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In the past decade several theoretical Maxwell’s demon models have been proposed exhibiting
effects such as refrigerating, doing work at the cost of information, and some experiments have
been done to realise these effects. Here we propose a model with a two level demon, information
represented by a sequence of bits, and two heat reservoirs. Which reservoir the demon interact with
depends on the bit. If information is pure, one reservoir will be refrigerated, on the other hand,
information can be erased if temperature difference is large. Genuine examples of such a system are
discussed.

PACS numbers: 05.70.Ln, 05.90.+m, 65.40.gd, 89.70.cf

Maxwell’s demon as an example that violates the
second law of thermodynamics was not solved for a long
time, since people used to focus on the thermodynamic
system only and neglect the information cost of the
controlling process of the demon. The study into
the energy cost of information erasing process lead
to the Landauer’s principle [1]: To erase one bit
of information, the energy cost is at least ln2kBT .
Here T stands for the temperature of the information
storage environment. This principle bridges information
theory and thermodynamics, and helped to solve the
paradox eventually [2–4]. Although the thermodynamic
system alone may decrease in entropy with the help
of Maxwell’s demon, but when taken into account the
storage of information, i.e, the increase of information
entropy, the overall system’s entropy would not increase.
On the other hand, the free energy increasement
gained by the measurement can not compensate for the
information erasing cost except for reversible process.
So the second law of thermodynamics is recovered.
A more recent result is the generalised Jarzynski
equality [5–8]which contains a mutual information part
quantifying the information gained by Maxwell demon
during thermodynamic process. When information
are represented by bits, considering the concavity of
exponential function, the result of Landauer’s principle
is recovered [4, 9].

These perspective make it possible to design heat
engines that work just like the Maxwell’s demon [10–19],
which stores information and can refrigerate thermal
systems or do work. Notice that information entropy
increases in the information storing process, while
erasing information reduces the information entropy.
On quantum mechanic level, NMR system Maxwell’s
demon was proposed to refrigerate the temperature of
nuclear spins [20]. Upon former models [10, 14, 17], we
propose a simple thermodynamic system with a two-level
quantum system as Maxwell’s demon. We analysed the
thermodynamics of the process, calculated the relative
efficiency to confirm the second law of thermodynamics.
The possible realisations in real systems are considered
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FIG. 1. A two level Maxwell demon and a sequence of
classical bits. Which reservoir the demon interact with is
determined by the bit.

as well.
In our proposal, the Maxwell’s demon is a simple two

level system, the demon’s energy level can be coupled
to information, here the information means a sequence
of bits. One single bit is coupled to the demon at a
time, which may be 0 or 1. This model also includes
two heat reservoir with different temperatures T1 and
T2. When the demon is in the up level and the bit is 1,
the demon may release an amount of energy ∆E to T1,
and the information turns to 0. The rate of transition
is determined by the T1. When the demon is in the up
level and the bit is 0, ∆E may be released to the T2,
after transition the bit changes to 1. Both transitions
are reversible and transition possibilities satisfy detailed
balance.

We denote the proportion of 0 for the incoming
information as p, the probability of the demon being in
the up state is q, and initially the demon and the bit has
no coupling. The united distribution (1u, 1d, 0u, 0d) =
{(1 − p)q, (1 − p)(1 − q), pq, p(1 − q)}. The transitions
in the two thermal reservoirs are independent of each
other, so the two allowed transitions satisfy their sperate
probability conservation:

P0u(t) + P1d(t) = P0u(0) + P1d(0),

P1u(t) + P0d(t) = P1u(0) + P0d(0). (1)

Here P0u(t), P1u(t), P0d(t), and P1d(t) stand for
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the population of states at time. After coupling
the four states are not in thermodynamic equilibrium
initially, they can exchange energy with the two heat
reservoir to reach a stable state. We assume that
the interacting process is long enough so that the four
states can eventually reach the statistical equilibrium
state. According to thermodynamics laws, the final
states satisfy Boltzman distribution. That is :

P0u

P1d
= exp(−β2∆E),

P1u

P0d
= exp(−β1∆E) (2)

where β1 = 1
kBT1

and β2 = 1
kBT2

. Given the initial
distribution, the four conditions are enough to calculate
the final probabilities distribution.

1u
1d
0u
0d

 =


(p+q−2pq) exp(−β1∆E)

1+exp(−β1∆E)
(1−p−q+2pq)

1+exp(−β2∆E)
(1−p−q+2pq) exp(−β2∆E)

1+exp(−β2∆E)
(p+q−2pq)

1+exp(−β1∆E)

 . (3)

Afterwards the Maxwell’s demon decouples with the
information, and the outgoing information is different
from the incoming information because of transitions.
At the same time the probability of the Maxwell’s
demon’s state distribution changes. We can see that the
demon assisted process has energy transportation and
information change at the same time.

The equilibrium state of the demon in one cycle
depends on whether the incoming bit is 1 or 0. Since
we have assumed the information to have a distribution,
the statistical state of the demon for many cycles will
be stable. This state is the periodic stable state of the
demon [10, 14, 17, 21], and can be calculated by making
q=P0u + P1u as given by (3). It has no reliance on the
initial state and depends only on p and T1, T2. So the
demon work just like an “information heat engine”. The
population of 0 and 1 after coupling can be derived from
the demon state, and the amount of energy transfer can
also be calculated.

We calculate the information and energy change now.
Specifically we set T1 ≥ T2. The amount of information
is defined by entropy S = −p ln p− (1− p) ln(1− p). The
energy change of the two heat source can be calculated
from the four states distribution. The amount of energy
transferred from T2 to T1 through the demon is ∆Q =
(P1u(∞)−P1u(0))∆E on average. The entropy change of
the two heat reservoirs is then ∆ST = ∆Q(β2−β1). And
the information entropy change is ∆SB = S(∞)− S(0).
They are both functions of p, T1 and T2. The sum of the
two entropy changes is then the entropy changes of the
whole system, and it is non-negative as can be seen in
Fig 2.

If the two temperatures are the same, we see from the
two transitions that a net decrease in 0’s population after
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FIG. 2. The above picture shows the sum of the information
and the two thermal reservoir’s entropy change as a function
of different temperatures Th and Tc against p. We define
λ = exp(Th−Tc)∆EkB . The below picture shows the sum as
well as the mutual information change of demon and bits. It
is clearly seen from above curves that the entropy of the whole
system never decrease during the process, so the generalised
second law of thermodynamics is not violated.

interaction indicates energy transportation from T2 to T1.
It is always possible to cool one source while heat another
so long as 0 and 1 are not equally possible. Fluctuation
exists for single cycle, but the overall result will not
change. This is the case Maxwell initially considered. It
is noticed that this is at the cost of information entropy
increase.

For the case of T1 > T2, the refrigerating effect depends
on the information entropy. Using the critical conditions
∆Q = 0 and ∆SI = 0 we get two values:

p1 =
1

1 + exp[(β2 − β1)∆E/2]
,

p2 =
1

2
(1 + tan

θ

2
). (4)

Here tan θ = exp(−β1∆E)−exp(−β2∆E)
1+exp(−β1∆E−β2∆E) . It is clear

that p2 > 1/2 > p1. For an autonomous systems,
the information erasing and the energy transportation
are competitive process [10]. We plotted the change
of information entropy and thermal reservoir entropy
against p for fixed temperature in Fig 3. It clearly shows
three different regions divided by p1 and p2. We define
∆Q < 0 as refrigerating and ∆SB < 0 as erasing. In the
following we discuss the effects of the three regions: (a)
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p < p1, in this regime ∆Q < 0 and ∆SB > 0, so Maxwell
demon absorbs energy from the lower temperature heat
source, at the same time the energy is released to the
higher temperature heat source. During this process the
information entropy increases, while the thermal system
entropy decreases. The demon works as a information
engine, which can refrigerate the cold reservoir and
heat the hot reservoir. A special case is when p is
0, the incoming bits are all 1, the demon has only 1u
and 1d initially, which means that the demon act as a
infinitely high temperature source as well as a absolute
zero temperature source at the same time. So according
to transition rules, it is easy to see that energy has to flow
from cold reservoir to hot reservoir. (b) If p2 > p > p1,
∆Q > 0 and ∆SB < 0, Maxwell demon gets energy
from the higher temperature heat source and release it
to the lower temperature heat source, decreasing the
information entropy, which can be seen as the heat source
doing work to erase the information. And the effects of
erasing depends on the temperature difference. (c) When
p > p2, ∆Q > 0 as well as ∆SB > 0, Maxwell demon
gets energy from the higher temperature heat source and
give it to the lower temperature heat source, at the same
time increasing the information entropy. Take p = 1
as a special case, the bits are all zero now, the demon’s
two levels now have the same temperatures as above, but
transition rules lead to opposite results with respect to
previous case. This is an ineffective zone. The effects are
clearly dependent on temperature difference. The demon
and information has no coupling in the beginning, but
after one single period, the demon gains information from
the bits, as indicated by the non-negativity of mutual
information. As we know, the stable state of the demon
is statistical, so mutual information gain for different
periods has fluctuations, but on average, the generalised
second law of thermodynamics is not violated. The
mutual information can exceed classical counterpart and
plays more important role for qubits [22].

We see that the overall entropy of the two heat
sources and the information must not decrease during
the refrigerating or erasing process. Thus we can define
a relative refrigerating efficiency as:

ηc =
−∆ST
∆SB

. (5)

and a relative erasing efficiency when the system is in the
erasing zone as:

ηe =
−∆SB
∆ST

. (6)

We plotted the relative efficiency change with respect to
the initial information and the temperature difference.
When temperature difference is fixed, the relative rate
decreases as p deviate from p1. On the other hand, the
erasing rate is also the highest at p1, and at p2 erasing
drop to 0. Recall that Landauer’s principle has a lower
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FIG. 3. The entropy change effects of information and
thermal reservoir as functions of p, here the red curve is
the entropy change of the two thermal reservoir and the blue
curve is the entropy change of the information. Three kinds of
relations can be seen from above. The left blue area denotes
refrigerating zone cause thermal entropy decreases, the red
area is the erasing zone because the information entropy
decreases, the right blue area is the ineffective zone. We have
choosen exp(−βh∆E) to be 0.8 and exp(−βc∆E) to be 0.1.
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FIG. 4. The relative efficiency of refrigerating and erasing
against p for definite temperature Th, Tc, the red curve is
the erasing efficiency, and the blue curve is the refrigerating
efficiency, the point when they are both highest is the critical
p of refrigerating and erasing zone. We have choosing
exp(−βh∆E) to be 0.8 and exp(−βc∆E) to be 0.1 as well.

limit on the cost of entropy for erasing information, this
limit is achieved at p = p1. The critical probability has
the highest efficiency in Fig 4 because it is the dividing
point of the refrigerating zone and the erasing zone, so no
energy has transferred and the information do not change
during the process, the whole system keeps still, thus we
can see that this is the ideal condition. When there has
nonzero energy current between the two reservoirs, the
efficiency cannot be optimal, the more energy that has
been transferred, the lower the efficiency is. We conclude
that the ideal efficiency is reached only when the process
is reversible.

Here we discuss possible realisation in real systems.
One example is by making use of two levels of rare-earth
ions (in crystal) with Kramers degeneracy but lifted
by applied weak magnetic field. If magnetic field
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FIG. 5. A rare earth ion system proposal for our Maxwell
demon model.

are applied along some specific orientation, the states
become distinct and have selection rules depending on
the polarization of lights. One state can only absorb
left-handed circularly polarized radiation and another
state can only absorb right-handed circularly polarized
radiation. The distribution of the pseudo-spin states
stores information. The two radiation fields the rare ion
interacts with can be adjusted artificially at equilibrium
and can be regarded as the heat reservoirs. A schematic
view is given in Fig 5. Some other systems such as the
optical cavity trapped ions or 2D materials [23, 24] can
also simulate our models. To find a Maxwell-demon like
system, the couplings has to be considered carefully.

The Maxwell demon model we analyzed above does
not require cumbersome calculations. In the model
we discussed, we calculated the stable state of the
demon, which depends on both information and the
thermal reservoir. The directions of bits change and
energy transportation are closely related. Under some
conditions this may lead to erasing or refrigerating
effects, while for other cases they simply reflects the
energy flow in accordance with bits change.

We also checks the validity of the generalised the
second of thermodynamics by calculating entropy change
of the system, this can also be derived from the
generalised Jarzynski equality. And the relative efficiency
of erasing and refrigerating is maximum at reversible
process only. In this model, Maxwell’s demon has an
essential role, it connects the information and the heat
reservoir as a kind of information engine. Upon this
model, we are going to study the situation when the
demon and the bits are entangled. Because of the special
properties of quantum information, the idea of using
quantum mutual information as a source of heat engine
is inspiring and it can lead to more understanding about
quantum thermodynamics [16, 21, 25–28].
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