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Abstract

We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian

state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure

which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update

the latent and potentially high-dimensional state trajectories. We propose to combine PG with a

generic and easily implementable SMC approach known as Particle Efficient Importance Sampling

(PEIS). By using SMC importance sampling densities which are closely globally adapted to the

targeted density of the states, PEIS can substantially improve the mixing and the efficiency

of the PG draws from the posterior of the states and the parameters relative to existing PG

implementations. The efficiency gains achieved by PEIS are illustrated in PG applications to a

stochastic volatility model for asset returns and a Gaussian nonlinear local level model for interest

rates.
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1. Introduction

In this paper we consider the particle Gibbs procedure (Holenstein, 2009, Andrieu et al., 2010) as

a tool to perform a Bayesian analysis of non-linear, non-Gaussian state space models and discuss

how to improve its efficiency by relying upon a sequential Monte Carlo procedure known as particle

efficient importance sampling (Scharth and Kohn, 2013).

In the context of state space models (SSM), a latent Markov state variable xt (t = 1, . . . , T ) is

observed through a response variable yt, where it is assumed that the yt’s are conditionally indepen-

dent given the xt’s. The measurement density for yt and the transition density for xt, depending on

a vector of parameters θ are written as

yt|xt ∼ gθ(yt|xt) and xt|xt−1 ∼ fθ(xt|xt−1), x1 ∼ fθ(x1), (1)

respectively.

Bayesian inference about the parameters θ and the states x1:T of the SSM in Equation (1) re-

lies on their joint posterior denoted by p(θ, x1:T |y1:T ), where we have used the notation zs:t to

denote (zs, zs+1, . . . , zt). The corresponding marginal posterior for the parameters is p(θ|y1:T ) ∝

pθ(y1:T )p(θ), where p(θ) denotes the prior assigned to θ and pθ(y1:T ) the marginal likelihood. For

non-linear, non-Gaussian models, both the joint posterior of θ and x1:T as well as the marginal poste-

rior for θ are analytically intractable so that inference requires to resort to approximation techniques.

A well established class of approximation methods for Bayesian inference in non-linear, non-

Gaussian SSMs are Markov Chain Monte Carlo (MCMC) procedures. A popular MCMC approach to

approximate the joint posterior p(θ, x1:T |y1:T ) consists of using the Gibbs sampler, which alternately

samples from the full conditional posterior of the parameters θ denoted by p(θ|x1:T , y1:t) and the

full conditional posterior of the states x1:T written as pθ(x1:T |y1:T ). The problem with this method

is that sampling from the density pθ(x1:T |y1:T ) is typically difficult. In fact, for models of practical

interest this Gibbs block is often a high-dimensional non-standard density so that sampling needs

to rely on a Metropolis-Hastings (MH) algorithm based on a proposal density whose efficient design

is a challenging task (see, e.g., Carter and Cohn, 1994, Shephard and Pitt, 1997 and Liesenfeld and
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Richard, 2008).

A new and easy to implement tool for approximating the joint posterior p(θ, x1:T |y1:T ) in SSMs are

the Particle MCMC (PMCMC) algorithms developed by Holenstein (2009) and Andrieu et al. (2010),

which combine MCMC with sequential Monte Carlo (SMC) algorithms. The latter are simulation

devices for forward-recursively approximating high-dimensional target densities and their integrat-

ing constants, such as the conditional posterior pθ(x1:T |y1:T ) and the marginal likelihood pθ(y1:T ) in

an SSM. More specifically, SMC methods generate a swarm of x1:t-samples (particles), that evolve

towards the target distribution according to a combination of sequentially importance sampling (IS)

and resampling. Standard SMC implementations rely upon locally designed IS densities approximat-

ing the corresponding subcomponents of the full target density (see, e.g., Gordon et al., 1993, Pitt

and Shephard, 1999, and Doucet and Johansen, 2009). Within the PMCMC approach such SMC

algorithms are used in order to design high-dimensional proposal densities for MH updates producing

MCMC draws from the respective target density.

For a direct application to a full Bayesian analysis in SSMs two PMCMC algorithms are available:

The particle marginal MH (PMMH) and the particle Gibbs (PG). The PMMH algorithm represents

an MC approximation of an ‘ideal’ (but infeasible) MH procedure targeting directly the marginal

posterior density p(θ|y1:T ) and marginalizes the states x1:T by using SMC to obtain an unbiased

MC estimate of the marginal likelihood pθ(y1:T ). Applications of PMMH for Bayesian inference in

SSMs are found in Fernandez-Villaverde and Rubio-Ramirez (2005), Flury and Shephard (2011),

Scharth and Kohn (2013), and Pitt et al. (2012). However, a potential drawback of this approach

in practical applications is, that the design of a proposal density for the MH updates of θ can be

tedious, requiring a fair amount of fine tuning, especially, when the number of parameters in θ are

large. Moreover, PMMH can be ‘computationally brutal’ if the SMC delivers, even with a large

number of particles, noisy MC estimates for pθ(y1:T ), which is to be expected for standard locally

designed SMCs in high-dimensional applications (Flury and Shephard, 2010). As a result, the MH

updates for θ can get stuck for many iterations leading to very slow mixing. In order to address this

problem of PMMH, Scharth and Kohn (2013) recently developed the Particle Efficient IS (PEIS)

which combines SMC with the sequential Efficient IS (EIS) procedure of Richard and Zhang (2007).
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This approach exploits that EIS produces by a sequence of auxiliary regressions a close global density

approximation to a potentially high-dimensional target density and, thus, minimizes the noise in the

corresponding estimate for the likelihood pθ(y1:T ).

Here we consider the PG approach as an alternative to PMMH to make inference in SSMs.

The PG is an MC approximation of an ‘ideal’ Gibbs algorithm iterating between p(θ|x1:T , y1:t) and

pθ(x1:T |y1:T ), where the output of an SMC algorithm targeting pθ(x1:T |y1:T ) is used as a proposal

distribution for MH updates of x1:T . It can take advantage of the fact that in numerous application

sampling from p(θ|x1:T , y1:t) is easily feasible so that the tedious design of a proposal for θ as required

by PMMH can be bypassed. A further potential advantage of the PG approach relative to PMMH is

that it does not need to MH update x1:T in one block so that SMC sampling from pθ(x1:T |y1:t) can

be partitioned into a sequence of smaller sampling problems. This can be a partitioning into blocks

along the time dimension and/or into state components for a multivariate state vector xt.

However, just as much as the PMMH, the PG can suffer from poor mixing, though for a different

reason. Since the resampling of typical SMC procedures may lead to potentially identical genealogies

of the x1:T -particle paths, the exploration of the domain of x1:s under pθ(x1:T |y1:T ) for s � T may

be very poor for the PG (Whiteley et al., 2010 and Lindsten and Schön, 2012).

Existing attempts to address this poor mixing problem of the PG are to either add a Backward

Simulation step (PGBS) (Whiteley, 2010, Whiteley et al., 2010, Lindsten and Schön, 2012, and

Carter et al., 2014) or an Ancestor Sampling step (PGAS) (Lindsten and Schön, 2014) to the SMC

algorithm, or to introduce an additional MH move to update x1:T (Holenstein, 2009, p. 35). However,

as we shall demonstrate, the efficacy of those extensions to improve the mixing of the baseline PG

critically depends on how close the underlying SMC algorithm approximates the target pθ(x1:T |y1:T ).

As mentioned above, the globally designed PEIS of Scharth and Kohn (2013) provides an SMC which

produces such very close approximations. Therefore, we should be able to improve the mixing of the

baseline PG and its extensions by relying upon the PEIS for their applications. A striking illustration

of how the PEIS improves this mixing is provided in Section 5, where we apply PG algorithms to

a Bayesian analysis of a stochastic volatility model (SV) for asset returns and a time-discretized

Constant Elasticity of Variance (CEV) diffusion with measurement errors for interest rates.
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The rest of the paper is organized as follows: In Section 2 we briefly outline the SMC approach

and in Section 3 the basline PG. Section 4 presents the PEIS (Section 4.1) and discusses potential

efficiency improvements obtained by embedding the PEIS within the PGAS (Section 4.2) and the

PGMH (Section 4.3). This is illustrated in Section 5 with a Bayesian PG analysis of the SV model

and a CEV model. Section 6 concludes.

2. Sequential Monte Carlo (SMC)

2.1 Definition of SMC

Let π(x1:T ) denote the target density to be approximated/simulated with the following sequence of

intermediate target densities:

πt(x1:t) =
γt(x1:t)

zt
, zt =

∫
γt(x1:t)dx1:t, t = 1, . . . , T, (2)

with πT (x1:T ) ≡ π(x1:T ).

In an SSM of the form given by Equation (1) the full target is π(x1:T ) = pθ(x1:T |y1:T ) and for

standard SMC algorithms the intermediate targets are defined as πt(x1:t) ≡ pθ(x1:t|y1:t), so that we

have

γt(x1:t) = pθ(x1:t, y1:t) =

[
t∏

τ=2

gθ(yτ |xτ )fθ(xτ |xτ−1)

]
gθ(y1|x1)fθ(x1), (3)

zt = pθ(y1:t) =

∫
pθ(x1:t, y1:t)dx1:t, (4)

where the sequence zt = pθ(y1:t) represent the marginal likelihoods.

SMC algorithms as discussed, e.g., in Cappé et al. (2007), Ristic et al. (2004) and Doucet and

Johansen (2009), consist of recursively producing, for each period t, a weighted particle system

{xi1:t, wit}Ni=1 with N particles xi1:t and corresponding (non-normalized) IS weights wit such that the

intermediate target density πt(x1:t) in Equation (2) can be approximated by the point mass distri-
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bution

π̂t(dx1:t) =
N∑
i=1

W i
t δxi1:t

(dx1:t), W i
t =

wit∑N
l=1w

l
t

, (5)

where δx(·) denotes the Dirac delta mass located at x. In period t, the weighted particle system

{xi1:t, wit}Ni=1 is obtained from the period-(t − 1) system {xi1:t−1, wit−1}Ni=1 by drawing from an IS-

density qt(xt|xi1:t−1) to propagate the inherited particles xi1:t−1 to xi1:t = (xit, x
i
1:t−1) and updating

the corresponding IS weights according to

wit = W i
t−1

γt(x
i
1:t)

γt−1(xi1:t−1)qt(x
i
t|xi1:t−1)

. (6)

In most applications, the variance of the IS weights wit in Equation (6) increases exponentially

with t reducing the effective sample size of the particle system (an effect known as ‘weight degen-

eracy’). Hence, SMC algorithms include a resampling step before propagating the particles xi1:t−1

to (xit, x
i
1:t−1). It consists in sampling N ‘ancestors particles’ from {xi1:t−1}Ni=1 according to their

normalized IS weights {W i
t−1} and then setting in Equation (6) the IS weights W i

t−1 for the redrawn

xi1:t−1-particles all equal to 1/N . This resampling step amounts to sampling for t = 2, ..., T the (aux-

iliary) indices of the ancestor particles xi1:t−1 denoted by ait. For a discussion of popular resampling

schemes including multinomial, residual and stratified resampling, see, e.g., Doucet and Johansen

(2009).

At period T , this procedure provides us with an approximation of the full target density π(x1:T )

given by π̂T (dx1:T ) according to Equation (5). Approximate samples from π(x1:T ) can be obtained by

sampling xi1:T ∼ π̂T (dx1:T ), which is done by choosing particles xi1:T according to their probabilities

W i
T . If required, the corresponding normalizing constant zT of π(x1:T ) is estimated by

ẑT =
T∏
t=1

(
N∑
i=1

wit

)
. (7)

In the SSM context, such an SMC produces an approximation of π(x1:T ) = pθ(x1:T |y1:T ), denoted

by p̂θ(x1:T |y1:T ), corresponding approximate samples xi1:T ∼ p̂θ(x1:T |y1:T ), and an MC approximation

to the full marginal likelihood zT = pθ(y1:T ) written as p̂θ(y1:T ). These are the main inputs of PG

5



algorithms implemented for Bayesian analyzes of SSMs.

2.2 SMC implementations in state space models

A critical issue in implementing an SMC is the choice of the IS densities qt(xt|xi1:t). The main

recommendation is to design them locally so as to minimize the conditional variance of the IS weights

in Equation (6) given xi1:t−1. This requires to select qt(xt|xi1:t−1) as a close approximation to the

period-t conditional density πt(xt|xi1:t−1) (see Doucet and Johansen, 2009). For the SSM applications

with πt(x1:t) ∝ pθ(x1:t, y1:t) as given by Equation (3), those IS weights become

wit = W i
t−1

gθ(yt|xit)fθ(xit|xit−1)
qt(xit|xi1:t−1)

. (8)

The most popular (but suboptimal) selection for the IS densities are the transition densities fθ(xt|xit−1)

used by the Bootstrap Particle Filter (BPF) (Gordon et al., 1993). In scenarios where the measure-

ment density gθ is fairly flat in xt, this selection typically leads to a satisfactory performance. A

selection which sets the variance of the IS weights in Equation (8) conditional on xit−1 to zero is

pθ(xt|yt, xit−1) ∝ gθ(yt|xt)fθ(xt|xit−1), leading to the conditionally Optimal Particle Filter (OPF)

discussed, e.g., in Doucet and Johansen (2009). Further improvements can be achieved by replacing

the standard resampling schemes based on the IS weights in Equation (8) by more sophisticated

ones which favor ancestor particles which will be in regions with high probability mass after their

propagation. This is implemented by the Auxiliary Particle Filter (APF) (Pitt and Shephard, 1999).

In contrast to those locally designed SMCs, the PEIS of Scharth and Kohn (2013) uses (nearly)

globally optimal SMC-IS densities and resampling weights obtained from a close approximation to

the full target π(x1:T ) = pθ(x1:T |y1:T ). This will be explained in greater detail in Section 4.1 below.

Irrespectively of the particular IS density selected to implement an SMC, the resampling steps

used to mitigate the weight degeneracy, typically lead to a loss of diversity among the particles as the

resultant sample may contain many repeated points. Hence, in many SMC applications resampling

is performed dynamically, i.e., only when the weight degeneracy exceeds a certain threshold (see,

e.g., Doucet and Johansen, 2009).
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3. Particle Gibbs (PG)

3.1 Baseline Particle Gibbs algorithm

For a Bayesian analysis in a non-linear, non-Gaussian SSM the ‘ideal’ Gibbs sampler targeting the

joint posterior p(θ, x1:T |y1:T ) and alternately sampling from the full conditional posteriors pθ(x1:T |y1:T )

and p(θ|x1:T , y1:T ) is typically unfeasible since exact sampling from pθ(x1:T |y1:T ) is impossible. The

PG approach of Holenstein (2009) and Andrieu et al. (2010) uses an SMC algorithm targeting

π(x1:T ) = pθ(x1:T |y1:T ) in order to propose approximate samples from this distribution in such a

way that the ideal Gibbs sampler is ‘exactly approximated’. This is achieved by augmenting the

target density of the ideal Gibbs sampler p(θ, x1:T |y1:T ) to include all the random variables which

are produced by the SMC in order to generate a proposal for x1:T (i.e., the set of all the particle

paths {xi1:T }, the set of all ancestor indices for the resampling steps {ait}, and the particle index to

be drawn in order to select a particle path from {xi1:T } as a proposal). The PG then obtains as a

standard Gibbs sampler for this augmented target density, which is implicitly defined by the joint

posterior p(θ, x1:T |y1:T ) together with the joint sampling density for all the SMC random variables.

The Gibbs sampler for this augmented target density requires a special type of SMC algorithm,

referred to as conditional SMC, where one of the particles {xi1:T }Ni=1 is specified a-priori. This pre-

specified reference particle denoted by x′1:T is then retained throughout the entire SMC sampling

process. To accomplish this, one can set x1t ≡ x′t and a1t ≡ 1 for all periods and use the SMC to

sample the xit’s and ait’s only for i = 2, ..., N . This produces a set of N particles and IS weights

{xi1:T , wiT }Ni=1, where the first particle coincides with the pre-specified one, i.e., x11:T = x′1:T (see, e.g.,

Lindsten et al., 2014, Chopin and Singh, 2013).

Based on such a conditional SMC the PG algorithm for an SSM is given by:

PG algorithm

(i) Initialization (j = 0): Set randomly θ(0), run an SMC targeting pθ(0)(x1:T |y1:T ), and sam-

ple x(0)1:T ∼ p̂θ(0)(x1:T |y1:T ).

(ii) For iteration j ≥ 1:

- sample θ(j) ∼ p(θ|x(j−1)1:T , y1:T ) ,
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- run a conditional SMC targeting pθ(j)(x1:T |y1:T ) conditional on x
(j−1)
1:T , and sample

x
(j)
1:T ∼ p̂θ(j)(x1:T |y1:T ).

Under weak regularity conditions (Andrieu et al., 2010, Theorem 5) the Markov kernel defined by

this PG algorithm leaves the exact target density p(θ, x1:T |y1:T ) invariant and delivers a sequence of

Gibbs draws {θ(j), x(j)1:T }j whose marginal distribution converges for any N > 1 to p(θ, x1:T |y1:T ) as

j →∞.

Existing applications of the PG use locally designed SMC algorithms like the BPF with resampling

steps which are performed at every time period t. Dynamic resampling, while in principle possible, is

difficult to implement and computationally inefficient since the conditional SMC at the PG iteration

step j requires simulating a set of N − 1 particles not only consistent with the retained path x′1:T =

x
(j−1)
1:T but also with the resampling times of the SMC pass which has produced the retained path

(see Holenstein, 2009, Section, 3.4.1).

3.2 Particle Gibbs and the SMC-path degeneracy

The baseline PG will, if implemented using SMCs with resampling steps at every period t, have a very

poor mixing, especially, when T is large (see, Whiteley et al., 2010 and Lindsten and Schön, 2012).

The reason for this is that the SMC resampling, which is used to mitigate the weight degeneracy,

inevitable leads to a path degeneracy of the SMC particle system (see, e.g., Doucet and Johansen,

2009). This means that every period-t resampling step will sequentially reduce for a fixed s < t

and increasing t the number of unique particle values representing x1:s, which progressively reduces

the quality of the SMC samples for the path x1:t under πt(x1:t) = pθ(x1:t|y1:t). The consequence of

this SMC path degeneracy for the PG is that at iteration step j the new trajectory x
(j)
1:T tend to

coalesce (for t : T → 1) with the previous one x(j−1)1:T which is retained as the reference particle x′1:T

throughout conditional SMC sampling. Thus, the resulting particle system degenerates towards this

‘frozen’ path, leading to a highly dependent Markov chain.

Before we discuss in the next section solutions to this problem of the baseline PG, we emphasize

two important points. First, it is not the SMC path degeneracy per se which leads to the poor

mixing of the PG, but the degeneration of the particle system towards the retained conditional SMC
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reference particle x′1:T . On the other hand, however, SMC implementations addressing successfully

the path degeneracy problem can be used to fight the poor mixing of the PG. Second, by construction

any SMC, whether implemented using locally or globally optimal IS densities, will lead to a fast

degeneration of the SMC paths, when resampling is performed every period. This precludes that the

mixing problem of the baseline PG resulting from the path degeneracy can be successfully addressed

solely by the design of the SMC IS densities and resampling schemes.

4. Extensions of the baseline Particle Gibbs

In order to address the mixing problem of the baseline PG caused by the SMC path degeneracy

the following strategies have been proposed: The first one is to augment the baseline PG by an

additional particle MH update step (PGMH) proposing at each PG-iteration step j a completely

new SMC path for x1:T (Holenstein, 2009, Section 3.2.3). The second alternative is to add additional

Ancestor Sampling (AS) steps to the conditional SMC (PGAS), which assign at each time-period t

a new artificial x1:t−1-history to the partial frozen path x′t:T (Lindsten et al., 2014). A third strategy

is to add to the conditional SMC a backward simulation step (PGBS) based on the output of the

SMC forward filtering pass (Whiteley, 2010, Whiteley et al., 2010, and Lindsten and Schön, 2012).

However, as discussed in Lindsten et al. (2014) this approach is in Markovian SSMs probabilistically

equivalent to the PG with ancestor sampling1.

As illustrated in our applications below the efficacy of the PGAS and PGMH to improve the mixing

of the baseline PG critically depends on the SMC algorithm which is used for their implementation. In

particular, an efficient PGMH implementation requires for the additional MH step numerically very

precise SMC estimates of the marginal likelihood pθ(y1:T ), which can in high-dimensional applications

be too much of a challenge for locally designed SMCs. On the other hand, the efficacy of the PGAS’s

ancestor sampling to improve the mixing can be seriously hampered by a large variance of the IS

weights wit, which is to be expected for local SMCs, especially, in SSM applications with a high signal

to noise ratio, i.e., very informative observations coupled with a diffuse prior for the states. Since, as
1Recently, Carter et al. (2014) have extended the PGBS approach by adding in the backward simulation pass at

each time period an extra MH step to generate new state values.

9



mentioned above and further detailed below, the PEIS of Scharth and Kohn (2013) uses IS densities

which globally minimize across all periods the variance of the IS weights producing a very close SMC

approximation to pθ(x1:T |y1:T ) and pθ(y1:T ), we propose to use this PEIS in order to improve the

efficiency of the PGAS and PGMH.

Moreover, the reduction of the SMC-weight degeneracy to a (close to) minimum level achieved by

the PEIS, also offers the possibility to substantially reduce the SMC path degeneracy by performing

the resampling step not at every but only at a few predetermined time periods (say every 500 periods).

Hence, the baseline PG implemented by using the PEIS with such a sparse resampling frequency

provides by itself a natural further alternative to the PGAS and PGMH in order to address the

PG-mixing problem.

The extensions of the baseline PG outlined above are detailed in the next sections: In Section 4.1

we describe the PEIS. In Sections 4.2 and 4.3 we present the PGAS and PGMH, respectively, and

discuss the potential efficiency improvements obtained if they are implemented with the PEIS.

4.1 Particle EIS (PEIS)

The PEIS as proposed by Scharth and Kohn (2013) is a ‘forward-looking’ SMC which uses the

sequential EIS procedure of Richard and Zhang (2007) to design both IS densities and a resampling

scheme. EIS is a generic algorithm which sequentially constructs a global IS density q for x1:T which

provides a close approximation to pθ(x1:T |y1:T ) ∝ pθ(x1:T , y1:T ). This global IS density is factorized

conformably with pθ(x1:T , y1:T ) in Equation (3) into

q(x1:T ; c) =

[
T∏
t=2

qt(xt|x1:t−1; ct)

]
q1(x1; c1), (9)

with

qt(xt|x1:t−1; ct) =
kt(x1:t; ct)

χt(x1:t−1; ct)
, χt(x1:t−1; ct) =

∫
kt(x1:t; ct)dxt, (10)

where {kt(·; ct), ct ∈ Ct} represents a preselected class of parametric density kernels indexed by a

vector of (auxiliary) parameters ct and with known integrating factors given by χt. For any given
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c = (c1, ..., cT ) the global IS ratio pθ(x1:T , y1:T )/q(x1:T ; c) can be factorized so as to obtain

pθ(x1:T , y1:T )

q(x1:T ; c)
= χ1(c1)

T∏
t=1

[
gθ(yt|xt)fθ(xt|xt−1)χt+1(x1:t; ct+1)

kt(x1:t; ct)

]
, χT+1(·) ≡ 1. (11)

In order to construct IS densities which provide a close approximation to pθ(x1:T , y1:T ), EIS aims

at selecting a value of c that minimizes the variance of this global IS ratio by minimizing period by

period the variance of the individual IS ratios given in Equation (11) by the terms in brackets.

A (near) optimal value ĉ is obtained by solving the following back-recursive sequence of least

squares (LS) approximation problems:

(ĉt, α̂t) = arg min
ct∈Ct,αt∈R

R∑
i=1

{
ln
[
gθ(yt|xit)fθ(xit|xit−1)χt+1(x

i
1:t; ĉt+1)

]
(12)

−αt − ln kt(x
i
1:t; ct)

}2
, t = T, . . . , 1,

where αt represents an intercept, and {xi1:T }Ri=1 denote R independent trajectories drawn from

q(x1:T ; c) itself. Thus, ĉ results as a fixed point solution to the sequence {ĉ[0], ĉ[1], . . .} in which

ĉ[`] is obtained from (12) under trajectories drawn from q(·; ĉ[`−1]). In order to ensure convergence to

a fixed-point solution it is critical that all x1:T draws generated for the sequence {ĉ[`]} be produced

by using a single set of canonical random numbers {ui1:T }Ri=1. Note that the ĉt’s are implicit functions

of θ, so that maximal efficiency requires complete reruns of the EIS regressions for any new value of

θ.

The selection of the parametric class of kernels kt is inherently problem-specific since these kernels

are meant to provide a functional approximation to the product gθ(yt|xt)fθ(xt|xt−1)χt+1(x1:t; ct+1).

In the applications below, we consider SSMs with Gaussian transition densities fθ, which suggest to

select the kt’s as Gaussian kernels. In this case the EIS LS problems (12) take the form of simple

linear LS problems. However, it is important to note that EIS is by no means restricted to the use

of Gaussian IS samplers. The EIS LS problems become linear for all density kernels kt chosen within

the exponential family of densities and (P)EIS implementations for more flexible IS densities such

as mixture of normal distributions are found in Kleppe and Liesenfeld (2014) and Scharth and Kohn
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(2013).

The PEIS is an SMC, which is constructed from the output of this EIS algorithm as follows:

Firstly, it makes use of the APF principle (Pitt and Shephard, 1999) and replaces the standard

resampling scheme based upon the IS weights in Equation (8) by a scheme, which favors particles

that are more likely to survive the next resampling steps. As discussed in Doucet and Johansen

(2009, Section 4.2), this can be implemented within a standard SMC as outlined in Section 2.1, by

replacing the natural intermediate targets πt(x1:t) in Equation (3) by auxiliary targets, which include

information of future yt-measurements. The particular auxiliary targets used by the PEIS are given

by

πt(x1:t) ∝ γt(x1:t) ≡ pθ(x1:t, y1:t)χt+1(x1:t; ĉt+1), χT+1(·) = 1. (13)

Secondly, the SMC-IS densities used by the PEIS are the densities obtained from the EIS auxiliary

regressions (12),

qt(xt|x1:t−1) ≡ qt(xt|x1:t−1; ĉt) =
kt(x1:t; ĉt)

χt(x1:t−1; ĉt)
. (14)

The fundamental justification of this PEIS arises from the form of the resulting SMC-IS weights

according to Equation (6) together with the specific interpretation of the EIS integrating factor

χt+1(x1:t; ĉt+1) used to define the auxiliary intermediate SMC targets in Equation (13). Both are

provided in the following lemma (for the proof see Appendix 1):

Lemma 1. For the PEIS defined by Equations (13) and (14), the SMC-IS weights in Equation

(6) are

wit = W i
t−1

gθ(yt|xit)fθ(xit|xit−1)χt+1(x
i
1:t; ĉt+1)

kt(xi1:t; ĉt)
, (15)

where χt+1(·; ĉt+1) is close to be proportional to the multiperiod-a-head predictive density pθ(yt+1:T |xt)

for yt+1:T given xt:

χt+1(x1:t; ĉt+1) ' constant · pθ(yt+1:T |xt). (16)

Thus, according to Equation (15) the SMC-IS weights wit of the PEIS are the weights, whose

variance is minimized by the auxiliary EIS regressions (12), so that PEIS minimizes the SMC weight

degeneracy across all periods. Moreover, Equation (16) implies that the intermediate SMC targets of
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the PEIS in Equation (13) include a prediction about which particles will be for periods t+ 1, ..., T

in regions with high probability masses. Thus, the resulting resampling scheme based on the weights

(15) favors ancestor particles with high weights in the subsequent periods. Both properties together

ensure that the particle system obtained by sampling and resampling is (nearly) optimally adapted

to the final target pθ(x1:T |y1:T ).

This explains why the PEIS produces SMC estimates for the marginal likelihood pθ(y1:T ) (obtained

according to Equation 7), which are numerically very accurate. In fact, as shown in Scharth and

Kohn (2013), the PEIS is capable of producing dramatic improvements in numerical accuracy relative

to local SMCs like the BPF and APF. This property is exploited by Scharth and Kohn (2013), when

using the PEIS to obtain highly efficient implementations of the particle marginal MH (PMMH)

procedure for SSMs.

Despite its nearly perfect global adaption, the PEIS when implemented with resampling steps in

every period will suffer, as any SMC, from the SMC-path degeneracy phenomenon causing the poor

mixing of the baseline PG. However, since the PEIS globally reduces the variance of the SMC-IS

weights to a (close to) minimum level, it typically suffices to resample only at a few periods, which

substantially reduces the path degeneracy. This motivates the implementation of the baseline PG

using the PEIS with sparse resampling at a few predetermined time period (PG-PEIS-sparse).

Finally, it is important to note, that the PEIS implementation requires to run the sequence of T

auxiliary regressions (12) before producing via the sequence of SMC steps a weighted particle system

{xi1:T , wiT }. Hence, the global design of the SMC-IS densities used by PEIS comes at additional

computational costs relative to the local design of the IS densities used by standard SMC proce-

dures. However, as illustrated by Scharth and Kohn (2013) in the context of SMC approximations

of the marginal likelihood as well as in our applications to PG algorithms below, the substantial

improvements of the approximation to pθ(x1:T |y1:T ) gained by the PEIS may outweigh its additional

computational costs.

In conclusion of this generic presentation, we provide the full PEIS algorithm:

PEIS algorithm

(i) Compute ĉ = (ĉ1, . . . , ĉT ) by iteratively drawing from q(x1:T ; ĉ[`]) and producing c[`+1] via
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the T auxiliary EIS regressions in Equation (12), and store ĉ.

(ii) For t = 1:

- Sample xi1 ∼ q1(x1, ĉ1), compute the IS weights

wi1 =
gθ(y1|xi1)fθ(xi1)χ2(x

i
1; ĉ2)

q1(xi1; ĉ1)
, (17)

store w̄1 =
∑N

i=1w
i
1/N , and compute normalized weights W i

1 = wi1/(
∑N

l=1w
l
1) .

- If resampling, sample x̄i1 ∼
∑N

i=1W
i
1δxi1

(dx1) and set the IS weights to W i
1 = 1/N ,

otherwise set x̄i1 = xi1.

For t = 2, ..., T :

- Sample xit ∼ qt(xt|x̄i1:t−1, ĉt) and set xi1:t = (xit, x̄
i
1:t−1);

- compute the IS weights

wit = W i
t−1

gθ(yt|xit)fθ(xit|xit−1)χt+1(x
i
1:t, ĉt+1)

kt(xi1:t; ĉt)
, (18)

store w̄t =
∑N

i=1w
i
t, and compute normalized weights W i

t = wit/(
∑N

l=1w
l
t).

- If resampling, sample x̄i1:t ∼
∑N

i=1W
i
t δxi1:t

(dx1:t) and set the IS weights to W i
t = 1/N ,

otherwise set x̄i1:t = xi1:t.

(iii) If required, compute the SMC likelihood estimate according to Equation (7):

ẑT = p̂θ(y1:T ) =
T∏
t=1

w̄t. (19)

4.2 Particle Gibbs with ancestor sampling (PGAS)

In order to address the poor mixing of the baseline PG, Lindsten et al. (2014) developed the PGAS.

It exploits the fact that it suffices to suppress the degeneration of the particle system towards the

retained conditional SMC reference trajectory x′1:T and not the SMC-path degeneracy per se to

improve the mixing. Based on this insight, the basic idea of the PGAS is to break this reference

trajectory into pieces, so that the particle system tends to degenerate to something different than

the reference trajectory.

In particular, the PGAS augments each period-t conditional-SMC resampling step by randomly
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selecting from the set {xi1:t−1}Ni=1 (including the reference particle x′1:t−1) one ancestor particle which

is used to assign a potentially new x1:t−1-history to the partial frozen path x′t:T . This produces

a concatenated full path [xi1:t−1, x
′
t:T ], and the corresponding (non-normalized) weight for selecting

xi1:t−1 as the new ancestor for x′t:T is given by

w̃it−1|T = wit−1
γT
(
[xi1:t−1, x

′
t:T ]
)

γt−1(xi1:t−1)
. (20)

In Bayesian terms, the components of those anchestor sampling weights for the reference particle are

the prior probability of the ancestor particle xi1:t−1 given by the ‘standard’ SMC-IS weights wit−1 and

the likelihood that the partial reference path x′t:T originated from xi1:t−1 which is represented by the

ratio of the targets γT (·)/γt−1(·).

As shown by Lindsten et al. (2014, Theorem 1), the invariance property of the baseline PG is not

violated by this additional AS step. However, since this AS step sequentially assigns in each period

a potentially new ancestor to x′t:T , it will produce a reference path x′1:T which tends to differ from

the other (degenerated) conditional SMC paths {xi1:T }Ni=2. Thus, while not preventing the particle

system to degenerate, the PGAS typically improves the mixing of the baseline PG. Furthermore, if

the variance of the AS weights w̃it−1|T in Equation (20) is minimized, the potential diversity of the

resulting PGAS reference path x′1:T is maximized. Hence, by reducing the variance of w̃it−1|T , we can

improve the mixing of the PGAS trajectories x(j)1:T under pθ(x1:T |y1:T ).

In Lindsten et al. (2014), the PGAS is implemented by relying upon the BPF (PGAS-BPF), which

uses πt(x1:t) ∝ pθ(x1:t, y1:t), as given in Equation (3), together with qt(xt|x1:t−1) ≡ fθ(xt|xt−1), so

that according to Equation (6) the ‘prior’ weights are wit−1 = W i
t−2gθ(yt−1|xit−1). The resulting AS

weights are given by

w̃it−1|T = W i
t−2gθ(yt−1|xit−1)pθ(x′t:T , yt:T |xit−1) ∝W i

t−2gθ(yt−1|xit−1)fθ(x′t|xit−1). (21)

This form of AS-weights obtained under the BPF, shows that in scenarios, where the measurement

density gθ is fairly flat in xt (so that the yt observations are not very informative about the states

xt) and the transition density fθ exhibits a large conditional variance, the variation of w̃it−1|T can
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be expected to be sufficiently small so as to obtain a sufficiently strong mixing of the PGAS-BPF.

However, applications with highly informative observations and/or a state process with small noise

produce a large variance of w̃it−1|T , so that the efficacy of the PGAS-BPF to improve the mixing of

the baseline PG can be expected to be limited.

Under the PEIS with πt(x1:t) and wit−1 as given by Equations (13) and (15) the PGAS ancestor

weights become

w̃it−1|T ∝
[
W i
t−2

gθ(yt−1|xit−1)fθ(xit−1|xit−2)χt(xi1:t−1; ĉt)
kt−1(xi1:t−1; ĉt−1)

] [
pθ(yt:T |xit−1)
χt(xi1:t−1)

]
. (22)

Hence, according to Lemma 1 the PEIS produces PGAS ancestor weights with a (close to) minimal

variation: Recall that the IS densities of the PEIS are designed so as to minimize the variance

of the prior weights wit−1 (given by the term in the first bracket of Equation 22). Moreover, the

predictive density pθ(yt:T |xt−1) as function in xt−1 is closely approximated by the EIS integrating

factor χt(x1:t−1) so that the variance of the likelihood for the ancestor xi1:t−1 (term in the second

bracket) is also close to a minimum level.

In conclusion, the PEIS not only produces a (conditional) SMC particle system which is nearly

perfectly globally adapted to pθ(x1:T |y1:T ), but also generates a very high potential diversity of the

reference particle generated by the additional AS step. As a result, we expect to improve the mixing

of the PGAS paths for x1:T obtained under local procedures like the BPF by relying upon the global

PEIS (PGAS-PEIS).

4.3 Particle Gibbs with an additional MH step (PGMH)

The PGMH proposed by Holenstein (2009, Algorithm 3.6) in order to address the poor-mixing

problem of the baseline PG bypasses the SMC-path degeneracy by using an additional particle-MH

step proposing in each iteration step j a completely new SMC path denoted by x∗1:T . This new

path is MH-compared with the old path x(j−1)1:T based upon the (conditional) SMC estimates of their

respective marginal likelihood. The resulting PGMH algorithm is given by:

PGMH algorithm
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(i) Initialization (j = 0): Set randomly θ(0), run an SMC targeting pθ(0)(x1:T |y1:T ), and sam-

ple x(0)1:T ∼ p̂θ(0)(x1:T |y1:T ).

(ii) For iteration j ≥ 1:

- sample θ(j) ∼ p(θ|x(j−1)1:T , y1:T ) ,

- run a conditional SMC targeting pθ(j)(x1:T |y1:T ) conditional on x
(j−1)
1:T , and compute

the likelihood estimate p̂θ(j)(y1:T ),

- run an SMC targeting pθ(j)(x1:T |y1:T ), sample x∗1:T ∼ p̂θ(j)(x1:T |y1:T ), and compute

the likelihood estimate p̂∗
θ(j)

(y1:T ),

- with probability

1 ∧
p̂∗
θ(j)

(y1:T )

p̂θ(j)(y1:T )
(23)

set x(j)1:T = x∗1:T , otherwise x
(j)
1:T = x

(j−1)
1:T .

The efficacy of this PGMH algorithm to improve the mixing of the baseline PG critically depends

on the numerical precision of the (conditional) SMC estimates for the marginal likelihood pθ(y1:T )

defining the acceptance rate of the additional particle MH-step as given in Equation (23). In partic-

ular, if the SMC delivers noisy estimates for pθ(y1:T ) the MH updates for x1:T can get stuck for many

iterations leading to very poor mixing. Hence, efficient PGMH implementations are those for which

the SMC marginal likelihood estimates have a small variance. Since, as discussed in Section 4.1, the

PEIS produces very precise SMC estimates, we expect a high efficacy of the PGMH in improving the

mixing of the baseline PG by relying upon PEIS estimates for pθ(y1:T ) as given by Equation (19)

(PGMH-PEIS).

5. Applications

In this section we discuss two applications illustrating how the PEIS can be used to improve the

mixing of the baseline PG and its extensions provided by the PGAS and PGMH: a stochastic volatility

model and a Gaussian nonlinear local level model. The specific models are described in Section 5.1.
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The PEIS implementation for both models is then outlined in Section 5.2 and the results are discussed

in Section 5.3.

5.1 Example models and data

The first example is a standard stochastic volatility (SV) model for the volatility of financial returns

(see, e.g., Ghysels et al., 1996). It has the form

yt = β exp{xt/2}ηt, ηt ∼ i.i.d.N(0, 1), (24)

xt = δxt−1 + νεt, εt ∼ i.i.d.N(0, 1), (25)

where yt is the asset return observed at period t, xt is the latent log volatility and θ = (β, δ, ν)′. The

innovations εt and ηt are mutually independent. Assuming |δ| < 1, the distribution of the initial

state is given by x1 ∼ N(0, ν2/[1− δ2]).

The second example is a time-discretized version of a constant elasticity of variance (CEV) diffu-

sion model for daily short-term interest rates (Chan et al., 1992). In order to account for microstruc-

ture noise, which is to be expected for interest rate data at the daily frequency, the basic CEV

specification is extended to include a noise component (Aït-Sahalia, 1999 and Kleppe and Skaug,

2015). The resulting model for the interest rate yt observed at day t with xt the latent interest-rate

state, is described as

yt = xt + σyηt, ηt ∼ i.i.d.N(0, 1), (26)

xt = xt−1 + ∆(α− βxt−1) + σxx
γ
t−1
√

∆εt, εt ∼ i.i.d.N(0, 1), (27)

where εt and ηt are independent and ∆ = 1/252. The parameters are θ = (α, β, σx, γ, σy)
′. As the

stationary distribution of xt is not known analytically, we assume for the initial state x1 a normal

distribution with a mean set equal to the observed value of y1 and a standard deviation of 100 basis

points so that x1 ∼ N(y1, [0.01]2).

The data we use for the SV model are daily log returns, multiplied by 100, on the S&P 500 stock

index from October 1, 1999 to September 30, 2009, with a sample size of T = 2515. The data for
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CEV model consists of daily 7-day Eurodollar deposit spot rates from January 2, 1983 to February

25, 1995, with T = 3082. (This data set is discussed in more detail in Aït Sahalia, 1996). See Figure

1 for time series plots of the SV and CEV data.

The two example models differ in their statistical structure and pose different challenges to PG

algorithms. The SV model involves a linear Gaussian transition density and a measurement den-

sity which is non-Gaussian in the states. In the SV return data the parameter estimates imply a

measurement density which is not very informative about the states and state innovations which

are fairly volatile. This represents a scenario, where standard SMCs typically exhibit a satisfactory

performance. However, in the SV data, the level of the return volatility features abrupt changes,

like the dramatic increase associated with the last financial crisis in the second half of the 2000s.

Such a burst of volatility poses a challenge for standard SMCs as it is difficult for their IS densities

to properly adjust. In the CEV model we have a nonlinear Gaussian state transition density fθ

coupled with a measurement density gθ which is Gaussian in the states. In the interest data for this

model, the estimated standard deviation of the measurement error σy we obtain is small relative to

the typical standard deviation of the state innovations σxx
γ
t−1
√

∆, so that the observations are much

more informative about the states than in the SV model. This leads to a large sensitivity of SMC

procedures to outliers (see, e.g., DeJong et al., 2013) with potential adverse effect on the efficiency

of the PG. Such outliers are frequently observed in interest rate data.

5.2 PEIS implementation

As discussed in Section 4.1, the implementation of (P)EIS requires to select a parametric class for the

EIS density kernel kt(x1:t, ct) capable of providing a good functional approximation to the period-t

EIS target given by (see Equation 11)

gθ(yt|xt)fθ(xt|xt−1)χt+1(x1:t; ct+1). (28)
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Both example models have in common that they involve a Gaussian transition density with a condi-

tional mean µt and variance σ2t , written as

fθ(xt|xt−1) = fN (xt|µt, σ2t ), (29)

where for the SV model we have µt = δxt−1 and σ2t = ν2, while for the CEV model it is the case

that µt = xt−1 + ∆(α− βxt−1) and σ2t = σ2xx
2γ
t−1∆.

In such Gaussian transition cases it is natural to select for kt a Gaussian kernel in xt which consists

of the product of the Gaussian transition density fθ already included in the EIS target in Equation

(28) and a Gaussian kernel approximation in xt to the remaining non-Gaussian product gθ χt+1. The

corresponding EIS kernel kt can be parameterized as

kt(x1:t, ct) = fθ(xt|xt−1)ζt(xt; ct), with ζt(xt; ct) = exp{c1txt + c2tx
2
t }, (30)

where ζt is the Gaussian kernel designed to approximate gθ χt+1 with auxiliary EIS parameters

ct = (c1t, c2t). Since fθ in the kernel kt as defined in Equation (30) is also a component of the

EIS target, it cancels out in the EIS regressions (12). Hence, they simplify into simple linear LS

regressions of ln[gθ(yt|xit)χt+1(x
i
1:t; ĉt+1)] on xit and (xit)

2 and a constant.

From Equation (30) it immediately follows that the Gaussian EIS density for xt|xt−1 has the form

qt(xt|xt−1, ct) = fN
(
xt|mt, v

2
t

)
, (31)

with

v2t =
σ2t

1− 2c2tσ2t
, mt = v2t

(
µt
σ2t

+ c1t

)
, (32)

and integrating kt w.r.t. xt leads to an integrating factor of the form

χt(x1:t−1, ct) =

√
v2t√
σ2t

exp

{
1

2

(
m2
t

v2t
− µ2t
σ2t

)}
. (33)

As mentioned in Section 4.1, the sequence of EIS regressions in Equation (12) producing near
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optimal values for the EIS parameters c need to be iterated since the R trajectories {xi1:T }Ri=1 used in

the EIS regression are to be drawn from the joint IS density q(x1:T ; c) itself. This requires selecting an

initial value ĉ[0] = (ĉ
[0]
1 , ..., ĉ

[0]
T ) and then for iteration ` = 1, ..., L using trajectories from q(x1:T ; ĉ[`−1])

to compute a new c[`]. Actually, when using a number of EIS trajectories R of the order of 3 to 5

times the number of parameters in the period-t EIS regression, only the first 2 or 3 iterations produce

significant improvements on the approximation of the EIS targets as measured by the R2 of the EIS

LS regressions. Thus we preset the number of EIS iterations at L = 4 and set R = 15. As for

ĉ[0], we can exploit that in the case of the CEV model the measurement density gθ(yt|xt) in the

EIS targets itself is a Gaussian kernel in xt so that we can select ĉ[0]t as that value for ct for which

ζt(xt; ct) ∝ gθ(yt|xt). It follows that the resulting initial EIS density qt(xt|xt−1, ĉ[0]t ) corresponds to

the IS density of the conditional optimal particle filter. For the SV model, gθ(yt|xt) is non-Gaussian

in xt so that we use for ln ζt a second-order Taylor-series approximation in xt to ln gθ to obtain an

initial value ĉ[0]t . The R2 we find in the final sequence of EIS regressions is typically larger than 0.99,

which indicates that the resulting EIS densities are nearly perfectly globally adapted to the SMC

target pθ(x1:T |y1:T ).

The functional forms of the EIS densities given in Equations (30) to (33) together with the near

optimal value ĉ = ĉ[L] are used to run the SMC steps (ii) and (iii) of the PEIS algorithm provided

in Section 4.1. Note that this PEIS algorithm covers the standard BPF as a special case with ĉ ≡ 0,

leading to kt(x1:t; 0) = fθ(xt|xt−1) with χt(x1:t−1; 0) = 1.

5.3 Results

Here we present simulation experiments using the SV and CEV model to compare the following 8

PG schemes:2 The baseline PG based on the BPF (PG-BPF), PEIS (PG-PEIS) and PEIS with

sparse resampling (PG-PEIS-sparse), then the PGAS combined with the BPF (PGAS-BPF) and

PEIS (PGAS-PEIS) and, finally, the PGMH using the BPF (PGMH-BPF), PEIS (PGMH-PEIS)
2In addition, for the CEV model we considered the PGAS based on the fully adapted APF, which extends the

intermediate target in Equation (3) by including the one-period ahead predictive density pθ(yt+1|xt) and uses the
conditional optimal IS density pθ(xt|yt, xt−1) (see, Pitt et al., 2012, and Pitt et al., 2015). However, the results are
not reported here as the predictive density and the conditional optimal IS density are analytically known only for the
CEV model but not for the SV application. Moreover, the PGAS results for the CEV model show no improvements
when replacing the BPF by the fully adapted APF.
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and PEIS-sparse (PGMH-PEIS-sparse). We use multinomial resampling for the SMC resampling

steps. For the PEIS-sparse the resampling is conducted only every 500 periods. The PG methods

were all implemented in the interpreted language MATLAB, making computing times comparable.

For all the experiments we use the real data sets described in Section 5.1. The corresponding

maximum likelihood (ML) estimates based on EIS evaluations of the likelihood are (β, δ, ν) = (1.065,

0.992, 0.122) for the SV model and (α, β, σx, γ, σy) = (0.0097, 0.1656, 0.4250, 1.201, 0.0005) for the

CEV model.

5.3.1 Mixing of Particle Gibbs for fixed parameters

The first experiment is designed to analyze the mixing of the PG algorithms w.r.t. the states under

their joint posterior pθ(x1:T |y1:T ) for a fixed value of the parameters θ. Throughout this experiment

we set the parameters equal to their ML estimates and generate samples from this density using

the PG algorithms, which are all implemented with two different numbers of particles, N = 30 and

N = 1000. All methods are simulated for 1100 iterations, where the first 100 burn-in iterations are

discarded.

In order to compare the mixing, we follow Lindsten et al. (2014) and compute the update rate

for each xt (t = 1, ..., T ) which is defined as the proportion of PG iterations where the value for

xt has changed. The update rates for the 8 PG algorithms plotted against time t are provided in

Figure 2 for the SV model and in Figure 3 for the CEV model. They reveal that in both example

models the update rate for the baseline PG-BPF for N = 30 as well as N = 1000 rapidly decreases

for an increasing distance of t to the final period T . These poor update rates reflect the typical

SMC path degeneracy causing, as discussed in Section 4.2, the state trajectory x(j)1:T at PG iteration

step j to coalesce with the previous trajectory x
(j−1)
1:T . That this poor mixing problem cannot be

addressed satisfactorily by replacing the locally designed BPF by an SMC which is nearly perfectly

globally adapted is evidenced by the update rates of the PG-PEIS: Even if they increase relative to

the PG-BPF they fall in both models, even with N = 1000 particles, below 20% for the states of

the first 500 periods. This is an illustration of the ‘unavoidable’ SMC path degeneracy which we

would obtain under a fully optimal SMC when resampling is performed every period. The update
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rates for the PG-PEIS-sparse remaining above 70% across all periods show that, as expected, sparse

resampling greatly improves the mixing of the PG-PEIS by reducing the path degeneracy.

The comparison of the baseline PG-BPF with the PGAS-BPF shows that the additional AS step

also increases significantly the average probability of updating xt across all periods which is consistent

with the results reported by Lindsten et al. (2014). However, for the CEV model, in particular, this

probability drops dramatically in many periods, indicating that in these periods very few particles

tend to keep all the weights across the PG iterations. As discussed in Section 4.2, this stems from the

model’s tight measurement distribution which makes the PGAS particularly vulnerable to outliers

as they produce AS weights with a large variance (see Equation, 21). This effect appears to be less

acute for the SV model reflecting the fact that its measurement distribution is not very sensitive to

the state. When combined with PEIS, the PGAS with as little as N = 30 particles produce update

rates which are uniformly above 95% for both, the CEV model and the SV model, indicating a close

to perfect and robust mixing of the PGAS.

Turning to the PG augmented by an additional MH move, we also find in both example models

a substantial improvement in the mixing when replacing the BPF by PEIS or PEIS-sparse. Those

improvements reflect the fact that, as discussed in Section 4.3, PEIS(-sparse) produce numerically

far more accurate SMC estimates of the marginal likelihood than the BPF.

For a further comparison of the PG methods, we compute the effective sample size (ESS) of the

posterior samples for the state variable xt at each time period t. The ESS is defined as

ESS = M
[
1 + 2

∑J
j=1 γ(j)

]−1
, (34)

where M is the size of the posterior sample, and
∑

j γ(j) the sum of the J monotone sample auto-

correlations as estimated by the initial monotone sequence estimator proposed by Geyer (1992). The

interpretation is that theM PG draws lead to the same precision as a hypothetical i.i.d. sample from

the posterior of size ESS, so that large values for ESS are preferable. We consider the minimum,

median and maximum ESS over the T sampled state variables. These ESS values are computed

for 10 independent complete PG runs from which we take the corresponding averages. In order to

account for different computing times, we also compute the (average) minimum ESS standardized
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by the Central Processor Unit (CPU) time required to run a PG algorithm. It measures the time it

takes to obtain one i.i.d. draw of the complete x1:T -trajectory from its posterior. The ESS results

are reported in Table 1 for the SV model and in Table 2 for the CEV model.

The results for both models show that, for a given number of particles N , the PEIS(-sparse)

substantially increases the median and the minimum ESS of the baseline PG, PGAS and PGMH

relative to their corresponding BPF counterpart. The largest i.i.d. sample from pθ(x1:T |y1:T ) per

hour computing time is produced by the PG-PEIS-sparse with N = 1000 for the SV model, and by

the PGAS-PEIS with N = 30 for the CEV model. This illustrates that the improvements of the PG

approximations to pθ(x1:T |y1:T ) gained by the global PEIS outweigh its additional computational

costs relative to the locally designed BPF.

5.3.2 Full Bayesian analysis

Here, we compare the performance of the PG algorithms for a full Bayesian analysis of the two

example models. For the parameters of both models we select fairly uninformative priors (for details

of the prior selection, see Appendix 2). In light of the severe mixing problems of the PG-BPF,

PG-PEIS and PGMH-BPF documented in the previous section, the remainder investigation focuses

on the efficiency of the PG-PEIS-sparse, PGAS-BPF, PGAS-PEIS, PGMH-PEIS and PGMH-PEIS-

sparse. For all of those five methods we use throughout 50,000 PG iterations where the first 10,000

burn-in iterations are discarded.

The Bayesian posterior results for the five PG procedures, each based on N = 30 particles, are

summarized in Table 3 for the SV model and in Table 4 for the CEV model. Both tables report the

following statistics for the model parameters (θ), the initial (x1), middle (xT/2) and last state (xT ):

The PG posterior mean and standard deviation together with the ESS and ESS standardized by

computing time. All statistics reported in Tables 3 and 4 are sample averages which are computed

from 10 independent replications obtained by running each of the PG algorithms under 10 different

seeds. The tables also provide the corresponding statistics for the ‘ideal’ Gibbs sampler, i.e., the

sampler which simulates x1:T directly from the true posterior pθ(x1:T |y1:T ). This fictitious Gibbs

sampler is approximated by the PGAS-PEIS implemented with N = 10, 000 particles. Since the
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PG algorithms can be seen as MC approximations of the ideal Gibbs sampler, the latter provides a

natural benchmark for the mixing performance of the former (see, e.g., Lindsten et al. 2014).

From the results for the SV model in Table 3 we see that with N = 30 all five PG algorithms

produce MC estimates of the posterior means which are close to those of the ideal Gibbs sampler and

the corresponding ML estimates. The ESS values indicate that replacing the BPF by PEIS improves,

as expected from the results in Section 5.3.1, the mixing of the PGAS for the parameters and states,

and shifts the ESS values closer to those of the ideal Gibbs sampler. The remaining PG-schemes

based upon PEIS or PEIS-sparse also show a satisfactory mixing relative to the ideal Gibbs. Most

critical for a posterior Gibbs analysis of the parameters θ appears to be the scaling parameter β,

which has among all parameters and across all PG procedures the smallest ESS value. Hence, the

mixing of the sampled β’s sets the limit w.r.t. the amount of i.i.d. draws for θ which can be generated

for a given number of Gibbs iterations or a fixed computing time. In terms of the largest minimum

ESS of the sampled parameters per hour computing time, the PG-PEIS-sparse and PGAS-BPF show

the best performance. For N = 30 particles both produce per hour 7 i.i.d. draws from the marginal

posterior of the parameters p(θ|y1:T ).

In order to analyze the robustness of the PG procedures w.r.t. the selected number of particles, we

plot in Figure 4 the autocorrelation functions (ACF) of the sampled β-parameter for the PGAS-BPF

and PGAS-PEIS for a range of different number of particles N . The ACF plots reveal that the PEIS

version of the PGAS produce comparable mixing rates for any number of particles N larger than 30,

suggesting that it does not require more than N = 30 particles to obtain a performance which comes

close to that of the ideal Gibbs. In contrast, for the BPF counterpart to achieve this performance it

needs more than N = 100 particles.

Turning to the PG posterior results for the CEV model in Table 4, we first note that the MC

estimates for the posterior mean of the parameters θ associated with the PG procedures based on

PEIS are all in close agreement with those of the ideal Gibbs and their ML counterparts. For the

PGAS based on BPF, however, the posterior parameter estimates substantially differ from those

benchmarks. These serious biases are consistent with the results of Section 5.3.1, showing that

in situations involving tight measurement densities coupled with outliers the PGAS-BPF has severe
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problems to fully explore the domain of the states under pθ(x1:T |y1:T ). That the measurement density

in this example is fairly tight is indicated by the tiny value of the estimates for the standard deviation

σy. In contrast to the PGAS-BPF, the PG procedures based on PEIS ensure even in this challenging

scenario a fast and reliable exploration of pθ(x1:T |y1:T ) and lead to accurate posterior estimates for

the parameters. Note also that the ESS values in Table 4 indicate that with N = 30 particles the

mixing rate of all PG procedures using PEIS is very close to that of the ideal Gibbs sampler. (Since

the PGAS-BPF parameter draws apparently fail to appropriately represent the posterior p(θ|y1:T )

we refrain from reporting the corresponding values of the ESS statistic.)

The two parameters with the lowest ESS values are σx and γ. In Figure 4 we plot the ACF for

those two parameters sampled by the PGAS-PEIS under different number of particles. The results

reveal that the PGAS-PEIS achieves a performance close to that of an ideal Gibbs with as little as

N = 5 particles.

6. Conclusions

The particle Gibbs (PG) is a flexible and easy to implement tool for conducting Bayesian analyses

of state space models. It uses sequential Monte Carlo (SMC) inside the Gibbs procedure in order to

update the latent state trajectories. However, in high-dimensional applications when there is path

degeneracy in the underlying SMC sampler the baseline PG suffers from severe mixing problems.

Refinements designed to improve the mixing of the baseline PG introduce an ancestor sampling step

to the underlying SMC (PGAS) or an additional Metropolis-Hastings move for the update of the

state trajectories (PGMH). However, such refinements when implemented using a standard locally

designed SMC procedure such as the bootstrap particle filter of Gordon et al. (1993) can still be

prone to mixing problems, particularly, in applications involving narrowly distributed measurement

variables and given the presence of outliers.

Here, we have proposed to combine the PG and its refinements with Particle Efficient Importance

Sampling (PEIS) to overcome the mixing problem of the PG. The PEIS is an SMC algorithm based

on a recursive sequence of simple auxiliary regressions designed to construct highly efficient SMC

importance sampling densities and resampling weights, which are globally adapted to the targeted
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posterior density of the states. We have shown that the PG when combined with PEIS leads to

significant improvements of the mixing w.r.t. the state trajectories relative to PG procedures based

on standard locally designed SMC algorithms. By such improvements of the mixing, PG implemen-

tations based on PEIS allow for numerically accurate and reliable Bayesian parameter estimates in

state space models as illustrated by the applications to a stochastic volatility model for asset returns

and a constant elasticity of variance model for interest rates.
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Appendix 1: Proof of Lemma 1

The SMC-IS weights of the PEIS in Equation (15) obtain immediately by replacing in the general

form of the SMC-IS weights given by Equation (6) the kernel of the intermediate targets γt and γt−1

and the IS densities qt by the intermediate PEIS targets and PEIS densities defined, respectively, in

Equations (13) and (14).

In order to obtain the relationship between the predictive density pθ(yt+1:T |xt) and the EIS in-

tegrating factor χt+1(x1:t; ct) defined in Equation (10), we first write the predictive densities for the

SSM given in Equation (1) as the following backward-recursive sequence of integrals:

pθ(yT |xT−1) =

∫
gθ(yT |xT )fθ(xT |xT−1)dxT , (35)

pθ(yt:T |xt−1) =

∫
pθ(yt+1:T |xt)gθ(yt|xt)fθ(xt|xt−1)dxt, t = T − 1, ...., 2, (36)
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pθ(y1:T ) =

∫
pθ(y2:T |x1)gθ(y1|x1)fθ(x1)dx1. (37)

This sequence shows that if the period-T EIS-kernel kT (x1:T ; cT ) as a function in xT−1:T is close to be

proportional to the integrand gθ(yT |xT )fθ(xT |xT−1) in Equation (35), then (i) its integrating factor

χT (x1:T−1; cT ) is close to be proportional to the density pθ(yT |xT−1) as a function in xT−1, and (ii)

we obtain the following close approximation to the period T − 1 integrand as given by Equation (36)

pθ(yT |xT−1)gθ(yT−1|xT−1)fθ(xT−1|xT−2) ' (38)

constant · χT (x1:T−1, cT )gθ(yT−1|xT−1)fθ(xT−1|xT−2),

where the r.h.s is approximated by the period-(T − 1) EIS density kernel kT−1(x1:T−1; cT−1). The

proof of Equation (16) follows by recursion.

Appendix 2: Prior assumptions

For the parameters of the SV model in Equations (24) and (25) we use the following priors: For

lnβ we assume a flat prior, and for (δ + 1)/2 a Beta prior with a prior mean for δ of 0.86 and a

prior variance of 0.012. For ν2 an inverted chi-squared prior with ν2 ∼ p0s0/χ
2
(p0)

and p0 = 10 and

s0 = 0.01 is used. The conditional posteriors for β and ν can be simulated directly. To sample from

the conditional posterior of δ we use an independent MH sampler (for details, see Kim et al., 1998).

The prior assumptions on the parameters of the CEV model in Equation (26) and (27) are the

following: for α and β we assume a Gaussian prior with α ∼ N(0, 1000) and β ∼ N(0, 1000) and for

γ a uniform pior on the interval [0, 4]. An uninformative inverted chi-squared prior is used for σ2x

and σ2y with prior densities given by p(σ2x) ∝ 1/σ2x and p(σ2y) ∝ 1/σ2y . All conditional posteriors in

the CEV model are of known form, except for that of γ, which we sample using Griddy Gibbs.
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Figure 1. Top panel: The daily short-term Eurodollar interest rates from 1983 to 1995; Bottom panel: The

daily returns on the S&P 500 stock index from 1999 to 2009.
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Figure 2. PG update rates for xt versus t = 1, ..., T for the SV model, using N = 30 particle (black line) and

N = 1000 (blue line).
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Figure 3. PG update rates for xt versus t = 1, ..., T for the CEV model, using N = 30 particle (black line)

and N = 1000 (blue line).
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Figure 4. ACFs of the sampled SV parameter β for PGAS-BPF (left) and PGAS-PEIS (right) under

different numbers of SMC particles, N ∈ {5, 10, 30, 50, 100, 500, 1000}.
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Figure 5. ACFs of the sampled CEV parameters σx (left) and γ (right) for the PGAS-PEIS under different

numbers of SMC particles, N ∈ {5, 10, 30, 50, 100, 500, 1000}.
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Table 1. Effective Sample Size for PG Samples from the Posterior of the States
in the SV Model for Fixed Parameters

Number of CPU time Minimum Median Maximum Minimum
particles in sec ESS ESS ESS ESS per

hour CPU
time

PG-BPF 30 283 1 1 621 13
PG-BPF 1000 942 3 30 1000 12
PG-PEIS 30 1646 1 1 566 2
PG-PEIS 1000 2397 21 173 999 31
PG-PEIS-sparse 30 1552 332 671 969 771
PG-PEIS-sparse 1000 2249 569 948 1000 912

PGAS-BPF 30 653 45 415 689 254
PGAS-BPF 1000 1499 297 934 1000 716
PGAS-PEIS 30 2042 240 475 707 423
PGAS-PEIS 1000 3038 573 949 1000 686

PGMH-BPF 30 881 1 1 1 4
PGMH-BPF 1000 2454 34 113 210 51
PGMH-PEIS 30 2313 284 538 756 442
PGMH-PEIS 1000 3798 532 876 1000 505
PGMH-PEIS-sparse 30 1906 355 662 860 674
PGMH-PEIS-sparse 1000 3345 552 894 1000 563

NOTE: Results from the PG algorithms are based on 1,100 PG iterations (discarding the first 100
draws). All reported statistics are sample averages computed from 10 independent replications of the PG
algorithms under 10 different seeds.
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Table 2. Effective Sample Size for PG Samples from the Posterior of the States
in the CEV Model for Fixed Parameters

Number of CPU time Minimum Median Maximum Minimum
particles in sec ESS ESS ESS ESS per

hour CPU
time

PG-BPF 30 159 1 1 926 23
PG-BPF 1000 1241 1 1 1000 3
PG-PEIS 30 1228 1 1 916 3
PG-PEIS 1000 3074 10 125 1000 11
PG-PEIS-sparse 30 1148 368 739 1000 1154
PG-PEIS-sparse 1000 2853 555 962 1000 701

PGAS-BPF 30 302 1 871 1000 12
PGAS-BPF 1000 2166 2 963 1000 3
PGAS-PEIS 30 1325 522 902 1000 1421
PGAS-PEIS 1000 3916 545 967 1000 501

PGMH-BPF 30 436 36 36 36 278
PGMH-BPF 1000 2723 9 9 11 12
PGMH-PEIS 30 1628 522 924 1000 1156
PGMH-PEIS 1000 5271 565 961 1000 386
PGMH-PEIS-sparse 30 1404 512 929 1000 1314
PGMH-PEIS-sparse 1000 4727 549 963 1000 418

NOTE: Results from the PG algorithms are based on 1,100 PG iterations (discarding the first 100
draws). All reported statistics are sample averages computed from 10 independent replications of the PG
algorithms under 10 different seeds.
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Table 3. PG Posterior Analysis of the SV model

PG- PGAS- PGAS- PGMH- PGMH- Ideal
PEIS- BPF PEIS PEIS PEIS- Gibbs
sparse sparse

CPU time (hours) 14:30 5:49 18:45 21:26 17:15

β post. mean 1.0617 1.0645 1.0754 1.0580 1.0727 1.0708
post. std. 0.1855 0.1943 0.1892 0.2214 0.1978 0.2003
ESS 96 41 77 72 96 112
ESS/hour CPU time 7 7 4 3 6

δ post. mean 0.9924 0.9924 0.9924 0.9926 0.9924 0.9924
post. std. 0.0027 0.0027 0.0027 0.0028 0.0027 0.0028
ESS 653 467 582 474 538 694
ESS/hour CPU time 45 80 31 22 31

ν post. mean 0.1205 0.1204 0.1201 0.1203 0.1202 0.1206
post. std. 0.0125 0.0125 0.0125 0.0123 0.0125 0.0128
ESS 265 345 355 226 251 356
ESS/hour CPU time 18 59 19 11 15

x1 post. mean 0.4246 0.4250 0.4032 0.4531 0.4101 0.4141
post. std. 0.4997 0.5160 0.5092 0.5514 0.5109 0.5210
ESS 263 108 204 198 251 261
ESS/hour CPU time 18 18 11 9 15

xT/2 post. mean -0.8114 -0.8136 -0.8347 -0.7794 -0.8281 -0.8229
post. std. 0.4443 0.4600 0.4520 0.5054 0.4540 0.4678
ESS 172 72 135 125 171 184
ESS/hour CPU time 12 12 7 6 10

xT post. mean -0.2229 -0.2253 -0.2432 -0.1903 -0.2377 -0.2335
post. std. 0.5091 0.5229 0.5154 0.5618 0.5208 0.5271
ESS 273 113 211 202 252 277
ESS/hour CPU time 19 19 11 9 15

NOTE: Results from the PG algorithms for the stochastic volatility model based on 50,000 PG iterations
(discarding the first 10,000 draws) and N = 30 SMC particles. All reported statistics are sample averages
computed from 10 independent replications of the PG algorithms under 10 different seeds. The ML
estimates for the parameters are (β, δ, ν) = (1.065, 0.992, 0.122).
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Table 4. PG Posterior Analysis of the CEV model

PG- PGAS- PGAS- PGMH- PGMH- Ideal
PEIS- BPF PEIS PEIS PEIS- Gibbs
sparse sparse

CPU time (hours) 20:56 7:45 20:05 23:44 17:47

α post. mean 0.0099 0.0067 0.0099 0.0098 0.0098 0.0099
post. std. 0.0090 0.0068 0.0090 0.0090 0.0090 0.0090
ESS 35188 – 34896 35144 35544 34396
ESS/hour CPU time 1682 – 1738 1481 1998

β post. mean 0.1685 0.1297 0.1682 0.1675 0.1682 0.1683
post. std. 0.1727 0.1312 0.1726 0.1727 0.1728 0.1727
ESS 37493 – 37689 37083 37407 37252
ESS/hour CPU time 1792 – 1878 1563 2103

σx post. mean 0.4058 0.3046 0.4074 0.4080 0.4071 0.4074
post. std. 0.0602 0.0570 0.0594 0.0634 0.0609 0.0616
ESS 141 – 149 122 137 137
ESS/hour CPU time 7 – 7 5 8

γ post. mean 1.1813 1.1744 1.1830 1.1831 1.1826 1.1828
post. std. 0.0589 0.0711 0.0576 0.0609 0.0592 0.0593
ESS 139 – 147 122 134 136
ESS/hour CPU time 7 – 7 5 8

σy post. mean 0.0005 0.0009 0.0005 0.0005 0.0005 0.0005
post. std. 2.3e-5 1.9e-5 2.2e-5 2.3e-5 2.3e-5 2.2e-5
ESS 675 – 770 629 587 723
ESS/hour CPU time 32 – 38 27 33

x1 post. mean 0.0954 0.0949 0.0954 0.0954 0.0954 0.0954
post. std. 0.0005 0.0008 0.0005 0.0005 0.0005 0.0005
ESS 36784 – 36900 37346 25507 39114
ESS/hour CPU time 1759 – 1837 1574 1435

xT/2 post. mean 0.0925 0.0924 0.0925 0.0925 0.0925 0.0925
post. std. 0.0005 0.0007 0.0005 0.0005 0.0005 0.0005
ESS 37733 – 36712 37810 30781 39671
ESS/hour CPU time 1804 – 1828 1594 1731

xT post. mean 0.0608 0.0607 0.0608 0.0608 0.0608 0.0608
post. std. 0.0005 0.0007 0.0005 0.0005 0.0005 0.0005
ESS 37503 – 36689 37834 36953 39638
ESS/hour CPU time 1792 – 1827 1595 2078

NOTE: Results from the PG algorithms for the CEV interest rate model based on 50,000 PG iterations
(discarding the first 10,000 draws) and N = 30 SMC particles. All reported statistics are sample averages
computed from 10 independent replications of the PG algorithms under 10 different seeds. The ML
estimates for the parameters are (α, β, σx, γ, σy) = (0.0097, 0.1656, 0.4250, 1.201, 0.0005).
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