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On the Scaling Exponent of Polar Codes for

Binary-Input Energy-Harvesting Channels
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Abstract

This paper investigates the scaling exponent of polar codesfor binary-input energy-harvesting (EH)

channels with infinite-capacity batteries. The EH process is characterized by a sequence of i.i.d. random

variables with finite variances. The scaling exponentµ of polar codes for a binary-input memoryless

channel (BMC)qY |X with capacityI(qY |X) characterizes the closest gap between the capacity and

non-asymptotic achievable rates in the following way: For afixed average error probabilityε ∈ (0, 1),

the closest gap between the capacityI(qY |X) and a non-asymptotic achievable rateRn for a length-n

polar code scales asn−1/µ, i.e.,min{|I(qY |X)−Rn|} = Θ(n−1/µ). It has been shown that the scaling

exponentµ for any binary-input memoryless symmetric channel (BMSC) with I(qY |X) ∈ (0, 1) lies

between 3.579 and 4.714, where the upper bound4.714 was shown by an explicit construction of polar

codes. Our main result shows that4.714 remains to be a valid upper bound on the scaling exponent for

any binary-input EH channel, i.e., a BMC subject to additional EH constraints. Our result thus implies

that the EH constraints do not worsen the rate of convergenceto capacity if polar codes are employed.

The main result is proved by leveraging the following three existing results: scaling exponent analyses

for BMSCs, construction of polar codes designed for binary-input memoryless asymmetric channels,

and the save-and-transmit strategy for EH channels. An auxiliary contribution of this paper is that the

upper bound onµ holds for binary-input memoryless asymmetric channels.
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I. INTRODUCTION

A. Energy-Harvesting Channels

The class of energy-harvesting (EH) channels we consider inthis paper have binary input

alphabetsX , output alphabetsY that are finite but otherwise arbitrary, and infinite-capacity

batteries. The channel law of an EH channel is characterizedby a transition matrixqY |X where

X ∈ X and Y ∈ Y denote the channel input and output respectively. At each discrete time

i ∈ {1, 2, . . .}, a random amount of energyEi ∈ [0,∞) arrives at the buffer and the source

transmits a binary symbolXi ∈ {0, 1} such that

i
∑

ℓ=1

Xℓ ≤
i
∑

ℓ=1

Eℓ almost surely. (1)

This implies that the total harvested energy
∑i

ℓ=1Eℓ must be no smaller than the “energy”

of the codeword
∑i

ℓ=1X
2
ℓ =

∑i
ℓ=1Xℓ at every discrete timei for transmission to take place

successfully. We assume that{Eℓ}∞ℓ=1 are independent and identically distributed (i.i.d.) non-

negative random variables, whereE[E1] = P and E[E2
1 ] < +∞. The destinationd receives

Yi from the channel output in time sloti for eachi ∈ {1, 2, . . .}, where(Xi, Yi) is distributed

according to the channel law such thatpYi|Xi
(yi|xi) = qY |X(yi|xi) for all (xi, yi) ∈ X × Y . We

refer to the above EH channel as thebinary-input EH channel. It was shown by Fong, Tan and

Yang [1] that the capacity of the binary-input EH channel is

C(P ) , max
pX :E[X]=P

I(X ; Y ) bits per channel use, (2)

whereP = E[E1] is the expectation of the energy arrivals which is asymptotically the admissible

peak power of the codewordXn. The capacity result in (2) was proved in [1] using the save-and-

transmit strategy introduced by Ozel and Ulukus [2] for achieving the capacity of additive white

Gaussian noise (AWGN) channels. The binary-input EH channel models practical situations

where energy may not be fully available at the time of transmission and its unavailability may

result in the transmitter not being able to put out the desired codeword. This model is applicable

in large-scale sensor networks where each node is equipped with an EH device that collects

a stochastic amount of energy. See [3] for a comprehensive review of recent advances in EH

wireless communications.
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B. Polar Codes

This paper investigates the scaling exponent of polar codes[4] for the binary-input EH channel.

The scaling exponentµ of polar codes for a binary-input memoryless channel (BMC)qY |X with

capacity

I(qY |X) = max
pX

I(X ; Y ) (3)

characterizes the closest gap between the channel capacityand a non-asymptotic achievable

rateRn in the following way: For a fixed decoding error probabilityε ∈ (0, 1), the closest gap

between the capacityI(qY |X) and a non-asymptotic achievable rateRn for a length-n polar code

scales asn−1/µ, i.e.,min{|I(qY |X)−Rn|} = Θ(n−1/µ). It has been shown in [4,5] that the scaling

exponent of any binary-input memoryless symmetric channel(BMSC) with I(qY |X) ∈ (0, 1) lies

between 3.579 and 4.714, where the upper bound4.714 is shown by an explicit construction of

polar codes. It is well-known that polar codes are capacity-achieving for binary-input memoryless

asymmetric channels [6]–[9] and AWGN channels [10], and it can be easily deduced from the

aforementioned results that polar codes are capacity-achieving for BMCs with cost constraints.

However, scaling exponents of polar codes for AWGN channelsand BMCs with cost constraints

have not been investigated yet. Therefore, we are motivatedto study the scaling exponent of

polar codes for BMCs with EH cost constraints.

C. Main Contribution

Our main result shows that for the binary-input EH channel which can also be viewed as a

BMC subject to additional EH cost constraints,4.714 remains to be a valid upper bound on the

scaling exponent of polar codes. Our result thus implies that the EH constraints do not worsen

the rate of convergence to capacity if polar codes are employed. This main result is proved

by leveraging the following three existing results: scaling exponent analyses for BMSCs [4],

construction of polar codes designed for binary-input memoryless asymmetric channels [8], and

the save-and-transmit strategy for EH channels [1]. Our overarching strategy is to design the

energy-saving phase to be sufficiently short so as not to affect the scaling exponent, yet long

enough so that the error probability of the resultant code isnot severely degraded relative to

the case without EH constraints. An auxiliary contributionof this paper is that4.714 is also an



4

upper bound on the scaling exponent of polar codes for binary-input memoryless asymmetric

channels.

The main difficulty in this work is extracting and modifying the key elements in the three

aforementioned works [1,4,8] which are themselves presented under different settings. We have

to perform several non-trivial modifications so that the techniques and results in [1,4,8] can be

applied to our problem. More specifically, the three different settings can be briefly described as

follows: (i) The scaling exponent analyses in [4] are performed for symmetric channels rather

than asymmetric channels; (ii) The polar codes designed forasymmetric channels in [8] are

fixed-rate codes under the error exponent regime rather thanfixed-error codes under the scaling

exponent regime; (iii) The save-and-transmit codes used in[1] are random codes with i.i.d.

codewords (where each codeword consists of i.i.d. symbols)rather than structured codes.

D. Paper Outline

This paper is organized as follows. The notation used in thispaper is described in the next

subsection. Section II states the formulation of the binary-input EH channel, save-and-transmit

polar codes and scaling exponents and presents our main theorem. Section III proves our main

theorem, which states that 4.714 is an upper bound on the scaling exponent of save-and-transmit

polar codes for the binary-input EH channel. Concluding remarks are provided in Section IV.

E. Notation

We let1{E} be the indicator function of the setE . We use the upper case letterX to denote an

arbitrary (discrete or continuous) random variable with alphabetX , and use a lower case letter

x to denote a realization ofX. We useXn to denote the random tuple(X1, X2, . . . , Xn) where

eachXi is in X . We will take all logarithms to base2 throughout this paper unless specified

otherwise. The logarithmic functions to base2 and basee are denoted bylog andln respectively.

The set of natural numbers, real numbers and non-negative real numbers are denoted byN, R

andR+ respectively.

The following notations are used for any arbitrary random variablesX andY and any real-

valued functiong with domainX . We let pY |X and pX,Y = pXpY |X denote the conditional

probability distribution ofY given X and the probability distribution of(X, Y ) respectively.

We let pX,Y (x, y) andpY |X(y|x) be the evaluations ofpX,Y andpY |X respectively at(X, Y ) =
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(x, y). To make the dependence on the distribution explicit, we letPrpX{g(X) ∈ A} denote
∫

x∈X pX(x)1{g(x) ∈ A} dx for any setA ⊆ R. The expectationg(X) is denoted asEpX [g(X)].

For any(X, Y, Z) distributed according to somepX,Y,Z, the entropy ofX and the conditional mu-

tual information betweenX andY givenZ are denoted byHpX(X) andIpX,Y,Z
(X ; Y |Z) respec-

tively. For simplicity, we sometimes omit the subscript of anotation if it causes no confusion. The

total variation distance betweenpX andqX is denoted by‖pX−qX‖ , 1
2

∑

x∈X |pX(x)−qX(x)|.

II. PROBLEM FORMULATION , PRELIMINARIES AND MAIN RESULT

A. Binary-Input EH Channel

We follow the formulation of EH channels in [1]. The binary-input EH channel consists of

one source and one destination, denoted bys andd respectively. Nodes transmits information to

noded in n time slots as follows. Nodes chooses messageW and sendsW to noded, whereW is

uniformly distributed over{1, 2, . . . ,M} andM denotes the message size. The energy-harvesting

process is characterized byE1, E2, . . . , En, which are i.i.d. real-valued random variables that

satisfyPr{E1 < 0} = 0, E[E1] = P andE[E2
1 ] < ∞. Then for eachi ∈ {1, 2, . . . , n}, nodes

transmitsXi ∈ {0, 1} based on(W,Ei) and noded receivesYi ∈ Y in time slot i whereY is

an arbitrary finite alphabet. We assume the following for each i ∈ {1, 2, . . . , n}:

(i) Ei and (W,Ei−1, X i−1, Y i−1) are independent, i.e.,

pW,Ei,Xi−1,Y i−1 = pEi
pW,Ei−1,Xi−1,Y i−1 (4)

(ii) Every codewordXn transmitted bys should satisfy

Pr

{

i
∑

ℓ=1

Xℓ ≤
i
∑

ℓ=1

Eℓ

}

= 1 (5)

for eachi ∈ {1, 2, . . . , n}.

After n time slots, noded declaresŴ to be the transmittedW based onY n. Formally, we define

a code as follows:

Definition 1: An (n,M)-codeconsists of the following:

1) A message setW , {1, 2, . . . ,M} at nodes. MessageW is uniform onW.

2) A sequence of encoding functionsfi : W×R
i
+ → {0, 1} for eachi ∈ {1, 2, . . . , n}, where

fi is the encoding function for nodes at time slot i for encoding Xi such
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thatXi = fi(W,Ei).

3) A decoding functionϕ : Rn → W, for decodingW at noded by producingŴ = ϕ(Y n).

If the sequence of encoding functionsfi satisfies the EH constraints (5), the code is also called

an (n,M)-EH code.

By Definition 1, the only potential difference between an(n,M)-EH code and an(n,M) code

is whether the EH constraints (5) are satisfied or not. If an(n,M)-code does not necessarily

satisfy the EH constraints (5) during the encoding process (i.e., Xn is a function ofW alone),

then the(n,M)-code can be viewed as an(n,M)-code for the usual discrete memoryless channel

(DMC) without any cost constraint [11, Sec. 3.1].

Definition 2: The binary-input EH channelis characterized by a binary input alphabetX ,

{0, 1}, a finite output alphabetY and a transition matrixqY |X such that the following holds for

any (n,M)-code: For eachi ∈ {1, 2, . . . , n},

pW,Ei,Xi,Y i = pW,Ei,Xi,Y i−1pYi|Xi
(6)

where

pYi|Xi
(yi|xi) = qY |X(yi|xi) (7)

for all xi ∈ X andyi ∈ Y . SincepYi|Xi
does not depend oni by (7), the channel is stationary.

Definition 3: The binary-input channelqY |X is said to besymmetricif there exists a permu-

tation π of the output alphabetY such that (i)π−1 = π and (ii) qY |X(y|1) = qY |X(π(y)|0) for

all y ∈ Y . Otherwise, the channel is said to beasymmetric.

For any(n,M)-code defined on the binary-input EH channel, letpW,En,Xn,Y n,Ŵ be the joint

distribution induced by the code. We can factorizepW,En,Xn,Y n,Ŵ as

pW,En,Xn,Y n,ŴpW

(

n
∏

i=1

pEi
pXi|W,EipYi|Xi

)

pŴ |Y n , (8)

which follows from the i.i.d. assumption of the EH processEn in (4), the fact by Definition 1

that Xi is a function of (W,Ei) and the memorylessness of the channelqY |X described in

Definition 2.

Definition 4: For an(n,M)-code defined on the binary-input EH channel, we can calculate

according to (8) theaverage probability of decoding errordefined asPr
{

Ŵ 6= W
}

. We call an
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(n,M)-code and an(n,M)-EH code with average probability of decoding error no larger thanε

an (n,M, ε)-codeand an(n,M, ε)-EH coderespectively.

Definition 5: Let ε ∈ (0, 1) be a real number. A rateR is ε-achievablefor the EH channel if

there exists a sequence of(n,Mn, ε)-EH codes such that

lim inf
n→∞

1

n
logMn ≥ R. (9)

Definition 6: Let ε ∈ (0, 1) be a real number. Theε-capacityof the binary-input EH channel,

denoted byCε, is defined to beCε , sup{R : R is ε-achievable for the EH channel}. The

capacityof the binary-input EH channel isC , infε>0Cε.

Define the capacity-cost function

C(P ) , max
pX :EpX

[X]=P
IpXqY |X

(X ; Y ). (10)

It was shown in [1, Sec. IV] that

Cε = C = C(P ) (11)

for all ε ∈ (0, 1). The following proposition is a direct consequence of [1, Lemma 4], which will

be useful for calculating the length of energy-saving phasefor the save-and-transmit strategy.

Proposition 1: Let m andn be two natural numbers. Suppose{Xi}ni=1 and{Ei}m+n
i=1 are two

sequences of i.i.d. random variables such thatX1 ∈ {0, 1}, Xn andEm+n are independent,

PrpE1
{E1 < 0} = 0, (12)

and

EpE1
[E1] = EpX1

[X1] = P. (13)

In addition, supposeEpE1
[E2

1 ] < ∞ and define

a , max
{

EpE1
[E2

1 ], e
}

. (14)

If n ≥ 3 is sufficiently large such that

n

lnn
≥ a

P 2
, (15)
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then we have

PrpXnpEm+n

{

n
⋃

i=1

{

i
∑

ℓ=1

Xℓ ≥
m+i
∑

ℓ=1

Eℓ

}}

≤
(

e0.4

lnn

)

e2 lnn−mP
2

√
lnn
an . (16)

Proof: It follows from [1, Lemma 4] by lettingc(x) = x for eachx ∈ {0, 1}.

Remark 1:Proposition 1 implies that if the source harvests energy form channel uses before

transmitting a random codewordXn consisting of i.i.d. symbols, then the probability thatXn

violates the EH constraint (cf. (5)) is bounded above as (16).

B. Polarization for Binary Memoryless Asymmetric Channels

We follow the formulation of polar coding in [8]. For any tuple of discrete random variables

(U,X, Y ) distributed onU × X × Y according topU,X,Y whereU = {0, 1}, the corresponding

Bhattacharyya parameter is defined to be

ZpU,X,Y
(U |Y ) , 2

∑

y∈Y
pY (y)

√

pU |Y (0|y)pU |Y (1|y) (17)

= 2
∑

y∈Y

√

pU,Y (0, y)pU,Y (1, y), (18)

wherepY , pU |Y andpU,Y are marginal distributions ofpU,X,Y . It is well-known that [12, Propo-

sition 2]

(ZpU,X,Y
(U |Y ))2 ≤ HpU,X,Y

(U |Y ). (19)

Let pX be the probability distribution of a Bernoulli random variable X, and letpXn be the

distribution of n independent copies ofX ∼ pX such thatpXn(xn) =
∏n

i=1 pX(xi) for all

xn ∈ X n. For n = 2k for eachk ∈ N, the polarization mapping of polar codes is given by

Gn ,

[

1 0

1 1

]⊗k

= G−1
n (20)

where⊗ denotes the Kronecker power. DefinepUn|Xn such that

[U1 U2 . . . Un] = [X1 X2 . . . Xn]Gn, (21)

define

pYi|Xi
(yi|xi) , qY |X(yi|xi) (22)
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for eachi ∈ {1, 2, . . . , n} and each(xi, yi) ∈ X ×Y whereqY |X is the channel transition matrix

(cf. (2)), and define

pUn,Xn,Y n , pXnpUn|Xn

n
∏

i=1

pYi|Xi
. (23)

The following lemma is useful for establishing our scaling exponent upper bound for the

binary-input EH channel. The proof combines key ideas in [4]and [8], and is relegated to

Appendix A.

Lemma 2:Let µ = 4.714. For any binary-input channelqY |X and anypX , definepUn,Xn,Y n as

in (23) for eachn ∈ N. Then, there exist two positive numberst1 and t2 which do not depend

on n such that for anyk ∈ N andn , 2k, we have1

1

n

∣

∣

∣

∣

∣

{

i ∈ {1, 2, . . . , n}
∣

∣

∣

∣

∣

ZpUn,Xn,Y n (Ui|U i−1, Y n) ≤ 1
n4 ,

ZpUn,Xn,Y n (Ui|U i−1) ≥ 1− 1
n4

}
∣

∣

∣

∣

∣

≥ IpXqY |X
(X ; Y )− t1

n1/µ
. (24)

and

1

n

∣

∣

∣

∣

∣

{

i ∈ {1, 2, . . . , n}
∣

∣

∣

∣

∣

ZpUn,Xn,Y n (Ui|U i−1, Y n) ≥ 1− 1
n4 ,

ZpUn,Xn,Y n (Ui|U i−1) ≤ 1
n4

}
∣

∣

∣

∣

∣

≥ 1− IpXqY |X
(X ; Y )− t2

n1/µ
.

(25)

Remark 2:The bound in (24) in Lemma 2 tells us that the fraction of good synthesized

channels in terms of their Bhattachryya parameters is closeto the mutual informationI(X ; Y ).

Furthermore the notions of “good” and “close toI(X ; Y )” are quantified precisely as functions

of the blocklength. These quantifications of the rates of convergence allow us to establish a

meaningful bound on the scaling exponent.

C. Definitions of Polar Codes

The following definition of polar codes is motivated by Lemma2 and the construction of

polar codes in [8, Sec. III-A].

Definition 7: Fix a k ∈ N, and letn = 2k. For any binary-input channelqY |X and anypX ,

define pUn,Xn,Y n as in (23). LetI ⊆ {1, 2, . . . , n} be a set to be specified shortly and fix a

1This lemma remains to hold if the quantities1
n4 are replaced by1

nν
for any ν > 0. The main result of this paper continues

to hold if the quantities 1

n4 in this lemma are replaced by1
nν

for any ν > 2.
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collection of functionsλi : {0, 1}i−1 → {0, 1} for eachi ∈ Ic. An (n, pX , I, λIc)-polar code

with λIc , (λi| i ∈ {1, 2, . . . , n} \ I) consists of the following:

1) An index set for information bits

I ,

{

i ∈ {1, 2, . . . , n}
∣

∣

∣

∣

∣

ZpUn,Xn,Y n (Ui|U i−1, Y n) ≤ 1
n4 ,

ZpUn,Xn,Y n (Ui|U i−1) ≥ 1− 1
n4

}

. (26)

The set

Ic , {1, 2, . . . , n} \ I (27)

is referred to as the index set for frozen bits.

2) A message setW , {1, 2, . . . , 2|I|}, whereW is uniform onW.

3) An encoding bijectionf : W → UI for information bits denoted byUI such that

UI = f(W ), (28)

whereUI andUI are defined asUI ,
∏

i∈I Ui andUI , (Ui|i ∈ I) respectively. Since

the message is uniform onW, f(W ) is a sequence of uniform i.i.d. bits such that

Pr{UI = uI} =
1

2|I|
(29)

for all uI ∈ {0, 1}|I|, where the bits are transmitted through the polarized channels indexed

by I.

4) For eachi ∈ Ic, an encoding functionλi : {0, 1}i−1 → {0, 1} for frozen bitUi such that

Ui = λi(U
i−1). (30)

After Un has been determined, nodes transmitsXn where

[X1 X2 . . . Xn] , [U1 U2 . . . Un]G
−1
n . (31)

If the encoding functionsλIc for the frozen bits are stochastic (which we allow), then they

will also be denoted byΛIc for clarity.

5) A sequence of successive cancellation decoding functions ϕi : {0, 1}i−1 × Yn → {0, 1}
for eachi ∈ {1, 2, . . . , n} such that the recursively generatedÛ1, Û2, . . . , Ûn are produced
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as follows for eachi = 1, 2, . . . , n:

Ûi , ϕi(Û
i−1, Y n) (32)

where

ûi , ϕi(û
i−1, yn) (33)

=























0 if i ∈ I and pUi|U i−1,Y n(0|ûi−1, yn) ≥ pUi|U i−1,Y n(1|ûi−1, yn),

1 if i ∈ I and pUi|U i−1,Y n(0|ûi−1, yn) < pUi|U i−1,Y n(1|ûi−1, yn),

λi(û
i−1) if i ∈ Ic.

(34)

After obtainingÛn, the estimates ofUn, noded declares that

Ŵ , f−1(Ûn) (35)

is the transmitted message.

Remark 3:By inspecting Definition 1 and Definition 7, we see that any(n, pX , I, λIc)-polar

code is also an(n, 2|I|)-code.

Remark 4:For any(n, pX , I, λIc)-polar code as defined in Definition 7, although the Bhat-

tacharyya parametersZpUn,Xn,Y n (Ui|U i−1, Y n) andZpUn,Xn,Y n (Ui|U i−1) are calculated according

to pUn,Xn,Y n wherepXn(xn) =
∏n

i=1 pX(xi) andpUn|Xn characterizes the polarization mapping

according to (21), the distribution induced by the polar code is not equal topUn,Xn,Y n . Indeed,

the distribution induced by the polar code depends on the uniform i.i.d. information bitsUI , the

encoding functionsλIc of the frozen bitsUIc, the polarization mapGn defined in (20) and the

channel lawqY |X .

Definition 8: For an(n, pX , I, λIc)-polar code, the probability of decoding error is defined as

Pr{Ŵ 6= W} = Pr{ÛI 6= UI} (36)

where the error is averaged over the random message as well asthe potential randomness of

λIc (which could be stochastic). The code is also called an(n, pX , I, λIc, ε)-polar code if the

probability of decoding error is no larger thanε.

Remark 5:For an(n, pX , I, λIc)-polar code, although the Bhattacharyya parameters are eval-
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uated according topUn,Xn,Y n as defined in (23), the probability terms in Definition 8 are evaluated

according to the distribution induced by the code, which is not pUn,Xn,Y n as explained in

Remark 4.

D. Definitions for the EH Transmission Strategy

In this paper, we investigate the save-and-transmit strategy in [1] for polar codes under the

EH constraints (5), which is formally defined as follows.

Definition 9: Let m andn be two non-negative integers such thatn = 2k for somek ∈ N. A

save-and-transmit(m, (n, pX , I, λIc))-EH polar code consists of the following:

1) An energy-harvesting period ofm time slots in which nodes always transmits0 and a

transmission period ofn time slots in which nodes tries to transmit information.

2) A message setW , {1, 2, . . . , 2|I|}, whereI ⊆ {1, 2, . . . , n} andW is uniform onW.

3) An (n, pX , I, λIc)-polar code (as described in Definition 7) with an encoding bijection f̃ :

W → UI for information bits denoted byUI , an encoding functionλi : {0, 1}i−1 → {0, 1}
for frozen bitUi for eachi ∈ {1, 2, . . . , n} \ I and a sequence of successive cancellation

decoding functions̃ϕi : {0, 1}i−1 × Yn → {0, 1} for eachi ∈ {1, 2, . . . , n}. Let

[X̃1 X̃2 . . . X̃n] , [U1 U2 . . . Un]G
−1
n (37)

be then transmitted symbols induced by the(n, pX , I, λIc)-polar code, where the distri-

bution ofUn is fully determined by the uniformity of messageW , the bijectionf̃ and the

sequence ofλi.

4) A sequence of encoding functionsfi : W × R
i
+ → X that intends to transmit code-

words of the(n, pX , I, λIc)-polar code during the transmission period subject to the EH

constraints (5), where the symbol transmitted in time sloti is

fi(W,Ei)

,























0 if 1 ≤ i ≤ m,

X̃i−m if m+ 1 ≤ i ≤ m+ n and X̃i−m ≤
∑i

ℓ=1Eℓ −
∑i−1

ℓ=1 fℓ(W,Eℓ),

0 if m+ 1 ≤ i ≤ m+ n and X̃i−m >
∑i

ℓ=1Eℓ −
∑i−1

ℓ=1 fℓ(W,Eℓ).

(38)
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By (38), the EH constraint
i
∑

ℓ=1

fℓ(W,Eℓ) ≤
i
∑

ℓ=1

Eℓ (39)

is satisfied for eachi ∈ {1, 2, . . . , m+ n}. Let Y m+n be the symbols received by noded

during them+ n time slots, and let

Ỹ n , (Ym+1, Ym+2, . . . , Ym+n) (40)

be the symbols received by noded during the transmission period.

5) A sequence of successive cancellation decoding functions ϕi : {0, 1}i−1 × Yn → {0, 1}
for eachi ∈ {1, 2, . . . , n} such that the recursively generatedÛ1, Û2, . . . , Ûn are produced

as follows for eachi = 1, 2, . . . , n:

Ûi , ϕi(Û
i−1, Ỹ n) (41)

where

ϕi(û
i−1, ỹn) , ϕ̃i(û

i−1, ỹn). (42)

After obtainingÛn, the estimates ofUn, noded declares that

Ŵ , f̃−1(Ûn) (43)

is the transmitted message.

The (n, pX , I, λIc)-polar code described in Definition 9 is called theeffective codeof the

save-and-transmit(m, (n, pX , I, λIc))-EH polar code. By Definition 9, the effective code of the

(m, (n, pX , I, λIc))-EH polar code fully determines the encoding and decoding functions of the

save-and-transmit EH polar code, where the latter polar code ensures that the EH constraints to

be satisfied. In addition, if the overall probability of decoding error is no larger thanε, i.e.,

Pr{Ŵ 6= W} = Pr{Ûn 6= Un} ≤ ε, (44)

where the error is averaged over the random message as well asthe potential randomness of

λIc, then the code is also called asave-and-transmit(m, (n, pX , I, λIc), ε)-EH polar code.
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Remark 6:By inspecting Definitions 1, 4, 7 and 9, we see that any save-and-transmit(m, (n,

pX , I, λIc), ε)-EH polar code is also an(m+ n, 2|I|, ε)-EH code.

E. Scaling Exponent

Definition 10: Fix an ε ∈ (0, 1) and a BMCqY |X with capacityI(qY |X) ∈ (0, 1) (defined

in (3)). Thescaling exponent of polar codes for the BMCis defined as

µPC-BMC
ε ,

lim inf
n→∞

inf







− logn

log
∣

∣

∣
I(qY |X)− |I|

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

There exists an(n, pX , I, λIc, ε)-polar code onqY |X







. (45)

Definition 10 formalizes the notion that we are seeking the smallestµ ≥ 0 such that|I(qY |X)−
Rn| = O(n−1/µ) holds. It has been shown in [5, Sec. IV-C] and [4, Th. 2] that

3.579 ≤ µPC-BMC
ε ≤ 4.714 ∀ε ∈ (0, 1) (46)

for any BMSCqY |X with capacityI(qY |X) ∈ (0, 1). We note [13, Th. 48] (also [14] and [15])

that theoptimal scaling exponents (optimized over all codes) are equal to2 for ε ∈ (0, 1/2)

for non-degenerate DMCs. For a general BMC which does not need to be symmetric, we will

see later in Lemma 4, a stepping stone for establishing our main result, that the upper bound

4.714 in (46) continues to hold. In this paper, we are interested in the scaling exponent of save-

and-transmit polar codes for the binary-input EH channel, which is formally defined as follows.

Definition 11: Fix an ε ∈ (0, 1) and a binary-input EH channelqY |X with capacityC(P )

(defined in (10)). Thescaling exponent for the binary-input EH channel restricted to save-and-

transmit polar codingis defined as

µPC-EH
ε , lim inf

N→∞
inf











− logN

log
∣

∣

∣
C(P )− |I|

N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

There exists a save-and-transmit

(m, (n, pX , I, λIc), ε)-EH polar code

whereN = m+ n











. (47)

The following theorem is the main result of this paper, whichshows that 4.714, the upper bound

on µPC-BMC
ε in (46) for BMSCs without cost constraints, remains to be a valid upper bound on the

scaling exponent for the binary-input EH channel in spite ofthe additional EH constraints (39).
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The proof of the main result will be provided in Section III-B.

Theorem 1:For anyε ∈ (0, 1) and any binary-input EH channel,

µPC-EH
ε ≤ 4.714. (48)

Theorem 1 states that4.714 remains to be a valid upper bound on the scaling exponent of polar

codes for the binary-input EH channel. This implies that theEH constraints do not worsen the rate

of convergence to capacity if polar codes are employed. The chief intuition of this result is the

following: We design the length of the saving phasem sufficiently small so that the convergence

rate to the capacityI(qY |X) is not affected. Yet, this choice ofm ensures that the probability that

the EH constraints are violated is small (cf. Proposition 1), and essentially does not significantly

worsen the overall probability of decoding error. An auxiliary contribution of this paper is that the

upper bound on the scaling exponent holds for binary-input memoryless asymmetric channels,

which is established in Lemma 4 as an important step to proving Theorem 1.

III. PROOF OF THEMAIN RESULT

In this section, we will first analyze save-and-transmit EH-polar codes described in Definition 9

with randomized encoding functionsλIc for the frozen bits indexed byIc. This randomized

approach has been used in [8, Sec. III-A] for generalizing polarization results for symmetric

channels to asymmetric channels, and it is also useful for analyzing save-and-transmit polar

codes under the EH constraints (39). The proof of Theorem 1 will be presented in Section III-B

after establishing two important lemmas concerning polar codes with randomized frozen bits in

Section III-A.

A. Polar Codes with Randomized Frozen Bits

Here we bound the difference between the code distribution of the EH-polar code and the

one used to compute the Bhattacharyya parameters that appear in the code as described in

Definition 7. Fix apX and ak ∈ N, and letn = 2k. DefinepUn,Xn,Y n as in (23). In addition,

for each setA ⊆ {1, 2, . . . , n}, define the set of|A|-dimensional tuples of mappings

Γ(A) ,

{

(λi| i ∈ A)

∣

∣

∣

∣

∣

For eachi ∈ A, the domain and range of mapping

λi are{0, 1}i−1 and{0, 1} respectively

}

. (49)
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Construct a random variableΛA , (Λi| i ∈ A) distributed onΓ(A) according torΛA
such that

rΛA
=
∏

i∈A
rΛi

(50)

and for all i ∈ A and allui−1 ∈ {0, 1}i−1,

rΛi(ui−1)(ui) = pUi|U i−1(ui|ui−1) (51)

for each ui ∈ {0, 1}. Recalling the definitions ofI and Ic in (26) and (27) respectively,

we consider an(n, pX , I, λIc)-polar code for eachλIc ∈ Γ(Ic). Let rUn,Xn,Y n|ΛIc=λIc be the

distribution induced by the(n, pX , I, λIc)-polar code, and letrΛIc ,Un,Xn,Y n be the distribution

induced by the randomized(n, pX , I,ΛIc)-polar code where

rΛIc ,Un,Xn,Y n(λIc , un, xn, yn) , rΛIc (λIc)rUn,Xn,Y n|ΛIc=λIc (u
n, xn, yn). (52)

Then, we have the following lemma which characterizes the total variation distance between

rUn,Xn,Y n defined in (52) andpUn,Xn,Y n defined in (23). Since the proof of the lemma is similar

to the proof of [8, Lemma 1], it is deferred to Appendix B.

Lemma 3:For the randomized(n, pX , I,ΛIc)-polar code whereΛIc ∼ rΛIc , the total variation

distance betweenpUn,Xn,Y n andrUn,Xn,Y n satisfies

‖pUn,Xn,Y n − rUn,Xn,Y n‖ ≤
√
ln 2

n
. (53)

It has been shown in [4, Th. 2] that4.714 is an upper bound on the scaling exponent for any

for any BMSC. The following lemma implies that4.714 is a valid upper bound on the scaling

exponent for any BMC even if it is asymmetric, which serves asa stepping stone for the proof

of Theorem 1. Although the proof of the following lemma is similar to the proof of [8, Th. 3],

it is provided here to facilitate understanding.

Lemma 4:Let µ = 4.714 and fix apX and a binary-input channelqY |X . There exists at > 0

such that the following holds: For anyn which equals to2k for somek ∈ N, there exists a

randomized(n, pX , In,ΛIc, εn)-polar code with

|In|
n

≥ IpXqY |X
(X ; Y )− t

n1/µ
(54)
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and

εn ≤ 2
√
ln 2

n
+

1

2n3
. (55)

Proof: Fix a binary-input channelqY |X and apX , and definepUn,Xn,Y n as in (23) for each

n ∈ N. In addition, define

In ,
1

n

∣

∣

∣

∣

∣

{

i ∈ {1, 2, . . . , n}
∣

∣

∣

∣

∣

ZpUn,Xn,Y n (Ui|U i−1, Y n) ≤ 1
n4 ,

ZpUn,Xn,Y n (Ui|U i−1) ≥ 1− 1
n4

}
∣

∣

∣

∣

∣

(56)

for eachn ∈ N. By Lemma 2, there exists at > 0 such that for eachn which equals to2k for

somek ∈ N,
|In|
n

≥ IpXqY |X
(X ; Y )− t

n1/µ
. (57)

It remains to prove (55). To this end, we fixn and letrΛIc
n
,Un,Xn,Y n be the distribution induced

by the randomized(n, pX , In,ΛIc
n
)-polar code, whererΛIc

n
,Un,Xn,Y n is as defined in (52). For

the randomized(n, pX , In,ΛIc
n
)-polar code, letϕ : Yn → Un characterize the overall decoding

function induced by the successive cancellation decodersϕi’s (cf. Definition 7) such that̂Un =

ϕ(Y n) is the output of the decoders given the channel outputY n, and consider the following

probability of decoding error:

PrrΛIc
n
,Un,Xn,Y n {Un 6= ϕ(Y n)}

=
∑

(un,yn)∈Un×Yn

rUn,Y n(un, yn)1{un 6= ϕ(yn)} (58)

(a)
≤ 2‖rUn,Y n − pUn,Y n‖+

∑

(un,yn)∈Un×Yn

pUn,Y n(un, yn)1{un 6= ϕ(yn)} (59)

(b)
≤ 2

√
ln 2

n
+

∑

(un,yn)∈Un×Yn

pUn,Y n(un, yn)1{un 6= ϕ(yn)} (60)

(c)
≤ 2

√
ln 2

n
+

n
∑

i=1

∑

(ui,yn)∈U i×Yn

pU i,Y n(ui, yn)1{ui 6= ϕi(u
i−1, yn)} (61)

(d)
=

2
√
ln 2

n
+
∑

i∈In

∑

(ui,yn)∈U i×Yn

pU i,Y n(ui, yn)1{ui 6= ϕi(u
i−1, yn)} (62)

where

(a) follows from the triangle inequality.
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(b) follows from Lemma 3.

(c) follows from the definition of the successive cancellation decoders in Definition 7 and the

fact that{un 6= ϕ(yn)} can be written as a union of disjoint events as

{un 6= ϕ(yn)} =
n
⋃

i=1

{

{ui 6= ϕi(û
i−1, yn)} ∩ {ui−1 = ûi−1}

}

. (63)

(d) follows from the fact due to Definition 7 that for alli ∈ Ic
n,

PrpUi,Y n
{Ui 6= ϕi(U

i−1, Y n)} = 0. (64)

Consider the following chain of inequalities for eachi ∈ In:

∑

(ui,yn)∈U i×Yn

pU i,Y n(ui, yn)1{ui 6= ϕi(u
i−1, yn)}

=
∑

(ui−1,yn)∈U i−1×Yn

pU i−1,Y n(ui−1, yn)
∑

ui∈U
pUi|U i−1,Y n(ui|ui−1, yn)1{ui 6= ϕi(u

i−1, yn)} (65)

(34)
≤

∑

(ui−1,yn)∈U i−1×Yn

pU i−1,Y n(ui−1, yn)
∑

ui∈U
pUi|U i−1,Y n(ui|ui−1, yn)

√

pUi|U i−1,Y n(ui + 1|ui−1, yn)

pUi|U i−1,Y n(ui|ui−1, yn)

(66)

(18)
= ZpUi,Y n

(Ui|U i−1, Y n)/2 (67)

(56)
≤ 1

2n4
. (68)

Combining (62) and (68), we obtain

PrrΛIc
n
,Un,Xn,Y n {Un 6= ϕ(Y n)} ≤ 2

√
ln 2

n
+

1

2n3
. (69)

The lemma then follows from (57) and (69).

B. Save-and-Transmit EH-Polar Codes with Randomized Frozen Bits

In this section, we will use the randomized polar codes defined in the previous section to

construct save-and-transmit EH-polar codes and establishthe following theorem, which will

immediately lead to Theorem 1.
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Theorem 2:Let µ = 4.714 and fix a binary-input EH channelqY |X andpX such that

EpX [X ] = EpE1
[E1] = P. (70)

Define a , max
{

EpE1
[E2

1 ], e
}

as in (14). Then, there exists at > 0 such that the following

holds: For anyn ≥ 3 which equals to2k for somek ∈ N and sufficiently large such that

n

lnn
≥ a

P 2
, (71)

there exists a save-and-transmit(m, (n, pX , In,ΛIc), εn)-EH polar code with

m ≤ 6
√
an lnn

P
+ 1, (72)

|In|
n

≥ IpXqY |X
(X ; Y )− t

n1/µ
(73)

and

εn ≤ e0.4

n lnn
+

4
√
ln 2

n
+

1

2n3
. (74)

Proof: Fix a binary-input EH channelqY |X andpX such that (70) holds. By Lemma 4, there

exists at > 0 such that the following holds: For anyn which equals to2k for somek ∈ N,

there exists a randomized(n, pX , In,ΛIc, δn)-polar code with

|In|
n

≥ IpXqY |X
(X ; Y )− t

n1/µ
(75)

and

δn ≤ 2
√
ln 2

n
+

1

2n3
. (76)

Define

m ,

⌈

6
√
an lnn

P

⌉

(77)

for eachn ∈ N. Fix a sufficiently largen ≥ 3 that satisfies (71) and consider the corre-

sponding save-and-transmit(m, (n, pX , In,ΛIc))-EH code as described in Definition 9 where

the (n, pX , In,ΛIc, δn)-polar code with stochastic functionsΛIc serves as an effective code of

the save-and-transmit(m, (n, pX , In,ΛIc))-EH code. LetN , m+n, let rEN ,Un,XN ,Y N ,Ûn be the

distribution induced by the save-and-transmit(m, (n, pX , In,ΛIc))-EH code which satisfies the
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EH constraints (39), whereUn denotes the information and frozen bits chosen by the effective

code andÛn denote the estimate ofUn declared by noded (cf. Definition 9). Using (8), we

have

rEN ,Un,XN ,Y N ,Ûn = rUn

(

N
∏

i=1

pEi
rXi|Un,EirYi|Xi

)

rÛn|Y N (78)

whererYi|Xi
(yi|xi) = qY |X(yi|xi) for all i ∈ {1, 2, . . . , N}, all xi ∈ X and allyi ∈ Y . In addition,

let X̃n be the transmitted codeword induced by the randomized(n, pX , In,ΛIc, δn)-polar code

when there is no cost constraint, and define

rEN ,Un,XN ,Y N ,Ûn,X̃n , rEN ,Un,XN ,Y N ,ÛnrX̃n|Un (79)

whererX̃n|Un characterizes the inverse polarization mapping used by the(n, pX , In,ΛIc, δn)-polar

code according to (37). The probability of decoding error ofthe save-and-transmit

(m, (n, pX , In,ΛIc))-EH code can be bounded as

Prr
EN,Un,XN,Y N ,Ûn,X̃n

{

Un 6= Ûn
}

≤ Prr
EN,Un,XN,Y N ,Ûn,X̃n

{

{Un 6= Ûn} ∩
{

m+n
⋂

i=m+1

{

i−m
∑

ℓ=1

X̃ℓ ≤
i
∑

ℓ=1

Eℓ

}}}

+ Prr
EN,Un,XN,Y N ,Ûn,X̃n

{

m+n
⋃

i=m+1

{

i−m
∑

ℓ=1

X̃ℓ >

i
∑

ℓ=1

Eℓ

}}

. (80)

Consider

Prr
EN,Un,XN,Y N ,Ûn,X̃n

{

{Un 6= Ûn} ∩
{

m+n
⋂

i=m+1

{

i−m
∑

ℓ=1

X̃ℓ ≤
i
∑

ℓ=1

Eℓ

}}}

(38)
= Prr

EN,Un,XN,Y N ,Ûn,X̃n







{Un 6= Ûn}∩
{

⋂m+n
i=m+1

{

∑i−m
ℓ=1 X̃ℓ ≤

∑i
ℓ=1Eℓ

}}

∩
{

(Xm+1, Xm+2, . . . , Xm+n) = X̃n
}







(81)

≤ Prr
EN,Un,XN,Y N ,Ûn,X̃n

{

{Un 6= Ûn} ∩
{

(Xm+1, Xm+2, . . . , Xm+n) = X̃n
}}

. (82)

By inspecting (31) in Definition 7, (37) and (42) in Definition9 and the definition ofr in (79),

we conclude that the upper bound in (82) cannot exceed the probability of decoding error of the
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effective code, which implies that

Prr
EN,Un,XN,Y N ,Ûn,X̃n

{

{Un 6= Ûn} ∩
{

m+n
⋂

i=m+1

{

i−m
∑

ℓ=1

Xℓ ≤
i
∑

ℓ=1

Eℓ

}}}

≤ δn. (83)

In order to bound the second probability in (80), recall thatpXn =
∏n

i=1 pXi
consider the

following chain of inequalities:

Prr
EN,Un,XN ,Y N,Ûn,X̃n

{

m+n
⋃

i=m+1

{

i−m
∑

ℓ=1

X̃ℓ >

i
∑

ℓ=1

Eℓ

}}

(a)
= Prr

EN rX̃n

{

m+n
⋃

i=m+1

{

i−m
∑

ℓ=1

X̃ℓ >

i
∑

ℓ=1

Eℓ

}}

(84)

=

∫

R
m+n
+

∑

x̃n∈{0,1}n
rEm+n(em+n)rX̃n(x̃

n)1

{

m+n
⋃

i=m+1

{

i−m
∑

ℓ=1

x̃ℓ >

i
∑

ℓ=1

eℓ

}}

dem+n (85)

≤ 2‖rX̃n − pXn‖+
∫

R
m+n
+

∑

xn∈{0,1}n
rEm+n(em+n)pXn(xn)1

{

m+n
⋃

i=m+1

{

i−m
∑

ℓ=1

xℓ >
i
∑

ℓ=1

eℓ

}}

dem+n

(86)

(b)
≤ 2

√
ln 2

n
+ PrrEm+npXn

{

m+n
⋃

i=m+1

{

i−m
∑

ℓ=1

Xℓ >

i
∑

ℓ=1

Eℓ

}}

(87)

where

(a) follows from (78) and (79).

(b) follows from Lemma 3.

SincerEm+n =
∏m+n

i=1 pEi
by (78) andpXn =

∏n
i=1 pXi

, it follows from Proposition 1 and (77)

that

PrrEm+npXn

{

m+n
⋃

i=m+1

{

i−m
∑

ℓ=1

Xℓ >

i
∑

ℓ=1

Eℓ

}}

≤ e0.4

n lnn
, (88)

which implies from (87) that

Prr
EN,Un,XN,Y N ,Ûn,X̃n

{

m+n
⋃

i=m+1

{

i−m
∑

ℓ=1

X̃ℓ >

i
∑

ℓ=1

Eℓ

}}

≤ 2
√
ln 2

n
+

e0.4

n lnn
. (89)
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Combining (76), (80), (83) and (89), we conclude that the probability of decoding errorεn of

the save-and-transmit(m, (n, pX , In,ΛIc))-EH polar code satisfies

εn ≤ e0.4

n lnn
+

4
√
ln 2

n
+

1

2n3
. (90)

Consequently, the theorem follows from the fact that the save-and-transmit(m, (n, pX , In,ΛIc))-

EH polar code satisfies (75), (77) and (90) for each sufficiently large n ≥ 3 that satisfies (71).

We are ready to present the proof of Theorem 1.

Proof of Theorem 1:Choose ap∗X such thatEp∗X
[X ] = P and

Ip∗XqY |X
(X ; Y ) = max

pX :EpX
[X]=P

IpXqY |X
(X ; Y )

(10)
= C(P ). (91)

Theorem 2 implies that there existα1 > 0, α2 > 0 and α3 > 0 such that for all sufficiently

largek, a save-and-transmit(m, (n, pX , In,ΛIc), εn)-EH polar code exists wheren = 2k,

m ≤ α1

√
n lnn, (92)

|In|
n

≥ Ip∗XqY |X
(X ; Y )− α2

n1/µ
(93)

and

εn ≤ α3

n
. (94)

In addition, for all sufficiently largen, we have

m
(92)
≤ n, (95)

n1/µ > α1 + α2 (96)

and

m

m+ n
≤ m

n
(97)

(92)
≤ α1

√

lnn

n
(98)
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≤ α1

n1/4.714
(99)

=
α1

n1/µ
. (100)

For such a save-and-transmit(m, (n, pX , In,ΛIc), εn)-EH polar code, we have for sufficiently

largen

− log(m+ n)

log
∣

∣

∣
C(P )− |In|

m+n

∣

∣

∣

(91)
=

− log(m+ n)

log
∣

∣

∣
Ip∗XqY |X

(X ; Y )− |In|
m+n

∣

∣

∣

(101)

=
log(m+ n)

log
(

1
/
∣

∣Ip∗XqY |X
(X ; Y )− |In|

m+n

∣

∣

) (102)

(a)
≤ log(m+ n)

log
∣

∣

∣

n1/µ

α1+α2

∣

∣

∣

(103)

(96)
=

log(m+ n)

log
(

n1/µ

α1+α2

) (104)

(95)
≤ log(2n)

1
µ
logn− log(α1 + α2)

(105)

where (a) follows from the fact that for sufficiently largen, we have

Ip∗XqY |X
(X ; Y )− |In|

m+ n
= Ip∗XqY |X

(X ; Y )− |In|
n

+
m|In|

n(m+ n)
(106)

≤ Ip∗XqY |X
(X ; Y )− |In|

n
+

m

m+ n
(107)

(100)
≤ Ip∗XqY |X

(X ; Y )− |In|
n

+
α1

n1/µ
(108)

(93)
≤ α1 + α2

n1/µ
. (109)

Since limk→∞ ε2k = 0 by (94), it follows from (105) that for eachε ∈ (0, 1), there exists for

each sufficiently largek a save-and-transmit(m, (2k, pX , I2k ,ΛIc), ε)-EH polar code such that

− log(m+ 2k)

log
∣

∣

∣
C(P )− |I

2k
|

m+2k

∣

∣

∣

≤ k + 1
k
µ
− log(α1 + α2)

, (110)

which implies from Definition 11 that

µPC-EH
ε ≤ µ (111)
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for eachε ∈ (0, 1).

IV. CONCLUDING REMARKS

The encoding and decoding complexities of our proposed save-and-transmit polar codes are

the same as that of the polar codes of the save-and-transmit polar codes. Therefore as discussed

in [8, Sec. III-B], the encoding and decoding complexities of our proposed save-and-transmit

polar codes are at mostO(n logn) as long as we allow pseudorandom numbers to be shared

between the encoder and the decoder for encoding and decoding the randomized frozen bits. By

a standard probabilistic argument, there must exist a deterministic encoder for the frozen bits

such that the decoding error of the save-and-transmit polarcode with the deterministic encoder

is no worse than the polar code with randomized frozen bits. In the future, it may be fruitful

to develop low-complexity algorithms for finding a good deterministic encoder for encoding the

frozen bits. Other directions for future work can include exploring polar codes for EH channels

under other asymptotic regimes such as the error exponent, moderate deviations or error floors

regimes studied by Mondelli, Hassani and Urbanke [4].

APPENDIX A

PROOF OFLEMMA 2

The proof of Lemma 2 relies on the following three propositions. The proof of Lemma 2 will

be presented after stating the three propositions.

Before stating the first proposition, we definesX to be the uniform distribution onX , define

sXn to be the distribution ofn independent copies ofX ∼ sX such thatsXn(xn) =
∏n

i=1 sX(xi)

for all xn ∈ X n, and define

sUn,Xn,Y n , sXnpUn|Xn

n
∏

i=1

pYi|Xi
(112)

wherepUn|Xn characterizes the relation betweenUn andXn in (21).

Proposition 5 ( [16, Proposition 2]):Fix a binary-input channelqY |X , a k ∈ N and an index

setI ⊆ {1, 2, . . . , 2k}. Let n = 2k. Then, there exists an(n, 2|I|, εn)-code such that

εn ≤
∑

i∈I
ZsUn,Xn,Y n (Ui|U i−1, Y n) (113)
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wheresUn,Xn,Y n is as defined in (112).

The following proposition can be derived in a straightforward manner from the proofs of [4,

Ths. 1 and 2] and [4, Remark 4].

Proposition 6: Fix a binary-input channelqY |X and let µ = 4.714. Then, there exist two

positive numberst1 and t2 which do not depend onn such that for anyk ∈ N andn , 2k, we

have

1

n

∣

∣

∣

∣

{

i ∈ {1, 2, . . . , n}
∣

∣

∣

∣

ZsUn,Xn,Y n (Ui|U i−1, Y n) ≤ 1

n4

}
∣

∣

∣

∣

≥ IsXqY |X
(X ; Y )− t1

n1/µ
. (114)

In addition, if

IsXqY |X
(X ; Y ) = max

pX
IpXqY |X

(X ; Y ), (115)

then

1

n

∣

∣

∣

∣

{

i ∈ {1, 2, . . . , n}
∣

∣

∣

∣

ZsUn,Xn,Y n (Ui|U i−1, Y n) ≥ 1− 1

n4

}
∣

∣

∣

∣

≥ 1− IsXqY |X
(X ; Y )− t2

n1/µ
.

(116)

Proof: It follows from the proof of [4, Th. 2] that there exists a mapping h : [0, 1] → [0, 1]

such thath(0) = h(1) = 0, h(x) > 0 for any x ∈ (0, 1) and

sup
x∈(0,1),y∈[x

√
2−x2,2x−x2]

h(x2) + h(y)

2h(x)
≤ 1

21/µ
. (117)

Then, (114) follows from the inequality in (117), [4, Eq. (34) in proof of Th. 1] and [4, Remark 4].

It remains to prove (116). To this end, suppose (115) holds. Define

I ,

{

i ∈ {1, 2, . . . , n}
∣

∣

∣

∣

ZsUn,Xn,Y n (Ui|U i−1, Y n) ≤ 1

n4

}

, (118)

which implies from Proposition 5 that there exists an(n, 2|I|, n−3)-code. Since the capacity of

the channel is equal toIsXqY |X
(X ; Y ) by (115), it follows from [13, Th. 48] (also [14] and [15])

that there exists aλ1 > 0 such that

log 2|I| ≤ nIsXqY |X
(X ; Y ) + λ1

√
n, (119)
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which implies that

|I|
n

≤ IsXqY |X
(X ; Y ) +

λ1√
n
. (120)

On the other hand, define

J ,

{

i ∈ {1, 2, . . . , n}
∣

∣

∣

∣

ZsUn,Xn,Y n (Ui|U i−1, Y n) ∈
[

1

n4
, 1− 1

n4

]}

. (121)

It has been shown in [4, Eq. (65) and Remark 4] that there exists aλ2 > 0 such that

|J |
n

≤ λ2

n1/µ
. (122)

Statement (116) then follows from (120) and (122).

The following construction of̂pÛn,X̂n,Ŷ n and the subsequent proposition are the main tools

used in [8] for generalizing polarization results for symmetric channels to asymmetric channels.

Fix any distributionpX defined onX = {0, 1}. We definep̂Ûn,X̂n,Ŷ n based onpX in several steps

as follows. Definep̂X̂ to be the uniform distribution over̂X , {0, 1}, defineŶ , {0, 1} × Y ,

define q̂Ŷ |X̂ such that

q̂Ŷ |X̂((x̂+ x, y)|x̂) = pX(x)qY |X(y|x) (123)

for all (x̂, x, y) ∈ X̂ × X × Y where+ denotes addition overGF(2), definep̂X̂n,Ŷ n such that

p̂X̂n,Ŷ n(x̂
n, (x̂n + xn, yn)) =

n
∏

i=1

p̂X̂(x̂i)q̂Ŷ |X̂((x̂i + xi, yi)|x̂i) (124)

for all (x̂n, xn, yn) ∈ X̂ n × X n ×Yn, and definêpÛn,X̂n,Ŷ n such that

p̂Ûn,X̂n,Ŷ n(û
n, x̂n, (x̂n + xn, yn)) , p̂X̂n,Ŷ n(x̂

n, (x̂n + xn, yn))pUn|Xn(ûn|x̂n) (125)

(124)
= pUn|Xn(ûn|x̂n)

n
∏

i=1

p̂X̂(x̂i)q̂Ŷ |X̂((x̂i + xi, yi)|x̂i) (126)

(123)
= pUn|Xn(ûn|x̂n)

n
∏

i=1

(

p̂X̂(x̂i)pX(xi)qY |X(yi|xi)
)

(127)

for all (x̂n, xn, yn) ∈ X̂ n × X n ×Yn, wherepUn|Xn was defined in (21).

Proposition 7 ( [8, Th. 2]): For any binary-input channelqY |X and anypX , definepUn,Xn,Y n

and p̂Ûn,X̂n,Ŷ n as in (23) and (125) respectively. Then, the following equations hold for each
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i ∈ {1, 2, . . . , n}:

pU i,Y n(ui, yn) = 2n−1p̂Û i−1,Ŷ n|Ûi
(ui−1, (0n, yn)|ui) (128)

for each(ui, yn) ∈ U i × Yn where0n denotes then-dimensional zero tuple, and

ZpUn,Xn,Y n (Ui|U i−1, Y n) = Zp̂
Ûn,X̂n,Ŷ n

(Ûi|Û i−1, Ŷ n). (129)

Proof of Lemma 2: Using Propositions 6 and 7 and following similar proceduresin the

proof of [8, Th. 1], we obtain Lemma 2.

APPENDIX B

PROOF OFLEMMA 3

Fix a pX and a k ∈ N, and let n = 2k. Let rUn,Xn,Y n be as defined in (52), which is

the distribution induced by the randomized(n, pX , I,ΛIc)-polar code whereΛIc ∼ rΛIc . Let

pUn,Xn,Y n be the distribution as defined in (23). In this proof some subscripts of distributions are

omitted for simplicity. In order to prove (53), we consider the following chain of inequalities:

2‖pUn,Xn,Y n − rUn,Xn,Y n‖

=
∑

un∈Un,xn∈Xn,yn∈Yn

|p(un, xn, yn)− r(un, xn, yn)| (130)

=
∑

un∈Un,xn∈Xn,yn∈Yn

|p(un, yn)p(xn|un, yn)− r(un, yn)r(xn|un, yn)| (131)

(a)
=

∑

un∈Un,xn∈Xn,yn∈Yn

|p(un, yn)p(xn|un)− r(un, yn)p(xn|un)| (132)

(b)
=

∑

un∈Un,yn∈Yn

|p(un, yn)− r(un, yn)| (133)

(c)
=

∑

un∈Un,yn∈Yn

|p(un)− r(un)|p(yn|un) (134)

=
∑

un∈Un

|p(un)− r(un)| (135)

=
∑

un∈Un

∣

∣

∣

∣

∣

n
∑

i=1

(

p(ui|ui−1)− r(ui|ui−1)
)

(

i−1
∏

ℓ=1

p(uℓ|uℓ−1)

)(

n
∏

ℓ=i+1

r(uℓ|uℓ−1)

)
∣

∣

∣

∣

∣

(136)

≤
n
∑

i=1

∑

ui∈U i

∣

∣p(ui|ui−1)− r(ui|ui−1)
∣

∣

i−1
∏

ℓ=1

p(uℓ|uℓ−1) (137)
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where

(a) follows from (21) and (31) and the fact by (20) thatGn is invertible.

(b) follows from the fact by (21) that for eachun ∈ Un, there exists anxn ∈ X n such that

p(xn|un) = 1.

(c) follows from the fact by (21) and (31) that givenun,

pY n|Un=un(yn) = rY n|Un=un(yn) =

n
∏

i=1

qY |X(yi|x̃i) (138)

where

[x̃1 x̃2 . . . x̃n] = [u1 u2 . . . un]G
−1
n . (139)

Using Definition 7 and recalling thatrUn,Xn,Y n|ΛIc=λIc is the distribution induced by the(n, pX , I, λIc)-

polar code, we have

r(ui|λIc) = r(ui|λIc∩{1,2,...,i}) (140)

for eachi ∈ {1, 2, . . . , n} and

r(ui|ui−1, λIc) = r(ui|ui−1, λi) (141)

for eachi ∈ Ic. Following (137), we consider for eachi ∈ Ic and eachui ∈ {0, 1}i

r(ui|ui−1)
(52)
=

∑

λIc∈Γ(Ic) r(λIc)r(ui|λIc)
∑

λIc∈Γ(Ic) r(λIc)r(ui−1|λIc)
(142)

(a)
=

∑

λIc∈Γ(Ic) r(λIc)r(ui−1|λIc∩{1,2,...,i−1})r(ui|ui−1, λi)
∑

λIc∈Γ(Ic) r(λIc)r(ui−1|λIc∩{1,2,...,i−1})
(143)

(50)
=

∑

λ∈Γ(Ic)∩{1,2,...,i−1} r(λ)r(u
i−1|λ)∑λi∈Γ({i}) r(λi)r(ui|ui−1, λi)

∑

λ∈Γ(Ic)∩{1,2,...,i−1} r(λ)r(u
i−1|λ) (144)

(30)
=

∑

λ∈Γ(Ic)∩{1,2,...,i−1} r(λ)r(u
i−1|λ)

∑

λi∈Γ({i}) r(λi)1{ui = λi(u
i−1)}

∑

λ∈Γ(Ic)∩{1,2,...,i−1} r(λ)r(u
i−1|λ) (145)

(b)
= pUi|U i−1(ui|ui−1), (146)

where

(a) follows from (140) and (141).
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(b) follows from the fact by (51) that for eachui−1 ∈ {0, 1}i−1

PrrΛi

{

ui = Λi(u
i−1)
}

= pUi|U i−1(ui|ui−1) (147)

for eachui ∈ {0, 1}.

Combining (137) and (146), we obtain

2‖pUn,Xn,Y n − rUn,Xn,Y n‖ ≤
∑

i∈I

∑

ui∈U i

∣

∣p(ui|ui−1)− r(ui|ui−1)
∣

∣ p(ui−1). (148)

For eachi ∈ I, since

∑

ui∈U i

∣

∣p(ui|ui−1)− r(ui|ui−1)
∣

∣ p(ui−1)
(29)
=

∑

ui−1∈U i−1

p(ui−1)
∑

ui∈{0,1}

∣

∣p(ui|ui−1)− 1/2
∣

∣ (149)

(a)
≤

∑

ui−1∈U i−1

p(ui−1)
√

2 ln 2(1−HpUi|U
i−1=ui−1

(Ui))

(150)

(b)
≤
√

2 ln 2(1−HpUi
(Ui|U i−1)) (151)

(19)
≤
√

2 ln 2
(

1− (ZpUi
(Ui|U i−1))2

)

(152)

(26)
≤
√

2 ln 2
(

1− (1− n−4)2
)

(153)

≤ 2
√
ln 2

n2
(154)

where (a) follows from Pinsker’s inequality and (b) followsfrom Jensen’s inequality, it follows

from (148) that

‖pUn,Xn,Y n − rUn,Xn,Y n‖ ≤
√
ln 2

n
. (155)
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