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STUDY OF q-GARNIER SYSTEM BY PADÉ METHOD

HIDEHITO NAGAO AND YASUHIKO YAMADA

Abstract. We give a simple form of the evolution equations and the scalar Lax pair
for the q-Garnier system. Some degenerations to the q-Painlevé equations and the au-
tonomous case as a generalized QRT system are discussed. Using two kinds of Padé
problems on differential grid and q-grid, we derive some special solutions of the q-Garnier
system in terms of the q-Appell Lauricella function and the generalized q-hypergeometric
function.

1. Introduction

The Garnier system [1, 4] is known as an important extension of the Painlevé equa-
tions to multi-variables. Its q-difference analog, the q-Garnier system, was formulated by
H.Sakai in [17].

There exists a simple method to study the Painlevé/Garnier equations using Padé
approximation [25]. In this method, one can obtain the evolution equation, the Lax pair
and some special solutions simultaneously, starting from a suitable Padé approximation
(or interpolation) problem. This method has been applied [3, 11, 12, 14, 28] to various
cases of discrete Painlevé equations [7, 16]. Our aim is to study the q-Garnier system
applying the Padé method. We study both the usual (i.e. differential) Padé approximation
and the Padé interpolation on q-grid, and obtain two kinds of special solutions written in
terms of q-Appell Lauricella function and the generalized q-hypergeometric functions.

In section 2.1, we introduce a scalar Lax pair and derive the q-Garnier equation as the
necessary condition for the compatibility. In section 2.2, the relation to the Sakai’s matrix
form is considered, and the sufficiency for the compatibility is proved. In section 2.3, we
rewrite the q-Garnier system into more explicit (but nonbirational) form. In section 2.4,

we discuss the degenerations to the q-Painlevé equations of types E
(1)
7 , E

(1)
6 and D

(1)
5 . The

E
(1)
7 case is new and E

(1)
6 , D

(1)
5 cases are known [17, 19].

In section 3, we formulate a hyper-elliptic generalization of the QRT system [15, 23].
Then the generalized QRT system is identified as the autonomous limit of the q-Garnier
system.

In section 4, we study certain Padé problem on differential grid. In section 4.1, we
show that the solutions of the Padé problem give special solutions of the Lax equation
and q-Garnier system. In section 4.2, we derive the explicit expressions of the special
solutions in terms of the q-Appell Lauricella function [18].

Similarly, in section 5 we study certain Padé problem on q-grid and obtain special
solutions in terms of the generalized q-hypergeometric functions. We note that the higher
order q-Painlevé system given by Suzuki [22] also has special solutions given in terms of
the generalized q-hypergeometric functions.
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2 HIDEHITO NAGAO AND YASUHIKO YAMADA

2. A simple form of the q-Garnier system

In this section, we give a reformulation of the evolution equations and the scalar Lax
equations of the q-Garnier system.

2.1. Lax pairs and the q-Garnier equation. Fix a positive integer N and a complex
parameter q (0 < |q| < 1). Let a1, . . . , aN+1, b1, . . . , bN+1, c1, c2, d1, d2 be complex param-

eters with a constraint
∏2N+1

j=1
ai
bi

= q
∏2

i=1
ci
di

and Ta : a 7→ qa be the q-shift operator of
parameter a.

In this section, we put

(2.1) T := T−1
a1
T−1
b1
,

and the corresponding shifts are denoted as X := T (X), X := T−1(X). The operator
T plays the role of time evolution of the q-Garnier system. Though one can choose any
ai, bj instead of a1, b1, we consider the case (i, j) = (1, 1) for notational simplicity.

For an unknown function y(x), we consider two linear equations: L2(x) between y(x), y(qx), y(x)
and L3(x) between y(x), y(x), y(x/q) defined as follows:

(2.2)
L2(x) := F (f, x)y(x)−A1(x)y(qx) + (x− b1)G(g, x)y(x) = 0,
L3(x) := F (f, x/q)y(x) + (x− a1)G(g, x/q)y(x)− qc1c2B1(x/q)y(x/q) = 0,

where
(2.3)

A(x) :=

N+1∏

j=1

(x− aj), B(x) :=

N+1∏

j=1

(x− bj), A1(x) :=
A(x)

x− a1
, B1(x) :=

B(x)

x− b1
,

F (f, x) :=

N∑

j=0

fjx
j G(g, x) :=

N−1∑

j=0

gjx
j ,

and f0, . . . , fN , f0, . . . , fN , g0, . . . , gN−1 are some variables independent of x.

Proposition 2.1. The compatibility of L2 and L3 (2.2) gives the following conditions:

(2.4) c1c2A1(x)B1(x)− (x− a1)(x− b1)G(g, x)G(g, x) = 0 for F (f, x) = 0,

(2.5) qc1c2A1(x)B1(x)− F (f, x)F (f, x) = 0 for G(g, x) = 0,

(2.6) fNfN = q(gN−1 − c1)(gN−1 − c2), f0f0 = a1b1(g0 − e1)(g0 − e2),

where ei := diν/a1b1, ν :=
∏N+1

j=1 (−aj).

Proof. Under the condition F (f, x) = 0, eliminating y(x), y(qx) from L2(x) = L3(qx) =

0, we obtain eq.(2.4). Similarly, for G(g, x) = 0 eliminating y(qx), y(x) from L2(x) =

L3(qx) = 0, we have eq.(2.5) Considering the highest coefficients of L2(x) and L3(x), we

have the first equation of (2.6). Similarly, considering the lowest coefficients of L2(x) and

L3(x), we have the second equation of (2.6). �

We remark that similar computations based on the contiguity type Lax pair have been
done in [3, 14, 28].

Though eqs.(2.4)−(2.6) are given as equation for 2N+1 variables f0, . . . , fN , g0, . . . , gN−1,
they can be reduced to equations for 2N variables f1

f0
, . . . , fN

f0
, g0, . . . , gN−1 (see eqs.(2.17)−(2.19)
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in section 2.3). In section 2.2, eqs.(2.4)−(2.6) will be proved to be sufficient for the com-
patibility of L2, L3.

The most fundamental object is the linear three term equation L1(x) between y(qx),
y(x), y(x/q). Eliminating y(x), y(x

q
) from L2(x), L2(

x
q
), L3(x) (2.2), we have the following

expression for the three term equation L1(x):

(2.7)

L1(x) := A(x)F (f,
x

q
)y(qx) + qc1c2B(

x

q
)F (f, x)y(

x

q
)

−
{

(x− a1)(x− b1)F (f,
x

q
)G(g, x) +

F (f, x)

G(g, x
q
)
V1(f, f ,

x

q
)
}

y(x) = 0,

where

(2.8) V1(f, f , x) := qc1c2A1(x)B1(x)− F (f, x)F (f, x).

Lemma 2.2. The linear equation L1(x) (2.7) has the following properties: (i) it is a

polynomial of degree 2N + 1 in x, (ii) the exponents are d1, d2 (at x = 0) and c1, c2 (at

x = ∞), (iii) the N points x with F (f, x) = 0 are the apparent singularities (i.e., the

solutions are regular there) such that

(2.9)
y(qx)

y(x)
=
G(g, x)(x− b1)

A1(x)
for F (f, x) = 0.

Moreover, the coefficient of y(x) in equation L1(x) is uniquely characterized by these

properties once the coefficients of y(qx) and y(x/q) are given in the equation L1(x).

Proof. The properties (i)−(iii) follows by computation using the eqs.(2.5), (2.6). The

polynomiality of the coefficient of y(x) follows from eq.(2.5). The second half can easily

be confirmed by counting the number of coefficients. �

2.2. Correspondence to Sakai’s Lax form. In [17], Sakai formulated the q-Garnier
system as a multivariable extension of the sixth q-Painlevé equation, by using the con-
nection preserving deformation of a linear q-difference equation as follows.

(2.10) Y (qx) = A(x)Y (x), A(x) :=

[
a(x) b(x)
c(x) d(x)

]

, Y (x) :=

[
y1(x)
y2(x)

]

.

The coefficient matrixA(x) are defined by the following conditions: (i)A(x) :=
∑N+1

i=0 Aix
i,

(ii) AN+1 := diag(κ1, κ2) and A0 has eigenvalues θ1, θ2. (iii) detA(x) = κ1κ2
∏2N+2

i=1 (x −

αi), such that κ1κ2
∏2N+2

i=1 αi = θ1θ2. The conditions (i),(ii),(iii) determine the matrix
A(x) up to 2N + 1 free parameters. 2N of them are the dependent variables of the q-
Garnier system, and one natural choice of them are given by {λi, µi}

N
i=1 where b(λi) = 0,

µi = a(λi) = y1(qλi)/y1(λi) (a kind of Sklyanin’s ”magic recipe”, see [20], [21] for exam-
ple). The remaining one (the normalization of the polynomial b(x)) is a gauge parameter.

The system (2.10) can be equivalently described by the following scalar equation for
the first component y1(x):

(2.11) b(x/q)y1(qx)− {b(x/q)a(x) + b(x)d(x/q)}y1(x) + b(x)detA(x/q)y1(x/q) = 0.

Here N zeros of b(x) are apparent singularities .

Proposition 2.3. The linear three term equation L1 (2.7) is equivalent to eq.(2.11) up

to a gauge transformation and a change of parameters.
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Proof. By a gauge transformation: y1(x) = H(x)ỹ1(x) with H(qx)/H(x) =
∏N+1

i=1 (x−αi),

the system (2.11) can be written as

(2.12)

∏N+1
i=1 (x− αi)b(x/q)ỹ1(qx)− {b(x/q)a(x) + b(x)d(x/q)}ỹ1(x)

+κ1κ2
∏2N+2

i=N+2(x/q − αi)b(x)ỹ1(x/q) = 0.

Here, (i) the coefficient of ỹ1(x) is a polynomial of degree 2N + 1 in x, (ii) the exponents

are θ1/
∏N+1

i=1 (−αi), θ2/
∏N+1

i=1 (−αi) (at x = 0) and κ1, q
−1κ2 (at x = ∞), (iii) N zeros

of b(x) are apparent singularities. Then, these conditions determine the equation (2.12)

up to 2N free parameters. Due to Lemma 2.2, we see that L1(x) (2.7) is equivalent to

eq.(2.12) up to a change of parameters. �

As we will show below, eqs.(2.4)−(2.6) are sufficient for the compatibility of L1, L2 (or
L3). Hence eqs.(2.4)−(2.6) can be regarded as the q-Garnier system.

To prove the sufficiency, we first study the linear three term equation L∗
1(x) between

y(qx), y(x), y(x/q). Eliminating y(x), y(qx) from L2(x), L3(x), L3(qx) (2.2), we have the
following expression:

(2.13)

L∗
1(x) := A(x)F (f,

x

q
)y(qx) + qc1c2B(

x

q
)F (f, x)y(

x

q
)

−
1

q

{

(x− a1)(x− b1)F (f, x)G(g,
x

q
) +

F (f, x
q
)

G(g, x)
V1(f, f , x)

}

y(x) = 0,

where V1(f, f , x) is given in eq.(5.11).
The following can be proved in the similar way as Lemma 2.2.

Lemma 2.4. The linear equation L∗
1(x)(2.13) has the following properties: (i) it is a

polynomial of degree 2N + 1 in x, (ii) exponents are d1, d2 (at x = 0) and c1, c2 (at

x = ∞), (iii) the points x with F (f, x) = 0 are the apparent singularities such that

(2.14)
y(qx)

y(x)
=

B1(x)

c1c2G(g, x)(x− a1/q)
for F (f, x) = 0.

Moreover, the coefficient of y(x) in equation L∗
1(x) can be characterized by these properties

once the coefficients of y(qx) and y(x/q) are given in the equation L∗
1(x).

Theorem 2.5. The linear equations L1 (2.7) and L2 (2.2) are compatible if and only if

equations (2.4)−(2.6) for variables f, g are satisfied.

Proof. The compatibility means that T (L1) = L∗
1, i.e. the commutativity of the following:

L∗
1 (Lemma 2.4) = L∗

1 (2.13)

↑ ↑

T -shift L2, L3 (2.2)

↑ ↓

L1 (Lemma 2.2) = L1 (2.7).

This can be checked by the characterizations of L1 and L
∗
1 in Lemma 2.2 and 2.4, and the

relation: T (2.9)= (2.14), which follows from eq.(2.4). �
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2.3. Expressions in terms of roots. Introduce variables λi, µi (i = 1, . . . , N) such that

F (f, x) = Λ(x) := fN
∏N

i=1(x − λi) and µi =
y(qλi)
y(λi)

. We note that the variables {µi} are

related to {gi} as µi =
(x−b1)G(g,x)

A1(x)
|x=λi

. Then the linear three term equation L1 (2.7) can

be written as

(2.15)

L1(x) =
A(x)

xΛ(x)
y(qx) +

qc1c2B(x/q)

xΛ(x/q)
y(x/q)

−
[ν(d1 + d2)

f0x
+

(c1 + c2)

fN
+

N∑

i=1

1

λiΛ′(λi)

(A(λi)µi

x− λi
+
qc1c2B(λi)

(x− qλi)µi

)
]

y(x) = 0,

where f0 = fN
∏N

i=1(−λi) and ν =
∏N+1

j=1 (−aj). As a curve in (λ1, µ1), the equation

L1 = 0 has the following characterization: (i) It is a polynomial of bidegree (N+2, 2), (ii)
passing through the following 3N + 9 points (0, di)

2
i=1, (∞, ci)

2
i=1, (bi, 0)

N+1
i=1 , (ai,∞)N+1

i=1 ,

(x, 0), (x
q
,∞), (x, y(qx)

y(x)
), (x

q
, y(x)
y(x

q
)
), (λi, µi)

N
i=2 (i 6= 1). By the symmetry, there exist similar

characterizations for the other variables (λi, µi) also. This is a generalization of the
geometric characterizations for the discrete Painlevé equations as a curve of bidegree
(3, 2) passing through 12 points [7, 26, 27].

The linear equations L2, L3 (2.2) can be also written as

(2.16)
L2(x) = Λ(x)y(x)− A1(x)y(qx) + (x− b1)Ξ(x)y(x) = 0,

L3(x) = Λ(x/q)y(x) + (x− a1)Ξ(x/q)y(x)− qc1c2B1(x/q)y(x/q) = 0,

where G(g, x) = Ξ(x) := gN−1

∏N−1
i=1 (x − ξi). Then the evolution equations (2.4)−(2.6)

can be written as

(2.17) Ξ(λi)Ξ(λi) = c1c2
A1(λi)B1(λi)

(λi − a1)(λi − b1)
(i = 1, . . . , N),

(2.18)
Λ(ξi)Λ(ξi)

fNfN

= c1c2
A1(ξi)B1(ξi)

(gN−1 − c1)(gN−1 − c2)
(i = 1, . . . , N − 1),

(2.19)
N∏

i=1

λiλi =
a1b1
q

(g0 − e1)(g0 − e2)

(gN−1 − c1)(gN−1 − c2)
,

where g0 = gN−1

∏N−1
i=1 (−ξi). The eqs.(2.17)−(2.19) are the q-Garnier equation in terms

of 2N variables λ1, . . . , λN , ξ1, . . . , ξN−1, g0 (or gN−1).

2.4. Degeneration to the q-Painlevé equations. We give a few comments on lower

cases N = 1, 2, 3. In [17], the q-Painlevé equation of type D
(1)
5 has appeared as a case for

the q-Garnier system with N = 1. This is easily seen from eqs.(2.4)−(2.6). For N = 2

case, it is known [19] that the q-Painlevé equation of type E
(1)
6 appears as a particular

case for the q-Garnier system with N = 2. In fact, we have

Proposition 2.6. For the case N = 2 with a constraint c1 = c2, the q-Garnier equation

(2.4)−(2.6) admit the following reduction

(2.20)
(fg − 1)(fg − 1) =

(1− a2f)(1− a3f)(1− b2f)(1− b3f)

(1− a1f)(1− b1f)
,

(fg − 1)(fg − 1) =
(1− g/a2)(1− g/a3)(1− g/b2)(1− g/b3)

(1− c1g/e1)(1− c1g/e2)
,
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where ei is the same as in Proposition 2.1.

Proof. Under the constraint, eqs.(2.4)−(2.6) admit a specialization f2 = 0 and g1 = c1.

Then we obtain the results where f = −f1/f0, g = −g0/c1. �

The eqs.(2.20) is the q-Painlevé equation of type E
(1)
6 [7, 16].

For N = 3 case, the q-Painlevé equation of type E
(1)
7 appears as a particular case for

the q-Garnier system with N = 3. In fact, we have

Proposition 2.7. For the case N = 3 with constraints d1 = d2 and c1 = c2, the q-Garnier

equation (2.4)−(2.6) admit the following reduction

(2.21)
{

g + (f + e1
c1f

)
}{

g + (f + qe1
c1f

)
}

=
(f − a2)(f − a3)(f − a4)(f − b2)(f − b3)(f − b4)

f 2(f − a1)(f − b1)
,

(1− x1/f)(1− x1/f)

(1− x2/f)(1− x2/f)
=
x22(x1 − a2)(x1 − a3)(x1 − a4)(x1 − b2)(x1 − b3)(x1 − b4)

x21(x2 − a2)(x2 − a3)(x2 − a4)(x2 − b2)(x2 − b3)(x2 − b4)
,

where ei is the same as in Proposition 2.1 and x = x1, x2 are solutions of the equation

g + (x+ e1
c1x

) = 0.

Proof. Under the constraint, eqs.(2.4)−(2.6) admit a specialization f0 = f3 = 0, g0 = e1
and g2 = c1. Then we obtain the results where f = −f1/f2, g = g1/c1. �

The eqs.(2.21) for the variables f, g is a kind of the q-Painlevé equation of type E
(1)
7 ,

but the direction of the time evolution is different from the standard one [7, 16]. The
relation of them will be discussed in [13].

2.5. Correspondence of parameters and variables in §2, §4, §5. In this paper,
parameters ai, bi (i = 1, . . . , N+1), ci, di (i = 1, 2),m,n and variables fi, gi (i = 0, . . . , N−
1), w0, w1 are used in slightly different means in §2, §4, §5. Their relations are given as
follows:
(2.22)

a§2i = 1/a§4i = 1/a§5i (i = 1, . . . , N + 1), a§2N+1 = 1/a§4N+1, a§5N+1 = 1/(qm+n)§5,

b§2i = 1/b§4i = 1/b§5i (i = 1, . . . , N + 1), b§2N+1 = 1/b§4N+1, b§5N+1 = q,

c§41 = (qm)§4, c§51 = (qm)§5, c§42 = (qn
∏N+1

j=1
bj
aj
)§4, c§52 = (cqn

∏N
j=1

bj
aj
)§5,

d§41 = d§51 = 1, d§42 = (qm+n+1)§4, d§52 = c§5,

f §2
0 = (−a1

ν
w0)

§4 = (−a1
ν
w0)

§5, f
§2

0 = (−b1d1d2
ν

w1)
§4 = (−b1d1d2

ν
w1)

§5,

f §2
i = (−a1

ν
w0fi)

§4 = (−a1
ν
w0fi)

§5 (i = 0, . . . , N), f §4
0 = f §5

0 = 1,

f
§2

i = (−b1d1d2
ν

w1f i)
§4 = (−b1d1d2

ν
w1f i)

§5 (i = 0, . . . , N), f
§4

0 = f
§5

0 = 1

w§4
0 = 1− ( g0

d1
)§4 w§4

1 = 1− ( g0
d2
)§4, w§5

0 = 1− ( g0
d1
)§5 w§5

1 = 1− ( g0
d2
)§5,

g§2i = (a1b1
ν
gi)

§4 = (a1b1
ν
gi)

§5 (i = 0, . . . , N − 1),

where ν =
∏N+1

j=1 (−aj).

3. Autonomous case

In this section, we define a generalization of the QRT system [15] (see also [23]) for
hyperelliptic curves and discuss its relation to the q-Garnier system.
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3.1. Generalization of the QRT map for hyperelliptic curve. Let C be a curve of
bidegree (N + 1, 2) on P1 × P1 which passes through given 2N + 5 points P1, . . . , P2N+5.
The number of free parameters of the defining polynomial is 3(N +2)− (2N+5) = N +1,
hence the curves C form an N dimensional family, generically of genus N .

The dynamical variables of the generalized QRT mapping is a set (a divisor) of N
points {Q1, . . . , QN} on the curve C. Following Mumford [10] we represent it by a pair

of functions Φ(x),Ψ(x), where Φ(x) is a polynomial of degree N and Ψ(x) := S(x)
R(x)

is a

rational function of degree N , such that Qi = (xi,Ψ(xi)), Φ(xi) = 0, (i = 1, . . . , N). Note
that the normalization of Φ(x) is irrelevant. A generalized QRT map is defined as follows:

(1) Fix N free parameters of the curve C so that it passes the initial points Q1, . . . , QN .
We represent the resulting curve as C0 : ϕ(x, y) := α(x)y2 + β(x)y + γ(x) = 0.

(2) Take a subset of indices I ⊂ {1, . . . , 2N + 5} with |I| = N + 1 and determine the

rational function Ψ(x) = S(x)
R(x)

uniquely by the condition that the curve y = Ψ(x) passes

through the points Pi = (xPi
, yPi

)(i ∈ I) and Q1, · · · , QN . By definition ϕ0(x,Ψ(x)) is
divisible by

∏

i∈I(x − xPi
)Φ(x) and we can define an involution ιIx : (Φ,Ψ) 7→ (Φ̃,Ψ) by

the relation

(3.1) R(x)2ϕ(x,Ψ(x)) =
∏

i∈I

(x− xPi
)Φ(x)Φ̃(x).

(3) Since the polynomial ϕ(x, y) is of degree 2 in y, the other involution ιy : (x, y) 7→

(x, ỹ) can be defined simply as yỹ = γ(x)
α(x)

. Namely we have ιy : (Φ,Ψ) 7→ (Φ, Ψ̃) where

(3.2) Ψ(x)Ψ̃(x)α(x) = γ(x), for Φ(x) = 0.

(4) We have the generalized QRT map is defined by the iteration TI := ιyι
I
x or T−1

I :=
ιIxιy. They are the commutativity TITJ = TJTI since they are translations on the Jacobian
of the curve C0.

3.2. Relation to the q-Garnier system. In order to apply the algorithm in previous
subsection to the q-Garnier system (2.4)−(2.6), we consider the case where the points
P1, . . . , P2N+5 are in the configuration (ai,∞)N+1

i=1 , (bi, 0)
N+1
i=1 , (∞, ci)

2
i=1 and (0, di)

2
i=1.

Here we included an additional point P2N+6 whose position is determined by the constraint
∏N+1

i=1
ai
bi
=
∏2

i=1
ci
di
. Then the curve C0 : ϕ(x, y) = 0 of bidegree (N +1, 2) can be written

as

(3.3)

ϕ(x, y) := A(x)y2 − U(x)y + c1c2B(x) = 0,

U(x) := ν(d1 + d2) +

N∑

i=1

uix
i + (c1 + c2)x

N+1.

where A(x) :=
∏N+1

i=1 (x − ai), B(x) :=
∏N+1

i=1 (x − bi), ν :=
∏N+1

i=1 (−ai). Note that the
lowest/highest terms of ϕ(x, y) in x are given by ϕ|x0 = ν(y − d1)(y − d2) and ϕ|xN+1 =
(y− c1)(y− c2). The parameters (conserved quantities) u1, · · · , uN are determined by the
condition ϕ(Qi) for the initial points: Q1, · · · , QN .

To adjust the formulation given above to that in section 2, we take the index set I as

{Pi|i ∈ I} = {(ai,∞)N+1
i=2 , (b1, 0)}, and put Φ(x) := F (x) and Ψ(x) := (x−b1)G(x)

A1(x)
where

F (x) :=
∑N

i=0 fix
i and G(x) :=

∑N−1
i=0 gix

i. Then, the ιIx-flip defined by eq.(3.1) takes the
form

(3.4) (x− a1)(x− b1)G(x)
2 − U(x)G(x) + c1c2A1(x)B1(x) = F (x)F̃ (x),
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where A1(x) :=
A(x)
x−ai

and B1(x) :=
B(x)
x−bi

. This relation determines the polynomial F̃ (x) by

(3.5) F (x)F̃ (x) = c1c2A1(x)B1(x), for G(x) = 0,

(3.6) fN f̃N = (gN−1 − c1)(gN−1 − c2), f0f̃0 = a1b1(g0 − e1)(g0 − e2),

where ei := diν/a1b1. On the other hand, the ιy-flip (3.2) gives

(3.7) (x− a1)(x− b1)G(x)G̃(x) = c1c2A1(x)B1(x), for F (x) = 0.

It is easy to see that

Proposition 3.1. The eqs.(3.5)−(3.7) correspond to the autonomous (q = 1) version of

the q-Garnier system (2.4)−(2.6).

4. The Padé problem on differential grid

In this section, we will study certain Padé approximation problem and solve it explicitly.
As a result, we will obtain some special solutions of q-Garnier system in terms of q-Appell
Lauricella function.

4.1. Lax pairs and the q-Garnier equation. In this subsection, starting the Padé
approximation problem (4.3), we will derive the three term relations (4.5), (4.16) and
nonlinear difference relations (4.13)−(4.15). We put

(4.1) ψ(x) :=

N+1∏

i=1

(aix)∞
(bix)∞

.

Here and in what follows, we use the standard q-Pochhammer symbols defined as

(4.2) (z)∞ :=

∞∏

i=0

(1− qiz), (z)s :=
(z)∞
(zqs)∞

, (z1, z2, . . . , zk)s := (z1)s(z2)s . . . (zk)s.

Define polynomials P (x) and Q(x) of degree m and n ∈ Z≥0 by the following Padé
approximation condition:

(4.3) ψ(x) =
P (x)

Q(x)
+O(xm+n+1).

Here the common normalizations of the polynomials P (x), Q(x) are fixed as P (0) = 1
tentatively.

In this section, due to the change of parameters in eq (2.22), the shift T of the param-
eters are given by

(4.4) T := Ta1Tb1 .

Let us consider two linear three term relations: L2(x) between y(x), y(qx), y(x) and
L3(x) between y(x), y(x), y(x/q) satisfied by the functions y(x) = P (x) and y(x) =
ψ(x)Q(x). The following Proposition shows that these equations can be regarded as
L2 and L3 equations for q-Garnier system.

Proposition 4.1. The linear three term relations L2 and L3 can be written as follows:

(4.5)
L2(x) := (b1x)1G(g, x)y(x)− A1(x)y(qx) + (g0)1F (f, x)y(x) = 0,

L3(x) := (rg0)1F (f, x/q)y(x) + r(a1x)1G(g, x/q)y(x)−B1(x/q)y(x/q) = 0,
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where

(4.6)

A(x) :=
N+1∏

j=1

(ajx)1, B(x) :=
N+1∏

j=1

(bjx)1, F (f, x) := 1 +
N∑

j=1

fjx
j ,

A1(x) :=
A(x)

(a1x)1
, B1(x) :=

B(x)

(b1x)1
, G(g, x) :=

N−1∑

j=0

gjx
j .

Here r := q−(m+n+1) and f1, . . . , fN , f1, . . . , fN , g0, . . . , gN−1 are some constants depending

on parameters ai, bi, m, n but independent of x.

Proof. By the definition of the linear relations L2 and L3, they can be written as

L2(x) =

∣
∣
∣
∣
∣
∣
∣

y(x) y(qx) y(x)

P (x) P (qx) P (x)

ψ(x)Q(x) ψ(qx)Q(qx) ψ(x)Q(x)

∣
∣
∣
∣
∣
∣
∣

= 0,(4.7)

L3(x) =

∣
∣
∣
∣
∣
∣
∣

y(x) y(x) y(x/q)

P (x) P (x) P (x/q)

ψ(x)Q(x) ψ(x)Q(x) ψ(x/q)Q(x/q)

∣
∣
∣
∣
∣
∣
∣

= 0.(4.8)

Setting y(x) :=

[

P (x)

ψ(x)Q(x)

]

, define Casorati determinants D1(x), D2(x) and D3(x) by

(4.9)

D1(x) := det[y(x),y(qx)], D2(x) := det[y(x),y(x)], D3(x) := det[y(qx),y(x)].

Then, the linear relations L2 and L3 take the following forms:

(4.10)
L2(x) = D1(x)y(x)−D2(x)y(qx) +D3(x)y(x) = 0,

L3(x) = D1(x/q)y(x) +D3(x/q)y(x)−D2(x)y(x/q) = 0.

The determinants (4.9) can be computed by the condition (4.3) and the relations

(4.11)
ψ(qx)

ψ(x)
=

N+1∏

i=1

(bix)1
(aix)1

,
ψ(x)

ψ(x)
=

(b1x)1
(a1x)1

.

The results are given as

(4.12)

D1(x) =
ψ(x)

A(x)
{B(x)P (x)Q(qx)− A(x)P (qx)Q(x)} =: C0

ψ(x)xm+n+1

A(x)
F (f, x),

D2(x) =
ψ(x)

(a1x)1

{
(b1x)1P (x)Q(x)− (a1x)1P (x)Q(x)

}
=:

C1ψ(x)x
m+n+1

(a1x)1
,

D3(x) =
ψ(x)

A(x)

{
(b1x)1A1(x)P (qx)Q(x)− B(x)P (x)Q(qx)

}
=:

C1ψ(x)x
m+n+1

A(x)
(b1x)1G(g, x),

with some constant C0, C1. Substituting eqs.(4.12) into eq.(4.10), we obtain eq.(4.5),

where the constants C0, C1 were fixed as C0 = (g0)1, C1 = (rg0)1 by the condition that

eq.(4.5) have a solution such as y(0) = P (0) = 1. �

The following Proposition can be proved in the similar way as Proposition 2.1.
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Proposition 4.2. The compatibility of L2 and L3 (4.5) gives the following conditions:

(4.13) A1(x)B1(x)− r(a1x, b1x)1G(g, x)G(g, x) = 0 for F (f, x) = 0,

(4.14) A1(x)B1(x)− (g0, rg0)1F (f, x)F (f, x) = 0 for G(g, x) = 0,

(4.15) (g0, rg0)1fNfN =
(

qra1gN−1 +

∏N+1
i=2 (−bi)

s

)(

b1gN−1 + s
N+1∏

i=2

(−ai)
)

,

where r (s := qm, resp.) is one of the exponents of the linear equation L1(x) (4.16) at

x = 0 (x = ∞, resp.). These equations are regarded as the q-Garnier system (2.4)−(2.6).

We derive the three term relation L1(x) between y(qx), y(x), y(x/q) satisfied by the
functions y(x) = P (x) and y(x) = ψ(x)Q(x). The following Proposition can be given by
the similar proof as in Lemma 2.2.

Proposition 4.3. The three term relation L1(x) can be written in the form

(4.16)

L1(x) := rA(x)F (f,
x

q
)y(qx) +B(

x

q
)F (f, x)y(

x

q
)

−
{

r(a1x, b1x)1F (f,
x

q
)G(g, x) +

F (f, x)

G(g, x
q
)
V1(f, f ,

x

q
)
}

y(x) = 0,

where

(4.17) V1(f, f , x) := A1(x)B1(x)− (g0, rg0)1F (f, x)F (f, x).

The equation L1(x) has the following properties: (i) it is a polynomial of degree 2N + 1

in x, (ii) the exponents are 1, r−1 (at x = 0) and s, 1
qrs

∏N+1
i=1

bi
ai

(at x = ∞), (iii) the

N points x with F (f, x) = 0 are the apparent singularities (i.e., the solutions are regular

there) such that

(4.18)
y(qx)

y(x)
=

(b1x)1G(x)

A1(x)
.

Moreover, the coefficient of y(x) in equation L1(x) is uniquely characterized by these

properties once the coefficients of y(qx) and y(x/q) are given in the equation L1(x) .

Proof. Similar to the proof of Lemma 2.2. �

4.2. Special solutions. We derive the explicit forms (4.26)−(4.28) of variables {fi, gi}
appearing in the Casorati determinants D1 and D3 (4.12). They are interpreted as the
special solutions for q-Garnier system (4.13)−(4.15) due to the results of previous subsec-
tion.

Proposition 4.4. For any given function ψ(x) =
∑∞

k=0 pkx
k, (pi = 0, i < 0), the polyno-

mials P (x) and Q(x) of degree m and n for the approximation condition (4.3) are given

by

(4.19) P (x) =

m∑

i=0

s(mn,i)x
i, Q(x) =

n∑

i=0

s((m+1)i,mn−i)(−x)
i,
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where mn := (m,m, . . . ,m
︸ ︷︷ ︸

n

) and sλ is the Schur function defined by the Jacobi Trudi

formula

(4.20) s(λ1,...,λl) := det(pλi−i+j)
l
i,j=1.

For the proof, see section 2 of [25].

Lemma 4.5. The polynomials P (x) and Q(x) in proposition 4.4 can be expressed in terms

of a single determinant as

(4.21) P (x) = xms(mn+1)|pi→
∑i

j=0
x−jpi−j

, Q(x) = (−x)ns((m+1)n)|pi→pi−x−1pi−1
.

Proof. Direct computation of the right hand side of eqs.(4.21). �

Note that the normalization of the polynomials in eqs.(4.19),(4.21) are different from
the convention P (0) = 1. However, this difference does not affect the results in the
following Proposition 4.7, since the common normalization factors of P (x) and Q(x) are
cancels in eqs.(4.29)−(4.31).

Then, we apply the general results described above to the function ψ(x) in eq.(4.1)
which can be written as

(4.22) ψ(x) =
∞∑

k=0

pkx
k = exp

( ∞∑

k=1

N+1∑

s=1

bks − aks
k(1− qk)

xk
)

.

We note that this kind of expression (4.22) has already appeared in [24].
By definition (4.1), it is easy to see the properties for pk as follows:

(4.23)

T−1
as

(pi) = pi −
1

q
aspi−1, Tbs(pi) = pi − bspi−1,

Tas(pi) =
i∑

j=0

ajspi−j, T−1
bs

(pi) =
i∑

j=0

(bs/q)
jpi−j,

for s = 1, . . . , N + 1.

Proposition 4.6. The polynomials P (x) and Q(x) have the following special values:

(4.24)

P
( 1

as

)

=
( 1

as

)m

Tas(τm,n+1), Q
( q

as

)

=
(

−
q

as

)n

T−1
as

(τm+1,n)

P
( q

bs

)

=
( q

bs

)m

T−1
bs

(τm,n+1), Q
( 1

bs

)

=
(

−
1

bs

)n

Tbs(τm+1,n),

for s = 1, . . . , N + 1. Where τm,n is defined as

(4.25) τm,n := s(mn) = det(pm−i+j)
n
i,j=1.

Proof. Follows from (4.23) and the formula (4.21). �

Proposition 4.7. The polynomials F (f, x) and G(g, x) are determined as follows:

(4.26)
F (f, 1

ai
)

F (f, 1
bj
)
= −qn−mai

bj

B( 1
ai
)

A( 1
bj
)

Tai(τm,n+1)T
−1
ai

(τm+1,n)

T−1
bj

(τm,n+1)Tbj (τm+1,n)
(i, j = 1, . . . , N + 1),

(4.27) G(g,
1

ai
) = −qn

ai
a1

B1(
1
ai
)

(b1/a1)1

Tai(τm,n+1)T
−1
ai

(τm+1,n)

Ta1(τm,n+1)T−1
a1

(τm+1,n)
(i = 2, . . . , N + 1).
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(4.28) G(g,
1

bi
) = −qm

bi
b1

A1(
1
bi
)

(a1/b1)1

T−1
bi

(τm,n+1)Tbi(τm+1,n)

T−1
b1

(τm,n+1)Tb1(τm+1,n)
(i = 2, . . . , N + 1),

Proof. From the first equation of (4.12), we have

(4.29)
F (f, 1

ai
)

F (f, 1
aj
)
= −

(ai
bj

)m+n+1B( 1
ai
)

A( 1
bj
)

P ( 1
ai
)Q( q

ai
)

P ( q

bj
)Q( 1

bj
)

(i, j = 1, . . . , N + 1).

From the second and third equations of (4.12), we have

(4.30) G(g, 1
ai
) = −

( ai
a1

)m+n+1 B1(
1
ai
)

(b1/a1)1

P ( 1
ai
)Q( q

ai
)

P ( 1
a1
)Q( 1

a1
)
, (i = 2, . . . , N + 1)

(4.31) G(g, 1
bi
) = −

( bi
b1

)m+n+1 A1(
1
bi
)

(a1/b1)1

P ( q

bi
)Q( 1

bi
)

P ( 1
b1
)Q( 1

b1
)
. (i = 2, . . . , N + 1)

Substituting the special values (4.24) into the expressions (4.29)−(4.31) respectively, we

obtain eqs.(4.26)−(4.28). �

We remark that the function pk can be written in terms of the q-Appell Lauricella
function ϕD [2] as follows:

Proposition 4.8. The function pk can be explicitly written as

(4.32) pk =
bkN+1

(
aN+1

bN+1

)

k

(q)k
ϕD

(

q−k,
a1
b1
, . . . ,

aN
bN
, q−k+1 bN+1

aN+1
; q

b1
aN+1

, . . . , q
bN
aN+1

)

,

(4.33) ϕD(α, β1, . . . , βN , γ; z1, . . . , zN) :=
∑

mi≥0

(α)|m|(β1)m1
. . . (βN )mN

(γ)|m|(q)m1
. . . (q)mN

zm1

1 . . . zmN

N ,

where |m| := m1 + . . .+mN .

Proof. By the definition of ψ(x) (4.1) and the q-binomial theorem, we have

(4.34) ψ(x) =
∑

mi≥0

(
a1
b1

)

m1

. . .
(

aN+1

bN+1

)

mN+1

(q)m1
. . . (q)mN+1

bm1

1 . . . b
mN+1

N+1 x
m1+···+mN+1 .

Note that for k ≥ mN+1, we have

(4.35)

(
aN+1

bN+1

)

mN+1

(q)mN+1

=

(
aN+1

bN+1

)

k
(q−k)k−mN+1

(q)k

(

q−k+1 bN+1

aN+1

)

k−mN+1

(

q
bN+1

aN+1

)k−mN+1

.

Substituting eq.(4.35) with k = |m|+mN+1 into eq.(4.34), we obtain eq.(4.32). �

In [18], a hypergeometric solution of the q-Garnier system is given in terms of the
q-Appell Lauricella function ϕD (4.33). Our result corresponds to its determinantal gen-
eralization in terminating case. For the differential Garnier system, a more general deter-
minant formula applicable also to the transcendental solutions is derived by applying the
(Hermite-)Padé approximation [8, 9].



STUDY OF q-GARNIER SYSTEM BY PADÉ METHOD 13

5. The Padé problem on q-grid

In this section, we will study certain Padé interpolation problem and solve it explic-
itly. As a result, we will obtain some special solutions in terms of the generalized q-
hypergeometric function.

5.1. Lax pairs and the q-Garnier system. In this subsection, starting the Padé in-
terpolation problem (5.2), we will derive the three term relations (5.3), (5.10) and the
nonlinear difference relations (5.7)−(5.9).

For complex parameters a1, . . . , aN , b1, . . . , bN , c ∈ C×, we put

(5.1) ψ(x) := clogq x
N∏

i=1

(aix, bi)∞
(ai, bix)∞

.

Define polynomials P (x) and Q(x) of degree m and n ∈ Z≥0 by the following Padé
approximation condition:

(5.2) ψ(xs) =
P (xs)

Q(xs)
(xs = qs, s = 0, 1, . . .m+ n)

The common normalizations of the polynomials P (x), Q(x) are fixed as P (0) = 1 tenta-
tively. In this subsection, the shift T is given as (4.4).

Proposition 5.1. For y(x) = P (x) and y(x) = ψ(x)Q(x), we have the following relations:

(5.3)

L2(x) := (b1x)1G(g, x)y(x)− (x/qm+n)1A1(x)y(qx) + (g0)1F (f, x)y(x) = 0,

L3(x) := (g0/c)1F (f, x/q)y(x) +
1

c
(a1x)1G(g, x/q)y(x)− (x)1B1(x/q)y(x/q) = 0,

where

(5.4)

A(x) :=

N∏

j=1

(ajx)1, B(x) :=

N∏

j=1

(bjx)1, F (f, x) := 1 +

N∑

j=1

fjx
j ,

A1(x) :=
A(x)

(a1x)1
, B1(x) :=

B(x)

(b1x)1
, G(g, x) :=

N−1∑

j=0

gjx
j ,

and f0, . . . , fN , f 1, . . . , fN , g0, . . . , gN−1 are some constants depending on parameters ai,

bi, c, m, n but independent of x.

Proof. By the definition of the linear relations L2 and L3, they can be written as (4.7).

Define Casorati determinants D1(x), D2(x) and D3(x) by (4.9). Then, the linear relations

L2 and L3 can take the forms (4.10). The determinants (4.9) can be computed by the

condition (5.2) and the relations

(5.5)
ψ(qx)

ψ(x)
= c

B(x)

A(x)
,

ψ(x)

ψ(x)
=

(a1, b1x)1
(a1x, b1)1

.
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The results are given as

(5.6)

D1(x) =
ψ(x)

A(x)
{cB(x)P (x)Q(qx)− A(x)P (qx)Q(x)}

=: C0
ψ(x)

A(x)

∏m+n−1
i=0 (x/qi)1F (f, x),

D2(x) =
ψ(x)

(a1x, b1)1

{
(a1, b1x)1P (x)Q(x)− (a1x, b1)1P (x)Q(x)

}

=:
C1ψ(x)

∏m+n
i=0 (x/qi)1

(a1x, b1)1
,

D3(x) =
ψ(x)

A(x)(b1)1

{
(a1, b1x)1A1(x)P (qx)Q(x)− c(b1)1B(x)P (x)Q(qx)

}

=:
C1ψ(x)

∏m+n−1
i+0 (x/qi)1

A(x)(b1)1
(b1x)1G(g, x),

with some constant C0, C1. Substituting eqs.(5.6) into eq.(4.10), we obtain eq.(5.3), where

the constants C0, C1 were fixed as C0 = (g0)1, C1 = (g0/c)1 by the condition that eq.(5.3)

have a solution such as y(0) = P (0) = 1. �

Proposition 5.2. The compatibility of L2 and L3 (5.3) gives the following conditions:

(5.7) (qx,
x

qm+n
)1A1(x)B1(x)−

1

c
(a1x, b1x)1G(g, x)G(g, x) = 0 for F (f, x) = 0,

(5.8) (qx,
x

qm+n
)1A1(x)B1(x)− (g0,

g0
c
)1F (f, x)F (f, x) = 0 for G(g, x) = 0,

(5.9) (g0,
g0
c
)1fNfN =

(qa1
c
gN−1 −

∏N

i=2(−bi)

qm−1

)(

b1gN−1 −

∏N

i=2(−ai)

qn

)

,

where c (qm, resp.) is one of the exponents of the linear equation L1(x) at x = 0 (x = ∞,

resp.). These equations are regarded as the q-Garnier system (2.4)−(2.6).

Proof. Similar to the proof of Proposition 2.1. �

The following Proposition shows that the equation has the properties as L1(x) equation
for q-Garnier system.

Proposition 5.3. The three term relation L1(x) between y(qx), y(x), y(x/q) satisfied by

the functions y(x) = P (x) and y(x) = ψ(x)Q(x) can be written in the form

(5.10)

L1(x) :=
1

c
(
x

qm+n
)1A(x)F (f,

x

q
)y(qx) + (x)1B(

x

q
)F (f, x)y(

x

q
)

−
{1

c
(a1x, b1x)1F (f,

x

q
)G(g, x) +

F (f, x)

G(g, x
q
)
V1(f, f ,

x

q
)
}

y(x) = 0,

where

(5.11) V1(f, f , x) := (qx,
x

qm+n
)1A1(x)B1(x)− (g0,

g0
c
)1F (f, x)F (f, x).

The equation L1(x) has the following properties: (i) it is a polynomial of degree 2N + 1

in x, (ii) the exponents are 1, c (at x = 0) and qm, cqn
∏N

i=1
bi
ai

(at x = ∞), (iii) the N
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points x with F (f, x) = 0 are the apparent singularities (i.e., the solutions are regular

there) such that

(5.12)
y(qx)

y(x)
=

(b1x)1G(x)

A1(x)(x/qm+n)1
.

Moreover, the coefficient of y(x) in equation L1(x) is uniquely characterized by these

properties once the coefficients of y(qx) and y(x/q) are given in the equation L1(x).

Proof. Similar to the proof of Lemma 2.2. �

5.2. Special solutions. We derive the explicit forms (5.20)−(5.22) of variables {fi, gi}
appearing in the Casorati determinants D1 and D3 (5.6). They are interpreted as the
special solutions for q-Garnier system (5.7)−(5.9).

Proposition 5.4. [5] For a given sequence ψs, the polynomials P (x) and Q(x) of degree

m and n for an interpolation problem

(5.13) ψs = P (xs)/Q(xs) (s = 0, 1, . . . , m+ n)

are given by the following determinant expressions:

(5.14) P (x) = F (x) det
[m+n∑

s=0

us
xi+j
s

x− xs

]n

i,j=0
, Q(x) = det

[m+n∑

s=0

usx
i+j
s (x− xs)

]n−1

i,j=0
,

where us := ψs/F
′(xs) and F (x) :=

∏m+n

i=0 (x− xi).

Lemma 5.5. In the q-grid case of problem (5.13) (i.e., xs = qs), the formulae (5.14)

take the following form:

(5.15)

P (x) =
F (x)

(q)n+1
m+n

det
[m+n∑

s=0

ψs

(q−(m+n))s
(q)s

qs(i+j+1)

x− qs

]n

i,j=0
,

Q(x) =
1

(q)nm+n

det
[m+n∑

s=0

ψs

(q−(m+n))s
(q)s

qs(i+j+1)(x− qs)
]n−1

i,j=0
.

Proof. In the derivation of (5.15), we have used the relations

F ′(xs) =(q)s(q)m+n/q
s(q−(m+n))s.(5.16)

Substituting the value of F ′(xs) (5.16) into the formulae (5.14), one obtains the determi-

nant formulae (5.15). �

The normalization of the polynomials in eqs.(5.14), (5.15) are different from the con-
vention P (0) = 1 in section 5.1 and 5.2. As before, this difference does not affect the
results in the following Proposition 5.7.

Proposition 5.6. The polynomials P (x) and Q(x) defined in section 5.1 have the follow-

ing special values:

(5.17)

P (1/as) =
(as)m+n+1

ams (as)
n+1
1 (q)n+1

m+n

Tas(τm,n), Q(q/as) =
qn(as/q)

n
1

ans (q)
n
m+n

T−1
as

(τm+1,n−1)

P (q/bs) =
qm(bs/q)m+n+1

bms (bs/q)
n+1
1 (q)n+1

m+n

T−1
bs

(τm,n), Q(1/bs) =
(bs)

n
1

bns (q)
n
m+n

Tbs(τm+1,n−1),
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for s = 1, . . . , N . Here τm,n is defined as

(5.18) τm,n := det
[

N+1ϕN

(
b1, . . . , bN , q

−(m+n)

a1, . . . , aN
, cqi+j+1

)]n

i,j=0
,

and the q-HGF (the q-hypergeometric functions [2]) is defined by

(5.19) kϕl

(

α1, . . . , αk

β1, . . . , βl
, x

)

:=
∞∑

s=0

(α1, . . . , αk)s
(β1, . . . , βl, q)s

[

(−1)sq(
s
2)
]1+l−k

xs,

with (s2) := s(s− 1)/2.

Proof. Follows from the formula (5.15) and the sequence ψs = cs
∏N

i=1
(bi)s
(ai)s

. �

Proposition 5.7. The polynomials F (f, x) and G(g, x) are determined as follows:

(5.20)
F (f, 1/ai)

F (f, 1/bj)
= α

Tai(τm,n)T
−1
ai

(τm+1,n−1)

T−1
bj

(τm,n)Tbj (τm+1,n−1)
(i, j = 1, . . . , N),

(5.21) G(g, 1/ai) = β
Tai(τm,n)T

−1
ai

(τm+1,n−1)

Ta1(τm,n)T−1
a1

(τm+1,n−1)
(i = 2, . . . , N),

(5.22) G(g, 1/bi) = γ
T−1
bi

(τm,n)Tbi(τm+1,n−1)

T−1
b1

(τm,n)Tb1(τm+1,n−1)
(i = 2, . . . , N),

where

(5.23)

α = −cqn−m
(aiq

m+n)1(bj/q)
n
1(ai/q)

n
1

(ai)
n+1
1 (bj)n1

B(1/ai)

A(1/bj)
,

β = c
(b1, aiq

m+n)1(ai/q)
n
1B1(1/ai)

a1qm(b1/a1)1(ai)
n+1
1

, γ =
(a1)1(bi)

n
1A1(1/bi)

b1qn(a1/b1)1(bi/q)n1
.

Proof. Taking the ratio D1(1/ai)/D1(1/bj) (5.6), we have

(5.24)
F (f, ai)

F (f, aj)
= −c

m+n−1∏

s=0

(1/bjq
s)1

(1/aiqs)1

B(1/ai)

A(1/bj)

P (1/ai)Q(q/ai)

P (q/bj)Q(1/bj)
(i, j = 1, . . . , N).

Taking the ratio D3(1/ai)/D2(1/a1) (5.6), we have

(5.25) G(g, ai) = −
c(b1)1B1(1/ai)

(a1, b1/a1)1

∏m+n

s=0 (1/a1q
s)1

∏m+n−1
s=0 (1/aiqs)1

P (1/ai)Q(q/ai)

P (1/a1)Q(1/a1)
(i = 2, . . . , N)

Taking the ratio D3(1/ai)/D2(1/a1) (5.6), we have

(5.26) G(g, bi) = −

∏m+n
s=0 (1/b1q

s)1
∏m+n−1

s=0 (1/biqs)1

(a1)1A1(1/bi)

(a1/b1, b1)1

P (q/bi)Q(1/bi)

P (1/b1)Q(1/b1)
(i = 2, . . . , N).

Substituting the special values (5.17) into the expressions (5.24)−(5.26) respectively, we

obtain the values (5.20)−(5.22). �

In [22], some special solution of the higher order q-Painlevé system is given in terms
of the q-hypergeometric function N+1ϕN . Our results suggest the relation between the
system in [22] and q-Garnier system. In fact, it turns out that these two are equivalent
as will be shown in [13].
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critiques fixes. Ann. Sci. Ecole Norm. Super. 29, (1912) 1–126

[2] Gasper G., and Rahman M., Basic Hypergeometric Series. With a foreword by Richard Askey. Sec-

ond edition. Encyclopedia of Mathematics and its Applications, 96. Cambridge University Press,

Cambridge, (2004).

[3] Ikawa Y., Hypergeometric Solutions for the q-Painlevé Equation of Type E
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Lett. Math. Phys., 103, Issue 7 (2013), 743–763.

[4] Iwasaki K., Kimura H., Shimomura S., and Yoshida M., From Gauss to Painlevé-A Modern Theory
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[nlin.SI].

[8] Mano T., Determinant formula for solutions of the Garnier system and Padé approximation. J. Phys.
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