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Abstract. A large distance between true and reconstructed core locations of an extensive
air shower (EAS) may results in great systematic mis-estimation of EAS parameters. The
reconstruction of those EASs whose core locations are outside the boundary of a surface
array (outside EAS (OEAS)) results in a large distance of the reconstructed core location
from the true one, especially when the true core is far outside the array. Although it may
not be mentioned, the identification of OEASs is a necessary and important step in the
reconstruction procedure of an EAS. In this paper, an existing technique is optimized for the
identification of OEASs. The simultaneous use of this technique and a recently developed
approach for reconstructing the core location of an EAS can significantly increase the sensitive
area of a surface array.
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1 Introduction

In a surface array during an EAS event, a particularly minimum number of array detec-
tors should be usually triggered to record the event (threshold condition). Sometimes, an
EAS with the true core outside the array boundary can satisfy the threshold condition.
Reconstructed core location of these EASs not only is inside the array, but may also have
considerable distance from array boundary, especially for those EASs with the true core far
outside the array.
This problem may sometimes be even worse. For some OEASs, a few number of array de-
tectors may exists that, in spite of the large distance from the true core location, detect a
significant number of particles. Often, the reason of this event is a single particle of the EAS
that moves behind the EAS front and, as a result of Landau fluctuation and or a cascade
in detector material, generates a large pulse height which is mistaken for a high particle
density location. Corrupted data of these detectors in addition to destructive effect on the
reconstruction of the EAS direction may cause difficulty on the rejection of such EASs as
OEASs even with sophisticated core location reconstructing algorithms.
In short, identification of OEASs is very important, since if the distance of the reconstructed
core location from the true core of an EAS is large, in addition to a systematic tilt in recon-
structed arrival direction of the shower, its other reconstructed parameters such as shower
size, age parameter, etc. will have significant systematic errors.
There are various methods to identify OEASs in a surface array. A sophisticated method
for the identification of OEASs is using complementary data other than those of the surface
array detectors alone (e.g. data of Cherenkov light detectors [1]). The disadvantages of these
techniques are that they raise the cost of the array construction and, in some cases such as
air Cherenkov detectors, restrict the duty factor of the array considerably (e.g. to a dark
clear moonless night).
If one merely relies on data of a surface array detector, the most common method is the bor-
der cut (e.g. KASCADE-Grande [2]): Based on this approach, the reconstructed core and
the first guess core position have to be deep inside the boundary of the array. Furthermore,
it is required that the station containing the largest signal is not on the border of the array.
Although the perimeter area of an array is a narrow region, it usually has a considerable
contribution to the total area of the array. So, this technique reduces the overall efficiency
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of the array (defined as the probability by which an EAS whose core is inside the array
boundary will remain in the final event sample). Also, it can reduce the energy extent of
detected EASs by the array, because the most energetic EASs which can be detected by an
array are those EASs with the true core near the boundary [3].
An interesting technique for the rejection of OEASs is to find the weighted mean of distances
of the registered particles from the reconstructed shower core [4], as named by authors as rp:

rp =

N∑

i=1

αiniri

N∑

i=1

αini

(1.1)

The summation includes all triggered detectors in the array. The parameter ri represents
the distance of the ith detector from the center of gravity (COG) of the responding detec-
tors, ni the particle density measured by the ith detector, and αi a weight which takes into
account the inhomogeneous detector spacing in an asymmetrical surface array. The weights
are inversely proportional to the density of detectors around the ith detector. According to
the authors, exceptionally large distances between the true and reconstructed shower cores
results in exceptionally large rp values, so OEASs can be identified by their rp values (actu-
ally we will see below that when the true core is outside the array, contrary to authors’ view,
using distances from the true core location as ris results in the greatest rps). So, when we
use a common method for the reconstructing core location, this technique can only identify
far OEASs and still need a relatively large border cut.
Sophisticated techniques such as neural networks [5] cannot drastically improve the above
methods and the true core location must be inside array and have significant distance from
the array border in order to be reconstructed reliably.
In this paper, rp parameter will be optimized for the identification of OEASs. This identifi-
cation technique relies only on the surface array data and can increase sensitive area of an
array. For the real EASs, we do not have the exact core location, so they are not suitable
for comparing the results of different methods for the identification of OEASs. Therefore, in
order to prove the functionality of this technique, simulated EASs whose specifications are
introduced in the next section are used.

2 Air Shower Simulations

In order to confirm the performance of OEAS’s identification parameter, more than 400,000
CORSIKA version 7.4 [6] simulated EASs whose specifications are summarized in Table 1
were generated.

A hypothetical surface array, similar to that of [3] (a square array with 21 × 21 detec-
tors, the network constant of 10m over the total area of 200 × 200m2) is applied (Fig. 1).
A threshold condition of triggering at least 12% (53 detectors) of array detectors is exerted.
For finding the arrival direction, plane front approximation is used.

3 Outside showers identification parameters (OSIP)

Any parameter which can be used as an OSIP should have a different behavior for an OEAS
compared with an internal EAS. For example, the mean value function of OSIP should change
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Specification Value

geographical longitude 51 E
geographical latitude 35 N
altitude 1200 m
earth magnetic field (Bx) 28.1µT
earth magnetic field (Bz) 38.4µT
low energy hadronic model Fluka 2011.2b [7]
high energy hadronic model QGSJETII-04 [8]

Table 1: EASs’ specifications. Other specifications are CORSIKA default values. The
primary particle of 90% of the showers are protons and the remaining primary particles are
alphas.
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Figure 1: Layout of the assumed array. The positions of detectors in the array are shown
by empty black circles (not to scale). The last internal ring of the array is hatched by green
lines. Also, the first and second external rings are shown in this figure.

its trend on a smooth boundary line of an array. But, we should have in our mind that the
change of behavior condition (e.g. change of mean value curve trend) of a parameter on the
border of the array is a necessary, not an enough, condition. For example, a parameter which
has different mean values in and out of an array may has very wide overlapping distributions
inside and outside the array and cannot be used as an OSIP.
At first, we begin our consideration with rp using COG as the core location (as the inventors
of rp have proposed). Our hypothetical array is symmetrical and the density of detectors
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Figure 2: Dotted red line belongs to the average of rp on horizontal symmetry line of the
array for the aforementioned EASs which satisfies threshold condition. The dashed blue line
belongs to the results of rp using SIMEFIC II for the reconstruction of core location. The
solid green line belongs to the results of rp in its ideal form. Border location (side of the
array) is depicted by a vertical dashed black line.

around every detector of the array is the same in all parts of the array, so we should substitute
αi = 1 for all is in Eq. 1.1.
In order to compare the behavior of the mean value function of rp inside and outside the
array, the true core location of each EAS is assumed to be on the line (i, 0) (i increases from
0 (array center, on (0,0)) to 130m outside the border line of the array by steps of 1m). In
each step, the rp is averaged for those EASs that satisfy the threshold condition.
As can be seen in Fig. 2, average of rp (dotted red line) on the border of the array changes
its slope and beyond the array border, its mean value quickly increases. So, we expect that a
shower with larger rp is more probable to be an OEAS compared with a shower with smaller
rp.
In order to optimize the rp parameter to be used as an OSIP, we reconstruct the core location
of the shower by a more precise method than COG of responding detectors. SIMEFIC II
method [9] has far better results than COG for reconstructing the core location of an EAS. For
reconstructing the core location, SIMEFIC II (M=N/4, Cx=2, Cy=2) which has relatively
good precision near the border of the array is used. As can be seen in this figure, when we
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reconstruct the core location by the SIMEFIC II method (dashed blue line), the slope change
of the mean value is even more severe.
In Fig. 2, rp is also shown in its ideal form (solid green line). In this situation, ris are distances
to the true core location of an EAS (provided by CORSIKA). It shows the ultimate limit for
using rp as an OSIP. As can be seen, SIMEFIC II makes rp closer to its ultimate behavior
in the outside region. Another interesting fact is that, when the core location is outside the
array, if someone can reconstruct a core location near the true core location, OEASs can be
better identified.

4 Distribution Functions

As said in the previous section, the trend change is only a necessary, not an enough, condi-
tion. Another necessary condition for a good OSIP is that its probability distribution should
be narrow enough which can efficiently discriminate between a deep OEAS and an internal
EAS with the true core location near the boundaries (especially the last internal ring).
In order to evaluate the qualification of an OSIP to fulfill this necessary condition in our
assumed array, at least an OSIP should discriminate between an EAS with the true core
location in the last internal ring of the array (green hatched area in Fig. 1) and the second
external ring (red crosshatched in Fig. 1). So, we distribute EASs’ true core location uni-
formly in each of the 3 regions shown in Fig. 1 (as mentioned in Sec. 2) and, then, evaluate
the cumulative distribution functions (CDF) of OSIPs for each area (the true core locations
of each EAS are uniformly distributed on each region for 10 times and, whenever an event
satisfied the threshold condition, it is applied).
Figure 3a shows the results of CDF of rp using COG as the reconstructed core location, Fig.
3b shows the results of using SIMEFIC II reconstructed core location for the CDFs of rp,
and Fig. 3c shows the results of rps CDFs in its ideal form (ris are distances from the true
core location). It is clear that rp in its ideal form at most can distinguish the last internal
ring’s EASs from the second external ring’s OEASs nearly completely (when all the second
external ring’s OEASs are rejected, we can be sure that all OEASs from regions beyond it
will be rejected as well (see Fig. 2)). But, even when we reject the second external ring
completely, we have a large contribution from the first external ring. Also, it can be seen
that SIMEFIC II can make rp a significantly better OSIP than using rp with COG, because
it can hold more events from the last internal ring and, at the same time, reject all the events
from the second external ring.
Table 2 shows some interesting values extracted from CDF of the above OSIPs. In this table,
we choose the values for the OSIPs whose contamination of OEAS from the second external
ring will be less than or approximately equal to 0.5%. As can be seen, when we optimize rp,
the contribution of the last internal ring will be increased by about 9% compared with the
non-optimized rp. At the same time, contamination from the first external ring will increase
again by about 9%.

5 Core location precision

Because the area of the first external ring is more than that of the last internal ring, it may
seem that those events which will remain from the first external ring in the survived EASs
can destroy precision of all the others (especially because of their great error in the recon-
struction of core locations). But, because of the correction term in SIMEFIC II method, we
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(a) COG is used as the core location.
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(b) rp in its ideal form (true core location provided by CORSIKA is used).
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(c) SIMEFIC II method is used for finding the core location.

Figure 3: CDF of rp in 3 regions of Fig. 1.

can find the core locations of those events from the first external ring with relatively good
precision.
In order to estimate the results of the foregoing technique for the precision of reconstructing
the core location, the true core location of the simulated EASs is evenly distributed in all
three mentioned regions and, then, the error of core location reconstruction is estimated. The
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rp < rp,max

last internal

ring

first external

ring

second external

ring

rp,COG < 40 m 64% 21% . 0.5%

rp,SIMEFIC II < 42.2 m 73% 30% . 0.5%

rp,ideal < 59.9 m 99% 69% . 0.5%

Table 2: Some remarkable values extracted from CDF curves in Fig. 3. Column 1 shows the
maximum values for each OSIP in order to have less than 0.5% event contamination from
the second external ring. Columns 2, 3, and 4 show the percent of accepted events by OSIP
from each region.
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Figure 4: Distribution of the distance between the reconstructed core location and the true
axis.

results are shown in Fig. 4. In this figure, distribution of distances of the reconstructed core
location by SIMEFIC II (M = N/4, Cx = 2, Cy = 2) from the true axis of EAS (which is a
measure of the reconstructed core location error [9]) for those EASs which satisfy the trigger
condition is shown. As can be seen, when we use the rejection condition (rp < 42.2m using
SIMEFIC II for finding ris), the error occurring in core location reconstruction procedure is
far better (with the mean value of 4.4 m). Also, you can see in this figure that the rejected
EASs have far worse precision than the selected EASs (the mean value of error is 11.4 m).
Actually, with this rejection condition, 32% of those EASs which are accepted in the trigger
condition will remain. The area of the three shown regions altogether is 220m×220m−190m×

190m = 12300m2. Therefore, the sensitive area of the array is increased by about 0.32 ×

12300m2 = 3936m2. If we compare this area with the area of the array with the border cut of
10 m, the array’s area without the last internal ring (that would be 190m×190m = 36100m2,
an optimistic border cut), the sensitive area of the array will be increased by about 10%,
which is more than the area of the last internal ring (200m×200m−190m×190m = 3900m2).
Without this procedure, such an increase in sensitive area needs at least adding a new ring
to the array (with an optimistic border cut, rejecting the events with the true core location
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in this newly added ring), 88 new detectors, and more than 4000m2 increase in the area of
the array.
If we need higher precision for the reconstructed core location in perimeter area of the array,
we can use a smaller limit value for the rp. However, we should decide that if we need higher
precision or more sensitive area.

6 Conclusions

In this paper, an existing technique for the rejection of OEASs was optimized. This technique
only relies on the data of array detectors and do not need any other supplemental data such
as Cherenkov radiation information of EAS. The most usual method for the rejection of an
OEAS is border cut, which significantly decreases the sensitive area of the array and overall
efficiency of the array. Also, border cut can decrease the extent of cosmic rays’ energy, which
can be detected by the array.
According to this technique, a parameter called rp which is the weighted mean distance of
triggered detectors from the reconstructed core location is calculated. If rp for an EAS is
more than a certain value, EAS is rejected as an OEAS.
Also, it was shown that, if we used a new method for finding core location called SIMEFIC
II, we could significantly increase the sensitive area of the array. In this paper, it was demon-
strated that the reconstruction of the core location with better precision could give better
results for OEAS identification procedure. So, the procedure of finding OEASs can be opti-
mized using an optimized version of the SIMEFIC II method for finding core location in an
array. Another optimization of the OEAS identification procedure was possible if one could
find another OSIP with a narrower distribution function and or a severe change of mean
function trend on the border of the array.
SIMEFIC II method is not so sensitive to the information of an isolated detector with random
large pulse height, because it depends on the information of a pair of detectors and it is very
impossible for the two detectors far from core location and near each other to have random
high-pulse height simultaneously.

References

[1] HEGRA collaboration, F. Arqueros et al., Energy spectrum and chemical composition of cosmic
rays between 0.3-PeV and 10-PeV determined from the Cherenkov light and charged particle
distributions in air showers, Astron. Astrophys. 359 (2000) 682–694, [astro-ph/9908202].

[2] W. Apel, J. Arteaga, A. Badea, K. Bekk, M. Bertaina, J. Blmer et al., The kascade-grande
experiment,
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Asso

[3] H. Hedayati, A. Anvari, M. Bahmanabadi, J. Samimi and M. K. Ghomi, A new method for
finding core locations of extensive air showers, The Astrophysical Journal 727 (2011) 66.

[4] H. Krawczynski, J. Prahl, F. Arqueros, S. Bradbury, J. Cortina, T. Deckers et al., An optimized
method for the reconstruction of the direction of air showers for scintillator arrays, Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 383 (1996) 431–440.

– 8 –

http://arxiv.org/abs/astro-ph/9908202
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2010.03.147


[5] H. Mayer, A neural network algorithm for core location analysis at large extended air shower
arrays, Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 317 (1992) 339–345.

[6] D. Heck, G. Schatz, J. Knapp, T. Thouw and J. Capdevielle, Corsika: A monte carlo code to
simulate extensive air showers, tech. rep., 1998.

[7] A. Ferrari, P. R. Sala, A. Fasso and J. Ranft, Fluka: A multi-particle transport code (program
version 2005), tech. rep., 2005.

[8] S. Ostapchenko, Monte carlo treatment of hadronic interactions in enhanced pomeron scheme:
Qgsjet-ii model, Physical Review D 83 (2011) 014018.

[9] H. Hedayati, A. Moradi and M. Emami, A statistical method for reconstructing the core location
of an extensive air shower, The Astrophysical Journal 810 (2015) 68.

– 9 –


	1 Introduction
	2 Air Shower Simulations
	3 Outside showers identification parameters (OSIP)
	4 Distribution Functions
	5 Core location precision
	6 Conclusions

