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Block bootstrap for the empirical process of long-range

dependent data
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Abstract

We consider long-range dependent data. It is shown that the bootstrapped empirical

process of these data converges to a semi-degenerate limit. The random part of this limit

is always Gaussian. Thus the bootstrap might fail when the original empirical process

accomplishes a noncentral limit theorem.
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1 Introduction

Efron’s [5] bootstrap provides a strong nonparametric tool for approximating the distribution

of many common statistics. For independent and identically distributed data Bickel and Freed-

man [1] and Singh [15] have shown the asymptotic validity of this procedure. That means the

bootstrapped statistics converges to the same limit distribution as the original statistic. The

so-called blockwise bootstrap was first considered by Künsch [10] and applies to a large class of

weakly dependent random variables. Especially for empirical processes this is of great interest.

Let (Xi)i≥0 be a stationary, weakly dependent time series. Then under some technical assump-

tions the normalized empirical process n−1/2
∑n

i=1(1{Xi≤x} − F (x)) converges to a zero-mean

Gaussian process K(x) with covariance kernel

E[K(x)K(y)] = F (x ∧ y)− F (x)F (y)+

∞
∑

d=1

(P (X0 ≤ x,Xd ≤ y)− F (x)F (y))

+
∞
∑

d=1

(P (X0 ≤ y,Xd ≤ x)− F (x)F (y)).

(1)
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F (x) is the distribution function of Xi and is typically unknown. Even if it is known, (1)

is of infinite dimension and cannot be computed. In the case of long-range dependence the

situation is different. For several types of long-range dependence (see Dehling and Taqqu [3],

Ho and Hsing [7] and Wu [17]) the empirical process converges weakly to g(x)Z, where g is

a deterministic function and Z a possibly non Gaussian real valued random variable. So the

limiting process is not as hard to treat as in the weakly dependent case. In the case of linear

processes g(x) is just the probability density and therefore can be estimated. However, in

the case nonlinear transformations the function g(x) is not known and hence a resampling

method might be of interest. Lahiri [11] considered the block bootstrap for the sample mean of

long memory processes and showed that it is valid if and only if the non bootstrapped sample

mean (properly normalized) converges to a normal limit. It turns out that the bootstrap for

the empirical process behaves similar. It converges also to a semi-degenerate limit, but the

random part is always normal. Nevertheless, even if the bootstrap technically fails, it has

still some statistical applications. The reason is that the deterministic part of the limit, the

function g(x), is the same as for the original empirical process. Thus this function can always

be estimated using the block bootstrap.

2 Main results

Consider the stationary Gaussian process (Xi)i≥1 with

EXi = 0, EX2
i = 1 and ρ(k) = E[X0Xk] = k−DL(k)

for 0 < D < 1 and a slowly varying function L. We will not observe the Xi themselves but

a (possibly non-linear) transformation of them, namely Yi = G(Xi). The empirical process of

these random variables is

Wn(x) =
n
∑

i=1

(1{Yi≤x} − F (x)).

Its asymptotic behavior depends on the so-called Hermite rank, defined by

m = min
{

q > 0 | E[1{G(X1)≤x}Hq(X1)] 6= 0 for some x
}

.

Together with the parameter D it determines the dependence structure of {1{G(Xi)≤x}, x ∈

R}i≥1. The correct normalization for the empirical process is

dn ∼ nHLm/2(n),

2



where H = 1 −mD/2 is called Hurst exponent. Dehling and Taqqu [3] considered the more

complicated sequential empirical process and their result reads as follows.

Theorem A (Dehling, Taqqu). Let the class of functions {1{G(·)≤x} − F (t), −∞ < x < ∞}

have Hermite rank m and let 0 < D < 1/m. Then

d−1
n W⌊nt⌋(x)

D
−→

Jm(x)

m!
Zm(t), (2)

where the convergence takes place in D([0, 1] × [−∞,∞]), equipped with the uniform topology.

As a direct consequence

d−1
n Wn(x)

D
−→

Jm(x)

m!
Zm(1) (3)

in the space D[−∞,∞]. Zm(1) is normalized and standardized and it is Gaussian if and only

if m = 1. Jm(x) is a deterministic function defined by

Jm(x) = E[1{G(X1)≤x}Hm(X1)].

The limit is therefore sometimes called semi-degenerate. Jm depends on the transformation G

and to the best of our knowledge there exists no procedure to estimate it.

In this paper we will discuss the block bootstrap as possible solution. For a sample Y1, . . . , Yn

choose a block length l(n) and consider the n− l + 1 blocks I1, . . . , In−l+1, defined by

Ij = (Yj, . . . , Yj+l−1) j = 1, . . . , n− l + 1.

Then we choose randomly with replacement p = p(n) blocks, so that the bootstrap sample

Y ∗
1 , . . . , Y

∗
pl satisfies

P
(

(Y ∗
(j−1)l+1, . . . , Y

∗
jl) = Ii

)

=
1

n− l + 1
for j = 1, . . . , p, i = 1, . . . , n− l + 1.

The common choice for the number of blocks is p = ⌊n/l⌋, however, this is not necessary for

the proof. Further denote the blocks of indices by

Bi = (i, . . . , i+ l − 1) i = 1, . . . , n − l + 1.

This procedure is called moving block bootstrap (MBB), see Künsch [10]. In the case of long-

range dependence it has been applied to subordinated gaussian processes by Lahiri [11] and to

linear sequences by Kim and Nordman [9]. Both consider the bootstrap of the sample mean.

In what follows E∗ will denote conditional expectation given the sample Y1, . . . , Yn. Analo-

gously P ∗ denotes conditional probability and
D
−→∗ weak convergence with respect to P ∗.
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Theorem B (Lahiri). Let l = O(n1−ǫ) for some 0 < ǫ < 1 and p−1 + l−1 = o(1). Then

1

p1/2dl

pl
∑

i=1

(Y ∗
i − E∗Y ∗

i )
D
−→∗ N (0, σ2

m) in probability,

where σm = E[G(X1)Hm(X1)]/m!.

Two things are remarkable. The first is that the bootstrap destroys somehow the dependence

of the random variables, thus a weaker normalization is needed. The second is that the limit

is always normal. However, for Hermite ranks larger than 1 the partial sum of long-range de-

pendent data converges towards a nonnormal limit, see Taqqu [16] and Dobrushin and Major

[4]. Hence the bootstrap fails in this case. The sampling window method does not suffer from

this issue (see Hall, Jing and Lahiri [6]) and has become more popular for statistical inference

on long memory time series (see Lahiri and Nordman [12] and Ho et. al. [8]).

Now consider the bootstrapped empirical process

1

p1/2dl

pl
∑

i=1

(1{Y ∗

i ≤x} − E∗[1{Y ∗

i ≤x}]).

For weakly dependent data this was considered by Bühlmann [2], Naik-Nimbalakar and Ra-

jarshi [13] and Peligrad [14]. The main theorem of this paper reads as follows.

Theorem 2.1. Let the class of functions {1{G(·)≤x}−F (t), −∞ < x < ∞} have Hermite rank

m and let 0 < D < 1/m. Let further the block length satisfy l = O(n1−ǫ) for some 0 < ǫ < 1

and p−1 + l−1 = o(1). Then

1

p1/2dl

pl
∑

i=1

(1{Y ∗

i ≤x} − E∗[1{Y ∗

i ≤x}])
D
−→∗

Jm(x)

m!
Z in probability,

where the convergence takes place in D([−∞,∞]), equipped with the uniform topology. Jm is

defined as above and Z is standard normal distributed.

Similar to the empirical process of LRD data (see (3)) the bootstrapped version has a semi-

degenerate limit. However, the normalization in Theorem 2.1 is weaker than in (3) and the

random part of the limit is always Gaussian, just as for the bootstrapped sample mean.

Remark 2.2. The definition of the convergence obtained in Theorem 2.1 is not straightfor-

ward. We say that a random process Z∗
n(x) converges in probability in distribution if every

subsequence (nk)k has another subsequence(nkl)l, such that Z∗
nkl

(x) converges almost surely

in distribution, see Naik-Nimbalakar and Rajarshi [13].
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Comparing the asymptotic distributions in Theorems 2 and 2.1, one might conclude that the

bootstrap fails if m > 1. However, the function Jm(x) can still be estimated (up to its sign).

Consider A bootstrap iteration and denote by

X∗
1,a, . . . ,X

∗
pl,a a ∈ {1, . . . , A}

the a-th bootstrap sample. Denote further the empirical process of the a-th sample by W ∗
n,a(x).

Then our estimator for Jm(x) is given by

Ĵn,A,m(x) = m!

(

1

A

A
∑

a=1

(W ∗
n,a(x))

2

)1/2

.

Corollary 2.3. Let the conditions of Theorem 2.1 hold. Then

lim
A→∞

lim
n→∞

P

(

sup
x∈R

∣

∣

∣|Ĵn,A,m(x)| − |Jm(x)|
∣

∣

∣ > ǫ

)

= 0,

for all ǫ > 0.

The main part of the proof of Theorem A is a reduction principle and this technique has

become popular for empirical processes of LRD data ever sine. Define

Sn(x) =
1

dn

n
∑

i=1

(

1{Yi≤x} − F (x)− Jm/m!(x)Hm(Xi)
)

. (4)

Dehling and Taqqu [3] have shown that Sn converges uniformly and in probability towards zero.

It is our aim to proof Theorem 2.1 in a similar way. To this end consider the bootstrapped

version of (4)

S∗
n,l(x) =

1

dlp1/2

pl
∑

i=1

(

1{Y ∗

i
≤x} − F̃n,l(x)− Jm(x)/m! (Hm(X∗

i )− µ̃n,l(Hm))
)

, (5)

where

µ̃n,l(Hm) = l−1E∗





∑

j∈B1

Hm(X∗
j )



 and F̃n,l(x) = l−1E∗





∑

j∈B1

1{Y ∗

j ≤x}



 . (6)

Lemma 2.4 (Bootstrap uniform weak reduction principle). Let the conditions of Theorem 2.1

hold. Then

P ∗

(

sup
−∞≤x≤∞

|S∗
n,l(x)| > ǫ

)

→ 0 in probability

for all ǫ > 0 and n → ∞.
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3 Preliminary results

Introduce some notation:

Sn(x, y) = Sn(y)− Sn(x), F (x, y) = F (y)− F (x)

F̃n,l(x, y) = F̃n,l(y)− F̃n,l(x), Jm(x, y) = Jm(y)− Jm(x).

Lemma 3.1 (Dehling, Taqqu). There exists constants γ > 0 and C > 0 such that for all

n ∈ N

E|Sn(x, y)|
2 ≤ Cn−γ(F (y) − F (x)).

The next result is Lemma 3.1. of Lahiri [11].

Lemma 3.2 (Lahiri). Define µ̃n.l(Hm) as in (6). If the conditions of Theorem 2.1 hold

(i) µ̃n,l(Hm) = oP (dl/l) and (ii) E[µn,l(Hm)]2 ≤ Cd2n/n
2.

The next lemma extends the previous one to indicator functions.

Lemma 3.3. Define F̃n,l(x) as in (6). If the conditions of Theorem 2.1 hold

E
(

F (x, y)− F̃n,l(x, y)
)2

≤ Cd2n/n
2F (x, y).

Proof. Since the Hermite rank equals m we obtain the following expansion

1{x<Yj≤y} − F (x, y) =
∞
∑

q=m

Jq(x, y)/q!Hq(Xi).

By definition of F̃n,l(x) we have

F (x)− F̃n,l(x) = F (x)−
1

l

1

(n − l + 1)

n
∑

j=1

an,j1{Yj≤x}

=
1

l

1

(n− l + 1)

n
∑

j=1

an,j(F (x)− 1{Yj≤x}),

where

an,j =



















j, if j < l,

l, if l ≤ j ≤ n− l + 1,

n− j + 1 if j > n− l + 1.
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Note that an,j ≤ l for all j. By orthogonality of the Hq(Xi),

∞
∑

q=m

J2
q (x, y)/q! ≤ F (x, y)

and moreover

E
(

F (x, y)− F̃n,l(x, y)
)2

=
1

l2
1

(n− l + 1)2

∞
∑

q=m

J2
q (x, y)

q!

1

q!

∑

i,j≤n

an,ian,jE[Hq(Xi)Hq(Xj)]

≤
1

(n− l + 1)2
F (x, y)

∑

i,j≤n

|r(i− j)|m.

The conclusion follows because d2n ∼
∑

i,j≤n|r(i− j)|m.

4 Proof of the main result

Proof of Lemma 2.4. We will proof the result by using exactly the same chaining points as in

Dehling and Taqqu [3]. Define

Λ(x) := F (x) +

∫

{G(s)≤x}

|Hm(s)|

m!
φ(s) ds.

The function Λ is monotone, Λ(−∞) = 0, Λ(+∞) < ∞ and max{F (x, y), Jm(x, y)/m!} ≤

Λ(y)− Λ(x).

Define for k = 0, 1, . . . ,K refining partitions of R,

−∞ = xi(k) ≤ x1(k) ≤ · · · ≤ x2k(k) = ∞,

by

xi(k) = inf{x ∈ R | Λ(x) ≥ Λ(+∞)i2−k}, i = 0, 1, . . . , 2k − 1.

K will be chosen later. Then we have

Λ(xi(k)−)− Λ(xi−1(k)) ≤ Λ(+∞)2−k.

Based on these partitions we can define chaining points ik(x) by

xik(x)(k) ≤ x < xik(x)+1(k),
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for each x and each k ∈ {0, 1, . . . ,K}, see Dehling and Taqqu [3]. In this way each point x is

linked to −∞, in detail

−∞ = xi0(x)(0) ≤ xi1(x)(1) ≤ · · · ≤ xiK(x)(K) ≤ x.

We have

S∗
n,l(x) = S∗

n,l(xi0(x)(0), xi1(x)(1))

+ S∗
n,l(xi1(x)(1), xi2(x)(2))

+ · · · (7)

+ S∗
n,l(xiK−1(x)(K − 1), xiK (x)(K))

+ S∗
n,l(xiK(x)(K), x),

where S∗
n,l(x, y) = S∗

n,l(y)− S∗
n,l(x).

Let us first consider the last term of (7). We get

|S∗
n,l(xiK(x)(K), x)|

=

∣

∣

∣

∣

∣

d−1
l p−1/2

pl
∑

j=1

(

1{xiK (x)(K)<Y ∗

j
≤x} − F̃n,l(xiK(x)(K), x)

−
1

m!
Jm(xiK(x)(K), x)(Hm(X∗

j )− µ̃n,l(Hm))

)

∣

∣

∣

∣

∣

≤ d−1
l p−1/2

pl
∑

j=1

(

1{xiK (x)(K)<Y ∗

j ≤x} + F̃n,l(xiK(x)(K), x)
)

+

∣

∣

∣

∣

∣

∣

1

(m)!
Jm(xiK(x)(K), x)d−1

l p−1/2
pl
∑

j=1

(Hm(X∗
j )− µ̃n,l(Hm))

∣

∣

∣

∣

∣

∣

≤
∣

∣S∗
n,l(xiK(x)(K), xiK (x)+1(K)−)

∣

∣

+ 2pld−1
l p−1/2F̃n,l(xiK(x)(K), xiK (x)+1(K)−)

+ 2Λ(+∞)2−Kd−1
l p−1/2

∣

∣

∣

∣

∣

∣

pl
∑

j=1

(Hm(X∗
j )− µ̃n,l(Hm))

∣

∣

∣

∣

∣

∣

≤
∣

∣S∗
n,l(l;xiK(x)(K), xiK(x)+1(K)−)

∣

∣

+ 2pld−1
l p−1/2

(

F̃n,l(xiK(x)(K), xiK(x)+1(K)−)− F (xiK(x)(K), xiK (x)+1(K)−)
)

+ 2pld−1
l p−1/2F (xiK (x)(K), xiK (x)+1(K)−)

+ 2Λ(+∞)2−Kd−1
l p−1/2

∣

∣

∣

∣

∣

∣

pl
∑

j=1

(Hm(X∗
j )− µ̃n,l(Hm))

∣

∣

∣

∣

∣

∣

.
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Note that
∑∞

k=0 ǫ/(k + 3)2 ≤ ǫ/2. Making further use of the estimate above and the decom-

position (7) we get

P ∗

(

sup
x
|S∗

n,l(x)| > ǫ

)

≤ P ∗

(

sup
x
|S∗

n,l(x)| > ǫ
K
∑

k=0

(k + 3)−2 + ǫ/2

)

≤ P ∗
(

max
x

|S∗
n,l(xi0(x)(0), xi1(x)(1))| > ǫ/9

)

+ P ∗
(

max
x

|S∗
n,l(xi1(x)(1), xi2(x)(2))| > ǫ/16

)

+ · · · (8)

+ P ∗
(

max
x

|S∗
n,l(xiK(x)(K), xiK (x)+1(K)−)| > ǫ/(K + 3)2

)

+ P ∗
(

max
x

2pld−1
l p−1/2

∣

∣

∣F̃n,l(xiK(x)(K), xiK(x)+1(K)−)− F (xiK(x)(K), xiK(x)+1(K)−)
∣

∣

∣ > ǫ/(K + 4)2
)

+ P ∗



2Λ(+∞)2−Kd−1
l p−1/2

∣

∣

∣

∣

∣

∣

pl
∑

j=1

(Hm(X∗
j )− E∗[Hm(X∗

j )])

∣

∣

∣

∣

∣

∣

> (ǫ/2) − 2Λ(+∞)pld−1
l p−1/22−K



 .

By the Markov inequality we get

P ∗
(

max
x

|S∗
n,l(xik(x)(k), xik+1(x)(k + 1))| > ǫ/(k + 3)2

)

≤
2k+1−1
∑

i=0

P ∗
(

S∗
n,l(xi(k + 1), xi+1(k + 1)) > ǫ/(k + 3)2

)

≤
2k+1−1
∑

i=0

E∗
[

S∗
n,l(xi(k + 1), xi+1(k + 1))

]2 (k + 3)4

ǫ2
. (9)
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By construction of the bootstrap sample we get

E∗[S∗
n,l(x)]

2

=
1

d2l p
E∗





kl
∑

j=1

(1{Y ∗

j ≤x} − F̃n,l(x)− Jm(x)/m!(Hm(X∗
j )− µ̃n,l(Hm))





2

=
1

d2l
E∗





∑

j∈B1

(1{Y ∗

j ≤x} − F̃n,l(x)− Jm(x)/m!(Hm(X∗
j )− µ̃n,l(Hm)))





2

=
1

d2l

1

(n− l + 1)

n−l+1
∑

i=1





∑

j∈Bi

(1{Yj≤x} − F̃n,l(x)− Jm(x)/m!(Hm(Xj)− µ̃n,l(Hm)))





2

≤
1

d2l

1

(n− l + 1)
C

n−l+1
∑

i=1





∑

j∈Bi

(1{Yj≤x} − F (x)− Jm(x)/m!Hm(Xj))





2

+
1

d2l
Cl2

(

F (x)− F̃n,l(x)
)2

+
1

d2l
CJ2

m(x)/(m!)2l2 (µ̃n,l(Hm))2

=
1

(n− l + 1)
C

n−l+1
∑

i=1

S2
l,i(x)

+
1

d2l
Cl2

(

F (x)− F̃n,l(x)
)2

+
1

d2l
CJ2

m(x)/(m!)2l2 (µ̃n,l(Hm))2 ,

where

Sl,i(x) =
1

dl

∑

j∈Bi

(1{Yj≤x} − F (x)− Jm(x)/m!Hm(Xj)).

Consequently

E∗[S∗
n,l(x, y)]

2

≤
1

(n− l + 1)
C

n−l+1
∑

i=1

S2
l,i(x, y)

+
1

d2l
Cl2

(

F (x, y)− F̃n,l(x, y)
)2

(10)

+
1

d2l
CJ2

m(x, y)/(m!)2l2 (µ̃n,l(Hm))2 ,

It is our goal to show that E[P ∗(supx∈R|S
∗
n,l(x)| > ǫ)] → 0 as n → ∞. To this end we take
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the expectation of every summand of the right-hand side of (8). Making then successive use

of the estimates (9) and (10) we obtain

E
[

P ∗
(

max
x

|S∗
n,l(xik(x)(k), xik+1(x)(k + 1))| > ǫ/(k + 3)2

)]

= C
2k+1−1
∑

i=0

E[S2
l (xi(k + 1), xi+1(k + 1))]

(k + 3)4

ǫ2

+ C
2k+1−1
∑

i=0

l2

d2l
E
(

F (xi(k + 1), xi+1(k + 1)) − F̃n,l(xi(k + 1), xi+1(k + 1))
)2 (k + 3)4

ǫ2

+ C
2k+1−1
∑

i=0

J2
m(xi(k + 1), xi+1(k + 1))

(m!)2
1

d2l
l2E (µ̃n,l(Hm))2

(k + 3)4

ǫ2

≤ C

2k+1−1
∑

i=0

l−γF (xi(k + 1), xi+1(k + 1))
(k + 3)4

ǫ2

+ C

2k+1−1
∑

i=0

l2

d2l

d2n
n2

F (xi(k + 1), xi+1(k + 1))
(k + 3)4

ǫ2

+ C

2k+1−1
∑

i=0

Λ(xi(k + 1), xi+1(k + 1))2
1

d2l
l2E (µ̃n,l(Hm))2

(k + 3)4

ǫ2
.

We have also used Lemma 3.3 and

E|Sl,i(y)− Sl,i(x)|
2 ≤ Cl−γ(F (y)− F (x))

which is implied by Lemma 3.1. Note that (l/n)2(dn/dl)
2 ≤ Clλ for some λ > 0 and Λ(xi(k +

1), xi+1(k + 1))2 ≤ C2−2(k+1). Thus setting η = min{γ, λ} yields

E
[

P ∗
(

max
x

|S∗
n,l(xik(x)(k), xik+1(x)(k + 1))| > ǫ/(k + 3)2

)]

= C
(

l−η(k + 3)4ǫ−2 + 2−(k+1)l2/d2lE[µ̃n,l(Hm)]2
)

.

In the same way we get

E
[

P ∗
(

max
x

|S∗
n,l(xiK(x)(K), xiK (x)+1(K)−)| > ǫ/(K + 3)2

)]

≤ Cl−η(K + 3)4ǫ−2 + C2−K l2/d2l E[µ̃n,l(Hm)]2
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and

E[P ∗
(

max
x

2pld−1
l p−1/2

∣

∣

∣F̃n,l(xiK(x)(K), xiK (x)+1(K)−)− F (xiK (x)(K), xiK (x)+1(K)−)
∣

∣

∣ > ǫ/(K + 4)2
)

≤
2K−1
∑

i=0

2
pl

dlp1/2
(K + 4)4

ǫ2
E
(

F (xi(K), xi+1(K)−)− F̃n,l(xi(K), xi+1(K)−)
)2

≤ Cl−η (K + 4)4

ǫ2
.

Choose now

K =

[

log2

(

8Λ(+∞)

ǫ
ld−1

l p1/2
)]

+ 1,

hence 2Λ(+∞)pld−1
l p−1/22−K ≤ ǫ/4. It remains to treat the last probability in (8). By our

choice of K it can be bounded by

P ∗



d−1
l p−1/2

∣

∣

∣

∣

∣

∣

pl
∑

j=1

(Hm(X∗
j )− E∗[Hm(X∗

j )])

∣

∣

∣

∣

∣

∣

>
ǫ

4

2K−1

Λ(+∞)





≤ d−2
l p−1E∗





pl
∑

j=1

(Hm(X∗
j )− E∗[Hm(X∗

j )])





2

16

ǫ2
Λ(+∞)22−2K+2. (11)

By the proof of Theorem B (see Lahiri [11]) we get

d−2
l p−1E



E∗





pl
∑

j=1

(Hm(X∗
j )− E∗[Hm(X∗

j )])





2

 ≤ C.

Taking expectation in (11) therefore yields

E



P ∗



d−1
l p−1/2

∣

∣

∣

∣

∣

∣

pl
∑

j=1

(Hm(X∗
j )− E∗[Hm(X∗

j )])

∣

∣

∣

∣

∣

∣

>
ǫ

4

2K−1

Λ(+∞)







 ≤ C
16

ǫ2
Λ(+∞)22−2K+2

≤ Cl−2p−1d2l .

We have now found estimates for the expectation of all summands of (8). Combining these

estimates we find

E

[

P ∗(sup
x
|S∗

n,l(x)| > ǫ)

]

≤ Cl−ηǫ−2
K+1
∑

k=0

(k + 3)4 + l2d−2
l E[µ̃n,l(Hm)]2

K
∑

k=0

2−(k+1) + Cl−2p−1d2l

≤ Cl−ηǫ−2(K + 4)5 + Cl2d−2
l E[µ̃n,l(Hm)]2 + Cl−2p−1d2l

≤ Cl−ηǫ−2(K + 4)5 + Cl−η + Cl2H−2.

12



In the last line we have used l2d−2
l E[µ̃n,l(Hm)]2 ≤ Cl−λ ≤ Cl−η (see Lemma 3.2 (ii)) and

l−2p−1d2l ≤ l2H−2p−1Lm/2(l) ≤ l−α for α > 0.

The definition of K yields

(K + 4)5 ≤ C
(

|log(ǫ−1)|5 + |log(pl)|5
)

≤ Cǫ−1lδ,

for any δ > 0 and a constant C, depending on δ. Choose δ = η/2 and ρ = min{η − δ, α}, then

E

[

P ∗(sup
x
|S∗

n,l(x)| > ǫ)

]

≤ Cl−ρ(ǫ−3 + 1).

Proof of Theorem 2.1. By Theorem B, which is the main result of Lahiri [11], we have

1

dlp1/2

pl
∑

i=1

(Hm(X∗
i )− E∗[Hm(X∗

i )])
D
−→∗ Z in probability,

where Z is standard normal distributed. By the boundedness of Jm(x) we get by the continuous

mapping theorem

1

dlp1/2
Jm(x)

m!

pl
∑

i=1

(Hm(X∗
i )− E∗[Hm(X∗

i )])
D
−→∗

Jm(x)

m!
Z in probability,

where the weak convergence takes place in D[−∞,∞], equipped with the uniform topology.

Together with the reduction principle (Lemma 2.4) this finishes the proof.
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