...,n}.
After n time slots, nodel declaredV to be the transmittety” based ort’”. Formally, we define
a code as follows:
Definition 1: An (n, M)-codeconsists of the following:
1) A message sety = {1,2,..., M} at nodes. MessagéV is uniform onW.
2) A sequence of encoding functioris: W x R, — {0,1} for eachi € {1,2,...,n}, where

fi; is the encoding function for node at time slot i for encoding X; such



that X; = f;(W, E").

3) A decoding functiony : R* — W, for decodinglV at noded by producingiV’ = (Y™).
If the sequence of encoding functiorissatisfies the EH constraints (5), the code is also called
an (n, M)-EH code

By Definition 1, the only potential difference between(an )-EH code and arin, M) code
is whether the EH constraints (5) are satisfied or not. If(mn\/)-code does not necessarily
satisfy the EH constraints (5) during the encoding process " is a function of|¥ alone),
then the(n, M)-code can be viewed as &n, M )-code for the usual discrete memoryless channel
(DMC) without any cost constraint [11, Sec. 3.1].

Definition 2: The binary-input EH channeis characterized by a binary input alphaidét2
{0, 1}, a finite output alphabel and a transition matrixy|x such that the following holds for

any (n, M)-code: For each € {1,2,...,n},

Pw, ki xiy: = Pw,Ei X Yi-1DY;| X, (6)

where

Py x; (?Jz|$z) = QY|X<yi‘xz’) (7)

for all x; € X andy; € V. Sincepy, x, does not depend onby (7), the channel is stationary.

Definition 3: The binary-input channe}y|x is said to besymmetricif there exists a permu-
tation = of the output alphabey such that ()7~ = 7 and (ii) gv|x(y|1) = gv|x(7(y)|0) for
all y € Y. Otherwise, the channel is said to agymmetric

For any(n, M)-code defined on the binary-input EH channel, gt .y« 5 b€ the joint

distribution induced by the code. We can factorjzg .. vy« ;- as

n
Pw.gn xn yn i PW (H pEipXi|W,E’ipYi|Xi> Prirjyns (8)
=1

which follows from the i.i.d. assumption of the EH procdss in (4), the fact by Definition 1
that X; is a function of (W, E) and the memorylessness of the chanpgly described in
Definition 2.

Definition 4: For an(n, M)-code defined on the binary-input EH channel, we can calkeulat

according to (8) theverage probability of decoding erratefined asPr{W #+ W}. We call an



(n, M)-code and arin, M)-EH code with average probability of decoding error no lathpeans
an (n, M, e)-codeand an(n, M, )-EH coderespectively.
Definition 5: Let e € (0,1) be a real number. A rat®& is c-achievablefor the EH channel if

there exists a sequence (@f, M,,, c)-EH codes such that

lim inf 1 log M,, > R. 9)

n—oo n

Definition 6: Lete € (0, 1) be a real number. The-capacityof the binary-input EH channel,
denoted byC., is defined to beC. £ sup{R : R is c-achievable for the EH chanrel The

capacityof the binary-input EH channel i€ £ inf.., C..

Define the capacity-cost function

A :
C(P) = pX:EI;;aﬁ)((]:P Tpxay x (X:Y). (10)

It was shown in [1, Sec. IV] that
C.=C=C(P) (12)

for all e € (0,1). The following proposition is a direct consequence of [Linnea 4], which will

be useful for calculating the length of energy-saving pHasehe save-and-transmit strategy.

Proposition 1: Let m andn be two natural numbers. Suppo§&;}”_, and{E;}|" are two

sequences of i.i.d. random variables such thatc {0, 1}, X™ and E™" are independent,
Pr,, {E) <0} =0, (12)

and
EpE1 [El] = prl [Xl] =P (13)

In addition, suppos&,, [E7] < co and define
a = max {EpE1 [Ef] e} (14)
If n > 3 is sufficiently large such that

— > (15)



then we have

" ‘ mA 0.4
€ _mi nn
PrpX”pEm+n {U{ XZ Z g EZ}} S (m) 621nn 2P,/1an . (16)
=1 /=1 /=1

Proof: It follows from [1, Lemma 4] by letting:(x) = « for eachx € {0, 1}. u

Remark 1:Proposition 1 implies that if the source harvests energyrfahannel uses before
transmitting a random codeword” consisting of i.i.d. symbols, then the probability thet

violates the EH constraint (cf. (5)) is bounded above as.(16)

B. Polarization for Binary Memoryless Asymmetric Channels

We follow the formulation of polar coding in [8]. For any t@obf discrete random variables
(U, X,Y) distributed oni/ x X x ) according topy, xy Whered = {0, 1}, the corresponding

Bhattacharyya parameter is defined to be

Zpg o (UIY) 223 py () 201y (Ol)puny (1]1) (17)
yeY

=23 /ooy (0.)pux(1,9), (18)
yey

wherepy, py;y andpyy are marginal distributions gy x y. It is well-known that [12, Propo-
sition 2]
(Zppxy (UY))? < Hpy, o (U[Y). (19)

— pPu, X,y

Let px be the probability distribution of a Bernoulli random vdri@ X, and letpy~. be the

distribution of n independent copies ok ~ px such thatpy-(z") = [[._, px(x;) for all

2" € X™. Forn = 2* for eachk € N, the polarization mapping of polar codes is given by
Rk

@éﬁﬂ o (20)

where® denotes the Kronecker power. Defipg. x~ such that
[ Uy ... U] =[X1 Xy ... X,|Go, (21)

define

pmxi(yim) = C.IY\X(ZM%) (22)



for eachi € {1,2,...,n} and each(z;,y;) € X x Y wheregy|x is the channel transition matrix
(cf. (2)), and define

PUn xnyn = pxnPun|xn Hpmxi- (23)
i1

The following lemma is useful for establishing our scalingpenent upper bound for the
binary-input EH channel. The proof combines key ideas indafl [8], and is relegated to

Appendix A.

Lemma 2:Let . = 4.714. For any binary-input channel|x and anypy, definepy» x» y» as
in (23) for eachn € N. Then, there exist two positive numbeksandt, which do not depend

on n such that for anys € N andn = 2%, we havé

1 pyn xn yn (UZ‘UZ_17YH) S #7 tl
— 11 1,2,... T > X:Y)— ——. 24
" {Ze{’ I U 2 1 g | e T (0
and
n n n UZ Ui_17Yn 2 1 - i7 t
“Rieft,2,... n}| (Ui , ) M S oL (XY) - —
ZPUn,Xn,yn(Ui|UZ_1) < # | nt/u
(25)

Remark 2: The bound in (24) in Lemma 2 tells us that the fraction of gogdtlsesized
channels in terms of their Bhattachryya parameters is dlmslee mutual informatior (X;Y).
Furthermore the notions of “good” and “close £0X; Y')” are quantified precisely as functions
of the blocklength. These quantifications of the rates ofveayence allow us to establish a

meaningful bound on the scaling exponent.

C. Definitions of Polar Codes

The following definition of polar codes is motivated by Lemiaand the construction of

polar codes in [8, Sec. IlI-A].

Definition 7: Fix a k € N, and letn = 2*. For any binary-input channelx and anypx,

define py» x»y» as in (23). LetZ C {1,2,...,n} be a set to be specified shortly and fix a

1This lemma remains to hold if the quantiti%]’@ are replaced bynl—y for any v > 0. The main result of this paper continues
to hold if the quantitiesni4L in this lemma are replaced b;j— for any v > 2.
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collection of functions); : {0,1}"* — {0,1} for eachi € Z¢. An (n,px,Z, \z-)-polar code

A

with Aze = (\;]i € {1,2,...,n}\ Z) consists of the following:

1)

2)
3)

4)

5)

An index set for information bits

n n n UZ Ui_17Yn S L7
T20ie{1,2,...,n}| """ o Ui - ) " (26)
ZPU",X7L,Y7L<Ui|UZ_ ) >1- i
The set
¢ =2 {1,2,...,n}\ T (27)
is referred to as the index set for frozen bits.
A message sty = {1,2,...,2%1}, whereW is uniform onW.
An encoding bijectionf : W — Uz for information bits denoted b{/; such that
Ur = f(W), (28)

wherel/; and Uz are defined ad/; = [],.;U; andUz = (Uy]i € I) respectively. Since
the message is uniform o, f(W) is a sequence of uniform i.i.d. bits such that

PI‘{UI = UI} = 2L (29)

71

for all uz € {0, 1}/*I, where the bits are transmitted through the polarized oflarindexed
by 7.
For eachi € Z¢, an encoding function\; : {0,1}~' — {0,1} for frozen bitU; such that

U; = Ai(UH). (30)
After U™ has been determined, nodéransmitsX™ where

(X1 Xy ... X, ]2 [U, Uy ... UG (31)

n

If the encoding functiongz. for the frozen bits are stochastic (which we allow), therythe
will also be denoted bwz. for clarity.
A sequence of successive cancellation decoding furetion {0,1} ! x Y* — {0,1}

for eachi € {1,2,...,n} such that the recursively generatéd U5, . .., U, are produced
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as follows for each =1,2,...,n:

Ui 2 iU Y") (32)
where
;= (0" y") (33)
0 if ieZ and py,pi-1y«(0]a"" y") = py,jwi-i - (La 1 y"),
=31 if i€ Z and py, i1y (0[@~" y") < pyjoi-ty- (a1 y"), (34)

N(at=h) if i e 7.
After obtainingU™, the estimates of/”, noded declares that
W& o) (35)

is the transmitted message.

Remark 3:By inspecting Definition 1 and Definition 7, we see that &nypx,Z, Azc)-polar
code is also arfn, 21*!)-code.
Remark 4:For any (n,px,Z, A\zc)-polar code as defined in Definition 7, although the Bhat-

tacharyya parametes, ., .. ,.(U;|U*~",Y") and Z (U;|U1) are calculated according

pun xn yn
to pyn xny» Wherepxn(z") =[], px(z;) andpynx» Characterizes the polarization mapping
according to (21), the distribution induced by the polareas not equal tQ» x» y~. Indeed,
the distribution induced by the polar code depends on thwumii.i.d. information bitsUz, the
encoding functions\z. of the frozen bits/z., the polarization mag-,, defined in (20) and the

channel lawgy x.

Definition 8: For an(n, px,Z, Azc)-polar code, the probability of decoding error is defined as
Pr{lV # W} = Pr{Uz # Uz} (36)

where the error is averaged over the random message as witle gotential randomness of
Aze (which could be stochastic). The code is also called@amx,Z, Az, )-polar code if the

probability of decoding error is no larger than

Remark 5:For an(n, px,Z, Az)-polar code, although the Bhattacharyya parameters ate eva
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uated according tp;~ y» y» as defined in (23), the probability terms in Definition 8 araleated

according to the distribution induced by the code, which & p» x»y» as explained in

Remark 4.

D. Definitions for the EH Transmission Strategy

In this paper, we investigate the save-and-transmit gjyaite [1] for polar codes under the

EH constraints (5), which is formally defined as follows.

Definition 9: Let m andn be two non-negative integers such that 2* for somek € N. A

save-and-transmitm, (n, px,Z, Az<))-EH polar code consists of the following:

1)

2)
3)

4)

An energy-harvesting period of. time slots in which node always transmit$) and a
transmission period of time slots in which node tries to transmit information.

A message setV = {1,2,...,2"1}, whereZ C {1,2,...,n} andW is uniform onW.

An (n,px,Z, \rc)-polar code (as described in Definition 7) with an encodirjgdbion f :

W — Uy for information bits denoted byz, an encoding function,; : {0,1}*~! — {0,1}

for frozen bitU; for eachi € {1,2,...,n}\ Z and a sequence of successive cancellation
decoding functionsp; : {0,1}~! x Y* — {0,1} for eachi € {1,2,...,n}. Let

(X, Xo ... X, 2 [UL Uy ... UG (37)

be then transmitted symbols induced by the, px,Z, \zc)-polar code, where the distri-
bution of U™ is fully determined by the uniformity of messagjé, the bijectionf and the
sequence of;.
A sequence of encoding functions : W x R, — X that intends to transmit code-
words of the(n, px,Z, A\zc)-polar code during the transmission period subject to the EH
constraints (5), where the symbol transmitted in time slist

fi(W, EY)

0 if 1<i<m,
20Xy fm+1<i<m4nandX,_, <> B - f,(W,E), (38)

0 ifm+1<i<m+nandX, >3 E — >, fo(W, E".
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By (38), the EH constraint

S HW,E) <Y E (39)

is satisfied for eachh € {1,2,...,m +n}. Let Y™™ be the symbols received by node

during them + n time slots, and let
Y/n = (Ym—l—la Ym+2> s 7Ym+n) (40)

be the symbols received by nodeduring the transmission period.
5) A sequence of successive cancellation decoding furstign {0,1} x Y — {0,1}
for eachi € {1,2,...,n} such that the recursively generaté’g Us, ..., U, are produced

as follows for each =1,2,...,n:
U, & (UL 7™) (41)
where
(0 g") = @@ ). (42)
After obtainingU™, the estimates of/”, noded declares that
WE o) (43)
is the transmitted message.

The (n,px,Z, Azc)-polar code described in Definition 9 is called te#ective codeof the
save-and-transmitm, (n, px,Z, A\z<))-EH polar code. By Definition 9, the effective code of the
(m, (n,px,Z, A\zc))-EH polar code fully determines the encoding and decodimgtfans of the
save-and-transmit EH polar code, where the latter polae @tsures that the EH constraints to

be satisfied. In addition, if the overall probability of delaag error is no larger than, i.e.,
Pr{W # W} = Pr{U" # U"} <, (44)

where the error is averaged over the random message as wiblé gtential randomness of

Aze, then the code is also calledsave-and-transmitm, (n,px,Z, A\zc),e)-EH polar code.
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Remark 6: By inspecting Definitions 1, 4, 7 and 9, we see that any sadet@msmit(im, (n,
px,Z, \zc),¢)-EH polar code is also afim + n, 2%l ¢)-EH code.

E. Scaling Exponent

Definition 10: Fix ane € (0,1) and a BMCgqy|x with capacity/(qy|x) € (0,1) (defined
in (3)). Thescaling exponent of polar codes for the BNKCdefined as

PC-BMC é

e —logn .

lim inf inf Z There exists arin, px,Z, Aze, ¢)-polar code ongy|x . (45)
e log )](QY|X) -

Definition 10 formalizes the notion that we are seeking thalkst;, > 0 such that/(qgy|x)—
R,| = O(n~"/*) holds. It has been shown in [5, Sec. IV-C] and [4, Th. 2] that

3.579 < oM < 4714 Ve € (0,1) (46)

for any BMSC ¢y x with capacity/(¢y|x) € (0,1). We note [13, Th. 48] (also [14] and [15])
that theoptimal scaling exponents (optimized over all codes) are equd tor = € (0,1/2)
for non-degenerate DMCs. For a general BMC which does nal hede symmetric, we will
see later in Lemma 4, a stepping stone for establishing oum nesult, that the upper bound
4.714 in (46) continues to hold. In this paper, we are intece the scaling exponent of save-

and-transmit polar codes for the binary-input EH channéilctv is formally defined as follows.

Definition 11: Fix an ¢ € (0,1) and a binary-input EH channekx with capacity C(P)
(defined in (10)). Thescaling exponent for the binary-input EH channel restricte save-and-
transmit polar codings defined as
There exists a save-and-transmit
(m, (n,px,Z, \zc),€)-EH polar code ; . 47)
whereN =m +n

—log N
pe 2 Jim inf inf o8
N=oo log‘C(P) — ‘—ff“
The following theorem is the main result of this paper, wisblows that 4.714, the upper bound
on pf®¢in (46) for BMSCs without cost constraints, remains to be ledwapper bound on the

scaling exponent for the binary-input EH channel in spitéhef additional EH constraints (39).
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The proof of the main result will be provided in Section IlI-B

Theorem 1:For anye € (0,1) and any binary-input EH channel,
pfCE < 4,714, (48)

Theorem 1 states that714 remains to be a valid upper bound on the scaling exponentlaf po
codes for the binary-input EH channel. This implies thatEkeconstraints do not worsen the rate
of convergence to capacity if polar codes are employed. Tinef ituition of this result is the
following: We design the length of the saving phasesufficiently small so that the convergence
rate to the capacity(qy|x) is not affected. Yet, this choice of ensures that the probability that
the EH constraints are violated is small (cf. Propositionabd essentially does not significantly
worsen the overall probability of decoding error. An awadi contribution of this paper is that the
upper bound on the scaling exponent holds for binary-inpeitneryless asymmetric channels,

which is established in Lemma 4 as an important step to pgoVimeorem 1.

[Il. PROOF OF THEMAIN RESULT

In this section, we will first analyze save-and-transmit gblar codes described in Definition 9
with randomized encoding functions;. for the frozen bits indexed b¢c. This randomized
approach has been used in [8, Sec. IlI-A] for generalizintanmation results for symmetric
channels to asymmetric channels, and it is also useful fatyaimg save-and-transmit polar
codes under the EH constraints (39). The proof of Theoremlllbeipresented in Section I1I-B
after establishing two important lemmas concerning potates with randomized frozen bits in

Section IlI-A.

A. Polar Codes with Randomized Frozen Bits

Here we bound the difference between the code distributfothe EH-polar code and the
one used to compute the Bhattacharyya parameters thatrappéae code as described in
Definition 7. Fix apx and ak € N, and letn = 2%. Define pym x» y«» as in (23). In addition,

for each setd C {1,2,...,n}, define the set ofA|-dimensional tuples of mappings

For eachi € A, the domain and range of mappi?g (49)

(A 24 (N]i€A) , :
\; are{0,1}~! and{0, 1} respectively
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Construct a random variable, = (A;|i € A) distributed onl'(.A) according tor, , such that
Ay = H T'A; (50)
1€A

and for alli € A and allu’~"' € {0,1}!,

TAi(ui—l)(ui) = pUL.‘Uifl (ui|ui_1) (51)

for eachu; € {0,1}. Recalling the definitions o and Z¢ in (26) and (27) respectively,
we consider ann, px,Z, Azc)-polar code for each\ze € I'(Z¢). Let ryn xn ynja;.=x. D€ the
distribution induced by the¢n, px,Z, Azc)-polar code, and lety,. y» x» y» be the distribution

induced by the randomizeh, px,Z, Azc)-polar code where
TAIC,U”,X”,Y”(AI% u", ", yn) = TAze ()\Ic)TUn,Xn,Yn\AIc:AIc (Un, ", yn)~ (52)

Then, we have the following lemma which characterizes thal teariation distance between
ryn x» y= defined in (52) angy» x» y» defined in (23). Since the proof of the lemma is similar
to the proof of [8, Lemma 1], it is deferred to Appendix B.

Lemma 3:For the randomizeth, px,Z, Azc)-polar code wheréz. ~ r,_., the total variation

distance betweepyn xn y» andry» xn yn» satisfies

vVIn 2

n

lpun xnyn — Tom xnyn || < (53)

It has been shown in [4, Th. 2] thdt714 is an upper bound on the scaling exponent for any
for any BMSC. The following lemma implies thdt714 is a valid upper bound on the scaling
exponent for any BMC even if it is asymmetric, which servesatepping stone for the proof
of Theorem 1. Although the proof of the following lemma is ganto the proof of [8, Th. 3],
it is provided here to facilitate understanding.

Lemma 4:Let i = 4.714 and fix apx and a binary-input channel|x. There exists & > 0
such that the following holds: For any which equals to2* for somek < N, there exists a

randomizedn, px,Z,, Azc, ,)-polar code with

Bl s (X3Y) = - (54)

PXQqy|X ni/n
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and

2v1In 2 1
en < YRS (55)
n 2n3

Proof: Fix a binary-input channe}y x and apy, and defingyy» x» y» as in (23) for each

n € N. In addition, define

1 Z n wn nUiUi_17Yn S%’
zoe e oy |Promen WD < 55 o6
n Zpun,xn,yn(Ui|U’_1) >1- %
for eachn € N. By Lemma 2, there exists &> 0 such that for each which equals t®” for
somek € N,
Z. | ;
T = e XY = S (57)

It remains to prove (55). To this end, we fixand Iet"“ALcL,UmeY” be the distribution induced
by the randomizedn, px,Z,, Az:)-polar code, Where’Azrcl’Un’Xn’Yn is as defined in (52). For
the randomizedn, px,Z,, Az:)-polar code, letp : Y — U™ characterize the overall decoding
function induced by the successive cancellation decodgss(cf. Definition 7) such that/™ =
©(Y™) is the output of the decoders given the channel ouifut and consider the following

probability of decoding error:

Proy oo (0" # 0(Y"))

=Y ey £ ) (58)
(um,yn)eUn xym
(@) n .n n n
(un7yn)eun Xyn
() 24/1In 2 n n n n
(unym)eUnxyn
© 2vIn2 i .n i—1
STEELST Ym0} (61)
1=1 (utyn)eUi xYn
@ 2V In2 i, mn i—1 . n
ORELS S ey s £ pila ) (62)

1€Ln (uz 7yn)el/{i PRUL

where

(a) follows from the triangle inequality.
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(b) follows from Lemma 3.
(c) follows from the definition of the successive cancetlatdecoders in Definition 7 and the

fact that{u" # ¢(y")} can be written as a union of disjoint events as
{u" #o(y")} = LnJ {w # i@y n{u™ = a1} (63)
i=1
(d) follows from the fact due to Definition 7 that for alle Z¢,
Pry,., . {Ui # ¢:(U™, Y™} =0. (64)

Consider the following chain of inequalities for eachk Z,:

Yo oy # ey}

(ut,yn)euixyn

= o o @y D puguenye (wlu T g Hu # pi(w Ty (65)

(uwi=lym)eui—txyn u €U
(34) PP i1 o [Pugvi-tye (us + 1wl ym)
< Z pUifl,Yn<u 17y ) ZpUi\Uifl,Y”(ulwu 17y )\/ ol ,Y (u4|u"_1 n)
(ui=1 ym)eui-1xyn w, €U pU/L"U2717Y” 7 Y
(66)
18 i— n
L 2y UlU,Y7) /2 (67)
56 1
< —.
- 2nt (68)
Combining (62) and (68), we obtain
" " 2vIn2 1
PrTAI%,Un,Xn,yn {U 7£ @(Y )} S n + % (69)
The lemma then follows from (57) and (69). [ |

B. Save-and-Transmit EH-Polar Codes with Randomized Br&its

In this section, we will use the randomized polar codes défimethe previous section to
construct save-and-transmit EH-polar codes and estatiishfollowing theorem, which will

immediately lead to Theorem 1.
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Theorem 2:Let ;1 = 4.714 and fix a binary-input EH channel- x andpx such that
EPX [X] = EPE1 [El] =P (70)

Define a = max {E,, [E}] e} as in (14). Then, there existsta> 0 such that the following

holds: For anyn > 3 which equals t@2* for somek € N and sufficiently large such that

n a

there exists a save-and-transiit, (n, px,Z,, Azc), €,)-EH polar code with

6vVanlnn

< — 41 72
m< o L (72)
|Z,| , t
n > IPX(IY\X <X7Y) - nl/n (73)
and
0.4 4v/In 2 1
S —— S (74)

“nlnn n on3’

Proof: Fix a binary-input EH channej x andpx such that (70) holds. By Lemma 4, there
exists at > 0 such that the following holds: For any which equals to2* for somek € N,

there exists a randomized, px,Z,, Az, d,)-polar code with

2] t

2> Dy (XGY) = — (75)
and
op < 2vin2 + i. (76)
n 2n3
Define

(77)

N {6\/ anln nw
m = T

for eachn € N. Fix a sufficiently largen > 3 that satisfies (71) and consider the corre-
sponding save-and-transniite, (n, px,Z,, Azc))-EH code as described in Definition 9 where
the (n, px,Z,, Azc, d,)-polar code with stochastic functions;. serves as an effective code of
the save-and-transmiitn, (n, px, Z,, Az<))-EH code. LetN £ m+n, letrgn yn xn yv pn be the

distribution induced by the save-and-transmit, (n, px,Z,, Azc))-EH code which satisfies the
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EH constraints (39), wher&€™ denotes the information and frozen bits chosen by the eftect
code andU" denote the estimate df" declared by nodel (cf. Definition 9). Using (8), we
have
N
TN yn xN yN gn = TU? (H pEz‘TXiIU”,E”YiIXi> Ty~ (78)
=1
wherery, x, (vil©;) = qvix(yilx;) foralli € {1,2,..., N}, allz; € & and ally; € ). In addition,
let X be the transmitted codeword induced by the randomizegx,Z,, Az, 0,,)-polar code

when there is no cost constraint, and define

A
TEN yn XN yN gn xn = V'EN yn XN yN gnl'Xn|yn (79)

wherer .. ;. characterizes the inverse polarization mapping used b§rthec, Z,,, Aze, 6,)-polar
code according to (37). The probability of decoding error thfe save-and-transmit

(m, (n,px,Z,, Azc))-EH code can be bounded as

n rn
PrTEN’Unnynyyi]n’Xn {U # U }

m+n 1—m 7
S PrTENyUnnynyyi]n’)}n {{Un # Un} m { ﬂ { XZ S EE} }}
1
m+n 1—m ~ )
+ Pr’”EN,Un,XN,YN,fJn,Xn { U {Z Xg > Z Eg}} . (80)

i=m+1 /=1 /=1
Consider
m+n 1—m )
Prisimsnnense {107 4000 T {SSx0e 3 mb
i=m+1 /=1 /=1
@, IR LGSR I (L APV TED VYCYS | G
st 0 d (X, X Xongn) = X7

< PrTEN,U”L,XN,YN,U",X'”L {{Un 7é Un} N {(XM+17 Xm+2> s aXm-i-n) = Xn}} . (82)

By inspecting (31) in Definition 7, (37) and (42) in Definiti®@and the definition of in (79),

we conclude that the upper bound in (82) cannot exceed theapildty of decoding error of the
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effective code, which implies that

m+n i—m 7
PrTEN,U”L,XN,YN,U",X” {{Un % Un} m { m {ZXZ S EZ} }} S 571' (83)
1

i=m+1 (=1 (=
In order to bound the second probability in (80), recall that = [[_, px, consider the

following chain of inequalities:

m+n t—m
PI'TEN’Un’XN,yN7Un,}~(" { U {ZXZ > ZEZ}}

i=m+1
(@ m-+n 1—m
a
= Pr vren { U {Z X > Z Ez}} (84)
i=m+1
m+n i—m i
m+n N ~n m+n
foo 3, e { U {8 B *
F#ref{0,1}n i=m+1 /=1 /=1
m4+n i—m i
< 2[|rgn — pxnl| +/ Z rpmin (€™ )pxn (2™)1 { U {er > Zez}}d6m+n
x”E{O 1} i=m-+1 /=1 /=1
(86)
(b) 2 /—1n2 m+n 1—m
S n + PrTEm+an'n { U {Z XZ > Z Ef}} (87)
i=m+1
where

(a) follows from (78) and (79).

(b) follows from Lemma 3.

Sincergmin = Hmtan by (78) andpx» =[], px,, it follows from Proposition 1 and (77)
that

m+n i—m 7 0.4
Py inpxn { U {Z Xe > Z Ez}} < nelnn’ (88)

i=m+1

which implies from (87) that

m—+n i—m )
- 2/1n 2 el4
Pr’“EN,Un,XN,yN,ﬁn,xn { U { t> Eg}} < n + nlnn’ (89)
1

i=m+1
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Combining (76), (80), (83) and (89), we conclude that thebphality of decoding erroe,, of

the save-and-transmitn, (n, px,Z,, Az:))-EH polar code satisfies

04 +4\/1n2 1

“nlnn n on3’

En (90)

Consequently, the theorem follows from the fact that thesavwd-transmitm, (n, px, Z,, Az:))-
EH polar code satisfies (75), (77) and (90) for each suffitydatge n > 3 that satisfies (71).

]
We are ready to present the proof of Theorem 1.
Proof of Theorem 1:Choose &7 such thatk,; [X] = P and
D (X5Y) = max L (X:Y) 2 CP). (91)

pX:EpX [X]=P

Theorem 2 implies that there exist > 0, a, > 0 and a3 > 0 such that for all sufficiently

large k, a save-and-transmiin, (n, px,Z,, Az¢),c,)-EH polar code exists whene = 2F,

m < a;vnlnn, (92)
1Z,.| ) Q2
T > IP}(IY\X (X7 Y) - m (93)
and
e, < B (94)
n

In addition, for all sufficiently large:, we have

(92)

m < n, (95)
nt/r > o + (96)
and
mom (97)
m-+n n
(92) |
< gy =2 (98)
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ay

= 1/AT14 (99)
= (100)

For such a save-and-transniit, (n, px,Z,, Az¢),e,)-EH polar code, we have for sufficiently

largen
—log(m+n) @ —log(m + n) (101)
log |C(P) — L1 log Iy gy (X3 V) — 2L
B log(m + n) (102)
108 (1/ gy (X57) = 221
@
o M (103)
log a?—i-az
(96) log(m + n) (104)
nl/#
log <a1+a2>
(95)
2 log(2n) (105)
- logn —log(an + az)
where (a) follows from the fact that for sufficiently large we have
. |Z..| . |Z,.| m|Z,|
Ip}qy\x(XaY) - m+n = Ip}qy\x (va) - n + (m—l—n) (106)
Ll | _m
< I _
IP x4y | X (X Y) n m +n (107)
(100) |In| o
< IPXQY\X (X Y) o T + m (108)
(93) (05) + (0%)]
S i (1209)

Sincelimy . g9+ = 0 by (94), it follows from (105) that for each € (0,1), there exists for
each sufficiently largé: a save-and-transmitn, (2%, px, Z,x, A7), ¢)-EH polar code such that
—log(m + 2F) < k+1

log |C(P) — JHZL ; — log(ay + az)’

(110)

which implies from Definition 11 that

pe < (111)
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for eache € (0,1). u

IV. CONCLUDING REMARKS

The encoding and decoding complexities of our proposed-aasieransmit polar codes are
the same as that of the polar codes of the save-and-transhait@des. Therefore as discussed
in [8, Sec. IlI-B], the encoding and decoding complexitiésoar proposed save-and-transmit
polar codes are at mosk(nlogn) as long as we allow pseudorandom numbers to be shared
between the encoder and the decoder for encoding and decibdimandomized frozen bits. By
a standard probabilistic argument, there must exist a wétestic encoder for the frozen bits
such that the decoding error of the save-and-transmit molde with the deterministic encoder
is no worse than the polar code with randomized frozen hitghé future, it may be fruitful
to develop low-complexity algorithms for finding a good det@istic encoder for encoding the
frozen bits. Other directions for future work can includelexing polar codes for EH channels
under other asymptotic regimes such as the error exponenterate deviations or error floors

regimes studied by Mondelli, Hassani and Urbanke [4].

APPENDIX A

PROOF OFLEMMA 2

The proof of Lemma 2 relies on the following three proposiioThe proof of Lemma 2 will
be presented after stating the three propositions.

Before stating the first proposition, we defing to be the uniform distribution o&’, define
sxn» to be the distribution of. independent copies of ~ sx such thatsx»(z") =[], sx(x;)
for all z™ € X", and define

n

Syn xnyn = SxnpPun|xn HpYilXi (112)
i=1

wherepyn x» characterizes the relation betwegti and X" in (21).
Proposition 5 ( [16, Proposition 2]):Fix a binary-input channe}y|x, ak € N and an index
setZ C {1,2,...,2"}. Letn = 2*. Then, there exists afm, 21!, ¢,)-code such that

gn S Z ZSUn_yx'rL’yn (UZ|UZ_17 Yn) (113)

1€l
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wheresyn xn» yn» is as defined in (112).

The following proposition can be derived in a straightfordvananner from the proofs of [4,
Ths. 1 and 2] and [4, Remark 4].

Proposition 6: Fix a binary-input channedy|x and let;, = 4.714. Then, there exist two

positive numbers; andt, which do not depend on such that for anys € N andn £ 2%, we

have
. i—1 n 1 tl
—1qie{l,2,...,n} ZsUn,Xn,yn(UﬂU Y™ < i > ISXQY\X(X;Y) i (114)
In addition, if
ISX(IY\X <X7Y) = r%?;XIPX(IY\X <X7Y>7 (115)
then
L. i-1 yny s IS _ ta
E 26{1,2,...,n} ZSU”,X”,Y”(Ui|U ,Y )_1_ﬁ —1—]‘9X‘1Y\X(X7Y)_m'
(116)

Proof: It follows from the proof of [4, Th. 2] that there exists a mapph : [0,1] — [0, 1]
such thath(0) = h(1) =0, h(z) > 0 for anyz € (0,1) and

h(x?) + h(y) 1
oh(z) = 2un

sup (117)

z€(0,1),y€[zv2—22,2x—122]
Then, (114) follows from the inequality in (117), [4, Eq. {3d proof of Th. 1] and [4, Remark 4].
It remains to prove (116). To this end, suppose (115) holdgine

Z

SUn,X”,Y” (

, 1
= {i€{1,2,...,n} UU~ Yy < ﬁ}, (118)

which implies from Proposition 5 that there exists (@an2/*!, n=3)-code. Since the capacity of

the channel is equal th, (X;Y) by (115), it follows from [13, Th. 48] (also [14] and [15])

XAqy|x

that there exists a; > 0 such that

log 27 < nly g0 (X;Y) + Aiv/n, (119)
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which implies that

% < gy (X Y) + % (120)
On the other hand, define
J £ {z €{L.2,...n} | Zopn gy (U|UTHY™) € [%1 - %] } (121)
n n
It has been shown in [4, Eq. (65) and Remark 4] that there =igt > 0 such that
% < % (122)
Statement (116) then follows from (120) and (122). [ |

The following construction of;. z.y-» and the subsequent proposition are the main tools
used in [8] for generalizing polarization results for syntnieechannels to asymmetric channels.
Fix any distributionpx defined ont = {0,1}. We definepy. 4. y» based ompx in several steps
as follows. Defingj; to be the uniform distribution ovet’ £ {0,1}, definey £ {0,1} x Y,
definegy, x such that

df/pz((i +,9)|7) = px(z)qyx (y|7) (123)

for all (&,z,y) € X x X x Y where+ denotes addition oveBF(2), definepy. v such that

n

ﬁxnyn(ina (@" +a",y")) = Hﬁx(@)@m;‘c((ii + @, Y1) | 22) (124)
i=1

for all (2", 2", y") € X" x A" x V", and defingjy. ¢y such that

Dom g gn (A" 27 (2" + 27,5™)) 2 Pin yn (27, (2" + 27, y")) pun xn (6°]27) (125)

(124) I . .
=" punxn (0|2 )pr(xz)qY|X((xz+xz>yz)|x2) (126)
i=1

B puan (@) [T (s E)px () avix (wilz) - (127)

@
Il
—

for all (2", 2", y") € X™ x X™ x V", wherepyn x» was defined in (21).

Proposition 7 ( [8, Th. 2]): For any binary-input channek- x and anypx, definepy» xn yn
and pp. gy« @s in (23) and (125) respectively. Then, the following et hold for each
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i€ {1,2,...,n}:
pusye (' y") = 2" Py gy, (W (07, 4" |us) (128)

for each(u’, y™) € U' x Y™ where(" denotes the:-dimensional zero tuple, and

Z

pun oy (U UTH YY) = Z; U\t ym. (129)

Un“)en,{/n (

Proof of Lemma 2: Using Propositions 6 and 7 and following similar procedureshe

proof of [8, Th. 1], we obtain Lemma 2. [ |

APPENDIX B

PROOF OFLEMMA 3

Fix a py and ak € N, and letn = 2*. Let ry» xny» be as defined in (52), which is
the distribution induced by the randomizéd, px,Z, Azc)-polar code where\z. ~ ry,.. Let
pun x»,yn» be the distribution as defined in (23). In this proof some stipts of distributions are

omitted for simplicity. In order to prove (53), we consideetfollowing chain of inequalities:

2HpU",X”,Y" — TUn’Xn’Yn

= > Ip(u”, 2™, y") — r(u", 2", y")| (130)
uneyn e Xn yne)n

= > p(u",y"p(a" |u, ") — r(u”,y")r(a"u", y")| (131)
uneUun e Xn yne)yn

2 > [p(u”, y")p(a”u”) — r(u”, y")p(z"|u")| (132)
uneun7mnexn’yn€yn

b n n n n

O ety — () (133)
u”GZ/{",y”Gy"

9N ) = () ") (134)
uneungneyn

= D Ip(u) () (135)
uneUun

n i—1 n

= > D (pluilu™") = r(uifu'™)) <Hp(uélué‘1)> <H r(UzIU“))‘ (136)
ureyn | i=1 /=1 l=i+1
n i—1

<> D IpCuile™) = r(uifu' N[ [T pCueu™) (137)

i=1 yicyft (=1
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where

(a) follows from (21) and (31) and the fact by (20) thaf is invertible.

(b) follows from the fact by (21) that for eacli” € U, there exists an™ € X™ such that
p(a"|u") = 1.

(c) follows from the fact by (21) and (31) that giveft,

pyrivn=un (Y") = rymmzun (") = | [ avix (wil#) (138)
i=1
where

Using Definition 7 and recalling that/» x» yn|a,.=x,. iS the distribution induced by the, px, Z, Az-)-
polar code, we have
r(u'Aze) = r(u'Azenqa,...i}) (140)

for eachi € {1,2,...,n} and
r(ugu' ™ Aze) = r(wu™h N) (141)

for eachi € Z¢. Following (137), we consider for eaghe Z¢ and eachu’ € {0,1}"

. o T(Aze)r(ui | Aze
r(u;u") & Lozeer) " Ar) (i_‘l o) (142)
Z)\ICEF(IC)T()\IC)T(U | Aze)
@ 2ongeerze) TAze)r (W Azenra,iay)r(wilu'=", N)
= — (143)
Z)\ICEF(IC)T()\IC)T(U | Azen{1,2,...i-1})
(50) D AET(T){1,2,..i—1} r(A)r(u =t A) D oner() r(A)r(uiu=t, Ai)
= P (144)
err(zc)n{l,z ..... i_1}7’(}‘)7“(u )
(30) err(zc)n{m ..... i—1} T(A)T(Ui_lp\) iner({i}) r(A)Hu; = )\i(“i_l)}
= — (145)
Z,\er(zc)n{l,z ..... i_1}7’(}‘)7’(u A)
b i—
2 puj-r (wiu ™), (146)

where

(a) follows from (140) and (141).
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(b) follows from the fact by (51) that for eaci—! € {0,1}"!
Pro, {u = A(u' ™)} = puoe (uglu'™) (147)
for eachu; € {0,1}.

Combining (137) and (146), we obtain

2||pun xnyn — Ty xn yn|| < Z Z ‘p(ui‘ui_l) - T(Ui‘ui_l)‘p(ui_l)- (148)

1€L uic?

For eachi € Z, since

S e = rwlu Y| pH) BN p@ ) Y |pluwiluit) — 1/2] (149)

ulelf? ui—leyi—1 u;€{0,1}
(@)
< W) 22 Hy ()

uifleui 1
(150)
2 \/2 In2(1 — H,, , (U;|U-1)) (151)
(9
= 2102 (1~ (2, (U] U=1))2) (152)
(26) Y
< (/22 (1= (1—n?) (153)
<& 12“2 (154)
n

where (a) follows from Pinsker’s inequality and (b) follofvem Jensen’s inequality, it follows
from (148) that

VIn2
||pUn7Xn7Yn — TU”,X”,Y” || S o . (155)
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