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Chiral Surface Modes in Three-Dimensional Topological Insulators

Kiminori Hattori and Hiroaki Okamoto
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
(Dated: January 7, 2016)

In a slab of ferromagnetic three-dimensional topological insulator (3DTI) subjected to a uniform
exchange field normal to its top and bottom surfaces, the quantum anomalous Hall effect creates
a chiral mode delocalized on the side faces. The chiral surface mode stems from Dirac surface
states enclosing a 3DTT and makes a striking contrast to conventional edge modes localized at the
circumference of a finite 2D system. In a nonmagnetic 3DTI, analogously, delocalized helical modes
consisting of a pair of oppositely propagating chiral surface modes are produced by the quantum

spin Hall effect.

PACS numbers: 73.20.-r,73.43.-f,72.25.-b

The quantum anomalous Hall (QAH) state is an exotic
quantum Hall (QH) state without Landau levels. The
QAH effect is theoretically predicted [IH3] and experi-
mentally observed [4H6] in topological insulators (TIs),
which host two-dimensional (2D) Dirac fermions on the
surface due to the nontrivial bulk topology [7, §]. It
is well known that in a conventional QH system, 1D
chiral edge modes are created in the Landau gap, re-
flecting the bulk-boundary correspondence. Analogous
chiral modes attributable to the QAH effect attract a
great deal of interest in terms of basic physics and po-
tential applications. Particularly, electron transport via
the chiral mode, where backscattering is completely for-
bidden, is essentially immune to both magnetic and non-
magnetic impurities. This is a salient feature crucial to
low-dissipation electronics.

Regarding the QAH effect in 3DT1Is, however, a funda-
mental issue remains unresolved. The chiral edge state
is localized at the circumference of a finite QH system,
whereas there are no edges on the closed surface covering
a 3DTI. Where chiral modes should appear is an essential
question for the latter. In a nonmagnetic 3DTI, massless
Dirac surface states are formed in the bulk insulating
gap. Incorporating ferromagnetism into the system by
magnetic doping results in Dirac fermions being exchange
coupled to magnetic moments. In the presence of an ex-
change field normal to the surface, the surface spectrum
opens a mass gap, yielding the half-quantized Hall con-
ductivity e?/2h [8]. A uniform magnetization generally
separates the closed surface of a 3DTI into massive and
massless domains. The previous theoretical study for a
cubic TT suggests that the QAH effect produces chiral
edge modes that are localized at the interfaces between
massive and massless domains [9]. On the other hand,
the theory of the intimately correlated QH effect predicts
that chiral modes are delocalized in the field-free portion
of the TI surface [10].

The aim of this Letter is to provide the definite an-
swer to this issue. We analyze a ferromagnetic 3DTI
subjected to a uniform exchange field with realistic pa-
rameters in addition to its 2D equivalent as a minimal

model. In a massless domain sandwiched between two
massive domains, there exist a single chiral mode and
nonchiral quantum well (QW) modes. The chiral mode
is not localized at the mass boundary but essentially de-
localized on the 2D plane. We refer to this as a chiral
surface mode to distinguish it from conventional chiral
edge modes. The chiral surface mode is also qualitatively
distinct from that in the QH state in terms of spatial dis-
tribution as well as energy dispersion. Furthermore, we
explore the quantum spin Hall (QSH) effect in a thin slab
of nonmagnetic 3DTI, and demonstrate that this effect
generates delocalized helical modes constituted of a pair
of oppositely propagating chiral surface modes.

We begin by considering Dirac surface states of a semi-
infinite 3DTI, which are modeled by the 2D Hamiltonian
7, B

H =~(o xk), +m.o0., (1)

in momentum space, where o, (1 = x,y, z) denotes the
Pauli matrix in spin space and v/k corresponds to the
velocity of surface electrons. The out-of-plane exchange
field m, creates a mass gap of size 2|m,| in the Dirac
dispersion. A possible in-plane field m) = (mg,my,0)
is ignored for simplicity since it merely shifts the Dirac
point by Ak = (my| x z)/7.

As an illustrative example, we suppose a cuboid of
magnetic 3DTI as shown in Fig. The cuboid TI
is enclosed by massive top and bottom surface states
and massless side surface states. In this situation, map-
ping these surfaces onto the xy plane constructs a min-
imal 2D model, in which m, in Eq. is expressed as
m.(x) = msgn(x)f(]z| — a). The gapless central region
|z| < a is sandwiched between the two gapped outer re-
gions || > a. This feature illuminates a QW problem
underlying the QAH effect in 3D.

To elucidate microscopic details, we derive the
retarded Green’s function G(z,2';k,, F) at a mo-
mentum k, and an energy E in terms of scatter-
ing wave functions following the McMillan method
[IIHI3].  See, Supplemental Material [14] for de-
tails of the derivation. The local density of states
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FIG. 1. (Color online) A cuboid of ferromagnetic TI sub-
jected to a uniform exchange field m = (0,0, m) and its sur-
face mapped onto the zy plane. In the 2D model, the out-of-
plane field m.(z) is nonuniform. The massless central region
|z| < a is sandwiched between two massive regions |z| > a to
form a QW structure of width 2a. In the two outer regions
x > a and ¢ < —a, the induced mass +m changes sign. In
both models, chiral surface modes propagate in the y direc-
tion.

m_(x)

N(z,E) = 5= [ dkyA(x,ky, E) and the integrated

spectral function A(k,, E) = f_bb dzA(z, ky, E) are cal-
culated from the local spectral function A(z,k,,E) =
—% ImTrG(z,z;ky, E) in a given sampling section
|x] < b. Similarly, the spin-resolved spectral func-
tion A,(z,ky, E) = —L1ImTro,G(z, z;ky, E) leads to
N,(z,FE) and A,(ky, F). Spin polarization is character-
ized by P,(x,E) = Ny(x,E)/N(z, E) in real space and
P,(ky,E) = A,(ky, E)/A(ky, E) in momentum space.

Figure [2| shows the numerical results for m > 0. In
the mass gap |E| < |m|, the QW effect produces elec-
tron and hole subbands. The subband dispersion varies
appreciably with the QW width 2a. A stronger confine-
ment in a narrow well suppresses subband formation in
the gap. Besides these normal QW modes, a single chiral
mode traversing the mass gap emerges independently of
a. The chiral state, as well as the QW states, spatially
extends inside the QW. Furthermore, it is observed that
P, =1 and P, = P, = 0 for the chiral mode [14].

The numerical eigenvalues for bound states in the QW
exactly coincide with the spectral peaks shown in Fig.
Analytically, the QW eigenvalues are found to be
ESY = dy\/k,?+ (n7/20)2 (n = 1,2,3,---) in the
|m| — oo limit. This amounts to the QW gap of size
Eqw = my/a for a sufficiently strong confinement. For
example, Fqw ~ 1meV at 2a =~ 1pym with the assump-
tion of 7 &~ 0.2eVnm (see below). The finite gap per-
sisting even in such a wide QW reasonably accounts for
the scale-invariant QAH effect in 3DTIs observed exper-
imentally [5].

The chiral mode is also a QW eigenstate. The rel-
evant eigenvalue problem can be more generically an-
alyzed for an arbitrary mass distribution m.(z). It
is straightforward to show that the eigenvalue equa-
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FIG. 2. (Color online) [(a) and (b)] Spectral function A(k,, E)
and [(c) and (d)] local density of states N(z, E) calculated for
the minimal 2D model. The parameters are a = £ in [(a) and
(¢)] and a = 5¢ in [(b) and (d)]. The sampling length is set at
b = 10¢. Solid green lines in [(a) and (b)] represent the QW
eigenvalues.

tion H(z)|¢-(z)) = E,|é-(x)) possesses an in-gap
solution consisting of E, = ryk, and |¢,(x)) =
e~ Jo wm=(v) |1y where H(z) = e~V H (z,y)e*¥ and
Iry = %(l,r)t with r = £1. For m,(z) in the 2D
model, only r = sgn(m) gives a nondivergent physi-
cal solution, which is explicitly expressed as |p(x)) =
e~ (zl=a)0(e[=a)/ |son (1)), where £ =~/ |m] is the char-
acteristic length scale of the QAH state. Thus, the chiral-
state wave function is essentially uniform in the massless
central region |z| < a, and exponentially decays in the
two massive outer regions |z| > a. The chiral surface
mode is a natural extension of the chiral boundary mode
described by |p(z)) = e~1#I/¢|sgn(m)) in the a — 0 limit
[13]. It is also worth noting that |r) corresponds to the
eigenspinor of o, i.e., the chiral surface mode propagat-
ing in the £y direction is perfectly spin-polarized in the
+x direction. This is a corollary of the spin-velocity lock-
ing prescribed by v = %z x o for a 2D Dirac fermion on
the TT surface.

It should be stressed here that the chiral surface state
is not a superposition of interface states localized at the
boundaries between massive (top and bottom surfaces)
and massless (side surfaces) domains [J] but a single
eigenmode delocalized in the massless domain. The chiral
surface mode also differs from the chiral modes stemming
from Landau levels on the closed surface of a 3DTI. For
the latter, chiral-state wave functions are nonuniform in
the field-free region, and currents carried by these states



are reversed in electron and hole branches [10].

The presence or the absence of chiral modes can be
examined from the viewpoint of charge conservation. In
response to electromagnetic fields E and B, the QAH
effect induces local charge pg = 04yB. and current
ju = o0,yE x z. They satisfy a generalized continu-
ity equation Oipg + V - ju = gu. The source term
gu = E - (z x Voy,) is nonvanishing if the QAH con-

ductivity oz, = —% sgn(m,) varies in space [13]. It

is easily found that the induced charge Qpu follows the
2

relation %QH = ffcoo drgy = —5rk,, where r =

{sgn[m.(c0)] — sgn[m.(—oc0)]}. This means that mass
inversion such that m,(co)m,(—o0) < 0 always requires
a single chiral mode obeying %Qc = %TEZJ to conserve
the total charge Q@ = Qg + Q¢. The analytical and nu-
merical results described above support this argument.

The minimal 2D model is useful in obtaining physical
insight into the chiral surface mode confined in a QW.
However, this model is not enough to quantitatively de-
scribe the 3D nature of a realistic sample. In what fol-
lows, we deal with such a 3D problem. For this purpose,
we employ the 4 x 4 Dirac Hamiltonian representing a
ferromagnetic 3DTI, which is given in momentum space
by

H = D(k) + A(k) - r,0 + B(k)7, + mo, (2)

where D = D1k,” 4+ Dok?, A = (Agk,, Ask,, A1k.), B =
By — Bik,* — Bok?, k?* = k,° + k,°, and 7, denotes
the Pauli matrix in orbital space. The parameters are
estimated in the literature for the BisSes family of TI
materials [7].

For numerical calculation, Eq. is discretized on
a cubic lattice with lattice spacing a. The lattice
Hamiltonian H = Zj H; is decomposed into H; =
17) Ho (| + [7) V(G + 1] + [+ 1) VT (j|, where Hy de-
notes the Hamiltonian matrix for a single isolated slice
parallel to the yz plane, and V is the hopping matrix
connecting the two adjacent slices along x = ja. The
periodic boundary condition along y is imposed to re-
move side surfaces normal to y. To eliminate coupling
between side surfaces normal to x, we assume the semi-
infinite region x € (0,00). The intraslice Green’s func-
tion G;; = (j|(E — H)7'|j) can be computed recur-
sively as follows: G;; = (¢;7' —VgVT)~! and g; =
(go~r = VTig;_1V)~! with go = (E — Hp)~!. The sur-
face Green’s function ¢ = (G711 of the semi-infinite re-
gion is derived by numerically solving the quadratic ma-
trix equation g = go + goVgVTg [I5HI7]. The present
recursive procedure is similar to that devised previ-
ously [I8] but is more efficient in calculating the local
Green’s function Gj;. The local spectral function is
given by A(r,k,, E) = f#ImTrijyu(ky,E), where
r = (z,2) = a(j,!). From A(r, ky, E) in a given sampling
section x € (0,d), we obtain the local density of states
N(r,E) = ifﬂ/a dkyA(r,ky, E) and the integrated
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FIG. 3. (Color online) Spectral function A(ky, E) calculated
for a semi-infinite ferromagnetic TI with m = 50meV. The
parameters are L, = 5nm in [(a) and (b)] and 20nm in [(c)
and (d)]. [(a) and (c)] show the results for the front sampling
section, and [(b) and (d)] for the rear sampling section. The
sampling length is set at d = 10nm.

spectral function A(k,, E) = fod dx fOLZ dzA(r, ky, E).
An analogous recursive algorism applies to the opposite
semi-infinite region x € (—00,0). The numerical results
shown below are obtained with a = 1A and realistic pa-
rameters for BisSes.

Figure [3| displays A(k,, E) calculated for m = 50meV
and L, > bnm. In this thickness range, intersurface cou-
pling is negligibly weak relative to the exchange interac-
tion so that the system is in the QAH phase [I4]. As seen
in the figure, spectral peaks are comprised of a single chi-
ral mode and multiple QW modes in the mass gap. The
observed QW modes consist only of hole subbands. The
lack of electron subbands is due to electron-hole asym-
metry induced by the D term in Eq. . The QW
modes are eliminated by sufficiently reducing L., leav-
ing only a chiral mode across the gap. The chiral mode
propagates in opposite directions on front [z € (0,d) in
(0,00)] and rear [z € (—d,0) in (—o0,0)] sides, implying
its unidirectional circulation in a finite system. Figure
compares N(r, E) at E = 50meV for m = 50meV to that
for m = 0. Metallic surface states continuously enclose
the inner bulk region for m = 0, whereas an extended
state sticks to the side surface in the QAH state. The
latter is characteristic of a chiral surface mode.

These observations can be understand quantitatively
in terms of the effective 2D Hamiltonian deduced from
projecting Eq. onto the subspace of surface states
[7, 19-21]. The effective Hamiltonian is given by H,, =
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FIG. 4. (Color online) Local density of states N(z,z) at E =
50meV calculated for a semi-infinite TI of L, = 5nm. Two
graphs compare the results for (a) m = 50meV and (b) m = 0
in the front sampling section of length d = 10nm.

(o x k),s. + mo, for decoupled top and bottom sur-
face states, for which s, = %1, respectively. The pa-

rameter is evaluated to be v = Axv/1 — I12 = 0.41eVnm
and Iy = D;/B; = 0.13, yielding an estimate for the
chiral-state decay length at £ = «/m = 8.Inm. This
explains N(r,E) near z = 0 or L., which forms a
tail away from the side surface of an extent on the or-
der of ¢/2. The anisotropic Hamiltonian expressed as
Hy. = (nioyks; — 720.ky)s. + Iomo, is derived for front
(s, = —1) and rear (s, = +1) side surface states. The
parameters are given by v; = A1V 1 — I,% = 0.21eVnm,
Yo = Ag\/1 — I,> = 0.38¢Vnm and I, = Dy/By = 0.35.
Following the minimal 2D model, the QW level spac-
ing amounts to AE = 7wy, /L,. This corresponds with
AE = 30meV observed for L, = 20nm. The exchange
field m is parallel to side surfaces. The in-plane field leads
to opposite momentum shifts by Ak, = Iyms,/ys for
s, = £1, being consistent with the observation. More-
over, the spin-velocity locking v, = —v25.0./h on side
surfaces implies that the chiral mode is spin polarized in
the +z direction on both front and rear sides. This is
confirmed in the numerical calculation [I4].

Finally, we address the QSH effect in a thin slab of non-
magnetic 3DTI [I9H21]. The relevant 2D Hamiltonian is
formulated as H,, = (o x k), s.+ts;, where s, denotes
the Pauli matrix in orbital space spanned by top and bot-
tom surface states, and ¢t = A — Bk? represents tunnel-
ing coupling between these two states. The intersurface
mixing opens a gap of size 2 |A| in the Dirac dispersion.
The H,, given above is block-diagonalized by orthog-
onal transformation, leading to the 2 x 2 Hamiltonians
Hi = v(o x k), +to. that describe two independent sub-
systems with Chern numbers Cy = F3(sgn A + sgn B).
In the parameter range where AB > 0, the entire system
is in the QSH phase that hosts a helical pair of two chi-
ral edge modes running in opposite directions. Although
the 2D model captures these general features of the QSH
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FIG. 5. (Color online) (a) Spectral function A(k,, E') and (b)
local density of states N(z,z) at £ = 30meV calculated for
a semi-infinite nonmagnetic TI of L, = 3nm. The sampling
length is set at d = 20nm. The spectral functions are identical
for the front and rear sampling sections.

effect, it neglects side surface states in a TI slab and
hence cannot describe the associated 3D characteristics.
In particular, it is unclear in this model whether there
exist helical surface modes analogous to chiral surface
modes.

Figure [5| summarizes the numerical results for a non-
magnetic 3DTT of thickness L, = 3nm. At this thickness,
A = —20meV and B = —0.2eVnm? so that the system is
in the QSH phase [I4] 2T]. The QSH state is manifested
by helical modes across the hybridization gap. Similar
to chiral surface states, the helical states are delocalized
on the side surface. The 2D model predicts helical edge
states of decay length ~ 26nm [2I]. This does not con-
tradict with the observed N(r, E) slowly decaying along
x. The spin-velocity locking results in opposite spin po-
larizations for oppositely propagating chiral modes. The
antiparallel polarization of helical surface modes is con-
firmed in the numerical calculation, which shows that
P, = P, =0, and sgn P, = £sgnv, on front and rear
sides, respectively [14].

In summary, we have investigated the QAH and QSH
effects in 3DTTs with realistic parameters. The QAH ef-
fect generates a chiral surface mode delocalized in a mass-
less domain sandwiched between two massive domains on
the surface of a ferromagnetic 3DTI. In a nonmagnetic
3DTI, helical surface modes consisting of a pair of op-
positely propagating chiral surface modes are created by
the QSH effect.
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Supplemental Material for
“Chiral Surface Modes in Three-Dimensional
Topological Insulator”

In this supplemental material, we provide additional
explanations for the Green’s function and QW eigenval-
ues in the 2D model, intersurface mixing in a slab of
3DTI, and spin polarization of chiral and helical surface
modes.

Green’s function

The retarded Green’s function for the 2D model can
be formulated in terms of scattering wave functions. Be-
cause of translational invariance along ¥y, the surface
Hamiltonian is reduced to H(z) = e %Y H(x,y)ekvy
for a plane wave solution. In three separate spatial
regions * < —a, |z| < @ and z > a (labeled with

j = 1,2,3, respectively), the eigenfunctions are given
by ¢§i)(m) _ (C(i)71)t6iikja:7 where C(i) "Y(gyjéfj)7
vk = 2k2 m,m—fmlzmgandmgzO.

Assembhng these local eigenmodes, the scattering wave
function for upward incidence from the region 1 is repre-
sented as

V(@) + e (@) (zel)

o (@) = I8 @)+ 06 (@) (we ).
104" (@) (z€3)

in the electron-like region £ > 0. The reflection and
transmission coefficients are determined from the con-
tinuity of wave functions at * = +a to be f(e) =
(e (e) ()

Hppeitkr—bia, p) — Tmlz eiGhake, o) — (r{9) 4
75,3)"((2; () 4'Lk2a) —2ikia and t(e — tgz)(ﬁfz)us ez(2k2 k1— ks)a
Here, the elemental Scatterlng coefﬁc1ents are given by

o) _ (o)
@) = 7(’5) ij - and t =1+ r(?)

ij
The denomlnator ne =1- rée)r(?e‘“k?“ describes res-

onant multiple reflections in the QW. In terms of this,
the eigenvalue equation for QW bound states is simply
expressed as 7(®) = 0. An analogous formulation is de-

with s = sgn(j — 9).

rived for the scattering wave function ¢§§) for downward
incidence from the region 3.

The Green’s function obeys the equation of motion
[E — H(2)]G(z,2') = §(x — «’). The solution is found

to be
Cv(e) (6) (m) (e) (3;‘/) (3;‘ > .7;/)
G , _ Do’ ,
oo ( ) X { (E’) (x) g]f’()f ( /) (l’ < :L'/)

where o =7, | denotes the spin index. The normalization
constant C(¢) = 1/(cg+) = cg_))tg‘)
boundary condition for G(z,z') at z = a’.

is derived from the
GM (z, z")



in the hole-like region £ < 0 is obtained by replac-
ing £k; — Fk;, and accordingly cg»i) — C;-:F). The
present analysis is equally applicable to propagating and
evanescent modes under the condition sgn(E) Imk; > 0,
which establishes the asymptotic behavior ¢y (+o0) =
¢p(—00) =0, i.e., G(+oo, Foo) = 0.

QW eigenvalues

The eigenvalue equation for QW bound states is given
by n© = p = 0. Figure |§| summarizes positive
eigenvalues E, (n = 1,2,3,---) for electron subbands
at ky, = 0 as a function of a. Note that negative
eigenvalues —F,, are relevant to hole subbands in con-
sequence of electron-hole symmetry. The QAH con-
duction via chiral mode is observable in the QW gap

|E| < Ey. As |m| — oo, r$9r{%) approaches unity so that

E, = y\/k,> + (n7/2a)?.

a (£)

FIG. 6. QW eigenvalues E,, at k, = 0 calculated as a function
of a.

Intersurface mixing

Figure El displays the band gap E, of a TI slab as a
function of L, calculated for m = 0 and 50meV. For
m = 0, intersurface mixing creates a finite gap, which
exhibits an oscillatory exponential decay with L, [T9H21].
This behavior is approximately described by E, = 2|A|

and A o« e *f=gin L., where a = A;/2V/ By? — D2
and 8 = /By/B1 — a?. The oscillation period 7/f is
estimated to be 2.5nm for BisSes. For m # 0, E, is
expressed generally as Fy = 2min|A+m|. For L, >
5nm and m = 50meV, |A| is orders of magnitudes smaller
than m and hence E; = 2|m|. Thus, the QAH criterion
Im| > |A| [2} B, 2I] is reasonably fulfilled under these
conditions.

100 .
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% 104 E [\(\
~ E [
w10} ™
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10*F ’\
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FIG. 7. Band gap E, of a TI slab as a function of L, for
m = 0 and 50meV.

Spin polarization

Figure [8| shows P,(k,,E) and P,(z,E) for the 2D
model assuming m > 0. It is clear in the figure that
P, = 1 for a chiral surface mode. Figure [J displays
P.(ky, E) at m = 50meV for the 3D model. This demon-
strates that a chiral surface mode possesses spin polariza-
tion pointing in the +z direction on both front and rear
sides. For helical surface modes observed at m = 0, the
relations sgn P, = £sgnv, hold on front and rear sides,
respectively, as shown in Fig. All of these obser-
vations are basically accounted for by the spin-velocity
locking formulated in the text. For the 3D model, gen-
erally |P,| < 1. This property may be ascribed to the
effective in-plane spin operator Iro, (I = 0.35) renor-
malized for side surface states.

P
X X
-10 00 10
—
a =44
| L
= L

x (0)

FIG. 8. Spin polarization [(a) and (b)] Px(ky, E) and [(c) and
(d)] Pz(z, E) calculated for the 2D model. The parameters
are a = £ in [(a) and (c)] and a = 5¢ in [(b) and (d)]. The
sampling length is set at b = 10¢. Solid yellow lines in [(a)
and (b)] represent the QW eigenvalues.
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FIG. 9. Spin polarization P.(ky, E) calculated for a semi-
infinite ferromagnetic TI. (a) and (b) show the results for the
front and rear sampling sections, respectively. The parame-
ters are L, = 5nm, m = 50meV and d = 10nm.
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FIG. 10. Spin polarization P.(ky, E) calculated for a semi-
infinite nonmagnetic TI. (a) and (b) show the results for the
front and rear sampling sections, respectively. The parame-
ters are L, = 3nm, m = 0 and d = 20nm.
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