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Abstract

Most natural and engineered processes, such as biomolecular reactions, protein fold-

ing, and population dynamics, occur far from equilibrium and, therefore, cannot be

treated within the framework of classical equilibrium thermodynamics. The Jarzynski

equality holds the promise to calculate the free-energy difference between two states

from the Boltzmann-weighted statistics of the irreversible work done along trajecto-

ries arbitrarily out of equilibrium. This equality is the subject of intense activity.

However, the applicability of the Jarzynski equality to systems far from equilibrium

such as living matter has not been investigated yet. We present an experimental test

of the Jarzynski equality predictions on a paradigmatic physical model, i.e. a Brow-

nian particle held in an optical potential, coupled either to a thermal bath or to an

active bath. While in the thermal bath we find that the Jarzynski equality correctly

retrieves the free-energy difference from nonequilibrium measurements, in the active

bath the Jarzynski equality fails because of the presence of non-Boltzmann statistics.

We corroborate our experimental findings with theoretical arguments and numerical

simulations.
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The second law of thermodynamics draws the boundaries between reversible (equilibrium)

and irreversible (nonequilibrium) processes. For a macroscopic system driven from state 1

to state 2 at absolute temperature T , the Clausius version of the second law relates the

external work done on the system, W , to the free energy difference between the two states,

∆F , as W ≥ ∆F [1] . If the system is driven infinitely slowly so that it always remains

at equilibrium with the thermal bath, the process is reversible and the second law holds

in its equality form, i.e. W = ∆F . Instead, its inequality form, i.e. W > ∆F , holds for

irreversible processes [1–6]. For a microscopic system, the presence of thermal fluctuations

allows the violation of the second law for single realizations of the process, but nevertheless

the second law still holds on average [16], i.e. 〈Wi〉 ≥ ∆F with 〈Wi〉 = ∆F if the process

is infinitely slow, where Wi is the work done during the i-th realization of the process and

the angular brackets represent the ensemble average. The macroscopic relation is recovered

because statistical fluctuations around the average become insignificant and can be dismissed

for large systems as a consequence of the law of large numbers [17].

A major advance in stochastic thermodynamics has been the realization that, instead of

just averaging the fluctuations out, it is possible to make use of the information they store in

order to recover equilibrium information even from nonequilibrium measurements [18, 19].

An important example of such a relation is the Jarzynski equality [3], which permits one to

obtain the free-energy difference from an exponential average of the work associated with

irreversible realizations of a thermodynamic process, i.e.

〈

e−βWi

〉

= e−β∆F , (1)

where β = 1/kBT is the inverse temperature of the initial equilibrium state of the system

and kB is the Boltzmann constant. Until now, only few experimental tests of the Jarzynski

equality have been realized: the Jarzynski equality was initially verified by mechanically

stretching a single RNA molecule reversibly and irreversibly between two conformations [7],

while other tests have followed on single molecules [8–11], on a mechanical oscillator [12],

on electronic systems [13], on colloidal particles in non-harmonic potentials [14], and also

on quantum systems [15]. However, all these tests considered systems coupled to a thermal

bath and, therefore, satisfying Boltzmann statistics. The systems satisfying these conditions

are limited and, in particular, do not include many systems that are intrinsically far from

equilibrium such as living matter, for which fluctuations are expected to be non-Gaussian
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[20]. For example, biomolecules within the cell are coupled with an active bath due to the

presence of molecular motors within the cytoplasm, which leads to striking and largely not

yet understood phenomena such as the emergence of anomalous diffusion [21]. Also, protein

folding might be facilitated by the presence of active fluctuations [22] and active matter

dynamics could play a central role in several biological functions [23–25]. It is therefore an

open and compelling question to assess whether and to what degree the Jarzynski equality

can be applied to systems coupled to active baths.

Here we test the Jarzynski equality using one of the simplest model systems for stochastic

thermodynamics [19]: a Brownian particle held in a harmonic potential whose position can

change over time. Differently from previous works, we consider both a particle coupled to

a thermal bath and one coupled to an active bath. As we will see in the following, the

Jarzynski equality holds in the thermal bath, but its predictions are incorrect in the case of

the active bath. We remark that our results are not in disagreement with previous theoretical

and experimental works regarding the Jarzynski equality as these works have not considered

the case of active baths.

We start by considering the case of a spherical Brownian microparticle (silica, diameter

2R = 4.23±0.20µm) in a thermal bath at absolute temperature T trapped in a harmonic op-

tical trap generated by focusing a laser beam (wavelength λ = 532 nm, power 2.1mW) with

a high-numerical-aperture objective (oil-immersion, ×100, NA = 1.30) [26]. The particle is

held by the optical trap restoring force, while also thermal forces and viscous drag forces

act. The particle position is monitored by digital video microscopy with a spatial resolution

of 5 nm and a sampling frequency of 50 frames per second. A more detailed description of

the setup is provided in the Methods and in Supplementary Fig. 1. The resulting trapping

potential is

V (x, t) =
1

2
k (x− λ(t))2 , (2)

where x is the position of the particle, t is time, k = 1.33± 0.05 pN/µm is the trap stiffness,

and λ(t) denotes the center of the harmonic potential, which acts as our external control

parameter. In our protocol, λ(t) is a square-wave function with amplitude A and period 2τ :

first, the potential is centered at position 0 (state 1, Fig. 1a) for a time interval τ ; then, it

is shifted to position A = 90 nm (state 2, Fig. 1b), where it remains for an additional time

interval τ ; finally, the potential is brought back to position 0 and the protocol is iterated.
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FIG. 1. Experimental protocol and verification of the Jarzynski equality in a thermal

bath. a. A spherical Brownian microparticle (silica, diameter 2R = 4.23± 0.20µm ) is immersed

in a thermal bath (watery buffer solution) and held in a harmonic optical potential generated by a

focused laser beam. b. After a delay time τ , the center of the potential is shifted from position 0 to

position A = 90nm and the work done on the particle in the process is evaluated from the measured

particle trajectory according to Eq. (5). c. The measured work distribution (symbols) obtained

for τ = 0.36ms from 5000 experimental realizations of the protocol; it is well-fitted by a Gaussian

function (line). d. As the switching period τ is increased, the particle has time to thermalize in the

potential well before the next switch and the exponential average converges towards 1 (dashed line)

as predicted by the Jarzynski equality (Eq. (4)). Each symbol represents the exponential average

of 5000 experimental realizations of the protocol. The error bars represent standard errors.

The free energy of the optically trapped particle is

F = − 1

β
ln

[
∫

dx e−βV (x)
]

= − 1

2β
ln

(

2π

k

)

, (3)

which depends only on k and, importantly, not on the trap center position [27]. Thus, since

in our protocol the stiffness is kept constant, the free energy difference between state 1 and

state 2 is zero, i.e. ∆F = 0, and the Jarzynski equality (Eq. (1)) simplifies to

〈

e−βWi

〉

= 1 , (4)

where the work-weighted propagator in the path integral approach allows an exact analytical

result for this particular model [28]. In close scrutiny, it can be seen that the validity of the
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Jarzynski equality for this particular model stems from the fact that the initial distribution

is Boltzmann [28], as detailed in the Methods.

We have experimentally verified the validity of Eq. (4), and therefore of the Jarzynski

equality, for our experimental system. We repeated the experimental protocol described

above 5000 times; for each repetition, we recorded the particle trajectory xi(t) and evaluated

the work done on the particle according to the path integral

Wi [xi(t)] =
∫ τ

0
dt

∂V (xi(t), t)

∂t
. (5)

The resulting experimental work distribution is shown by the symbols in Fig. 1c. We then

evaluated the exponential average of the work, i.e.
〈

e−βWi

〉

: as the switching time τ is

increased, the particle is given time to thermalize within the potential well before the po-

tential is switched, and
〈

e−βWi

〉

converges towards 1, as shown by the symbols in Fig. 1d,

in agreement with the prediction of the Jarzynski equality (dashed line in Fig. 1d, Eq. (4)).

In the second part of our experiment, we repeat the same procedure and analysis, but

considering a particle in an active bath, instead of a passive bath. We realize the active

bath by adding motile bacteria to the watery solution where the particle is immersed [29]:

the bacteria behave as active particles and exert non-thermal forces on our probe particle so

that it experiences non-thermal fluctuations and features a qualitatively different behavior

from that of a Brownian particle in a thermal bath. We proceed to test the Jarzynski

equality with the same protocol employed above for the thermal bath case. First, we repeat

the experimental protocol 5000 times and measure the distribution of the work done on the

particle when switching back and forth between state 1 and state 2; the experimental results

are shown by the red symbols in Fig. 2a. Then, we use these data to evaluate the exponential

averages of the work done on the particle as a function of τ , which are shown by the red

symbols in Fig. 2b: differently from the thermal bath case (blue symbols in Fig. 2b), they do

not converge towards the prediction of the Jarzynski equality. Therefore, we conclude that

in the presence of an active bath the Jarzynski equality fails and cannot be used to obtain

free energy differences from out-of-equilibrium measurements. We remark that, differently

from the case in the passive bath, in an active bath the work distribution is not Gaussian

but heavy-tailed, as shown in Fig. 2a, where the experimental data for the work distribution

(red symbols) are compared to the best Gaussian fit (red line), which shows clear deviations

in the tails (heavy tails).

6



τ [s]
0.1 0.15 0.2 0.25 0.3 0.35

〈
ex
p
(−

β
W

i)
〉

10-1

100

101

102

b

W [kBT ]
-10 -5 0 5 10 15

p
(W

i)
[a
.u
.]

10-4

10-3

10-2

10-1

100

a

FIG. 2. Failure of the Jarzynski equality in an active bath. a. In an active bath, the mea-

sured work distribution (red symbols) is not Gaussian, as can be seen from the deviations from the

best Gaussian fit (red line); in particular, the work distribution is heavy-tailed. The blue symbols

and line reproduce the (Gaussian) work distribution for the thermal bath case reported in Fig. 1c.

b. The red symbols show the exponential average of the work done on the particle in the active

bath; they feature a clear deviation from the value expected according to the Jarzynski equality

(dashed line, Eq. (4)); differently form the thermal bath case (see Fig. 1d, the corresponding data

are reproduced here by the blue symbols for comparison); this deviation does not decrease as the

switching period τ is increased. The error bars represent standard errors.

In order to understand more deeply the difference between the thermal bath and the active

bath cases and, thus, the underlying reason why the Jarzynski equality fails in active baths,

we also compare the probability distribution of the position of a particle held in a harmonic

optical potential in the two cases. To this end, we acquire the particle position in both

cases while keeping the optical trap fixed. The results are shown in Fig. 3. In the thermal

bath (Fig. 3a), the experimental distribution of the particle position (symbols) is Gaussian

(line), as expected for the Boltzmann distribution of a Brownian particle in a harmonic trap

[26]. In the active bath instead (Fig. 3b), the experimental position probability distribution
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FIG. 3. Non-Boltzmann statistics in an active bath. a. The experimental probability

distribution of the position of a particle (symbols) held in a harmonic potential in a thermal bath

is Gaussian (line, corresponding to the theoretical prediction for a particle held in a harmonic

potential with k = 1.11 ± 0.07 pN/µm). This corresponds to the Boltzmann statistics associated

with the harmonic potential. b. However, the experimental position distribution (symbols) in

an active bath deviates from a Gaussian (best fit represented by the line) and features heavy

tails. This is a signature that the statistics in the active bath are non-Boltzmann and that the

behavior of a particle in an active bath is qualitatively different from that in a thermal bath, i.e.

it cannot correspond to a different (higher) effective temperature. The data are obtained from

200 000 position measurements.

(symbols) is non-Gaussian, as can be seen by comparing these data with the best Gaussian

fit (line). This becomes particularly evident when considering the tails of the distribution,

which are clearly heavier than expected from the Gaussian distribution. Importantly, the

distribution is non-Boltzmann, which implies that the case of a particle in an active bath is

qualitatively different from the case of a particle in a thermal bath. In fact, it is not possible

to recover this probability distribution by altering the effective temperature of the system,

as the position probability distribution associated to a Brownian particle in a harmonic
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potential is Gaussian at all temperatures. The alteration of the distribution is in fact due

to the correlations introduced in the motion of the particle by the active bath, which lead

to a non-Gaussian noise.

We have further supported our conclusions with numerical simulations, which are de-

scribed in the Methods and whose results are shown in Supplementary Fig. 2. The numeri-

cal results are in good agreement with the experimental results we have presented. On the

one hand, also the simulations show that, in a thermal bath, the work distribution is Gaus-

sian (Supplementary Fig. 2a), the Jarzynski equality is verified as τ grows (Supplementary

Fig. 2b), and the particle position distribution within a static harmonic potential is given

by the Boltzmann distribution (Supplementary Fig. 2c). On the other hand, in an active

bath, the work distribution becomes non-Gaussian (Supplementary Fig. 2d), the Jarzynski

equality fails even as τ grows (Supplementary Fig. 2e), and the particle position distribution

within a static harmonic potential is non-Boltzmann and it is not possible to interpret it as

a different (higher) effective temperature (Supplementary Fig. 2f).

In conclusion, we have shown that in an active bath the statistical properties of a particle

held in a potential do not follow the Boltzmann statistics; this is a consequence of the

noise with long-time correlation introduced by the active bath and cannot be modelled by

introducing an effective temperature. More importantly, we have also shown that a major

consequence of this fact is that Jarzynski equality, as stated in its classical formulation, fails

in active baths. Since active matter plays a central role in many systems, including very

importantly living systems, our findings pose some significant limitations to the possibility

of applying nonequilibrium fluctuation-dissipation relations, such as the Jarzynski equality,

to study this broad and valuable class of systems, pointing to the need for alternative

approaches that explicitly model the presence of non-thermal fluctuations.

METHODS

Experimental setup

The experimental setup consists of a holographic optical tweezers system built on a

homemade optical microscope and integrated with a digital video microscopy system [26].

A schematic of the setup is shown in Supplementary Fig. 1. A laser beam (Coherent Verdi-
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Supplementary Figure 1. Schematic of the experimental setup. The optical setup is

based on a holographic optical tweezers and a digital video microscope. IS: Illumination source.

L1: Collecting lens. C: Condenser. S: Sample chamber. MO: Microscope objective. DM: Dichroic

mirror. L2: Tube lens. BE: Beam expander. SLM: Spatial light modulator. L3 and L4: lenses for

4f-configuration. PH: Pinhole.

V6, wavelength λ = 532 nm) is expanded by the beam expander BE and projected onto

a reflective phase-only spatial light modulator (SLM, Holoeye LC-R 720). The SLM is

placed in a plane conjugated to the back aperture of the microscope objective (MO) using

a 4f-configuration (lenses L3 and L4). The first-order diffracted beam is spatially selected

by a pinhole (PH, at the focal point between lenses L3 and L4) and directed onto the

high-numerical-aperture microscope objective (MO, Nikon 100×, oil immersion, numerical

aperture NA = 1.30, working distance WD = 0.17) by a dichroic mirror (DM). The SLM

permits us to shape the phase of the incoming beam and, therefore, the profile of the optical

potential generated by the focused beam. The optical power of the first-order diffracted

beam at the back-focal plane of the trapping objective is kept constant at a value of 2.1mW

for the experiments reported in Figs. 1 and 2, and 1.8mW for those reported in Fig. 3

in order to maintain the stiffness of the optical trap constant within each experimental set.

The imaging system (IS) consists of a quasi-monochromatic light emission diode, a collecting

lens (L1), a 20× microscope objective working as condenser (C), the microscope objective
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(MO), a tube lens (L2), and the camera. We record videos of the optically trapped particles

using a CMOS camera (Thorlabs DCC1645C-HQ) adjusting the illumination and the tube

lens so that the particle looks as a bright spot with a maximum of intensity at the center.

We track the particle position using the center of mass algorithm [26] obtaining a spatial

resolution of 5 nm. We have calibrated the optical potential using standard calibration

algorithms [26], which permit us to verify that the potential is harmonic and to measure

the trap stiffness k = 1.33± 0.05 pN/µm for the experiments reported in Figs. 1 and 2, and

k = 1.11± 0.07 pN/µm for those reported in Fig. 3 [26].

Bacterial bath preparation

Escherichia coli bacteria were cultured from the wild-type strain RP437 provided by the

E. coli Stock Center at Yale University. The liquid culture of RP437 was taken from a

−80◦C archive stock and streaked onto a sterile hard agar medium. The inoculated agar

plate was incubated and grown overnight at 32.5◦C. Single colonies grown on agar were

isolated by sterile toothpicking and inoculated into a fresh liquid growth medium containing

tryptone broth (%1 tryptone). After reaching the saturation phase, the culture was diluted

1:100 into a fresh tryptone broth. The final dilution was incubated at 32.5◦C and mildly

shaken at 180 rpm until the culture reached its middle growth phase (OD 600 ∼ 0.40). Then,

7ml of the final dilution were transferred into a falcon tube and centrifuged at 2000 rpm

at room temperature for 10 minutes. Precipitated RP437 pellets were then gently collected

and immersed in 4mL of motility buffer containing 10mM monobasic potassium phosphate

(KH2PO4), 0.1mM EDTA, 10mM dextrose, and 0.002% of Tween 20. The cell collection

and resuspension procedure was repeated three times in order to undermine the growth

medium and terminate further cell duplication inside the motility buffer.

Jarzynski equality for a Brownian particle in a moving harmonic potential

The Jarzynski equality for a Brownian particle coupled to a thermal bath and held in a

moving harmonic potential with constant stiffness (Eq. (4)) can be analytically verified by

the path integral method [28]. The integration is performed by considering a work-weighted

function over all possible trajectories between the initial and final positions of the particle.
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The work-weighted propagator for a time-dependent potential such as V (x, t) = k(x−vt)2/2

is found to be

pw =
exp

(

−k
2

(x(t)−vt− v

Dk
−(x0−

v

Dk
)e−Dkτs)2

1−e−2Dkτs
+ v2t

D

)

√

2π
k
(1− e−2Dkτs)

, (6)

where x(t) denotes the position of the particle, x0 is its initial position, D is its diffusion

coefficient, v is velocity at which the center of the harmonic potential is shifted, and τs is

time interval during which this shift occurs. The canonical integral over all possible initial

and final positions of the particle leads to the Jarzynski average as

〈e−w〉 =
∫

dx0

∫

dx
e−V (x0,0)

∫

dye−V (y,0)
pw(x, τs|x0, 0) = 1 , (7)
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Supplementary Figure 2. Numerical results. a, b and c represent the numerical results

obtained for the work distribution, the verification of the Jarzynski equality (Eq. (4)), and the

probability distributions inside a fixed optical trap, respectively, in a thermal bath. d, e and f

represent the corresponding numerical results in an active bath, where Jarzynski equality (Eq. (4))

fails. There is good agreement between these numerical results and the experimental data presented

in Figs. 1, 2, and 3.
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which is Eq. (4). The validity of this equality hinges on the fact that the initial particle

position is distributed according to the Boltzmann distribution, which in the case of a

harmonic potential is a Gaussian distribution.

Numerical simulations

The data presented in Supplementary Fig. 2 show the analysis of trajectories obtained

from Brownian dynamics simulations of an optically trapped particle in a thermal bath and

in an active bath. In a thermal bath, the forces acting on the particle are the optical trap

restoring force −kx, a viscous drag force −γẋ, and a thermal noise
√
2γkBTξ(t), where γ is

the friction coefficient of the particle and ξ(t) is a Gaussian white process with zero mean

and unitary variance. We simulate the overdamped Langevin equation corresponding to the

optically trapped particle in a thermal bath following the procedures explained in Ref. [30]

and using the experimental parameters. In order to simulate the particle’s motion in an

active bath, we added an extra term to the equation to account for the bacteria pushing the

trapped particle, which make the particle behave as an active particle [29].
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