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Joint distributions for stochastic functional differealtequations

ATSUSHI TAKEUCHIT

Abstract

Consider stochastic functional differential equationispse coefficients depend on past histories.
The solution determines a non-Markov process. In the ptgsgrer, we shall obtain the existence
of smooth densities for joint distributions of solutionsder the uniformly elliptic condition on the
diffusion coefficients, via the Malliavin calculus. As anpdipation, we shall study the computations
of the Greeks on options associated with the asset pricentigaamnodels with delayed effects.
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1 Introduction

Let (Q,.#,P) be a probability space, amdand T be positive constants, which are fixed throughout the
paper. Denote by = {W(t) = (W(t),...,W™(t));0 <t < T} them-dimensional Brownian motion
starting from the origin. Write# = G[W(s); 0<s< t] VA for0<t <Tand.Zt =.%, where./ is

the family of P-null sets. LetAo, Ay, ..., Aq be inC”, ([0, T] x C([—1,0]; RY); RY), that is, those are
jointly continuous in(t, f) € [0,T] x C([—r,0]; RY) such that, for each & i <m,

e for eachf € C([-r,0]; RY), the mappind0, T] >t — A(t, f) € RY s differentiable such that its
partial derivatived; Ai(t, f) is bounded,

o for eacht € [0,T], the mapping([—r,0]; RY) > f — A (t, f) € R%is smooth in the Fréchet sense
such that all partial Fréchet derivative§Ai(t, f) (k € N) are bounded.

For a deterministic path € C([—r,0]; RY), considetthe stochastic functional differential equation

n(t) (—r <t<0),

X = n(O)+/OtAo(s,Xs)ds+/OtA(s,Xs)d\N(s) 0<t<T),

(1)
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where A = (Ag,...,An), and X = {X(t+u); —r < u < 0} is the segment. Since the coefficients
Ao, A, ..., Ap satisfy the Lipschitz condition and the linear growth oeré exists a unique solution to
(@) such that

E[ sup |x<t>|p] <Cipnt

—r<t<T

for any p > 1. Moreover, the solution proce¥s= {X(t); —r<t< T} is non-Markovian, because the
current state of the process depends on the whole pastibsstidrithe procesX. Seel[8[ 14, 15]. Thus,
we cannot use any methods in analysis, partial differeatjaktions and potential theory at all.

Such equation was initiated by 1td and Nisio [8] more thanyB@rs ago. It seems us to be very
natural to study the models described bl (1) stated abowauise the models with their past histories
often appear in finance, physics, biology and industry, ®@tee of the typical examples in mathematical
finance ighe delayed Black-Scholes modaidied in[1| 4, 5,16, 13], which will be mentioned in Section
[B. On the other hand, the Malliavin calculus is applicabléhtostudy on the densities for the solution to
(@). Kusuoka and Stroock [12] obtained the result on thetemee of the smooth density for the solution
with respect to the Lebesgue measure under the uniformptielcondition on the diffusion coefficients
A1, ..., An. Bell and Mohammed in]Z,13] also studied the same problemase ofstochastic delay
differential equationsuch thai(t, f) = Ai(t, f(—r)) (i=1...,m)fort € [0, T] andf € C([-r,0] : RY),
whereA : [0, T] x RY — RY with some conditions on the boundedness and the regultiy obtained
in [2, [3] the existence of the smooth density under the degepecondition oriy™; A A" by using the
delay structure of the equation and conditioning the pasbhy of the process, which is weaker than
the uniformly elliptic condition ony{"; A;A{. Furthermore, Kitagawa and Takeuchi[10] studied the
asymptotic behavior of the density such as the Varadham-ggtimate for diffusion processes, by the
large deviation theory and the Malliavin calculus, in whible constant, calledthe delay parameter
plays a crucial role.

In the present paper, we will study the finite-dimensionaitjdistribution on the solution process to
(@), from the viewpoint of the Malliavin calculus. As statiedTheorentL below, the joint distribution of
the solution admits a smooth density under the uniformiyptd condition on the diffusion coefficients
Ay, ..., An. As an application, we shall also study the sensitivity ysialon the solution with respect to
the initial state, which can be regarded as the computafitimeoGreeks for the options on the delayed
asset price dynamics model.

The paper is organized as follows: Sectidn 2 is devoted tded imtroduction of the Malliavin
calculus and its application to stochastic functionalatdihtial equations. The result on the existence
of the smooth density for the finite-dimensional joint diaition associated with the solution will be
stated in Sectioh]3. Sectiohk 4 did 5 are typical applicatadrour result. In Sectiolnl 4, we will study
the sensitivity of the discrete and integral average rdltiehe solution. The key points are to give the
estimates on the Malliavin covariance matrices, which amglied by the uniformly elliptic conditions
on the diffusion coefficientdy, ..., Ay of (@). We will study a delayed Black-Scholes model raised in
[1,[13] in Sectiori b, in order to compute the Greeks on theoopti



2 Malliavin calculus

In this section, we shall apply the Malliavin calculus to #techastic functional differential equation
(@). Seel[16] on details of the Malliavin calculus. L(WB“,“//,]P’WH') be the Wiener space, that &' is
the set ofR™-valued continuous functions df, T] starting from the origin iR™, % is the topological
o-algebra oWy, andPW is the Wiener measure oveWg, ). Denote byH{' be the Cameron-Martin
subspace o' with the inner product

T .
(@i = [ (). h(W)znc (g he HY)

whereg(u) is the derivative ofjin u.
For0<s<T,let {Z(t,s) —r<t< T} be theRY @ R9-valued process determined by

0 (-r<t<Oort<y),

Z(t,S) - i (2)
|d+/ DA (U, Xe) Zu(-, du+/ ZlDAi(u,Xu)Zu(-,s)d\N(u) (s<t<T),
wherelq € R ® RY is the identity, and,(-,s) = {Z(u+T,s); —r < T < 0}. Then, we have

Proposition 1 (cf. [10,[12]) For —r <t <T, the random variable ¥) is smooth in the Malliavin sense.
Moreover, the Malliavin derivative D¥) = {DyX(t); 0 <u< T} of X(t) and the Malliavin covariance
matrix V(t) := (DX(t),DX(t))my for X(t) can be computed as follows:

UAL
t)z/O Z(t,5)A(s, Xs)ds, -
:/: iz(LS)A(S,xs) {Z(t,9A(sXs)} " ds @

Proof. The Malliavin smoothness of (t) can be justified by the limiting argument via the successive
approximationX (W = {X(t); —r <t < T} (n€ NU{0}) of the proces:

XO(t) = n(t)T_rg (t) +n(0) T o7 (1),

n(t) (—r<t<0),
X () = : n ey
r)(0)+/OAo(s,Xs )ds+/0A(s,Xs JdW(s) (0<t<T)

for n € NU {0}, and the inductive argument on the order of the derivati@s.the other hand, since
DX (t) = 0 for —r <t <0 andn < NU{0}, and

D x<°>()—0,

DX / AsXSnlds+/DAosXS U px"Yds

) (n—1) (n—-1) i
+/0 i;DA.(S,Xs ) DX Vawi(s)
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forne Nand 0<t < T, the limiting argument leads us to see that

0 (—r<t<0),
Dux(t) = (5)

“UAL 1 t m _
/ " A(s X ds + / DA (S, Xs) DuXeds+ / > IA(S XD () (U<t <T)
0 0 0 £

Thus, we can derivd]3), because of the uniqueness of thiéwolo the equation (5). Moreover, the
Malliavin covariance matri¥/ (t) can be computed directly dg (4). O

3 Density of joint distributions

In this section, we shall mention the main result of the pregaper. Before doing that, recall the
classical result on the existence of the smooth densityhfoptobability law ofX(t).

Lemma 1 (cf. [10,12]) Suppose that the coefficients, A ., Ay, satisfy the uniformly elliptic condition:
there exists a constant,C> 0 such that
m

, ) ) )
inf inf inf i(t,f)-v)" >Co. 6
O<t<T feC([-r,0;RY) vesSd-1;& (At f)-v) = Cp (6)

Then, for eactd <t < T, the probability law of thék9-valued random variable ¥) admits a smooth
density with respect to the Lebesgue measur@bn

Letn e N be arbitrary, and & t; < --- <t,_1 <t, =t. Before introducing our result, we shall give
an easy example, which is our motivation of our interesthiéndresent paper.

Example 1 Consider the case ofi=d, Ag(t, f) =0, andA(t, f) = I4. Letto = 0, and write

2
p(t,X,y) = \/% eXp<— (y ZtX) > .

Then, the procesX is thed-dimensional Brownian motion. Since

n
P[W(ty) € Ky, ..., W(tn) € Ky] :/K . p(t,0,y1) er(tk—tk—laYK—laYK) dys - - - dyn
1% xKp Ke

for Ky, ..., K, € (RY), the joint distribution(W(t1),...,W(ty)) is absolutely continuous with respect
to the Lebesgue measure oW such that its density function

n
Oy, ta (Y1, -+ Yn) = P(t1,0,y1) er(tk—tkfbykflaYK)
k=
is smooth in(yy, ...,yn) € R, O

Now, we shall introduce the result in this paper, which camdgmrded as the natural extension of
Lemmd.



Theorem 1 Under the condition(8) in Lemma[ll, the joint distribution ofX(t1),...,X(tn)) admits a
smooth density with respect to the Lebesgue masuRbn

Proof. TheR"-valued random variabléX(t1),...,X(t,)) determined by the equatiof (1) is smooth in
the Malliavin sense, as stated in Proposifion 1, becauseesalleof X (tc) (1 < k < n). Moreover, the
corresponding Malliavin covariance matkixts . .., tn) for (X(t1),...,X(tn)) is

(DX(t),DX(t1))my -+ (DX(tr),DX(tn))my
V(ty,... th) = : - :
(DX(tn),DX(t1))mp -+ (DX(tn),DX(tn))m
T
/dbtl, O(t,s)*ds - /db(tl,s)db(tn,s)*ds
0
T
/CDtn, O(t,s)*ds - /an(tn,s)qn(tn,s)*ds

whered(t,s) := Z(t,s) A(S, Xs) I(s<) is R™ @ R"-valued.
All we have to do is to study the negative-order moment of/dgt .. . ,t,). Letv= (vl, ... ,vn) c R
such thatv] = (|Jva?+ - + \vn\z)l/z =1, and writeto = 0. Then, we have
2
ds

n

z D(ty, )"k

k=1

tn
MV (tg, ..., th) V) gnd :/o

2
D(tx,s)"w| ds

I
>
iR
:\
=
iR
)
>

2
1
D(ty,s) V| dsly,—o) + /t |D(tn, 5)"Va|*dST 1y, 20)
I n—1
2
D(t, ) V| dsliy, ;—0v,-0)

IV
M
'-\.4

T
s
=
Il

v
S
I [
A
S—
=S
L
S

k

tn
- |®(th-1, S)*anl|2dSH(vn,l;éO,vn:O) -I-/t |D(tn, S)*Vn|2dSH(vn¢0)
n—-1

- 4 * 2 n * 2
> Z/t |®(t},9)"vj]| dSH(vj7éo7vj+1:owvn:0)+/t |®P(tn, S)"Vn|“ dSly, 0)-
=1/t n-1

Remark that

£
IJ ::/t ‘QJ('[J, VJ‘ dSHVJ#OVHl =0,....Va=0)
J 1

=) Zl (tj,S)A(S,Xs), VJ>Rd ds Ly, 20,;,1=0....vh=0)
i—1i



/t L “21<Z -9 A(S,Xs). V) )i ds Ly, £0,v;1=0....va=0)
J

t

{]
> 5 3 AR Bl oo~ [ A 2.9 ol

a
> Cz)\

2 .
‘VJ‘ H(Vj #0,Vj11=0,....Vy=0) — C3A B

on the subset

n tj
R )

under the conditior{6) oA, ..., Am, Where O< a < 1 anda < 3 < 2a. Hence, it holds that

Cz)\ a — -
(MV(ts,....th) V)gna > (Z Vi1 Ly, 203,10, v ""Vj‘zﬂ(vn#o)) —nGA P

on Q,. On the other hand, we shall remark that
P[0F] <n(C3PCupnrA P24+ Capr A 2a-PP)

for any p > 1 from the Chebyshev inequality.
Now, we shall return to study the upper estimate of

() = sup E [exp(—A (WV (tr,...,th) V)gna )] .

v=(Vy,...,vn) ERM |v|=1

Since the mappin§"@-1 > vi— E [exp(— A (\V(ta,...,t)V)pna )| € R is continuous, we can find
V= argmax{IE [exp(—A (VV(t1,...,th)) V)gna )] 5 V= (V1,...,Vn) €R™ |V = 1}.
Therefore, we can conclude that

1(A)=E [exp(—A (4,V(tr,... ,th) Pgna )]

CZ)\—O( n-1 . 25 B
<exp|—A 5 Z 1947 L(9,£09;,1=0....9.=0) t [Vj|“Lg,20) | —NC5A

+n(C§pC17p7rl7T)\7 p/ +C47p7TA7(2073) )

asA — +oo for any p > 1, so we can obtain
—q . —nqgd
E[(deV(ty,....tn)) 9] =E [( inf <V,V(t1,...,tn)v>Rnd) ]
vesnd-1

<Cs sup E[(NV(tl,--->tn)V>Rnd)_(HQd+4nd_4)} +Cr

vesnd-1

Ce /+°° d+4nd—
= A4adHANd=S 1 (3 )dA +C
I (ngd+4nd—4) Jo (A)dA+Cr < oo
for anyq > 1. Seel[1l1] on the detailed discussion of the second indysdited above. O
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Remark 1 Bell and Mohammed [3] have studig¢ide stochastic delay equation with hereditary drift

{n(t) (-r<t<o0),
X(t) =

‘A ta (7)
n(O)+/0 Ao(s {X(u); —r <u<s}) ds+/0 A(sX(s—r))dwW(s) (0<t<T),

whereAg : [0,T] x C([—r,T]; RY) such thatdo(t, f) (t € [0, T], f € C([-r,T]; RY)) depends only on
{f(s); —r <s<t}, andA : [0,T] x R — RY (i = 1,...,m) with the certain conditions on the bound-
edness and the regularity. Wrife= (Aq,...,An), and lett € [0, T]. They showed in[3] the existence
of the smooth density for the law &(t), under the degeneracy of ti¢ @ R%-valued functionAA* of
polynomial order on hypersurfacestY, which is weaker than the conditidl (6) in the present paper,
using the delay structure inl(7) and conditioning on the pasbry of the process.

As for the equatiori{7), we can also derive the same assged®hemmBll and Theorérn 1, under the
degeneracy condition oRA* as stated in[3]. In fact, since it can be checked, similasl{Ptoposition
[, that the Malliavin calculus is applicable to the solutafrthe equation[{7), our goal in the argument
is to study the negative-order moment of the determinantthercorresponding Malliavin covariance
matrices forX (t) and (X(ty),...,X(tn)) of the forms:

t
Y, t):/o DuX (t) (DuX (1)) du, ®)
/O " DuX(t) (DuX(ty)) du - /0 " DuX(t1) (DuX(tn)) “du
V(ty,... th) = : : ; )
/ " DX (ty) (DuX(ty)) du - / " DX (th) (DuX ()" du

where O=tp <t < --- <th_1 <ty =t such thal|A|| := max<j<n(tj —tj—1) <r. Then, we have only to
check the lower estimates of the quadratic form¥ @f) andV (ty, ... ,t):

V) o = / (DX (1)) v du, (10)
t . ,
((V1,--Vn),V(ta, .o tn) (Va,- ., Vi) Yo > Z/ | (DuX(t}))" vj| " duLy, £0y;,1-0...vn=0)

+ |(D X(tn Vn|2dU]I(Vn¢0), (11)

th-1
wherev € R with |v| = 1, and(vy,...,vy) € R™ with 37, |vj|2 =1
Finally, we shall remark that it would be open whether Lenidend Theoreni]1 on the equation
(@) can be obtained, under the degeneracy condition agistafg], because the special forms of the
diffusion coefficientsAy, ..., An in the equation{7) play a crucial role il [3], 0

4 Applications

In this section, we shall study one of the typical applicagi@f Theoreni]1. Consider the casedof
m = 1 throughout this section, in order to avoid the complicatid our argument. Lef € CY(R; R)
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such that there exist positive consta@gsandCg ¢ satisfying with

inf |f/(x)|2>Cy. (12)

[x|<Cs

Then, we can find the inverse function baround the origin. Define

= / ))ds (t e (0,T]).

Theorem 2 Suppose the uniformly elliptic conditidfl) on A, stated in Lemmal1. Then, for eaBh<
t <T, the probability law of Yt) admits a smooth density with respect to the Lebesgue measiite

Proof. We have only to check the negative-order integrabilityhef Malliavin covariance/ (t) of Y(t),
because the Malliavin smoothnessYdf) can be derived by the one Xf(s) for each 0< s<t. Seel[16].
Firstly, we shall compute the Malliavin covariandét) := (DY (t), DY(t))H(l). Since

DY (t) = / DX()d
:T/u f’(X(s))Z(S,U)Al(U7Xu)dSv

U

for 0 < u <t, the Malliavin covarianc¥ (t) of Y(t) can be computed as follows:
. t / d 2
v (t) :/O <&DUY(I)> du
t (1 t 2
:/ {T (/ f’(X(s))Z(s,u)ds> Al(u,Xu)} du
0 u

Secondly, we shall check the negative-order integrahiifty (t). In order to do it, it is sufficient to
observeE [exp(—AV(t)] = 0o(A~P) asA — +w for any p > 1, because

- oo
w0 -k

Let 0< y < 1/3 be a constant, amt > 1 sufficiently large. Writ¢, :=t—A~Y and

APLE[exp(—AV(t))] dA.

Q3= { sup |X(s)| ng} ﬂ{ sup |Z(s,6(ty,t)) —1|2 < %}

t)\ <s<t t)\ <s<t

We shall remark that

1
P[QS] <P | sup [X(s)| >Cg|+P | sup |Z(s O(ty,t)) —1\2 > —]
t, <s<t t) <s<t 4
<Cg"E | sup [X(9)[°| +4PE | sup |Z(s,0(ty,1)) —1\21
t) <s<t t) <s<t

<Cipn1CqPA P21 CypraPATYP



from the Chebyshev inequality. Moreover, the mean valuerthra tells us to see that

V() > t%/t: { </ut #(X(s)) Z(s,u) ds> Al(u,Xu)}zdu

Y
_ (1t729) A3 {(X(9) Z(S W ALUXD) Y |y, 550t

zwr?w( inf ]f’(x)]2>

t2 X <Cu1

><< inf inf |A1(u,g)|2> Z(c‘i(e(tA,t),t),B(tA,t)>2

0<U<T geC([-1,0; k)

t 2 g, t)<s<t

cgc/\3v

onQ3, where 0< 6 < 1 and 0< d < 1 are constantg(t, ,t) := 6t + (1— 6)t,, andd(u,t) := ot + (1 —
d)u. In the fifth inequality, we have used the assumption on tinetfan f, and the uniformly elliptic
condition [6) onA.. Write E[ - | = E[ - Io,]. Then, we can get

E[exp(—AV ()] <E[exp(—AV(t))] +P[QS]

(1-6)?
42

=o0(A —Cio p)

<exp|— CofCoAY™ | 4Crpn7CaPA P24 Cyp74PATYP
asA — +oo for any p > 1, which is our desired conclusion. O

Remark 2 We can also obtain Theordrh 2 from the viewpoint of Thedrbmet O=tg <t; < --- <ty =t
such that|A|| := maxg<k<n(tk —tk—1) tends to 0 adl — +co. Write

=1 [ 1) Wttt = NZf

The corresponding Malliavin covariancesvt@) andYy(ts, ... ,tn) are

t

2
Wn(ty, ...t / { Zf Z(tg, u) A (U, Xy) I u<tk} du.

As pointed out in the proof of Theorel 2, the Malliavin smambs ofY (t) andYy(ty, . ..,ty) can be
checked directly from the one #f(s) for 0 < s<t. On the other hand, in order to study the negative-order
moment ofVy(t), it is sufficient to give the one oWy(t1,...,ty), because the dominated convergence
theorem and the Fatou lemma lead us to see that

E[V(t)™9] = 1 /:m/\q-lE[exp(—/\ V(t))] dA

V(1) :/OT{i/Otf’(X( $))Z(5,U) A1 (U, X) Tucs) ds}zdu,

9



N—+-00

/ ATL Jim E[exp(—AVn(ty,....ty))] dA

= -1 —AV
<||lln_1>ﬂr(q)/o AGTE[exp(—AW(ty,. .., tn))] dA

< limi n(ta, - -, tn) 7).
> I|I\|nj>I+n(I E [VN (t17 7tN) j|

Now, we shall study the estimate Ef[\7N (t1,. ..,tN)*q]. Letq > 1 be arbitrary and & 0 < 1/3 a
constant. WritdNy ¢ := (N/t)"?. Remark that

E[VN(tl,...,tN)_q] = T];:I)A+mAq_lE[exm_AvN(tl7"'7tN))] dA

1 1 1 No t N
< 1 Aqfld)\+—/ ALE[exp(— AV (ty. ....ty))] dA
<tk @ . [exp(~AV (ts.....tw))]

400 -
i/ A4TE [exp(—AV(ta, .., tn))] dA
a) /N,
=tlin+l2n+ 13N

First of all, the estimate df  is trivial:

1
rq+1

N = —— /1/\q-1d)\— < 4o
"N (0) Jo a '

Secondly, we shall consider the estimatdqf. SinceZ(t,u) = 0 fort < u, the mean value theorem
implies that

2
Va(ts,. ..t /{ Zf Z(ti, U) Aq (U, X) T M} du

t 1 N 2
E/tN 1{szlf/(x(tk))z(tka u) Ag(u, Xu) I u<tk} du

2

_ [ {if’(X(t))Z(t,u)Al(u,xu)} du

tN-1 N
2
— {%f’(x(t))Z(t,Bz(tN1,t))A1(62(tN1,t),X92(tNl7t>)} No ¢

where 0< 6, < 1 is a constant, anéh(s,t) := s+ 6, (t —s). Denote by

1
Q4= { sup [X(s)| gCB} ﬁ{ sup  |Z(s Ba(tn-1,1)) —1|" < Z}'
tn—p<s<t Oa(tn—1,t)<s<t

We shall remark that

P[Q7] S]P’[ sup |[X(s)| >Cg| +P

tn-1<s<t

sup  |Z(s Bx(tn-1,1)) — 1|2 > i]

Baltn_1t) <s<t 4
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<Cg"E| sup [X()P

IN-1<s<t

+4PE

sup  |Z(s Ba(tn-1,t)) — 1\21

Ba(tn-1,t)<s<t

_ — 2 _
< C1.p.r;.T Cg P Nafp/ + C4. p,T 4P Na.tap

from the Chebyshev inequality. Moreover, we see thaQgn

. 1 z

Wn(ty, ... tn) > {Wf/(x(t))Z(L92(tN—1,t))A1(92(tN—17t),X92(tN1;))} g
- Co.tCo Ny ¢
- Co.1Co Ny f
- 4N?2

Z(S, eg(tN,]_,t))z

from the assumption on the functidnand the conditior({6). Writ&[ - | :=E[ - Io,]. Hence, it holds
that

E[exp(—AVn(t,...,tn))] < E[exp(—AW(ts, ..., tn))] +P[QS]
Co.tCo Ny ¢
4N2
Co,tCo Ng¢
4N2

- exp(— A) 4 Copn7Cy PN P2 1 Cypr 4PN, 0P

< exp(— )\> + (Cl,p.r;.T CgP+Capr 4p> Nyt ™2,

Letp> (2q/o) V 1 be arbitrary. Thus, the mean value theorem enables us to get

1 No ¢ .
— = g-1 -
lan = r(q)/l ATEE [exp(—AWn (L, -, tn))] dA
1Nt g Co.1C2 Ny ¢ ~ ool
< — a-1 _ e ot p p ap/
ST q)/l A {exp( NG )\> + (CLW%TCS +Cypt4 )Nat }d/\
-1 Ca Ng?
) eXp<_C&f722wA> (No— 1)
(@) 4N A=(1-02)+%Ng;
1 No t B - -
+ m/l <C1.p.r1.TC3 P+ Capt 4p> A0-9P/2-1q)
Cr1q q Co,1 C2 N5
< == = Tere ot
ST (14 Ng) exp N
_1 e —p p g—op/2-1
+ r(q)/l (Cl,p,n,TCB +Capr4 ))\ dA
- (1+Ng,) exp CorCo%Ngi 7| | CipntCoP+Capr P
r(a) 7 4N2 (op/2—-q)T(q)
C1pn1Cg" +Capr 4P (N +oo),

(op/2—q)T(a)

because of & 0 < 1/3, where 0< & < 1 is a constant.
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Thirdly, we shall consider the estimatelgfy. Writet, :=t—A "9, and letA > Ny be sufficiently
large. The mean value theorem implies that

2

\7|\|(t1,.. , f tk, )A]_(U Xu) (U<ty) du
- h g }
t N 2

/ { Z Z(tg, u) Ag(u, Xy) I u<tk} du

2
_ t{%f’(x(t))z(t,u)Al(u,Xu)} du

19}
2
- {% £ (X(t)) Z(t, es(t)\7t))A1(93(t)\7t)7X93(t,\7t))} AT,

where 0< 65 < 1 is a constant, anés(s,t) := s+ 63 (t —s). Denote by

Qs = { sup |X(s)| §C3} N {93( sup  |Z(s B3ty 1)) —1|2 < %}

H<s<t th t)<s<t

Then, we can get

~ 1 2
VN(tla---7tN) = {W ( ( )) (t 93(t)\7 )) (63(t)\7t)7xeg(t,\7t))} A_U
> 275 65(1,1) A
CngZ —30
T4 A

on Qs ,, from the assumption on the functiohand the uniformly elliptic condition[{6), because of
t/N=Ng¢ > A9 DefineE,[ - | :=E[ - Iq,,]. Then, we have

E[GX[X—)\VN(tl,...,tN))] §E)\ [exp(—AVN(tl,...,tN))] +]P)[ g’)\]

C _
< exp(—cg—'f2 2 )\1‘3°> +CrpnTCe PA P24 Cy 74P AP

C )
< exp< 094;2 2\t 30) + (cl.p.,,.T CiP+Capr 4p) A-0P/2

from the Chebyshev inequality. Hence, it holds that

+00
- a-1 —AV
= g L AT B0 NG )]0

1 e CotCo 1 ) )
< == a-1 _Lofl2 .1 30 0 N 1 opy2
~ (@) Jion 4 {eXp< 42 A > * <C17p7n7TCB +Capr4 )/\ dA

1 [ . Gyt G - -
< r—/ A9 1{exp< N 3°> +(C17p,r,:cgp+c47p;4p))\ Up/z} dA

(4%)%1739)1(q/(1-30))  Cuipn1Cg"+Capr 4P
~ (1—30) (Co t C)¥/(1-30)1 (q) (q—op/2)T ()

12



Therefore, we see that

_q o
E[ (t) ]Slll\lrmm (|17N+|27N+|37N)
1 (.:]_7 p7rl7T Cgp + C47 p7T 4p
~r(a+1) (op/2—q)l (q)

(4t2)%(139)1(q/(1-30))  Cipn1Cqs"+Capr4® o
(1-30)(C 1 Cp)9/(1=39)T (q) (q—ap/2)T () ’

which is our desired one. O

5 Delayed Black-Scholes models and sensitivity analysis

In this section, we shall apply our studies to the optionipgof the asset price dynamics model with
delayed effects. Seel[1,[4,5/6] 13] on details. Ajet Cé+’b(]12{; R) (i =0, 1) with the uniformly elliptic
condition of the form: there exists a positive cons@ptwith

inf A;(y)? > Cyo. (13)
yeR

Let x > 0 be a constant. Consider tievalued procesX = {X(t); —r <t < T} determined by the
stochastic delay differential equation of the form:

{x+/ Po(X ds+/ AL(X(s—1)) X(9dW(s) (0<t<T). (1)

The existence of the unique solution [0](14) can be checksiliyedn fact, it is trivial on the interval
[-r,0]. Since
t t
X(t) :x+/0 Ao(x)X(s)ds+/0 Aq(X) X () dW(S)
for 0 <t <r, we can derive our conclusion from the Lipschitz conditiod ¢he linear growth condition

on the coefficients. Iterating such argument enables usttowgedesired assertion on each intervals
[kr, (k-+1)r] (ke NU{0}). Moreover, the equatiofi_(l14) can be solved as

X (—r<t<0),

2
/OtAl(X(S— r))O'W(S)jL/Ot {Ao(x(s— r)— w}ds] 0<t<T), (15)

which implies tha (t) > 0 a.s. The proces$ = {X(t); —r <t < T} is calledthe delayed Black-Scholes
modelin mathematical finance (cf.[T] 4, [5,[6.,113]).

X(t) =
X exp

Remark 3 Although the coefficients of the equatidn 114) do not satibiy uniformly elliptic condi-
tion (6) as stated in Lemnid 1, the probability law Xft) admits a smooth density with respect to

13



the Lebesgue measure & Denote byx= logx and A;(§) = Ai(¢¥) (i = 0,1). Then, the process
X = {X(t) :==logX(t); —r <t < T} satisfies

X

% (
>~<+/ot/§1(>~<(s /{on _W}ds 0<t<T). 4o

Since the coefficiend; satisfies
inf Ay(Y)% = inf Ay(&)2 > Cy»
VeR VeR
from (13), we can conclude from Lemrh& 1 that the probabikity bf theR-valued random variable

X (t) admits a smooth density (§) with respect to the Lebesgue measureforHence, the density of
the probability law ofX (t) = exp(X(t)) is

ou(y) = P0g9y)

(y>0),

which is smooth iry > 0. g

Let R > 0 be a constant, which denotes the rate of return of a risikdesst. Denote bB =
{B(t); —r<t< T} the riskless asset price process, which is given by

B(t) = T_rg(t) + € Lo (1).

Write X = {X(t) := X(t)/B(t); —r <t < T}, which is calledthe discounted stock price proceShen,
the Itd formula leads us to see that, for@ < T,

= {Ao(X(t—r)) =R} X(t)dt +Ar(X(t— 1)) X(t) dW(t)
= Ar(X(t—r)) X(t) {dw(t) - Z(t)dt},

whereZ(t) = —{Ao(X(t—r)) — R} /A (X(t —r)). Define the process! = {M(t); 0<t < T} by

M(t) :=exp {/Ot >(s)dW(s) — % /Ot z(s)st} .

Then, the procesd is a square-integrableZ;)-martingale, because

EM(t)?] <E [exp{S/ ds}]l/2 < 400

from the boundedness &% and the uniformly elliptic condition[{13) oA;. In particular, we have
E[M(T)] = 1. Then, the measureQd:= M(T)dP is also the probability one on the measurable space
(Q,.#), and the Girsanov theorem tells us to see that the pr(ﬁl&ss{W(t) =W(t) - [5Z(s)ds; 0 <

t < T} is also a Brownian motion starting from the origin under theasure . Let Z be a.%t-
measurable, non-negative and integrable random varialfih is called a contingent claim on the
processX = {X(t); -r <t <T}.

14



Proposition 2 The marketX,B) = {(X(t),B(t)); 0<t < T} is complete.

Proof. Remark thatZV = .%. Since the proceds= {L(t) := Eq[e RTZ|%];0<t < T} is an(.%)-
martingale under@, we can find ar{.7; )-predictable, square-integrable procgss {¢(t); 0<t <T}
such that .
LO) = LO+ [ ¢(9)a(9
by the martingale representation theorem (cf. [7]-Theollefn6, p.80). Set
O = i o0 = L0 - O, VO = 0B £ (X0
Then, since/(t) = B(t) L(t), the Itd formula implies that

dL(t) +L(t)dB(t)

(0) AW (1) + { T (t) + T (1) X (1) B

{AL(X(t—r)) X(t) (dW(t) — Z(t)dt) + RX(t)ct } + ri(t) dB(t)

= i (t) dX(t) + m(t) dB(t),

which means thar, z) = {(m(t), mg(t));0<t < T} is a self-financing strategy. Moreover, since
V(T)=TL(T) = Eq [Z|.77] = Z.

the contingent clainZ is attainable. Hence, the markg¢,B) = {(X(t),B(t)); 0 <t < T} is complete,

which is our goal in the proposition. O

Proposition 3 For 0 <t < T, it holds that

V(t) = e RTYEg([z|7]. (17)

Proof. As seen in the proof of Propositiéh 2, it holds that

d (%) =dL(t) = ¢ (t)AW(t).

Hence, the discounted procésgB = {V/(t)/B(t); 0 <t < T} is an(.%;)-martingale under@. Then,
the fair priceV (t) of the claimzZ is given by

because of/ (T) = RTL(T) =Eq[Z]|.77] =Z. O

From now on, we shall consider the ca&g= 0 only, because the Girsanov transform enables us
to discuss the general case, if we want. For the sake of gityptif notations, we shall noté andw
instead ofQ andW. Since

X
o {x+ [ mxis=)xgaw e o),

15



we have

X () — (t € [_r70])7
)= l+/otA’1(X(s—r))c9XX(s +/ Au(X(s—1)) X(9dW(s) (0<t<T).

LetU = {U(t); —r<t<T} andU = {U(t); —r <t < T} beR-valued processes determined by the
equations:

Ut)=1- OtU(s)Al(X(s—r))d\N(s)Jr :U(S)Al(x(s—r))zds (0<t<T).

Then, itis clear thalt) (t)U (t) = U (t)U (t) = 1, via the Itd formula, and that
AX(1) :U(t){1+/()t0(s)A’l(X(s—r))dxx(s—r)x(s)QW(s)

/0( )Al(X(s—r))A’l(X(s—r))dXX(s—r)ds}
—UHAW).

Moreover, for Ov (t —r) <t, we see thaZ(t,u) = U (t)U(u) is invertible, because

IN
c

t t

Ut)U(u) =1+ tAl(X(s— 1)U (s)U (u)dw(s),

u

and the uniqueness of the solutions.

Now, we shall state the result on the Greeks computation ®@i&tlopean option with respect to the
initial point x. Denote byC, g(R; R) the set of continuous functions with the linear growth orderd
define

§(R;R) = { z ak filk ;ne N, ag e R, freCg(R; R), K C R: mterval}
Theorem 3 (Greeks computation of the European option)For ® € F(R, ; R), it holds that

AE[P(X(1))] = E[®(X(1))E(t)], (18)
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where

_ 1 UGA®
=g (Al(x(- —N)X() H[OV(”)’”(')> ’ )

andd(+) is the Skorokhod integral operator.

Proof. Consider the case @ € CL(R; R). Choose &/ (t—r) < u <t. Since

d , d
Dy (@(X(1))) = P'(X(1)) DX (1)

= /(X(1)) Z(t,u) Ay (X (u—r)) X(u)
= @' (X(1))U (1)U (u)Ag (X(u—r)) X(u)

ooy LA X

from the chain rule on the operatby, the integration by parts formula leads us to get

aX(E[cD(X(t))]) =E[d(P(X(1)))]

[ d U(u)A®)
- [W o @O %@ d”]

1 U()A
(D(X(t))tm 0 <A1(X((. )_ rgt))x(,) H[Ov(t—r%t](‘))]
=E[®(X(1) ()]

=K

In order to extend the class of payoff functions, we have mbéhsequencéd)n; ne N} such that

SUp|E [®n(X(t))] —E[®(X(t))]| — O,

xeK

SUP| B [Pn(X(t))] —E[D(X(1)) Fe(t)]| = O

xeK

asn — +o, whereK is a compact subset j0, +). Hence, it is sufficient to justify
E[|®a(X(t)) — ®(X(t))[*] =0 (20)

asn — +oo, See([9[ 17] on details.

As for ® € Cp(R; R), it is easy to find the sequen¢@,; n € N} in C}(R; R) satisfying with [20).
When is the indicator function, we can approximakeby a sequencé®,; ne N} in Cp([0,+); R).
In order to give the convergende {20), we need the result®mtistence of the smooth density %t ),
which have already stated in Remaitk 3, under the unifornligtiel condition [13). Since a continuous
function with linear growth order can be approximated byrmed continuous functions, we can extend
to the classs(R; R) easily. O

17



Remark 4 From Proposition 1.3.5 (p.40) in[116], it holds that

t U (u) d
j o “) MO~ [0 o AaTRGa= X @O

(I u) [ U (u) d
R </°V(tr) Ag(X(u=r)) X(u) d\N(u)) A /Ov(tr) Ar(X(u—r)) X(u) TR

In particular, consider the case0t <r. Since

Uu)=—2, At) =1+xA(X)W(t) —xA;(X)Ar(X)t

for0<u<t, we can get

U()A W o
5 <A1(X(( )_ rgt))x() H[O\/(t—r)ﬁ](-)) — (t) + 1(X) (W(t)2 —t) —Al(X)tW(t),

We shall compute the Delta, that is, a kind of the Greeks ferAkian-type option associated with
an asset price model with delay in the initial paint 0. WriteX= logx. Fory € R, define theR-valued
processeX (t) = {X(t); —r <t <T}and¥ = {Y(t); -r <t <T} by

X(t X (-r<t=<0), ’

VT4 [BRe0Res [A&s- ey o<t

YO = " e 22)
R 9+/ exp(X(s))ds (0<t<T),

whereA; () = Ai(exp(z)). Remark thaiX (t) = exp{x )} andy; = Y(t)/t. Consider theR?-valued
processt = {X(t) = (X(1),Y(t)); —r <t <T} given byX(t) = (X,§)* =: X for —r <t <0, and

. <>+/o ( Ale(xp(( —(r)))) /2> +/ (Al ))) WS
E / Ao (X ) ds-+ / Ay (X(s— 1)) W(S)

for0<t <T. Letm: R? — R be the canonical projection defined lyX) =y for X = (x,y)* € R
Remark that our main interest is to study the sensitivity of

E[@(\?(t)/t)} :E[(dborr) (x(t)/t)]

18



for a certain payoff functior®. Before introducing our result, we shall prepare some itat For
0<u<T,let3(-,u)={3(t,u); —r <t < T} be theR?® R*-valued process determined by the equation

0 (—r<t<O0ort<u),

|2+ /t alQll(%(S— r)) 3(s—r,u)dW(s)
3(t,u) = v -
o [ {amo(xis—n). x(9) 3s-ru)

+020(X(s—T),X(9)) 3(s, u)} ds (u<t<T),

wherel, € R? @ R? is the identity.
Theorem 4 (Greeks computation of the Asian option)For @ € F(R, ; R), it holds that
KE[®(Y(1)/t)] =E[@(Y(t)/t) Ta®)], (24)

where?(t) is the Malliavin covariance matrix fok(t), and

FA®) = 8 ((3(t) 2 (X(-—1)) V(O 0 X(1)) (1,0)"

Proof. Similarly to Theoreni 3, the proof is based upon the standansity argument as seeninf[9] 17].
We shall remark that, as for the case thds the indicator function, the most crucial point is the &xice
of the smooth density for(t) as stated in Theoref 2.

We have only to discuss the case®E CL(R; R). First of all, we shall remark that

OE [cp(\?(t)/t)} :de[(CDon) (x(t)/t)} (1,0)".

We can compute the Malliavin derivative &{t) as follows:

%Du%(t) = 3(t,u) Az (X(u—r)) Log(u),

so, the Malliavin covariance matri¥(t) := (D%(t),Dx(t»Hé for X(t) is

B = [ 3002 (X(U-0) (306,62 (X)) o
Suppose that the inverse of @&tt) is in LP(Q) for any p > 1. Since
O { (o m(X(t))} = d(®o m(X(1)) AX(1)
:/ot%Du{(dborr)(%(t))} (3(t,u) 2 (X(u—r))) duss(t) a5 X (1),
the integration by parts formula leads us to see that
OE [qa(\?(t) /t)} = 0;E [(CDO ) (X(t) /t)] (1,0)*
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/J%DU{@on)(%(t)/t)}( 3(t,w A (X(u—r))) duB(t) FoxX (1) | (1,0)°

(@om)(X(t)/1) 5 ((3(t,) ( )) ) 1oxX(1)] (1,00

Remark that

|2 (_r§t§0)7

I2+/Oto'?1§2l1(3€(s—r))dxx(s—r)dW(s)

+/Ot {0712[0(36(5—r),%(s))dxx(s—r)+c92§2lo(3€(s—r),%(s))dx%(s)}ds (0<t<T).

Letst= {8(t); —r <t < T} andfl= {£(t); —r <t < T} be R?valued processes determined by the
following ordinary differential equations:

$U(t) = () =1, (—r <t<0),

U(t) = l2+ /ot 0o (X(s—1),X(9)) th(s)ds  (0<t<T),

~

) = |2—/ot£1(s) 0o(X(s—1).X(9)ds  (0<t<T).

Then, it is clear that((t) {(t) = $I(t) $l(t) = I,, via the Itd formula.
Now, we shall consider the negative-order moment of&{€f. Moreover, for O/ (t —r) <u<t, we
see thaf3(t,u) = 4(t) £l(u) is invertible, because

3(t,u) = |2+/ut 121 (X(s— 1), %(5)) 3(5—1,u) AW(S)
+/ut{almo(ae(s—r),ae(s))z,(s—r,u)+azmo(ae(s—r),x(s))z,(s,u)}ds

_ I2+/utc922lo(3€(s—r),3€(s))3(s,u)ds

forOVv (t—r) <u<t,
St Si(u) = 1o+ /u 0o (X(s— 1), X(9)) £(8) (1) s,
and the uniqueness of the solutions. Remark that
() = [ (302 (Eu-n)) (36020 Eu-) d
> /Otv(tr) <3(t,u)2l1(3€(u—r))> <3(t,u)2l1(3€(u—r))>*du
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— 1(t) {/Ot (ﬂ(u) 2y (X(u— r))) (ﬂ(u) 2y (X(u— r)))* du} ()

\V(t—r)

=1 () V() Y(t)".

Here, the second inequality is in the matrix sense. It isrdlea sup._, 1 [|4(t)]| is in LP(Q) for any
p > 1. Hence, we have to attack the negative-order moment af dét

Remark tha&(l(%(u — r)) is o (t—r)-measurable for O (t —r) < u <t. When we study the lower
estimate ofJ(t), we can regard the terfity (X(u—r)) as the constant in the integrand®ft), by taking
the conditional expectation o, ). Let (0o, Bo) € R? be fixed. Since

X X 2
Az (0o, Bo) = <A1(000)>’ Ao ( (a0, Bo). (ar, B)) = ( A;l)fs((g)ﬁ)

for (a,B) € R?, we see that

[0, A1] (a0, Bo), (a1, B)) = —0(a gy (a0, Bo), (a, B)) A1 (t0, Bo)

B 0
~ \—As(ao) expla) )

The dimension of the linear space generatedpyao, Bo) and [2o,21] (a0, o), (a,B)) is 2 for all
(a,B) € R?, because of the uniformly elliptic condition {13) @a. Hence, we can conclude that the
inverse of deij(t) is in LP(Q) for any p > 1, which implies that the probability law of tH&?-valued
random variable¥ (t) admits a smooth density with respect to the Lebesgue measar®?. See[[11]
on details. Therefore, we can justify the existence of theamdensity for the probability law of the
R-valued random variabl¥ (t) = Y (t)/t with respect to the Lebesgue measure derThe proof is
complete. O

Remark 5 Consider the case of©t <r. Then, we can derive

X))\ (% t [ —Aq1(%)2/2 t(A1(X)

\?(t)) B <~> +/o (exp(f((s))) ds+ 0 ( 0 ) W),

~ (%0 1- A Ay (% >t+i\'<~>w<>
(01,0 = <d~~(t)> - (/Ot (1— Ag(R) AL (R) s+ AL (R)W(s)) exp(X(s)

1 0\ - 1 0
u(t):<\?(t) 1)’ il(t):<—\?(t) 1)’ s(t’u):<

-<1
\/
C
1\,
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RecallZ(t) = £I(t) W (t) £I(t)*. Then, we see that

Since the Malliavin derivatives of(t), dsX(t), Y (t) anddkY (t) can be computed as

%Duf( (t) = Ac(R) [y, d—cLDudgf((t) = AL(R) Lyer).
LD () = A (V0 - V() Ty,
%Dudx\?(t) =R (Y1) = Y (W) Tt +Ac(R) (3RY (t) — 0¥ (1)) Liyer)

we see that

du
t . . - N

) (2] Y0 ()= w) o /U(Y(v)—Y(u))dV

EDu@(t):Al(X) t H(u<t)7
| ) -Yw) o 0

d_ - . 0 0

duDei ) = Asl®) <—(\7(t) ~Y(u)) o) Tz,

d5 5. - Aq(X

EDU‘?x%(t) (1,0)" = o& (Al(f() (?(t) —7(u))> H(ugt).

Write A(t) :=t [§Y(v)2dv— (Ji¥(v)dv)?. Since3(t,u) = si(t)i(u) for 0 <t < r, Proposition 1.3.5
(p.40) in [16] enables us to obtain

5((3(t,) 22X 1) BE) 05 ()

N———
—
\.H
o
~
*

= 5( (G0 M(x( 1)) gt S0 2520 (1.0

_ /0 t (g(u) Az (X(u— r)))* dEDu (deet‘gzt) () 93 X(1) (1, 0)*> du
— ( /O‘ (Au(%), —Ag(R) Y (u)) aW(u)> dfﬁgzt)ﬂ(t)dxi(t) (1,0)*

+ t(Aloz),—/&l( Y(u) d,Cudetit (1) () 3 X(t) (1,0)* du



to o 2T (v~ Y () (Y(v) - Y(0)) dvdo - [3X(1)
+ A (1,—Y(U)) ~1()~()2A(t)2 e dg?(t)

t 1 /t2~(v)(~<v)—\?(u))dv /t Y=Yy s
- [ a-vw) ol R u dusi(t) (ax; )

: [ w-vw)w 0 o

t . o(t) 0 0 azX(t
-}, ) g (—((t)—?(u)) 0) " (@Wt))

: o) AR ) du.
X Y(u)

0

Remark 6 Consider the cask;(z) = a; andy’= 0, whereq; is a constant. Since the equations| (21) and

(22) are

2
X(t) =%— a—zlt +aW(t), Y(t)= /Ot exp(X(s)) ds

for t € [0, T], our situation here is the Asian-type option for the clessBlack-Scholes model under a
risk-neutral measureld As seen in Remaifll 5, we can also compute

5((3(t,)20) V(0 0320 (LO)

t
1 <W(t)’_ ot\?(u)OW(u)> (/O‘Y(V)Zdv)

NG)
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Remark 7 Let 0< ro <r be a constant, and denote By. C(|—r,0]; R) — C(|—r,—ro]; R) the projec-
tion such thafl1(f) = {f(s); —r <s< —rg} for f € C([-r,0]; R). Similarly to the studies stated above,
we can also discuss the case where the prdéess{x(t) —r<t< T} is determined by the equation:

Xt =1 O g
= t t

) X+/o AO(H(XS))X(S)dS+/() Ar(M(Xs)) X(s)dW(s) (0<t<T),

whereA; € Céﬁb(c([—r, —ro]; R); R) (i = 0, 1) with the uniformly elliptic condition orA:

. 2
feC([IDrf.O] - (Au(N(f)))" > Cus. (26)
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