
Notions of Connectivity in Overlay Networks ∗

Yuval Emek † Pierre Fraigniaud ‡ Amos Korman § Shay Kutten ¶

David Peleg ‖

January 7, 2016

Abstract

“How well connected is the network?” This is one of the most fundamental questions one

would ask when facing the challenge of designing a communication network. Three major notions

of connectivity have been considered in the literature, but in the context of traditional (single-

layer) networks, they turn out to be equivalent. This paper introduces a model for studying the

three notions of connectivity in multi-layer networks. Using this model, it is easy to demonstrate

that in multi-layer networks the three notions may differ dramatically. Unfortunately, in contrast

to the single-layer case, where the values of the three connectivity notions can be computed

efficiently, it has been recently shown in the context of WDM networks (results that can be

easily translated to our model) that the values of two of these notions of connectivity are hard

to compute or even approximate in multi-layer networks. The current paper shed some positive

light into the multi-layer connectivity topic: we show that the value of the third connectivity

notion can be computed in polynomial time and develop an approximation for the construction

of well connected overlay networks.

∗Supported by a France-Israel cooperation grant (“Mutli-Computing” project) from the France Ministry of Science

and Israel Ministry of Science. Supported by the ANR projects DISPLEXITY and PROSE, and by the INRIA project

GANG
†Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland. E-mail:

yuval.emek@tik.ee.ethz.ch.
‡CNRS and University of Paris Diderot, France. E-mail: pierref@liafa.jussieu.fr.
§CNRS and University of Paris Diderot, France. E-mail: amos.korman@liafa.jussieu.fr.
¶Information Systems Group, Faculty of IE&M, The Technion, Haifa, 32000 Israel. E-mail:

kutten@ie.technion.ac.il.
‖Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, 76100

Israel. E-mail: david.peleg@weizmann.ac.il.

1

ar
X

iv
:1

60
1.

01
10

4v
1

 [
cs

.D
C

]
 6

 J
an

 2
01

6

1 Introduction

1.1 Background and motivation

The term “connectivity” in networks has more than one meaning, but these meanings are equivalent

in “traditional” networks. While the graph theoretic definition of connectivity refers to the ability

to reach every node from every other node (a.k.a. 1-connectivity), the term connectivity is often

related also to the survivability of a network, namely, the ability to preserve 1-connectivity whenever

some links fail.1 In other words, a network G is said to be k-connected if it satisfies the following

“connectivity property” (CP):

(CP1) G remains connected whenever up to k − 1 links are erased from it.

However, there are also other meanings to connectivity. A network G is also said to be k-

connected if it satisfies the following “connectivity property”:

(CP2) There exist k pairwise link-disjoint paths from s to t for every two nodes s, t in G.

The equivalence of these two properties [12] enables numerous practical applications. For example,

one of the applications of the existence of link-disjoint paths (Property (CP2)) is to ensure sur-

vivability (Property (CP1)). Often, a backup (link-disjoint) path is prepared in advance, and the

traffic is diverted to the backup path whenever a link on the primary path fails. An example is the

backup path protection mechanism in SONET networks (see, e.g., [17]).

A third property capturing connectivity is based on the amount of flow that can be shipped

in the network between any source and any destination, defining the capacity of a single link to

be 1. In other words, a network G is said to be k-connected if it satisfies the following “connectivity

property”:

(CP3) It is possible to ship k units of flow from s to t for every two nodes s, t in G.

This property too is equivalent to the first two [7], and is also used together with them. For example,

routing some flow of information around congestion (which may be possible only if the network

satisfies property (CP3) and thus can support this additional flow) uses the second property, i.e.,

it relies on the existence of multiple link-disjoint paths.

Current networks, however, offer multi-layered structures which yield significant complications

when dealing with the notion of connectivity. In particular, the overlay/underlying network di-

chotomy plays a major role in modeling communication networks, and overlay networks such as

peer-to-peer (P2P) networks, MPLS networks, IP/WDM networks, and SDH/SONET-WDM net-

works, all share the same overall structure: an overlay network H is implemented on top of an

1 The current paper does not deal with node connectivity.

2

underlying network G. This implementation can be abstracted as a routing scheme that maps over-

lay connections to underlying routes. We comment that there are sometimes differences between

such a mapping and the common notion of a routing scheme. Still, since the routing scheme often

defines the mapping, we shall term this mapping the routing scheme.

Often, the underlying network itself is implemented on top of yet another network, thus in-

troducing a multi-layer hierarchy. Typically, the lower level underlying network is “closer” to the

physical wires, whereas the higher level network is a traffic network in which edges capture various

kinds of connections, depending on the context. For the sake of simplicity, we focus on a pair of

consecutive layers G and H. This is sufficient to capture a large class of practical scenarios.

The current paper deals with what happens to the different connectivity properties once we turn

to the context of overlay networks. As discussed later on, connectivity has been studied previously

in the “overlay network” world under the “survivability” interpretation (CP1), and it has been

observed that, in this context, the connectivity parameter changes, i.e., the connectivity of the

overlay network may be different from that of the underlying network. Lee et al. [13] demonstrated

the significance of this difference by showing that the survivability property is computationally hard

and even hard to approximate in the multi-layer case. Since the three aforementioned connectivity

parameters may differ in multi-layer networks (see Section 1.2), they also showed a similar result

for the disjoint paths connectivity property.

Interestingly, the motivation of Lee et al. for addressing the disjoint paths connectivity property

was the issue of flow. One of the contributions of the current paper is to directly address this issue,

showing that in contrast to the previous two notions of connectivity, the maximum flow supported

by an overlay network can actually be computed in polynomial time.

In the specific context of survivability, there has been other papers that have shown that the issue

of connectivity in an overlay network is different from that of connectivity in underlying networking.

Consider, for example, a situation where several overlay edges (representing connections) of H pass

over the same physical link. Then all these overlay edges may be disconnected as a result of a single

hardware fault in that link, possibly disconnecting the overlay network. The affected overlay links

are said to share the risk of the failure of the underlying physical link, hence they are referred to

in the literature as a shared risk link group (SRLG). An SRLG-based model for overlay networks

was extensively studied in recent years;2 see, e.g., [15] for a useful introduction to this notion and

[14] for a discussion of this concept in the context of MPLS. The SRLG model hides the actual

structure of the underlying network, in the sense that many different underlying networks can yield

the same sets of SRLG. (For certain purposes, this is an advantage of the model.) An even more

general notion is that of Shared Risk Resource Group However, sometimes this model abstracts

away too much information, making certain computational goals (such as, e.g., flow computations)

2 Note that a common underlying link is not the only possible shared risk; overlay links sharing a node may form

a shared risk link group too.

3

harder to achieve.

In contrast to the SRLG model, we present the alternative model of deep connectivity, which

allows us to simultaneously consider all three components: the overlay network, the underlying

network, and the mapping (the routing scheme). Note that all three should be considered: For

example, if the underlying network is not connected, then neither can the overlay network be.

The routing scheme also affects the connectivity properties as different routing schemes may yield

significantly different overlay link dependencies. In some cases, routing is constrained to shortest

paths, whereas in other cases it can be very different. In policy based routing schemes (see, e.g.

[16]), for example, some underlying edges are not allowed to be used for routing from u to v, which

may cause the underlying path implementing the overlay link (u, v) to be much longer than the

shortest (u, v)-path.

1.2 The deep connectivity model

The underlying network is modeled by a (simple, undirected, connected) graph G whose vertex

set V (G) represents the network nodes, and whose edge set E (G) represents the communication

links between them. Some nodes of the underlying network are designated as peers; the set of

peers is denoted by P ⊆ V (G). The overlay network, modeled by a graph H, spans the peers, i.e.,

V (H) = P and E (H) ⊆ P × P; H typically represents a “virtual” network, constructed on top of

the peers in the underlying communication network G.

An edge (u, v) in the overlay graph H may not directly correspond to an edge in the underlying

graph G (that is, E (H) is not necessarily a subset of E (G)). Therefore, communication over a

(u, v) edge in H should often be routed along some multi-hop path connecting u and v in G. This

is the role of a routing scheme ρ : P×P → 2E(G) that maps each pair (u, v) of peers to some simple

path ρ(u, v) connecting u and v in G. A message transmitted over the edge (u, v) in H is physically

disseminated along the path ρ(u, v) in G. We then say that (u, v) is implemented by ρ(u, v). For

the sake of simplicity, the routing scheme ρ is assumed to be symmetric, i.e., ρ(u, v) = ρ(v, u).

More involved cases do exist in reality: the routing scheme may be asymmetric, or may map some

overlay edge into multiple routes; the simple model given here suffices to show interesting differences

between the various connectivity measures.

When a message is routed in H from a peer s ∈ P to a non-neighboring peer t ∈ P along some

multi-hop path π = (x0, x1, . . . , xk) with x0 = s, xk = t, and (xi, xi+1) ∈ E(H), it is physically

routed in G along the concatenated path ρ(x0, x1)ρ(x1, x2) · · · ρ(xk−1, xk). In some cases, when the

overlay graph H is known, it will be convenient to define the routing scheme over the edges of H,

rather than over all peer pairs.

The notion of deep connectivity grasps the connectivity in the overlay graph H, while taking into

account its implementation by the underlying paths in G. Specifically, given two peers s, t ∈ P, we

4

are interested in three different parameters, each capturing a specific type of connectivity. In order

to define these parameters, we extend the domain of ρ from vertex pairs in P × P to collections

of such pairs in the natural manner, defining ρ(F) =
⋃

(u,v)∈F ρ(u, v) for every F ⊆ P × P. In

particular, given an (s, t)-path π in H, ρ(π) =
⋃
e∈π ρ(e) is the set of underlying edges used in the

implementation of the overlay edges along π.

• The edge-removal deep connectivity of s and t in H with respect to G and ρ, denoted by

ERDCG,ρ(s, t,H), is defined as the size of the smallest subset F ⊆ E (G) that intersects with

ρ(π) for every (s, t)-path π in H; namely, the minimum number of underlying edges that

should be removed in order to disconnect s from t in the overlay graph.

• The path-disjoint deep connectivity of s and t in H with respect to G and ρ, denoted by

PDDCG,ρ(s, t,H), is defined as the size of the largest collection C of (s, t)-paths in H such

that ρ(π) ∩ ρ(π′) = ∅ for every π, π′ ∈ C with π 6= π′, i.e., the maximum number of overlay

paths connecting s to t whose underlying implementations are totally independent of each

other.

• The flow deep connectivity of s and t inH with respect toG and ρ, denoted by FDCG,ρ(s, t,H),

is defined as the maximum amount of flow3 that can be pushed from s to t in G restricted

to the images under ρ of the (s, t)-paths in H, assuming that each edge in E (G) has a unit

capacity. Intuitively, if s and t are well connected, then it should be possible to push a large

amount of flow between them.

Example: To illustrate the various definitions, consider the underlying network G depicted in Fig.

1(a), and the overlay network H depicted in Fig. 1(b). The routing scheme ρ assigns each of the 6

overlay edges adjacent to the extreme S and T a simple route consisting of the edge itself. For the

remaining three overlay edges, the assigned routes are as follows:

ρ(U1, U4) = (U1,M1,M2, U2, U3, U4)

ρ(M1,M4) = (M1,M2, D2, D3,M3,M4)

ρ(D1, D4) = (D1, D2, D3, U3, U4, D4) .

The route ρ(M1,M4) is illustrated by the dashed line in Fig. 1(a). Note that in the original (un-

derlying) network G, the connectivity of the extreme nodes S and T is 3 under all three definitions.

In contrast, the values of the three connectivity parameters for the extreme nodes S and T in the

overlay network H under the routing scheme ρ are as follows:

3 In the setting of undirected graphs, flow may be interpreted in two different ways depending on whether two flows

along the same edge in opposite directions cancel each other or add up. Here, we assume the latter interpretation

which seems to be more natural in the context of overlay networks.

5

D

U

S T

(b)

D

U

S T

(a)

1

1

2U

2D 3D 4D

4U3U 1

1

4U

4D

M M MM1 2 3 4 MM1 4

Figure 1: (a) The underlying graph G. (b) The overlay network H.

• The edge-removal deep connectivity of s and t in H w.r.t. G and ρ is ERDCG,ρ(s, t,H) = 2.

Indeed, disconnecting the underlying edge (D2, D3) plus any edge of the upper underlying

route will disconnect S from T .

• The path-disjoint deep connectivity of s and t in H w.r.t. G and ρ is PDDCG,ρ(s, t,H) = 1.

Indeed, any two of the three overlay routes connecting S and T share an underlying edge.

• The flow deep connectivity of s and t in H w.r.t. G and ρ is FDCG,ρ(s, t,H) = 3/2.

This is obtained by pushing 1/2 flow unit through each of the three overlay routes.

For each deep connectivity (s, t)-parameter XG,ρ(s, t,H), we define the corresponding all-pairs

variant XG,ρ(H) = mins,t∈P XG,ρ(s, t,H). When G and ρ are clear from the context, we may

remove them from the corresponding subscripts.

1.3 Our contributions

Our model for overlay networks makes it convenient to explore the discrepancies between the dif-

ferent deep connectivity notions. Classical results from graph theory, e.g., the fundamental min-cut

max-flow theorem [7, 6] and Menger’s theorem [12] state that the three connectivity parameters

mentioned above are equivalent when a single layer network is considered. Polynomial time algo-

rithms that compute these parameters (in a single layer network) were discovered early [7, 4, 5]

and have since become a staple of algorithms textbooks [2, 11]. As mentioned above, previous

results [13, 3], when translated to our model, have shown that in multi-layer networks, two of the

three connectivity parameters are computationally hard and even hard to approximate. Our first

technical contribution is to expand on these negative results by showing that the the path-disjoint

deep connectivity property cannot be approximated to any finite ratio when attention is restricted

to simple paths in the underlying graph.

On the positive side, we show that the flow deep connectivity parameters can be computed in

polynomial time (Section 3), thus addressing the motivation of [13] for studying the disjoint paths

property in overlay networks. Then, we address the issue of constructing a “good” overlay graph

6

for a given underlying graph and routing scheme. As opposed to the difficulty of approximating

the value of the parameters, we show that the related construction problem can sometimes be

well approximated. Specifically, in Section 4, we investigate the problem of constructing 2-edge

removal deeply connected overlay graphs with as few as possible (overlay) edges. This problem

is shown to be NP-hard, but we show that a logarithmic-approximation for it can be obtained in

polynomial-time. We also devise a 2-approximation algorithm for particular, yet natural, instances

of the problem.

2 Hardness of approximation

As mentioned earlier, Lee et al. [13] established hardness of approximation results for the problems

of computing the parameters ERDCG,ρ(s, t,H), PDDCG,ρ(s, t,H), and ERDCG,ρ(H). For com-

pleteness, we observe that the all-pairs variant PDDCG,ρ(H) of the path-disjoint deep connectivity

parameter is also hard to approximate, establishing the following theorem, which is essentially a

corollary of Theorem 4 in [13] combined with a result of H̊astad [9].

Theorem 2.1. Unless NP = ZPP, the problem of computing the parameter PDDCG,ρ(H) cannot

be approximated to within a ratio of |E (H)|1/2−ε for any ε > 0.

We now turn to show that the following natural variants of the PDDC parameters cannot be

approximated to within any finite ratio. Let SPDDCG,ρ(s, t,H) denote the size of the largest collec-

tion C of (s, t)-paths in H such that all paths π ∈ C are implemented by simple paths ρ(π) in G and

ρ(π) ∩ ρ(π′) = ∅ for every π, π′ ∈ C with π 6= π′; let SPDDCG,ρ(H) = mins,t∈P SPDDCG,ρ(s, t,H).

Note that these parameters are merely a restriction of the PDDC parameters to simple paths (hence

the name, which stands for simple path-disjoint deep connectivity).

The inapproximability of the SPDDCG,ρ(s, t,H) parameter is proved by reducing the set packing

problem to the problem of distinguishing between the case SPDDCG,ρ(s, t,H) = 0 and the case

SPDDCG,ρ(s, t,H) ≥ 1. In fact, the vertices s, t ∈ V (H) that minimize SPDDCG,ρ(s, t,H) in

this reduction are known in advance, thus establishing the impossibility of approximating the all-

pairs parameter SPDDCG,ρ(H) as well. The proofs of the following two theorems are deferred to

Appendix A.

Theorem 2.2. Unless P = NP, the problem of computing the parameter SPDDCG,ρ(s, t,H) cannot

be approximated to within any finite ratio.

Theorem 2.3. Unless P = NP, the problem of computing the parameter SPDDCG,ρ(H) cannot be

approximated to within any finite ratio.

7

3 Efficient algorithm for FDC

In this section we develop a polynomial time algorithm that computes the flow deep connectivity

parameter FDC(s, t,H) (which clearly provides an efficient computation of the parameter FDC(H)

as well). Consider some underlying graph G, routing scheme ρ, overlay graph H, and two vertices

s, t ∈ V (H). Let P denote the collection of all simple (s, t)-paths in H. For each path p ∈ P and

for each edge e ∈ E (G), let ψ(p, e) be the number of appearances of the edge e along the image of

p under ρ. We begin by representing the parameter FDC(s, t,H) as the outcome of the following

linear program:

max
∑

p∈P xp s.t.∑
p∈P ψ(p, e) · xp ≤ 1 ∀e ∈ E (G)

xp ≥ 0 ∀p ∈ P

The variable xp represents the amount of flow pushed along the image under ρ of the path p

for every p ∈ P. The goal is to maximize the total flow pushed along the images of all paths in

P subject to the constraints specifying that the sum of flows pushed through any edge is at most

1. This linear program may exhibit an exponential number of variables, so let us consider its dual

program instead:

min
∑

e∈E(G) ye s.t.∑
e∈E(G) ψ(p, e) · ye ≥ 1 ∀p ∈ P

ye ≥ 0 ∀e ∈ E (G)

The dual program can be interpreted as fractionally choosing as few as possible edges of G so

that the image under ρ of every path p in P traverses in total at least one edge. We cannot solve

the dual program directly as it may have an exponential number of constraints. Fortunately, it

admits an efficient separation oracle, hence it can be solved in polynomial time (see, e.g., [8]).

Given some real vector ~y indexed by the edges in E (G), our separation oracle either returns

a constraint which is violated by ~y or reports that all the constraints are satisfied and ~y is a

feasible solution. Recall that a violated constraint corresponds to some path p ∈ P such that∑
e∈E(G) ψ(p, e) · ye < 1. Therefore our goal is to design an efficient algorithm that finds such a

path p ∈ P if such a path exists.

Let w(e) =
∑

e′∈ρ(e) ye′ for every edge e ∈ E (H) and let H ′ be the weighted graph obtained

by assigning weight w(e) to each edge e ∈ E (H). The key observation in this context is that the

(weighted) length of an (s, t)-path p′ in H ′ equals exactly to
∑

e∈E(G) ψ(p, e) · ye, where p is the

path in H that corresponds to p′ in H ′. Therefore, our separation oracle is implemented simply by

finding a shortest (s, t)-path p∗ in H ′: if the length of p∗ is smaller than 1, then p∗ corresponds to a

violated constraint; otherwise, the length of all (s, t)-paths in H ′ is at least 1, hence ~y is a feasible

solution. This establishes the following theorem.

Theorem 3.1. The parameters FDCG,ρ(s, t,H) and FDCG,ρ(H) can be computed in polynomial

8

time.

4 Sparsest 2-ERDC overlay graphs

In this section we are interested in the following problem, referred to as the sparsest 2-ERDC

overlay graph problem: given an underlying graph G, a peer set P ⊆ V (G), and a routing scheme

ρ : P × P → 2E(G), construct the sparsest overlay graph H for P (in terms of number of overlay

edges) satisfying ERDCG,ρ(H) ≥ 2. Of course, one has to make sure that such an overlay graph

H exists, so in the context of the sparsest 2-ERDC overlay graph problem we always assume that

ERDCG,ρ(KP) ≥ 2, where KP is the complete graph on P. This means that a trivial solution with(
n
2

)
edges, where n = |P|, always exists and the challenge is to construct a sparser one.

4.1 Hardness

We begin our treatment of this problem with a hardness result.

Theorem 4.1. The sparsest 2-ERDC overlay graph problem is NP-hard.

Proof. The assertion is proved by a reduction from the Hamiltonian path problem. Consider an

n-vertex graph G0 input to the Hamiltonian path problem. Transform it into an instance of the

sparsest 2-ERDC overlay graph problem as follows: Construct the underlying graph G by setting

V (G) = V (G0) ∪ {x, y} and E (G) = E (G0) ∪ {(x, y)} ∪ {(v, x), (v, y) | v ∈ V (G0)} and let

P = V (G0). Define the routing scheme ρ by setting

ρ(u, v) =

{
(u, v) if (u, v) ∈ E (G0)

(u, x, y, v) otherwise.

This transformation is clearly polynomial in n.

We argue that G0 admits a Hamiltonian path if and only if there exists an overlay graph H for

P so that |E (H)| = n and ERDCG,ρ(H) ≥ 2. To that end, suppose that G0 admits a Hamiltonian

path π. If π can be closed to a Hamiltonian cycle (in G0), then take H to be this Hamiltonian

cycle. Otherwise, take H to be the cycle consisting of π and a virtual edge connecting between π’s

endpoints. In either case, H clearly has n edges and by the design of ρ, H satisfies ERDCG,ρ(H) = 2.

Conversely, if there exists an overlay graph H for P so that |E (H)| = n and ERDCG,ρ(H) ≥ 2,

then H must form a Hamiltonian cycle C in P × P. This cycle can contain at most one virtual

edge as otherwise, the removal of (x, y) breaks two edges of C which means that ERDCG,ρ(H) < 2.

By removing this virtual edge, we are left with a Hamiltonian path in G0.

9

4.2 Constructing sparse 2-ERDC overlay graphs

On the positive side, we develop a polynomial time logarithmic approximation algorithm for the

sparsest 2-ERDC overlay graph problem. Our algorithm proceeds in two stages: First, we take T

to be an arbitrary spanning tree of P × P. Subsequently, we aim towards (approximately) solving

the following optimization problem, subsequently referred to as the overlay augmentation problem:

augment T with a minimum number of P ×P edges so that the resulting overlay graph H satisfies

ERDCG,ρ(H) ≥ 2.

We will soon explain how we cope with this optimization problem, but first let us make the

following observation. Denote the edges in ρ(T) by ρ(T) = {e1, . . . , e`} and consider some overlay

graph H such that E (H) ⊇ T and some 1 ≤ i ≤ `. Let Fi(H) be the collection of connected

components of the graph obtained from H by removing all edges e ∈ E (H) such that ei ∈ ρ(e).

Fix

κi(H) = |Fi(H)| − 1 and κ(H) =
∑̀
i=1

κi(H) .

We think of κ(H) as a measure of the distance of the overlay graph H from being a feasible solution

to the overlay augmentation problem (i.e., ERDC(H) ≥ 2).

Observation. An overlay graph H ⊇ T satisfies ERDC(H) ≥ 2 if and only if κ(H) = 0.

Proof. If ERDC(H) ≥ 2, then Fi(H) must consist of a single connected component for every

1 ≤ i ≤ `, thus κ(H) = 0. Conversely, if κ(H) = 0, then necessarily |Fi(H)| = 1 for every

1 ≤ i ≤ `, which means that H does not disconnect by the removal of any edge ei ∈ ρ(T). It is also

clear that the removal of any edge in E (G) − ρ(T) does not disconnect H as the tree T remains

intact. Therefore, ERDC(H) ≥ 2.

Consider some edge e ∈ (P × P) − E (H) and let H ∪ {e} denote the overlay graph obtained

from H by adding the edge e. By the definition of the parameter κ, we know that ∆i(e,H) =

κi(H) − κi(H ∪ {e}) is either 0 or 1 for any 1 ≤ i ≤ `. Fixing ∆(e,H) = κ(H) − κ(H ∪ {e}), we

observe that: ∆(e,H) =
∑`

i=1 ∆i(e,H) referred to as Property (?).

We are now ready to complete the description of our approximation algorithm. Starting from

H = T , the algorithm gradually adds edges to H as long as κ(H) > 0 according to the following

greedy rule. At any intermediate step, we add to H an edge e ∈ (P × P) − E (H) that yields the

maximum ∆(e,H). When κ(H) decreases to zero, the algorithm terminates (recall that this means

that ERDC(H) ≥ 2).

The analysis of our approximation algorithm relies on the following proposition.

Proposition 4.2. The parameter κ can be computed in polynomial time. Moreover, for every two

overlay graphs H1, H2 such that E (H1) ⊆ E (H2), we have

(1) κ(H1) ≥ κ(H2); and

10

(2) ∆(e,H1) ≥ ∆(e,H2) for every edge e ∈ P × P.

Proof. The fact that κ can be computed efficiently and the fact that κ(H1) ≥ κ(H2) are clear from

the definition of κ, so our goal is to prove that ∆(e,H1) ≥ ∆(e,H2) for every e ∈ P × P. By

Property (?), it suffices to show that ∆i(e,H1) ≥ ∆i(e,H2) for every 1 ≤ i ≤ `. If ∆i(e,H2) = 0,

then this holds vacuously, so suppose that ∆i(e,H2) = 1. This means that ei /∈ ρ(e) and the

endpoints of e belong to different connected components in Fi(H2). But since E (H1) ⊆ E (H2),

it follows that the endpoints of e must also belong to different connected components in Fi(H1),

hence ∆i(e,H1) = 1 as well.

Proposition 4.2 implies that the overlay augmentation problem falls into the class of submodular

cover problems (cf. [18, 1]) and our greedy approach is guaranteed to have an approximation ratio

of at most ln(κ(T)) + 1 = O(logN), where N = |V (G)|. More formally, letting Ĥ be a sparsest

overlay graph such that Ĥ ⊇ T and ERDC(Ĥ) ≥ 2, it is guaranteed that the overlay graph H

generated by our greedy approach satisfies |E (H)− T | ≤ O(logN) · |E (Ĥ)− T |.

To conclude the analysis, let H∗ be an optimal solution to the sparsest 2-ERDC overlay graph

problem. Clearly, |E (H∗)| > n − 1 = |T |. Moreover, since E (H∗) ∪ T is a candidate for Ĥ, it

follows that |E (H∗) ∪ T | ≥ |Ĥ|, thus |E (H∗)| ≥ |E (Ĥ)− T |. Therefore,

|E (H)| ≤ O(logN) · |E (Ĥ)− T |+ |T |

≤ O(logN) · |E (H∗)|+ |E (H∗)|

= O(log(N) · |E (H∗)|)

which establishes the following theorem.

Theorem 4.3. The sparsest 2-ERDC overlay graph problem admits a polynomial-time logarithmic-

approximation.

4.3 A special case

We now turn to consider instances of the sparsest 2-ERDC overlay graph problem satisfying the

following two simplifying assumptions:

(1) all vertices are peers, namely, P = V (G); and

(2) ρ maps every edge in E (G) to itself.

We show that under these assumptions, one can always find a feasible solution with at most 2n− 2

edges. Since any overlay graph H satisfying ERDC(H) ≥ 2 must have at least n edges, this

immediately implies a 2-approximation for our problem.

The construction proceeds, once again, in two stages: First, we take H to be an arbitrary

spanning tree T of G. Then, for each edge e ∈ T , we add to H some edge e′ ∈ E (G) such that e

11

belongs to the cycle closed by appending e′ to T . Note that such an edge e′ exists since G is 2-edge

connected (as otherwise, ERDCG,ρ(KP) < 2). The overlay graph H clearly contains at most 2n−n
edges. Moreover, assumption (A2) implies that ρ maps every edge in E (H) to itself. Therefore,

our construction guarantees that ERDC(H) ≥ 2: on one hand, the spanning tree T ensures that

the graph obtained from H by removing the edge e is connected for every edge e /∈ T ; on the other

hand, H does not disconnect by the removal of any single edge e ∈ T due to the second stage of

the construction.

Theorem 4.4. Under assumptions (1) and (2), an overlay graph H with 2n − 2 edges satisfying

ERDC(H) ≥ 2 can be constructed in polynomial time.

12

References

[1] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized submodular cover problems and applica-

tions. Theoretical Computer Science 250:179–200, 2001.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms, MIT

Press, 2009.

[3] D. Coudert, P. Datta, S. Perennes, H. Rivano, M.-E. Voge. Shared Risk Resource Group

Complexity and Approximability Issues. Parallel Processing Letters 17(2): 169-184 (2007)

[4] E.A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power

estimation. Soviet Math. Doklady (Doklady), 11:1277–1280, 1970.

[5] J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency for network

flow problems. J. ACM, 19(2): 248–264, 1972.

[6] P. Elias, A. Feinstein, and C.E. Shannon. A note on the maximum flow through a network.

IRE Trans. Inf. Theory, IT-2(4):117–119, 1956.

[7] L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian J. Mathematics,

8:399–404, 1956.

[8] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-

mization. Springer-Verlag, Berlin, 1993.

[9] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182:105–142, 1999.

[10] R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Compu-

tations, R.E. Miller and J.W. Thatcher (Eds), pp. 85–103, 1972.

[11] J. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, 2005.

[12] K. Menger. Zur allgemeinen Kurventheorie. Fund. Math., 10:96–115, 1927.

[13] Kayi Lee, Eytan Modiano, and Hyang Won Lee. Cross-layer Survivability in WDM-Based

Networks.” ACM/IEEE Transactions on Networking, Vol. 19, No, 4, Augist 2011.

[14] MPLS Traffic Engineering: Shared Risk Link Groups (SRLG), Cisco IOS Software Releases

12.0 S, www.cisco.com/en/US/docs/ios/12 0s/feature/guide/fs29srlg.html

[15] Network protection techniques, network failure recovery, network failure events. Network Pro-

tection Website, www.network-protection.net/shared-risk-link-group-srlg/.

[16] Policy-Based Routing. White Paper, Cisco Systems Inc., 1996.

www.cisco.com/warp/public/cc/pd/iosw/tech/plicy wp.pdf.

13

[17] S. Ramamurthy and B. Mukherjee. Survivable WDM mesh networks. Part I-Protection. In

Proc. INFOCOM, 1999, pp. 744-751, New York.

[18] L.A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.

Combinatorica 2:385–393, 1982.

14

APPENDIX

A Hardness of approximation for the simple path variants

Similarly to [13], we base our hardness results on the relationship between path-disjoint deep

connectivity and encoding set systems. An (m,n)-set system S is a pair (D,X), where:

• D is a domain of elements, |D| = m; and

• X ⊆ 2D is a collection of sets in the domain D, |X| = n.

It is convenient to represent S as a Boolean characteristic function, S : [m]× [n]→ {0, 1}, so that

for every i ∈ [m] and j ∈ [n], S(i, j) = 1 if and only if the ith element of D is included in the jth

set of X.

Lemma A.1. For every overlay graph H, edge subset F ⊆ E (H) of cardinality |F | = n, and (m,n)-

set system S = (D,X), there exist an underlying graph G and a routing scheme ρ : E (H)→ 2E(G)

such that:

(1) |V (G)| = |V (H)|+O(m · n);

(2) E (G) = (E (H)−F)∪ED∪Eρ, where ED and Eρ are sets of new edges on V (G), |ED| = m,

and |Eρ| = O(m · n);

(3) for every ej ∈ F , j ∈ [n], and ei ∈ ED, i ∈ [m], it holds that ei ∈ ρ(ej) ⇐⇒ S(i, j) = 1;

and

(4) for every e ∈ Eρ, there exists a unique ej ∈ F , j ∈ [n], such that e ∈ ρ(ej).

Proof. Informally, G and ρ are designed so that the set system S = (D,X) is encoded in such a

way that ED corresponds to the element domain D and F corresponds to the set collection X. For

a more precise description of the design of the underlying graph G and routing scheme ρ, let us

first present a simpler construction where G is allowed to be a multigraph (with parallel edges).

The vertex set of G consists of the vertices of H and two additional new vertices vai , v
b
i for every

i ∈ [m]. The edge set of G consists of three disjoint subsets. The first subset is just the edges of

E (H)−F ; ρ maps every such H-edge to itself, namely, the edge (x, y) ∈ E (H)−F is mapped to the

path in G that consists of the single edge (x, y). The second subset is ED = {ei = (vai , v
b
i) | i ∈ [m]}.

The routing scheme ρ is designed to guarantee that an edge ei ∈ ED appears in the path ρ(ej),

ej ∈ F , if and only if S(i, j) = 1. For that purpose, we introduce the third subset Eρ: for each

j ∈ [n], assuming that the edge ej ∈ F connects the vertices x and y in H and that the jth set in

S is {i1, . . . , ik} ⊆ [m], we add to Eρ the edge (x, vai1), the edges (vbi` , v
a
i`+1

) for ` = 1, . . . , k − 1,

and the edge (vbik , y). It is important to point out that a new copy of those edges are added to

Eρ for each j ∈ [n], which may create edge multiplicities. Finally, ρ maps the edge ej to the path

pj = 〈x, vai1 , v
b
i1
, . . . , vaik , v

b
ik
, y〉. Refer to Figure 2 for an illustration.

i

Figure 2: The underlying (multi)graph G. The vertices of H are depicted by the black circles; the

vertices in {vai , vbi | i ∈ [m]} are depicted by the gray circles. The ED-edges are depicted by the

solid segments; the Eρ-edges along the path pj to which ρ maps the edge ej = (x, y) ∈ E (H) are

depicted by the dashed segments.

The construction of G immediately implies that |V (G)| = |V (H)| + 2m and that |ED| = m.

To see that |Eρ| = O(n ·m), observe that each Eρ-edge belongs to some path pj , j ∈ [n], and that

each such path admits at most two hops for every i ∈ [m]. It remains to show that for every j ∈ [n]

and i ∈ [m], ei ∈ ρ(ej) if and only if S(i, j) = 1, which follows directly from the design of ρ as the

path pj goes through an edge ei ∈ ED if and only if S(i, j) = 1.

Finally, note that edge multiplicities in the constructed multigraph G may occur only among

the edges in Eρ. Hence, by subdividing each edge e = (u, v) ∈ Eρ, replacing it with the edges

(u, ze) and (v, ze), where ze is a new vertex, we can turn the multigraph G into a simple graph at

the cost of adding O(m · n) extra vertices. The lemma follows.

The hardness results established in this section are based on Lemma A.1 by a reduction from

the set packing problem: Given an (m,n)-set system S = (D,X) and a positive integer k, the set

packing problem asks whether there exist k pairwise disjoint sets in X. The problem is known to

be NP-complete; in fact, it is among the original 21 NP-complete problems listed by Karp [10].

The inapproximability of the SPDDCG,ρ(s, t,H) parameter is proved by reducing the set packing

problem to the problem of distinguishing between the case SPDDCG,ρ(s, t,H) = 0 and the case

SPDDCG,ρ(s, t,H) ≥ 1. Given as input to the set packing problem some (m,n)-set system S with

set collection X = {S1, . . . , Sn} and positive integer k, we first construct the (m, k · n)-set system

S ′ obtained from S by creating k identical copies Sj1, . . . , S
j
k of each set Sj in S. Clearly, S ′ admits

a set packing of size k if and only if S admits a set packing of size k. Then, we construct the overlay

graph H as illustrated in Figure 3. Let {F = (u`−1, v
j
`) | 1 ≤ ` ≤ k, j ∈ [n]} and take G and ρ to

be the underlying graph and routing scheme promised by Lemma A.1 when applied to H, F , and

S ′, where ρ is organized so that edge (u`−1, v
j
`) in F corresponds to set Sj` in S ′.

Assume first that SPDDCG,ρ(s, t,H) ≥ 1 and let π be an (s, t)-path in H such that its image

under ρ is a simple path in G. Let (u0, v
j1
1), . . . , (uk−1, v

jk
k) be the edges traversed by π on odd

hops. By the definition of S ′ and the design of ρ, it must be that j` 6= j`′ for every 1 ≤ ` < `′ ≤ k

ii

Figure 3: The overlay graph H used in the hardness proof of SPDDCG,ρ(s, t,H).

as otherwise, ρ(π) does not form a simple path in G. Lemma A.1 then guarantees that the sets

Sj1 , . . . , Sjk in S are pairwise disjoint. In the converse direction, assume that the sets Sj1 , . . . , Sjk in

S are pairwise disjoint. By the definition of S ′, the sets Sj11 , . . . , S
jk
k in S ′ are also pairwise disjoint.

Lemma A.1 then guarantees that the image under ρ of the path 〈u0, vj11 , u1, v
j2
2 , . . . , uk−1, v

jk
k , uk〉

in H is simple, hence SPDDCG,ρ(s, t,H) ≥ 1, which establishes Theorem 2.2. Theorem 2.3 follows

by observing that in the aforementioned construction, SPDDCG,ρ(x, y,H) is minimized by taking

x = s and y = t.

iii

	1 Introduction
	1.1 Background and motivation
	1.2 The deep connectivity model
	1.3 Our contributions

	2 Hardness of approximation
	3 Efficient algorithm for FDC
	4 Sparsest 2-ERDC overlay graphs
	4.1 Hardness
	4.2 Constructing sparse 2-ERDC overlay graphs
	4.3 A special case

	A Hardness of approximation for the simple path variants

