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Abstract

Measurements of the top quark-antiquark (tt) spin correlations and the top quark po-
larization are presented for tt pairs produced in pp collisions at

√
s = 8 TeV. The data

correspond to an integrated luminosity of 19.5 fb−1 collected with the CMS detec-
tor at the LHC. The measurements are performed using events with two oppositely
charged leptons (electrons or muons) and two or more jets, where at least one of the
jets is identified as originating from a bottom quark. The spin correlations and po-
larization are measured from the angular distributions of the two selected leptons,
both inclusively and differentially, with respect to the invariant mass, rapidity, and
transverse momentum of the tt system. The measurements are unfolded to the par-
ton level and found to be in agreement with predictions of the standard model. A
search for new physics in the form of anomalous top quark chromo moments is per-
formed. No evidence of new physics is observed, and exclusion limits on the real part
of the chromo-magnetic dipole moment and the imaginary part of the chromo-electric
dipole moment are evaluated.
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1 Introduction
The top quark is the heaviest known elementary particle, with mass mt = 172.44± 0.48 GeV [1].
The top quark lifetime has been measured as 3.29+0.90

−0.63 × 10−25 s [2], shorter than the hadroni-
zation timescale 1/ΛQCD ≈ 10−24 s, where ΛQCD is the quantum chromodynamics (QCD) scale
parameter, and also shorter than the spin decorrelation time scale mt/Λ2

QCD ≈ 10−21 s [3]. Con-
sequently, measurements of the angular distributions of top quark decay products give access
to the spin of the top quark, allowing the precise testing of perturbative QCD in the top quark–
antiquark pair (tt) production process.

At the CERN LHC, top quarks are produced abundantly, predominantly in pairs. In the stan-
dard model (SM), top quarks from pair production have only a small net polarization arising
from electroweak corrections to the QCD-dominated production process, but the pairs have
significant spin correlations [4]. For low tt invariant masses, the production is dominated by
the fusion of pairs of gluons with the same helicities, resulting in the creation of top quark
pairs with antiparallel spins in the tt center-of-mass frame. For larger tt invariant masses, the
dominant production is via the fusion of gluons with opposite helicities, resulting in tt pairs
with parallel spins [3]. For models beyond the SM, couplings of the top quark to new parti-
cles can alter both the top quark polarization and the strength of the spin correlations in the tt
system [4–7].

The charged lepton (`) from the decay t → bW+ → b`+ν` is the best spin analyzer among
the top quark decay products [8], and is sensitive to the top quark spin through the helicity
angle θ?` . This is the angle of the lepton in the rest frame of its parent top quark or antiquark,
measured in the helicity frame (i.e., relative to the direction of the parent quark momentum in
the tt center-of-mass frame) [4].

For the decay tt → b`+ν` b`−ν`, the difference in azimuthal angle of the charged leptons in
the laboratory frame, ∆φ`+`− , is sensitive to tt spin correlations and can be measured precisely
without reconstructing the full tt system [3]. With the tt system fully reconstructed, the opening
angle ϕ between the two lepton momenta measured in the rest frames of their respective parent
top quark or antiquark is directly sensitive to spin correlations, as is the product of the cosines
of the helicity angles of the two leptons, cos θ?`+ cos θ?`− [4].

Recent spin correlation and polarization measurements from the CDF, D0, and ATLAS Collabo-
rations used template fits to angular distributions, and their results were consistent with the SM
expectations [9–14]. In this analysis, the measurements are made using asymmetries in angular
distributions unfolded to the parton level, allowing direct comparisons between the data and
theoretical predictions. The analysis strategy is similar to that presented in Ref. [15], however
the larger data set used here and improvements in the tt system reconstruction techniques lead
to a reduced statistical uncertainty in the measurements. Furthermore, an improved unfolding
technique allows for differential measurements, which were not presented in Ref. [15].

The polarization P± of the top quark (antiquark) in the helicity basis is given by P± = 2AP± [4],
where the asymmetry variable AP± is defined as

AP± =
N
(
cos θ?`± > 0

)
− N

(
cos θ?`± < 0

)
N
(
cos θ?`± > 0

)
+ N

(
cos θ?`± < 0

) ,

where the numbers of events N
(
cos θ?`± > 0

)
and N

(
cos θ?`± < 0

)
are counted using the helic-

ity angle of the positively (negatively) charged lepton in each event. Assuming CP invari-
ance, these two measurements can be combined to give the SM polarization P = 2AP =
(AP+ + AP−). Alternatively, the variable PCPV = 2ACPV

P = (AP+ − AP−) measures possible
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polarization introduced by a maximally CP-violating process [4].

For tt spin correlations, the variable

A∆φ =
N(|∆φ`+`− | > π/2)− N(|∆φ`+`− | < π/2)
N(|∆φ`+`− | > π/2) + N(|∆φ`+`− | < π/2)

discriminates between correlated and uncorrelated t and t spins, while the variable

Ac1c2 =
N(c1c2 > 0)− N(c1c2 < 0)
N(c1c2 > 0) + N(c1c2 < 0)

,

where c1 = cos θ?`+ and c2 = cos θ?`− , provides a direct measure of the spin correlation coefficient
Chel through the relationship Chel = −4Ac1c2 [4]. The variable

Acos ϕ =
N (cos ϕ > 0)− N (cos ϕ < 0)
N (cos ϕ > 0) + N (cos ϕ < 0)

provides a direct measure of the spin correlation coefficient D by the relation D = −2Acos ϕ [4].

In addition to the inclusive measurements, we determine the asymmetries differentially as a
function of three variables describing the tt system in the laboratory frame: its invariant mass
Mtt , rapidity ytt , and transverse momentum pT

tt . The results presented in this paper are based
on data collected by the CMS experiment at the LHC, corresponding to an integrated luminos-
ity of 19.5 fb−1 from pp collisions at

√
s = 8 TeV.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron
calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend
the pseudorapidity coverage provided by the barrel and endcap detectors. Muons are mea-
sured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid.
The first level of the CMS trigger system, composed of custom hardware processors, uses in-
formation from the calorimeters and muon detectors to select the most interesting events in a
fixed time interval of less than 4 µs. The high-level trigger processor farm further decreases
the event rate from around 100 kHz to less than 1 kHz, before data storage. A more detailed
description of the CMS detector, together with a definition of the coordinate system used and
the relevant kinematic variables, can be found in Ref. [16].

3 Event samples
3.1 Object definition and event selection

Events are selected using triggers that require the presence of at least two leptons (electrons
or muons) with transverse momentum (pT) greater than 17 GeV for the highest-pT lepton and
8 GeV for the second-highest pT lepton. The trigger efficiency per lepton, measured relative
to the full offline lepton selection detailed in this section using a data sample of Drell–Yan
(Z/γ? → ``) events, is about 98% (96%) for electrons (muons), with variations at the level of
several percent depending on the pseudorapidity η and pT of the lepton.
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The particle-flow (PF) algorithm [17, 18] is used to reconstruct and identify each individual
particle with an optimized combination of information from the various elements of the CMS
detector. The offline selection requires events to have exactly two leptons of opposite charge
with pT > 20 GeV and |η| < 2.4. Electron candidates are reconstructed starting from a cluster
of energy deposits in the electromagnetic calorimeter. The cluster is then matched to a recon-
structed track. The electron selection is based on the shower shape, track-cluster matching,
and consistency between the cluster energy and the track momentum [19]. Muon candidates
are reconstructed by performing a global fit that requires consistent hit patterns in the silicon
tracker and the muon system [20].

The events with an e+e− or µ+µ− pair having an invariant mass, M``, within 15 GeV of the
Z boson mass are removed to suppress the Drell–Yan background. For all events, we require
M`` > 20 GeV. Leptons are required to be isolated from other activity in the event. The lepton
isolation is measured using the scalar pT sum (psum

T ) of all PF particles not associated with the
lepton within a cone of radius ∆R ≡

√
(∆η)2 + (∆φ)2 = 0.3, where ∆η (∆φ) is the distance

in η (φ) between the directions of the lepton and the PF particle at the primary interaction
vertex [21]. The average contribution of particles from additional pp interactions in the same
or nearby bunch crossings (pileup) is estimated and subtracted from the psum

T quantity. The
isolation requirement is psum

T < min(5 GeV, 0.15 p`T), where p`T is the lepton pT. Typical lepton
identification and isolation efficiencies, measured in samples of Drell–Yan events [22], are 76%
for electrons and 91% for muons, with variations at the level of several percent within the pT
and η ranges of the selected leptons.

The PF particles are clustered to form jets using the anti-kT clustering algorithm [23] with a
distance parameter of 0.5, as implemented in the FASTJET package [24]. The contribution to
the jet energy from pileup is estimated on an event-by-event basis using the jet-area method
described in Ref. [25], and is subtracted from the overall jet pT. Jets from pileup interactions
are suppressed using a multivariate discriminant based on the multiplicity of objects clustered
in the jet, the jet shape, and the impact parameters of the charged tracks in the jet with respect
to the primary interaction vertex. The jets must be separated from the selected leptons by
∆R > 0.4.

The selected events are required to contain at least two jets with pT > 30 GeV and |η| < 2.4.
At least one of these jets must be consistent with containing the decay of a bottom (b) flavored
hadron, as identified using the medium operating point of the combined secondary vertex
(CSV) b quark tagging algorithm [26]. We refer to such jets as b-tagged jets. The efficiency
of this algorithm for b quark jets in the pT range 30–400 GeV is 60–75% for |η| < 2.4. The
misidentification rate for light-quark or gluon jets is approximately 1% for the chosen working
point [26].

The missing transverse momentum vector ~pmiss
T is defined as the projection on the plane per-

pendicular to the beam direction of the negative vector sum of the momenta of all reconstructed
particles in the event. Its magnitude is referred to as Emiss

T . The calibrations that are applied
to the energy measurements of jets are propagated to a correction of ~pmiss

T . The Emiss
T value is

required to exceed 40 GeV in events with same-flavor leptons in order to further suppress the
Drell–Yan background. There is no Emiss

T requirement for e±µ∓ events.

3.2 Signal and background simulation

Simulated signal tt events with a top quark mass of mt = 172.5 GeV and with SM spin cor-
relations are generated using the MC@NLO 3.41 [27, 28] Monte Carlo (MC) event generator
with the CTEQ6M parton distribution functions (PDF) [29]. The parton showering and frag-
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mentation are performed by HERWIG 6.520 [30]. Simulations with different values of mt and
renormalization and factorization scales (µR and µF) are used to evaluate the associated sys-
tematic uncertainties. Background samples of W + jets, Drell–Yan, diboson (WW, WZ, and
ZZ), triboson, and tt + boson events are generated with MADGRAPH 5.1.3.30 [31, 32], and nor-
malized to the calculated next-to-leading-order (NLO) [33–37] or next-to-next-to-leading-order
(NNLO) [38] cross sections. Single top quark events are generated using POWHEG 1.0 [39–41],
and normalized to the theoretical NNLO cross sections [42–46]. For the background samples
and an alternative tt sample generated using POWHEG 1.0, the parton showering and fragmen-
tation are done using PYTHIA 6.4.22 [47].

For both signal and background events, pileup interactions are simulated with PYTHIA and su-
perimposed on the hard collisions using a pileup multiplicity distribution that reflects the lumi-
nosity profile of the analyzed data. The CMS detector response is simulated using a GEANT4-
based model [48]. The simulated events are reconstructed and analyzed with the same software
used to process the collision data.

The measured trigger efficiencies are used to weight the simulated events to account for the
trigger requirement. Small differences between the b tagging efficiencies measured in data and
simulation [26] are accounted for by using data-to-simulation correction factors to adjust the
b tagging probability in simulated events, while the lepton selection efficiencies (reconstruc-
tion, identification, and isolation) are found to be consistent between data and simulation [22].

4 Background estimation
Control regions (CR) are used to validate the background estimates from simulation and de-
rive scale factors (SF) and systematic uncertainties for some background processes. Each SF
multiplies the simulated background yield for the given process in the signal region (SR) to
obtain the final background prediction. The CRs are designed to have similar kinematics to the
SR, but with one or two selection requirements reversed, thus enhancing different SM contri-
butions. The main CRs used in this analysis and the values of the derived SFs are summarized
in Table 1.

Table 1: Descriptions of the various control regions, their intended background process, and
the scale factors derived from them, including either the statistical and systematic uncertain-
ties or the total uncertainty. The last row gives the scale factor used for all the remaining
backgrounds, whose contributions are estimated from simulation alone.

Selection change with
Target background process Scale factor

respect to the signal region
ee or µµ only,

Z/γ?(→ ee/µµ) + jets 1.36 ± 0.02 (stat) ± 0.2 (syst)
76 < M`` < 106 GeV

ee or µµ only, no Emiss
T req.,

Z/γ?(→ ττ) + jets 1.18 ± 0.01 (stat) ± 0.1 (syst)
76 < M`` < 106 GeV

Same-charge leptons One-lepton processes 2.2 ± 0.3 (stat) ± 1.0 (syst)

Exactly one jet Single top quark (tW, 2 leptons) 1.00 ± 0.25 (total)

Simulation All other backgrounds 1.0 ± 0.5 (total)
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Table 2: Predicted background and observed event yields, with their statistical uncertainties,
after applying the event selection criteria and normalization described in the text.

Sample ee µµ eµ Total
Single top quark (tW, 2 leptons) 298.0± 1.6 425.9± 1.9 1161.9± 3.1 1885.8± 4.0
Single top quark (other) 2.6± 0.6 4.6± 0.9 18.8± 1.6 26.1± 1.9
tt → `+ jets 107.1± 7.7 62.2± 5.4 327± 13 497± 16
W + jets 7.3± 3.6 1.8± 1.8 10.0± 3.5 19.1± 5.3
Z/γ?(→ ee/µµ) + jets 211± 16 368± 23 1.6± 0.5 581± 28
Z/γ?(→ ττ) + jets 33.9± 2.5 51.5± 3.0 137.6± 5.1 223.0± 6.4
WW/WZ/ZZ 27.6± 1.4 40.7± 1.4 89.3± 2.3 157.5± 3.0
Triboson 1.5± 0.1 2.3± 0.2 5.2± 0.3 9.0± 0.4
ttW/ttZ/ttγ 86.4± 6.5 141.3± 8.2 332± 13 559± 17
Total background 775± 20 1098± 25 2083± 20 3957± 38
Data 7089 10074 26735 43898
Signal yield (data − background) 6314± 86 8980± 100 24650± 160 39940± 210

For Drell–Yan events, the SF accounts for mismodeling of the Emiss
T distribution (coming largely

from mismeasured jets) and mismodeling of the heavy-flavor content. Only the latter is rele-
vant for Z/γ?(→ ττ) + jets, where the Emiss

T is dominated by the well-modeled undetected
neutrinos, so we omit the Emiss

T mismodeling in the derivation of the SF for this process. The
systematic uncertainties in the SFs are taken from the envelope of the variation observed be-
tween the three dilepton flavor combinations and in various alternative CRs. The CR for single
top quark production in association with a W boson (tW) is still dominated by signal events
(75%), with only a 16% contribution from tW production, which is an enhancement by a factor
of 4 compared to the SR. Given the good agreement between data and simulation in this CR,
we assume a SF of unity for tW production, with an uncertainty of 25% based on the recent
CMS tW cross section measurement of 23.4± 5.4 pb [49].

Contributions to the background from diboson and triboson production, as well as tt produc-
tion in association with a boson, are estimated from simulation. Recent measurements from
the CMS Collaboration [50–52] indicate agreement between the predicted and measured cross
sections for these processes, and we assign a systematic uncertainty of 50%.

5 Event yields and measurements at the reconstruction level
The expected background and observed event yields for different dilepton flavor combinations
are listed in Table 2. The total predicted yield in the eµ channel is significantly larger than for
the same-flavor channels because of the additional requirements on Emiss

T and M`` described
in Section 3 that are applied to suppress the Drell–Yan background. After subtraction of the
predicted background yields, the remaining yield in the data is assumed to be signal from
dileptonic tt decays, including τ leptons that decay leptonically. All other tt decay modes are
treated as background and are included in the tt → `+ jets category. The largest background
comes from tW production with dileptonic decays.

While the |∆φ`+`− | measurement relies only on the leptonic information, the measurements
based on cos ϕ and cos θ?`± require the reconstruction of the entire tt system. Each signal event
has two neutrinos in the final state, and there is also a twofold ambiguity in combining the
b quark jets with the leptons. In the case of events with only one b-tagged jet (62% of the
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selected events), the untagged jet with the highest b quark likelihood from the CSV algorithm
is assumed to be the second b quark jet. The two neutrino momenta are found analytically
assuming mt = 172.5 GeV. In the case of events with no physical solutions, a geometrical
method is used to find the physical solution with the magnitude of the vector sum of the pT
of the two neutrinos as close as possible to the measured Emiss

T [53]. Each event has up to 8
possible solutions. The one most likely to represent the correct tt configuration is chosen based
on the probabilities to observe the lepton energies in their parent top quark rest frames and
the extracted Bjorken x values of the initial-state partons [54]. No solutions are found for 16%
of the events, both in the data and the simulation. These events are not used, except in the
inclusive measurement of |∆φ`+`− |.

A comparison of the distributions for the reconstructed tt system variables Mtt , ytt , and pT
tt

between data and simulation is shown in Fig. 1, where the signal yield from the simulation has
been normalized to the number of signal events in the data after background subtraction. In
general, the shapes of the distributions from data and simulation show reasonable agreement,
with the small discrepancies covered by the systematic variations in the top quark pT modeling,
PDFs, and µR and µF values, which will be discussed in Section 7. A similar comparison of
the angular distributions is shown in Fig. 2. The corresponding inclusive asymmetry values,
uncorrected for background, from the data and simulation are given in Table 3.
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Figure 1: Reconstructed Mtt , ytt , and pT
tt distributions from data (points) and simulation (his-

togram), with the expected signal (tt → `+`−) and background distributions shown separately.
All three dilepton flavor combinations are included. The simulated signal yield is normalized
to that of the background-subtracted data. The last bins of the Mtt and pT

tt distributions in-
clude overflow events. The vertical bars on the data points represent the statistical uncertain-
ties. The lower panels show the ratio of the numbers of events from data and simulation.

Table 3: Values of the uncorrected inclusive asymmetry variables from simulation and data,
prior to background subtraction. The uncertainties shown are statistical.

Reconstructed asymmetry Simulation Data
A∆φ 0.188± 0.002 0.170± 0.005
Acos ϕ 0.114± 0.003 0.109± 0.005
Ac1c2 −0.050± 0.003 −0.049± 0.005
AP+ −0.026± 0.003 −0.032± 0.005
AP− −0.022± 0.003 −0.028± 0.005
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Figure 2: Reconstructed angular distributions from data (points) and simulation (histogram),
with the expected signal (tt → `+`−) and background distributions shown separately. All
three dilepton flavor combinations are included. The simulated signal yield is normalized to
that of the background-subtracted data. The vertical bars on the data points represent the
statistical uncertainties. The lower panels show the ratio of the numbers of events from data
and simulation.
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6 Unfolding the distributions
The observed angular distributions are distorted compared to the underlying distributions at
the parton level (for which theoretical predictions exist) by the detector acceptance and reso-
lution and the trigger and event selection efficiencies. To correct the data for these effects, we
apply an unfolding procedure that yields the corrected |∆φ`+`− |, cos ϕ, c1c2, and cos θ?`± distri-
butions at the parton level. In the context of theoretical calculations and parton-shower event
generators, the parton-level top quark is defined before it decays, and its kinematics include
the effects of recoil from initial- and final-state radiation in the rest of the event and from final-
state radiation from the top quark itself. The parton-level charged lepton, produced from the
decay of the intermediate W boson, is defined before the lepton radiates any photons or the
muon or tau lepton decays.

In order to unfold the observed distributions it is necessary to choose a binning scheme. Aim-
ing to have bins with widths well matched to the reconstruction resolution and with approx-
imately uniform event contents, we select six bins for each parton-level angular distribution
except that of ∆φ`+`− . This variable depends only on the lepton momentum measurements,
not on the reconstruction of the tt system, and the superior resolution allows us to use twelve
bins. For the reconstruction-level distributions we use twice as many bins as for the parton-
level distributions.

The background-subtracted distribution for each variable, considered as a vector ~y, is related
to the underlying parton-level distribution ~x through the equation~y = SA~x, where A is a diag-
onal matrix describing the fraction (acceptance times efficiency) of all produced signal events
that are expected to be selected in each of the measured bins, and S is a non-diagonal “smear-
ing” matrix describing the migration of events between bins caused by imperfect detector res-
olution and reconstruction techniques. The A and S matrices are constructed using simulated
MC@NLO tt events. The smearing in cos ϕ, c1c2, and cos θ?`± can be large in some events be-
cause of the uncertainties in the reconstruction of the tt kinematic quantities, but the smearing
matrices are still predominantly diagonal. The smearing matrix for |∆φ`+`− | is nearly diagonal
because of the excellent angular resolution of the lepton momentum measurements.

To determine the parton-level angular distribution in data, we employ a regularized unfolding
algorithm implemented in the TUNFOLD package [55]. The effects of large statistical fluctua-
tions in the algorithm are greatly reduced by introducing a term in the unfolding procedure
that regularizes the output distribution based on the curvature of the simulated signal distri-
bution. In general, unfolding introduces negative correlations between adjacent bins, while
regularization introduces positive correlations, and the regularization strength is optimized by
minimizing the average global correlation coefficient in the unfolded distribution. The regu-
larization strength obtained here is relatively weak, contributing at the 10% level to the total χ2

minimized by the algorithm.

After unfolding, each distribution is normalized to unit area to give the normalized differen-
tial cross section for each variable. We use an analogous unfolding procedure to measure the
normalized double-differential cross section, using three bins of Mtt , |ytt |, and pT

tt for each
variable. The full covariance matrix is used in the evaluation of the statistical uncertainty in
the asymmetry measured from each distribution.
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7 Systematic uncertainties
The systematic uncertainties coming from the detector performance and the modeling of the
signal and background processes are evaluated from the difference between the nominal mea-
surement and that obtained by repeating the unfolding procedure using simulated events with
the appropriate systematic variation.

The uncertainty from the jet energy scale (JES) corrections affects the tt final-state reconstruc-
tion, as well as the event selection. It is estimated by varying the energies of jets within their
uncertainties [56], and propagating this to the Emiss

T value. Similarly, the jet energy resolution
is varied by 2–5%, depending on the η of the jet [56], and the electron energy scale is varied by
±0.6% (±1.5%) for barrel (endcap) electrons (the uncertainty in muon energies is negligible),
as estimated from comparisons between measured and simulated Drell–Yan events [57].

The uncertainty in the background contribution is obtained by varying the normalization of
each background component by the uncertainties described in Section 4.

Many of the signal modeling and simulation uncertainties are evaluated by using weights to
vary the MC@NLO tt sample: the simulated pileup multiplicity distribution is changed within
its uncertainty; the correction factors between data and simulation for the b tagging [26], trig-
ger, and lepton selection efficiencies are shifted up and down by their uncertainties; and the
PDFs are varied using the PDF4LHC procedure [58, 59]. Previous CMS studies [60, 61] have
shown that the pT distribution of the top quark measured from data is softer than that in the
NLO simulation of tt production. Since the origin of the discrepancy is not fully understood,
the change in the measurement when reweighting the MC@NLO tt sample to match the top
quark pT spectrum in data is taken as a systematic uncertainty associated with signal model-
ing.

The remaining signal modeling uncertainties are separately evaluated with dedicated tt sam-
ples: µR and µF are varied together up and down by a factor of 2; the top quark mass is varied
by ±1 GeV, to be consistent with the uncertainty used in other CMS measurements with the√

s = 8 TeV data set (the effect on the total systematic uncertainty of using the reduced un-
certainty from the recent CMS combined mt measurement [1] would be negligible); and the S
matrix is rederived from a tt sample generated with POWHEG and PYTHIA, while the A matrix
is unchanged, in order to estimate the difference in hadronization modeling between HERWIG

and PYTHIA. To avoid underestimation of systematic uncertainties caused by statistical fluctu-
ations, which can be significant in the estimates evaluated using dedicated tt samples, for each
source of uncertainty the maximum of the estimated systematic uncertainty and the statistical
uncertainy in that estimate is taken as the final systematic uncertainty.

The uncertainty in the unfolding procedure is dominated by the statistical uncertainty arising
from the finite number of events in the MC@NLO tt sample. The uncertainty owing to the un-
folding regularization is evaluated by using the reconstucted distribution of a variable in data
to reweight the corresponding simulated signal distribution used to regularize the curvature
of the unfolded distribution. Using this method, the regularization uncertainty is found to be
negligible for all measurements.

The systematic uncertainties in the inclusive asymmetry variables obtained from the unfolded
distributions are summarized in Table 4. The systematic uncertainties are evaluated for each
bin of the unfolded distributions, from which the covariance matrix is constructed, assuming
100% correlation or anticorrelation between bins for each individual source of uncertainty. The
total systematic uncertainty is calculated by adding in quadrature the listed uncertainties.
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Table 4: Sources and values of the systematic uncertainties in the inclusive asymmetry vari-
ables.

Asymmetry variable A∆φ Acos ϕ Ac1c2 AP ACPV
P

Experimental systematic uncertainties
Jet energy scale 0.001 0.005 0.007 0.018 0.001
Jet energy resolution <0.001 0.001 0.002 0.003 0.002
Lepton energy scale 0.001 0.002 0.005 0.003 <0.001
Background 0.001 0.001 0.001 0.002 <0.001
Pileup <0.001 <0.001 <0.001 <0.001 <0.001
b tagging efficiency <0.001 0.001 0.001 0.001 0.001
Lepton selection 0.001 <0.001 <0.001 0.002 <0.001

tt modeling uncertainties
Parton distribution functions 0.004 0.005 0.005 0.001 <0.001
Top quark pT 0.011 0.006 0.006 0.004 <0.001
Fact. and renorm. scales 0.002 0.003 0.005 0.002 0.002
Top quark mass 0.001 0.001 0.007 0.008 0.001
Hadronization 0.001 0.004 0.005 0.019 0.003
Unfolding (simulation statistical) 0.002 0.005 0.006 0.003 0.003
Unfolding (regularization) <0.001 <0.001 <0.001 <0.001 <0.001
Total systematic uncertainty 0.012 0.012 0.016 0.028 0.005

For A∆φ, the top quark pT modeling uncertainty dominates; this arises from the dependence
of the |∆φ`+`− | distribution shape on the top quark pT (through the spin correlations and event
kinematics); that, in turn, introduces a significant dependence of the acceptance correction on
the top quark pT. For AP, the JES and hadronization systematic uncertainties are dominant.
Both affect the reconstructed b quark jet energy, and can therefore bias the boost from the
laboratory frame to the top quark center-of-mass frame, and thus the measurement of cos θ?`± .
For similar reasons, the same two uncertainties are large for Ac1c2 and Acos ϕ, which are also
significantly affected by the top quark pT modeling uncertainty through its effect on the spin
correlations. For ACPV

P , the similar systematic uncertainties in AP+ and AP− largely cancel
when AP− is subtracted from AP+; the remaining contributions to the systematic uncertainty
are dominated by the statistical uncertainty in the simulation.

8 Results
8.1 Unfolded distributions

The background-subtracted, unfolded, and normalized-to-unit-area angular distributions for
the selected data events are shown in Fig. 3, along with the parton-level predictions obtained
with the MC@NLO event generator and from NLO QCD calculations including electroweak
corrections (NLO+EW) for tt production, with and without spin correlations [4, 62].

The measured asymmetries, obtained from the angular distributions unfolded to the parton
level, are presented with their statistical and systematic uncertainties in Table 5, where they are
compared to predictions from MC@NLO and the NLO+EW calculations. Correlations between
the contents of different bins, introduced by the unfolding process and from the systematic
uncertainties, are accounted for in the calculation of the experimental uncertainties. The un-
certainties in the NLO+EW predictions come from varying µR and µF simultaneously up and
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down by a factor of two. For Acos ϕ and Ac1c2 , these scale uncertainties are summed in quadra-
ture with the difference between the NLO+EW predictions from Ref. [4] when the ratio in the
calculation is expanded in powers of the strong coupling constant and when the numerator
and denominator are evaluated separately.

Table 5: Inclusive asymmetry measurements obtained from the angular distributions unfolded
to the parton level, and the parton-level predictions from the MC@NLO simulation and from
NLO+EW calculations with (SM) and without (no spin corr.) spin correlations [4, 62]. For the
data, the first uncertainty is statistical and the second is systematic. For the MC@NLO results
and NLO+EW calculations, the uncertainties are statistical and theoretical, respectively.

Asymmetry Data MC@NLO NLO+EW, NLO+EW,
variable (unfolded) simulation SM no spin corr.
A∆φ 0.094± 0.005± 0.012 0.113± 0.001 0.110 + 0.006

− 0.009 0.202 + 0.006
− 0.009

Acos ϕ 0.102± 0.010± 0.012 0.114± 0.001 0.114± 0.006 0
Ac1c2 −0.069± 0.013± 0.016 −0.081± 0.001 −0.080± 0.004 0
AP −0.011± 0.007± 0.028 0 0.002± 0.001 —
ACPV

P 0.000± 0.006± 0.005 0 0 —

Using the relationships between the asymmetry variables and spin correlation coefficients given
in Section 1, we find Chel = 0.278 ± 0.084 and D = 0.205 ± 0.031, where the uncertainties
include the statistical and systematic components added in quadrature. Similarly, the CP-
conserving and CP-violating components of the top quark polarization are found to be P =
−0.022± 0.058 and PCPV = 0.000± 0.016, respectively. All measurements are consistent with
the expectations of the SM.

The NLO+EW predictions for |∆φ`+`− |, cos ϕ, and c1c2 with and without spin correlations in Ta-
ble 5 are used to translate the measurements into determinations of fSM, the strength of the spin
correlations relative to the SM prediction, with fSM = 1 corresponding to the SM and fSM = 0
corresponding to uncorrelated events. The measurements of fSM are shown in Table 6 and are
derived under the assumption that the acceptance matrix for unfolding is independent of spin
correlations. This is found to give conservative estimates for the experimental uncertainties.

Table 6: Values of fSM, the strength of the measured spin correlations relative to the SM pre-
diction, derived from the numbers in Table 5. The last row shows an additional measurement
of fSM made from the projection in |∆φ`+`− | of the normalized double-differential cross sec-
tion as a function of |∆φ`+`− | and Mtt . The uncertainties shown are statistical, systematic, and
theoretical, respectively. The total uncertainty in each result, found by adding the individual
uncertainties in quadrature, is shown in the last column.

Variable fSM ± (stat)± (syst)± (theor) Total uncertainty
A∆φ 1.14± 0.06± 0.13+ 0.08

− 0.11
+ 0.16
− 0.18

Acos ϕ 0.90± 0.09± 0.10± 0.05 ±0.15
Ac1c2 0.87± 0.17± 0.21± 0.04 ±0.27
A∆φ (vs. Mtt ) 1.12± 0.06± 0.08+ 0.08

− 0.11
+ 0.12
− 0.15

The dependence of each asymmetry on Mtt , |ytt |, and pT
tt is extracted from the measured

normalized double-differential cross section, and the results are shown in Fig. 4. The measure-
ments are all consistent with the MC@NLO predictions, and with the SM NLO+EW prediction
for the Mtt and |ytt | dependencies. No comparison is made with the NLO+EW prediction for
the pT

tt dependence because the substantial effect of the parton shower on the pT
tt distribution

means fixed-order NLO calculations are not a sufficiently good approximation of the data.
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Figure 3: Normalized differential cross section as a function of |∆φ`+`− |, cos ϕ, cos θ?`+ cos θ?`− ,
and cos θ?` from data (points); parton-level predictions from MC@NLO (dashed histograms); and
theoretical predictions at NLO+EW [4, 62] with (SM) and without (no spin corr.) spin correla-
tions (solid and dotted histograms, respectively). For the cos θ?` distribution, CP conservation
is assumed in the combination of the cos θ?`± measurements from positively and negatively
charged leptons. The ratio of the data to the MC@NLO prediction is shown in the lower panels.
The inner and outer vertical bars on the data points represent the statistical and total uncertain-
ties, respectively. The hatched bands represent variations of µR and µF simultaneously up and
down by a factor of two.



8.2 Limits on new physics 13

Compared to the measurement of A∆φ in Table 5, the differential measurement in bins of Mtt
(Fig. 4, top row, left plot) has a significantly reduced (factor of 2.3) systematic uncertainty asso-
ciated with the top quark pT modeling. When the acceptance correction is binned in a variable
that is correlated with the top quark pT (e.g., Mtt ), the top quark pT reweighting affects the nu-
merator and denominator in the acceptance ratio similarly, leading to a reduction in the associ-
ated systematic uncertainty. The inclusive asymmetry measured from the projection in |∆φ`+`− |
of the normalized double-differential cross section is A∆φ = 0.095± 0.006 (stat)± 0.007 (syst),
which is converted into the value of fSM = 1.12+0.12

−0.15 given in Table 6.

8.2 Limits on new physics

Anomalous ttg couplings can lead to a significant modification of the polarization and spin
correlations in tt events. A model-independent search can be performed using an effective
model of chromo-magnetic and chromo-electric dipole moments (denoted CMDM and CEDM,
respectively). This study follows the proposal in Ref. [4]. For an anomalous ttg interaction
arising from heavy-particle exchange characterized by a mass scale M & mt, one can write an
effective Lagrangian as:

Leff = −
µ̃t

2
tσµνTatGa

µν −
d̃t

2
tiσµνγ5TatGa

µν, (1)

where µ̃t and d̃t are the CMDM (CP-conserving) and CEDM (CP-violating) dipole moments,
Ga

µν is the gluon field strength, and Ta are the QCD fundamental generators. It is usually
preferred to define dimensionless parameters

µ̂t ≡
mt

gs
µ̃t, d̂t ≡

mt

gs
d̃t, (2)

where gs is the QCD coupling constant [4]. The parameters µ̂t and d̂t correspond to the form
factors in the time-like kinematic domain and are therefore complex quantities, here assumed
to be constant. In general, both the real and imaginary parts of µ̂t and d̂t can be determined,
but the spin correlations and polarization measured in this paper are only sensitive to Re(µ̂t)

and Im(d̂t), respectively [4].

We begin with the determination of Re(µ̂t) using the measured normalized differential cross
section (1/σ)(dσ/d |∆φ`+`− |). In the presence of a small new physics (NP) contribution such
that Re(µ̂t)� 1, one can linearly expand the normalized differential cross section as [4]:

1
σ

dσ

d |∆φ`+`− |
=

(
1
σ

dσ

d |∆φ`+`− |

)
SM

+ Re(µ̂t)

(
1
σ

dσ

d |∆φ`+`− |

)
NP

. (3)

The predicted shapes of the SM and NP terms in Eq. (3) are shown in Fig. 5. The NP term
arises from interference with SM tt production, and therefore gives both positive and negative
contributions to the differential cross section.

To set exclusion limits on Re(µ̂t), the SM and NP contributions to Eq. (3) are parametrized by
polynomial functions (shown in Fig. 5), which are then used in a template fit to the measured
normalized differential cross section. We use the projection in |∆φ`+`− | of the measured nor-
malized double-differential cross section in bins of Mtt to minimize the systematic uncertainty
from top quark pT modeling, as for the extraction of fSM. The limits are derived under the
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Figure 4: Dependence of the four asymmetry variables from data (points) on Mtt (left),
|ytt | (middle), and pT

tt (right), obtained from the unfolded double-differential distributions;
parton-level predictions from MC@NLO (dashed histograms); and theoretical predictions at
NLO+EW [4, 62] with (SM) and without (no spin corr.) spin correlations (solid and dotted
histograms, respectively). The inner and outer vertical bars on the data points represent the
statistical and total uncertainties, respectively. The hatched bands represent variations of µR
and µF simultaneously up and down by a factor of two. The last bin of each plot includes
overflow events.
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Figure 5: Left: theoretical prediction from Ref. [4] (points) and polynomial parametrization
(line) for the contribution from new physics with a non-zero CMDM to the normalized differ-
ential cross section (1/σ)(dσ/d |∆φ`+`− |), for Re(µ̂t)� 1. Right: normalized differential cross
section from data (points). The solid line corresponds to the result of the fit to the form given
in Eq. (3), and the dashed lines show the parametrized SM NLO+EW predictions for µR and µF
equal to mt, 2mt, and mt/2. The vertical bars on the data points represent the total uncertainties.

assumption that the acceptance matrix is unchanged by the presence of NP. Studies of the ef-
fects of our selection criteria at the parton level show this leads to conservative limits. The fit
is performed using a χ2 minimization, accounting for both statistical and systematic uncertain-
ties and their correlations, with Re(µ̂t) as the only free parameter. The systematic uncertainty
arising from the choice of µR and µF in the theoretical calculations from Ref. [4] is estimated
by repeating the fit after varying both scales together up and down by a factor of two. This
constitutes the dominant source of uncertainty. The proper behavior of the fit is verified using
pseudo-experiments. The result of the fit is Re(µ̂t) = −0.006± 0.024, and is shown graphically
in Fig. 5. The corresponding 95% confidence level (CL) interval is −0.053 < Re(µ̂t) < 0.042.

The spin correlation coefficient D is also sensitive to Re(µ̂t), and the CP-violating component
of the top quark polarization PCPV is sensitive to Im(d̂t). Studies of the effects of our selection
criteria at the parton level show that the presence of anomalous top quark chromo moments
has no significant effect on the acceptance matrix for either of these variables, and we use this
assumption in the derivation of limits on Re(µ̂t) and Im(d̂t).

For the D coefficient, Eq. (3) simplifies to D = DSM + Re(µ̂t) DNP [4]. Using the values from
Table 5, the relationship D = −2Acos ϕ, and taking DNP = −1.712± 0.019 from Ref. [4], we find
Re(µ̂t) = −0.014± 0.020, with the corresponding 95% CL interval −0.053 < Re(µ̂t) < 0.026.
The constraints on Re(µ̂t) from D are stronger than those from the |∆φ`+`− | fit because the
smaller theoretical uncertainty in the SM NLO+EW calculation of D compared to that in the
|∆φ`+`− | distribution outweighs the slightly larger experimental uncertainty.

Similarly, PCPV is related to Im(d̂t) via PCPV = Im(d̂t) PCPV
NP , with PCPV

NP = 0.482± 0.003 [4]. We
find Im(d̂t) = −0.001± 0.034, with the corresponding 95% CL interval −0.068 < Im(d̂t) <
0.067.

The |∆φ`+`− | distribution is potentially sensitive to pair-produced scalar top quark partners
(top squarks) that decay to produce a top quark and antiquark with no additional visible parti-
cles. The spin-zero particles transmit no spin information from the initial state to the final-state
top quarks, meaning such events look much like uncorrelated tt events. We assess the sensitiv-
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ity of the measured |∆φ`+`− | distribution to pair-produced top squarks with mass equal to mt.
As seen from the extracted value of fSM in Table 6, the dominant source of uncertainty is the
theoretical scale uncertainty in the |∆φ`+`− | distribution. The result is that no exclusion limits
on top squarks can be set using the |∆φ`+`− | normalized differential cross section alone, and
the additional sensitivity if combined with the inclusive measurement of the cross section is
marginal.

9 Summary
Measurements of the tt spin correlations and the top quark polarization have been presented in
the tt dilepton final states (e+e−, e±µ∓, and µ+µ−), using angular distributions unfolded to the
parton level and as a function of the tt-system variables Mtt , |ytt |, and pT

tt . The data sample
corresponds to an integrated luminosity of 19.5 fb−1 from pp collisions at

√
s = 8 TeV, collected

by the CMS experiment at the LHC.

For the spin correlation coefficients, we measure Chel = 0.278± 0.084 and D = 0.205± 0.031.
The measurements sensitive to spin correlations are translated into determinations of fSM, the
strength of the spin correlations relative to the SM prediction. The most precise result comes
from the measurement of A∆φ = 0.095± 0.006 (stat)± 0.007 (syst), yielding fSM = 1.12 + 0.12

− 0.15.
The SM (CP-conserving) top quark polarization is measured to be P = −0.022± 0.058, while
the CP-violating component is found to be PCPV = 0.000 ± 0.016. All measurements are in
agreement with the SM expectations, and help constrain theories of physics beyond the SM.

The measured top quark spin observables are compared to theoretical predictions in order
to search for hypothetical top quark anomalous couplings. No evidence of new physics is
observed, and exclusion limits on the real part of the chromo-magnetic dipole moment Re(µ̂t)

and the imaginary part of the chromo-electric dipole moment Im(d̂t) are evaluated. Values
outside the intervals −0.053 < Re(µ̂t) < 0.026 and −0.068 < Im(d̂t) < 0.067 are excluded at
the 95% confidence level, the first such measurements to date.
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Université de Mons, Mons, Belgium
N. Beliy, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
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V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress,
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M. Menichellia, A. Sahaa, A. Santocchiaa ,b
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