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Abstract We consider a discrete-time approximation of paths of an Ornstein–Uhlenbeck pro-
cess as a mean for estimation of a price of European call option in the model of financial mar-
ket with stochastic volatility. The Euler–Maruyama approximation scheme is implemented. We
determine the estimates for the option price for predetermined sets of parameters. The rate of
convergence of the price and an average volatility when discretization intervals tighten are de-
termined. Discretization precision is analyzed for the case where the exact value of the price
can be derived.
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1 Introduction

We consider a discrete-time approximation for the price of European call option in the
model of financial market with stochastic volatility drivenby the Ornstein–Uhlenbeck
process. An analytic expression for the price of the option is derived in [9]; however,
the resulting formula is complicated and difficult to apply in most of available soft-
ware. The discrete-time approximation is ready to be modeled even in the nonspecific
software.
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The problem of construction of discrete-time analogues forstochastic volatility
models of financial markets is studied in a series of works including [5, 7, 2, 16, 1, 6,
18]. Various techniques are implemented, for example, multilevel Monte Carlo [5],
conditional Monte Carlo [2, 18], exact simulation [2, 16], and Itô–Taylor approxima-
tions [7].

In most of the works, authors construct discrete-time approximations both for
processes that describe the evolution of the price of asset and for processes driving
the volatility of asset price. The model considered in this paper allows us to apply an-
other approach: we only discretize the volatility process.The resulting discrete-time
volatility process is then averaged in a special way and substituted into the option
pricing formula. The option price is determined conditionally on the path of volatility
process, and thus the conditional Monte Carlo approach is used. The rate of con-
vergence of the option price calculated using the discrete-time volatility to the true
option price for a given trajectory of volatility process isestimated.

Discretization of the model is naturally connected with theproblem of discrete-
time approximations to the solutions of stochastic differential equations. These mat-
ters are widely investigated and systematized in [8, 14, 17]. The simplest discrete-time
approximation is the stochastic generalization of Euler approximation for determin-
istic differential equations proposed in [11], which is also referred to as the Euler–
Maruyama scheme. Another suitable for implementation and effective method is the
Milstein scheme [12]. Since the model under consideration is a diffusion with addi-
tive noise, both schemes coincide which is referred to below. It is worth noticing that
Euler and Milstein schemes both belong to the class of Itô–Taylor approximations
and have orders of convergence 0.5 and 1, respectively. For some diffusions, the ap-
proximation schemes can be enhanced to provide higher-order convergence, but this
usually results in great increase in computation time.

Although exact simulation provides more precision compared to the Euler ap-
proximation, in this paper, we use the latter. This is motivated by the fact that the
Euler approximation is cheaper in terms of computation timeand by our desire to
assess the rate of convergence of conditional option priceswhen the volatility is dis-
cretized using the Euler scheme.

This paper is structured as follows. We begin with the definition of the model un-
der consideration and the discretization scheme used. In Section 3, the prices of the
European call option are compared for discrete-time and continuous volatility pro-
cesses to derive the estimate of strong convergence order. Section4 provides numeric
results of the simulation. In Section5, we demonstrate the precision of discrete-time
approximation for the case of deterministic volatility. Appendix A contains defini-
tions and auxiliary results on discretization schemes and orders of their convergence
mostly coming from [8].

2 The model and discrete approximation of volatility process

Let {Ω,F ,F = {F (B,Z)
t , t ≥ 0},P} be a complete probability space with filtration

generated by Wiener processes{Bt, Zt, 0 ≤ t ≤ T }. We consider the model of the
market where one risky asset is traded, its price evolves according to the geometric
Brownian motion{St, 0 ≤ t ≤ T }, and its volatility is driven by a stochastic
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process. More precisely, the market is described by the pairof stochastic differential
equations

dSt = µStdt+ σ(Yt)StdBt, (1)

dYt = −αYtdt+ kdZt. (2)

We denote byS0 = S andY0 = Y the deterministic initial values of the processes
specified by Eqs. (1)–(2).

We further impose the following assumptions:

(C1) The Wiener processesB andZ are uncorrelated;

(C2) the volatility functionσ : R → R+ is measurable, bounded away from zero by
a constantc:

σ(x) ≥ c > 0, x ∈ R,

and satisfies the condition
∫ T

0 σ2(Yt)dt < ∞ a.s.;

(C3) the coefficientsα, µ, andk are positive.

For example, the conditions mentioned in assumption (C2) are satisfied for the
measurable functionσ(x) such thatc ≤ σ2(x) ≤ C for 0 < x < T and some
constants0 < c < C. Moreover, given the square integrability ofσ(Ys), the solution
of differential equation (1) is given by

St = S0 exp

(

µt− 1

2

∫ t

0

σ2(Ys)ds+

∫ t

0

σ(Ys)dBs

)

, (3)

which yields thatSt is continuous. Hence, the productσ(Ys)St is square integrable:
∫ T

0 σ2(Yt)S
2
t dt < ∞ a.s.

The unique solution of the Langevin equation (2) Yt is the so called Ornstein–
Uhlenbeck (OU) process. Its properties make it a suitable tool for modeling volatility
in financial markets. One of the most important of the features is the mean-reversion
property. The OU process is Gaussian with the following characteristics:

E[Yt] = Y0 e
−αt, Var[Yt] =

k2

2α

(

1− e−2αt
)

.

Moreover, the OU process is Markov and admits the explicit representation

Yt = Y0 e
−αt +k

∫ t

0

e−α(t−s) dZs. (4)

Following [9], we proceed to the risk-neutral setting characterized by the minimal
martingale measureQ. With r being the interest rate, Eqs. (1)–(2) are now in the
following form (see Section 5 in [9]):

dSt = rStdt+ σ(Yt)StdB
Q
t ,

dYt = −αYtdt+ kdZQ
t , (5)
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where

BQ
t = Bt +

∫ t

0

µ− r

σ(Ys)
ds and ZQ

t = Zt

are independent Wiener processes w.r.t.Q.
This continuous-time model admits a variety of discrete-time approximations.

In this paper, we apply the familiar Euler–Maruyama scheme,also referred to as
the Euler scheme. The Euler–Maruyama approximation to the true solution of the
Langevin equation (2) is the Markov chainY (m) defined as follows:

• the partition of the interval[0, T ] intom equal subintervals of width∆t = T/m
is considered;

• the initial value of the scheme is set:Y
(m)
0 = Y0;

• Y
(m)
l+1 , which we will use as a shorthand forY (m)

(l+1)T/m, 0 ≤ l ≤ m − 1, is
recursively defined by

Y
(m)
l+1 = (1− α∆t)Y

(m)
l + k∆ZQ

l , (6)

where∆ZQ
l = ZQ

(l+1)T/m − ZQ

lT/m.

The continuous-time processY (m)
t is a step-type process defined by

Y
(m)
t = Y

(m)
[tm/T ]T/m, t ∈ [0, T ],

where[x] denotes an integer part ofx.

3 The price of European call option

The price of European call optionV in the initial time moment of in model (5) is
provided by

V = e−rT EQ
{

EQ
{(

SQ
T −K

)+ ∣
∣Ys, 0 ≤ s ≤ T

}}

. (7)

The inner expectation is conditional on the path ofYs, 0 ≤ s ≤ T , and therefore,
it actually is the Black–Scholes price for a model with deterministic time-dependent
volatility. According to Lemma 2.1 in [13], the inner expectation in (7) has the fol-
lowing representation:

P := EQ
{(

SQ
T −K

)+ ∣
∣Ys, 0 ≤ s ≤ T

}

= elnS+rT Φ(d1)−KΦ(d2)

:= elnS+rT Φ

(

lnS + (r + 1
2 σ̄

2)T − lnK

σ̄
√
T

)

−KΦ

(

lnS + (r − 1
2 σ̄

2)T − lnK

σ̄
√
T

)

, (8)
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whereσ̄ :=

√

1
T

∫ T

0 σ2(Ys)ds ≥ 0, Φ is the standard normal distribution function.
The functionσ̄ may be viewed as the volatility averaged from the initial moment of
time to maturity. The arguments ofΦ in (8) are denoted asd1 andd2.

Our aim is to estimate the error arising as a result of approximation of the ex-
act formula (7) by application of the Euler approximation to the process that drives
volatility. Thus, we need to assess the expectation ofR given by

R := |P − P̂m|, (9)

wherem is the number of discretization points dividing the time interval [0, T ] into
equal intervals,̂Pm denotes the price of the option in discrete setting calculated using
the formula similar to (8):

P̂m = elnS+rT Φ
(

d
(m)
1

)

−KΦ
(

d
(m)
2

)

, (10)

where

d
(m)
1 =

lnS + (r + 1
2 σ̄

2
m)T − lnK

σ̄m

√
T

, (11)

d
(m)
2 =

lnS + (r − 1
2 σ̄

2
m)T − lnK

σ̄m

√
T

, (12)

with

σ̄m =

√

√

√

√

1

T

m
∑

l=1

σ2
(

Y
(m)
l

) T

m
=

√

√

√

√

1

m

m
∑

l=1

σ2
(

Y
(m)
l

)

, (13)

whereY (m)
l is defined in (6).

It is unlikely that we are able to find an exact or even approximate value forR.
However, what really makes interest for investigation of the above bundle of models
is the rate of convergence of the discrete setting to the continuous one. In order to
assess the rate of convergence, the expression for an upper bound ofR in terms ofm
needs to be derived.

Comparing (8) and (10), we can see that the approximation error arises solely
due to the difference between̄σ andσ̄m. So, the first step would assessing the upper
bound of expectation of absolute value of this difference w.r.t.m. After that,R might
be expressed in terms ofRσ := E|σ̄ − σ̄m|.
Lemma 3.1. Letσ2(x) satisfy the Hölder condition

∣

∣σ2(x)− σ2(y)
∣

∣ ≤ L|x− y|γ , (14)

where0 < γ ≤ 1, andL is some positive constant. ThenERσ ≤ Cm−0.5γ , whereC
is some positive constant.

Proof. Sinceσ̄m and σ̄ are both square root functions, it is be more convenient to
work with σ̄2

m andσ̄2. To this end, we will use Hölder’s inequality:

E|σ̄m − σ̄| = E

∣

∣

∣

∣

∣

√

1

T

∫ T

0

σ2(Ys)ds−

√

√

√

√

1

m

m
∑

i=1

σ2
(

Y
(m)
i

)

∣

∣

∣

∣

∣
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≤ E

∣

∣

∣

∣

∣

√

√

√

√

∣

∣

∣

∣

∣

1

T

∫ T

0

σ2(Ys)ds−
1

m

m
∑

i=1

σ2
(

Y
(m)
i

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
(

E

∣

∣

∣

∣

∣

1

T

∫ T

0

σ2(Ys)ds−
1

m

m
∑

i=1

σ2
(

Y
(m)
i

)

∣

∣

∣

∣

∣

)1/2

.

Now we represent the integral as a sum of integrals over shorter intervals. Since the
second summand does not depend ons, we may move it inside the integral sign,
multiplying it by the inverse to the interval length:

E|σ̄m − σ̄| ≤
(

E

∣

∣

∣

∣

∣

m−1
∑

i=0

(

1

T

∫ (i+1)T/m

iT/m

σ2(Ys)ds−
1

m
σ2
(

Y
(m)
i+1

)

)∣

∣

∣

∣

∣

)1/2

=

(

E

∣

∣

∣

∣

∣

m−1
∑

i=0

(

1

T

∫ (i+1)T/m

iT/m

σ2(Ys)ds−
1

m

m

T

∫ (i+1)T/m

iT/m

σ2
(

Y
(m)
i+1

)

ds

)∣

∣

∣

∣

∣

)1/2

=

(

E

∣

∣

∣

∣

∣

1

T

m−1
∑

i=0

∫ (i+1)T/m

iT/m

(

σ2(Ys)− σ2
(

Y
(m)
i+1

))

ds

∣

∣

∣

∣

∣

)1/2

.

We apply the Hölder property ofσ2(x):

(

E

∣

∣

∣

∣

∣

1

T

m−1
∑

i=0

∫ (i+1)T/m

iT/m

(

σ2(Ys)− σ2
(

Y
(m)
i+1

))

ds

∣

∣

∣

∣

∣

)1/2

≤
(

L

T
E

(

m−1
∑

i=0

∫ (i+1)T/m

iT/m

∣

∣Ys − Y
(m)
i+1

∣

∣

γ
ds

))1/2

=

(

L

T

m−1
∑

i=0

∫ (i+1)T/m

iT/m

E
∣

∣Ys − Y
(m)
i+1

∣

∣

γ
ds

)1/2

.

Recall thatY (m)
i is a shorthand forY (m)

iT/m = Y
(m)
s , s ∈ [iT/m, (i + 1)T/m),

and Proposition from the Appendix A yields thatE|Ys−Y
(m)
i+1 | ≤ C1m

−1, whereC1

is some positive constant. We use Hölder’s inequality to derive thatE|Ys−Y
(m)
i+1 |γ ≤

Cγ
1m

−γ and arrive at

E|σ̄m − σ̄| ≤
(

L

T
m

T

m
Cγ

1m
−γ

)1/2

= Cm−γ/2

for C :=
√

LCγ
1 , which proves the lemma.

The above lemma enables us to prove the main result of this section.

Theorem 3.1. Letσ2(x) satisfy Hölder condition(14). ThenER ≤ Dm−γ/2, where
D is some positive constant.
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Proof. The functionΦ(x) has a continuous bounded derivative onR; hence, we can
use its Lipschitz property:

ER = E|P − P̂m|
≤ E

(

S erT
∣

∣Φ(d1)− Φ
(

d
(m)
1

)∣

∣+K
∣

∣Φ(d2)− Φ
(

d
(m)
2

)∣

∣

)

≤ E

(

sup
x

∣

∣f(x)
∣

∣

(

S erT
∣

∣d1 − d
(m)
1

∣

∣+K
∣

∣d2 − d
(m)
2

∣

∣

)

)

,

wheref(x) = 1√
2π

e−
x
2

2 is the density of the standard normal distribution. In the
above representation,

∣

∣d1 − d
(m)
1

∣

∣ =

∣

∣

∣

∣

(

1

σ̄
− 1

σ̄m

)

lnS − lnK + rT√
T

+
1

2

√
T (σ̄ − σ̄m)

∣

∣

∣

∣

(15)

≤ |σ̄ − σ̄m|
∣

∣

∣

∣

1

σ̄σ̄m

ln(S/K) + rT√
T

+

√
T

2

∣

∣

∣

∣

(16)

≤ |σ̄ − σ̄m|
∣

∣

∣

∣

ln(S/K) + rT

c2
√
T

+

√
T

2

∣

∣

∣

∣

, (17)

wherec is a positive constant, and the last inequality is due to the assumption that
σ(x) is bounded away from zero for anyx ∈ R (see assumption (C2)). Hence, using
Lemma3.1, we get

E
∣

∣d1 − d
(m)
1

∣

∣ ≤ C1E|σ̄ − σ̄m| ≤ D1m
−γ/2,

whereC1 := | ln(S/K)+rT

c2
√
T

+
√
T
2 | andD1 are positive constants.

Similarly,E|d2 − d
(m)
2 | ≤ D2m

−γ/2, D2 = const > 0, and we arrive at

ER = E|P − P̂m| ≤ 1√
2π

(

D1S erT m−γ/2 +D2Km−γ/2
)

= Dm−γ/2 (18)

for a positive constantD.
The theorem is proved.

4 Numeric examples

Theorem 6.1 in [9] provides an analytic representation for the price of European
call option for the stochastic volatility model under consideration. However, using it
to calculate the price of an option is rather difficult and time-consuming. We further
present the results of calculation of the price of European call option using simulation
techniques.

The calculation process is performed in Matlab 7.9.0 and is structured as follows:

1. The choice of discrete ranges of values of input parameters;

2. The choice of the functionσ(Ys);
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3. For each combination of input parameters we generate 1000trajectories of an
Ornstein–Uhlenbeck process by splitting the time intervalinto subintervals of
length∆t = 0.001 and modeling values of the OU process at these points (that
is, generating normally distributed variables with known mean and standard
deviation using relationship (6)). For each trajectory, (10) is applied to calculate
σ̄2
m and the price of an option. The results for all trajectories are then averaged

and discounted to provide the sample average of the price denoted byÊP̂m. The
average volatility over all trajectories and time intervalis denoted bŷEσ̄2

m.

To begin with, let us recall the notation of input parametersalong with ranges of
values assigned to them in the process of simulation:

T – time to maturity,T = 0.25; 0.5; 1;
k – volatility of OU process,k = 0.1; 0.5; 1;
α – mean-reversion rate,α = 1; 100;
r – interest rate,r = 0; 0.01; 0.02;
K – strike price,K = 0.8; 1; 1.2;
S0 – initial price of stock,S0 = 1;
Y0 – initial value of OU process,Y0 = 0.1.
In order to produce numerical results, we choose the following options for the

functionσ(Ys):

Table 1.σ2(Ys) = a|Ys|+ b

T k r K a b Êσ̄2
m ÊP̂m Êσ̄2

m ÊP̂m

α = 1 α = 100
0.25 0.1 0 0.8 1 0 0.088 0.204 0.009 0.200
0.5 0.1 0 0.8 1 0 0.082 0.213 0.007 0.200
1 0.1 0 0.8 1 0 0.073 0.227 0.007 0.200
0.25 0.5 0 0.8 1 0 0.147 0.211 0.031 0.200
0.5 0.5 0 0.8 1 0 0.185 0.235 0.030 0.201
1 0.5 0 0.8 1 0 0.216 0.280 0.029 0.207
0.25 1 0 0.8 1 0 0.264 0.224 0.059 0.201
0.5 1 0 0.8 1 0 0.338 0.264 0.058 0.207
1 1 0 0.8 1 0 0.412 0.334 0.058 0.221
0.25 0.1 0.01 1 1 0.2 0.289 0.108 0.209 0.092
0.5 0.1 0.01 1 1 0.2 0.281 0.151 0.207 0.130
1 0.1 0.01 1 1 0.2 0.273 0.210 0.207 0.184
0.25 0.5 0.01 1 1 0.2 0.346 0.117 0.231 0.097
0.5 0.5 0.01 1 1 0.2 0.375 0.172 0.230 0.137
1 0.5 0.01 1 1 0.2 0.414 0.254 0.229 0.193
0.25 1 0.01 1 1 0.2 0.459 0.134 0.259 0.102
0.5 1 0.01 1 1 0.2 0.532 0.203 0.258 0.145
1 1 0.01 1 1 0.2 0.617 0.305 0.258 0.204
0.25 0.1 0.02 1.2 1 1 1.089 0.141 1.009 0.134
0.5 0.1 0.02 1.2 1 1 1.079 0.228 1.007 0.218
1 0.1 0.02 1.2 1 1 1.073 0.347 1.007 0.335
0.25 0.5 0.02 1.2 1 1 1.148 0.147 1.031 0.136
0.5 0.5 0.02 1.2 1 1 1.178 0.240 1.030 0.221
1 0.5 0.02 1.2 1 1 1.216 0.371 1.029 0.339
0.25 1 0.02 1.2 1 1 1.262 0.157 1.059 0.138
0.5 1 0.02 1.2 1 1 1.341 0.260 1.058 0.225
1 1 0.02 1.2 1 1 1.414 0.402 1.058 0.344
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Table 2.σ2(Ys) = eYs +c

T k r K Êσ̄2
m ÊP̂m Êσ̄2

m ÊP̂m

α = 1 α = 100
0.25 0.1 0 0.8 1.113 0.303 1.024 0.297
0.5 0.1 0 0.8 1.103 0.372 1.022 0.363
1 0.1 0 0.8 1.088 0.465 1.021 0.456
0.25 0.5 0 0.8 1.135 0.305 1.025 0.297
0.5 0.5 0 0.8 1.131 0.374 1.023 0.363
1 0.5 0 0.8 1.119 0.468 1.022 0.456
0.25 1 0 0.8 1.184 0.307 1.027 0.297
0.5 1 0 0.8 1.212 0.380 1.025 0.363
1 1 0 0.8 1.238 0.478 1.024 0.456
0.25 0.1 0.01 1 1.112 0.209 1.024 0.201
0.5 0.1 0.01 1 1.103 0.291 1.022 0.281
1 0.1 0.01 1 1.086 0.401 1.021 0.390
0.25 0.5 0.01 1 1.121 0.209 1.025 0.201
0.5 0.5 0.01 1 1.129 0.294 1.023 0.281
1 0.5 0.01 1 1.128 0.405 1.022 0.390
0.25 1 0.01 1 1.178 0.213 1.026 0.201
0.5 1 0.01 1 1.206 0.299 1.025 0.281
1 1 0.01 1 1.216 0.412 1.023 0.390
0.25 0.1 0.02 1.2 1.110 0.143 1.024 0.135
0.5 0.1 0.02 1.2 1.103 0.231 1.022 0.220
1 0.1 0.02 1.2 1.087 0.349 1.021 0.338
0.25 0.5 0.02 1.2 1.133 0.145 1.025 0.135
0.5 0.5 0.02 1.2 1.128 0.233 1.023 0.220
1 0.5 0.02 1.2 1.115 0.352 1.021 0.338
0.25 1 0.02 1.2 1.162 0.147 1.027 0.135
0.5 1 0.02 1.2 1.201 0.239 1.025 0.220
1 1 0.02 1.2 1.255 0.367 1.023 0.338

1. σ2(Ys) = a|Ys|+ b, wherea = {0, 1}, b = {0, 0.2, 1} (Table1);

2. σ2(Ys) = eYs +c, c = 0.02 (Table2).

The results of simulations are split into groups by the mean-reversion rateα
and functionσ(Ys). Meaningless and uninteresting results provided by some distinct
combinations of inputs are ignored.

Mean-reversion of 1 corresponds to slow reverting models, and fast mean-rever-
ting models are characterized byα = 100. Matters of speed of mean-reversion are
addressed, for example, in [4].

We may observe that, under faster mean-reversion, the average volatility Êσ̄2
m

and, consequently, the price of the option are lower, which is exactly what is expected
from the model.

Tables3 and4 illustrate how the price of the option changes with the decrease of
time step in discrete model.

In view of Section3, it is also of certain interest to compare calculations obtained
over one trajectory but under different discretization steps. We constructed 2000 tra-
jectories with time-step size of10−6: 1000 for the caseα = 1 and 1000 for the case
α = 100. These trajectories are considered to be “true” continuous-time trajectories
of the Ornstein–Uhlenbeck processYt. The corresponding values ofσ̄2

m are consid-
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Table 3.σ2(Ys) = |Ys|+ 0.2, K = 1, r = 0.02, k = 0.1, T = 1. Convergence

∆t α Êσ̄2
m d̄

(m)
1 d̄

(m)
2 ÊP̂m

10−2 1 0.272367 0.299043 −0.222056 0.213552
10−3 1 0.271043 0.298506 −0.221338 0.213073
10−4 1 0.272534 0.299123 −0.222179 0.213631
10−5 1 0.271837 0.298822 −0.221753 0.213351
10−6 1 0.271421 0.298667 −0.221560 0.213220
10−2 100 0.208910 0.272291 −0.184776 0.189047
10−3 100 0.206599 0.271267 −0.183264 0.188073
10−4 100 0.206439 0.271196 −0.183159 0.188005
10−5 100 0.206413 0.271184 −0.183142 0.187994
10−6 100 0.206443 0.271198 −0.183162 0.188007

Table 4.σ2(Ys) = eYs +0.2, K = 1, r = 0.02, k = 0.1, T = 1. Convergence

∆t α Êσ̄2
m d̄

(m)
1 d̄

(m)
2 ÊP̂m

10−2 1 1.265414 0.556279 −0.519082 0.431865
10−3 1 1.269504 0.579243 −0.543620 0.432472
10−4 1 1.266274 0.584925 −0.549670 0.431990
10−5 1 1.266030 0.566934 −0.530485 0.431948
10−6 1 1.265635 0.576169 −0.540343 0.431892
10−2 100 1.201083 0.566092 −0.529585 0.422128
10−3 100 1.201047 0.566500 −0.530021 0.422123
10−4 100 1.201026 0.566203 −0.529703 0.422120
10−5 100 1.201036 0.566693 −0.530228 0.422121
10−6 100 1.201023 0.566052 −0.529542 0.422119

ered to be “true” continuous-time values ofσ̄2. The calculations were then performed
for wider discretization intervals using the points of constructed trajectories. Thus,
the samples of discretization errors forσ̄2

m were derived. Probably, the estimate of
σ̄2
m is more valuable in such context since one would not usually calculate the price

of an option over one trajectory. However, the estimate of volatility is usually derived
from past data, which is in essence one distinct realizationof the space of all possible
scenarios.

Tables5 and6 provide characteristics of the samples of discretization errors. Er-
rors are measured as a percentage of the “true” value.

It can be seen from the tables that approximation results do not differ significantly
for various time-steps. Even the widest investigated discretization interval provides
acceptable precision for most applications.

5 Checking approximation precision in the case of deterministic volatility

In this section, we compare the option prices obtained for the Euler scheme (6) with
the true prices of European call option for different sets ofparameters for the case of
deterministic time-dependent volatility.

The models with deterministic time-dependent volatility are the natural extension
of the Black–Scholes model. The expression for the price of the option is the same as
in the classical model except for the fact that, instead of constant volatility, it operates
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Table 5.σ2(Ys) = |Ys| + 0.2, K = 1, r = 0.02, k = 0.1, T = 1. Characteristics of sample
of errors

10−2 10−3 10−4 10−5

α = 1
Average 0.08710% 0.00834% 0.00081% 0.00008%
St. error 0.0000427 0.0000042 0.0000004 0
Median 0.0009575 0.0000834 0.000008 0.0000007
St. deviation 0.0013517 0.0001334 0.0000137 0.0000013
Excess −0.217306 −0.191189 −0.143295 −0.021156
Skewness 0.0492335 −0.002248 0.023124 0.0577173
Min −0.29706% −0.03669% −0.00303% −0.00036%
Max 0.52352% 0.04766% 0.00502% 0.00044%
Count 1000 1000 1000 1000

α = 100
Average 0.07790% 0.00742% 0.00083% 0.00007%
St. error 0.000043 0.0000044 0.0000004 0
Median 0.0008379 0.0000728 0.0000083 0.0000007
St. deviation 0.0013602 0.0001379 0.0000136 0.0000014
Excess −0.234452 −0.302723 −0.352995 −0.054568
Skewness −0.024765 0.0922374 0.0055451 0.0229423
Min −0.30504% −0.03231% −0.00323% −0.00037%
Max 0.46265% 0.04974% 0.00454% 0.00050%
Count 1000 1000 1000 1000

Table 6.σ2(Ys) = eYs +0.2, K = 1, r = 0.02, k = 0.1, T = 1. Characteristics of sample of
errors

10−2 10−3 10−4 10−5

α = 1
Average 0.02496% 0.00268% 0.00026% 0.00002%
St. error 0.0000113 0.0000011 0.0000001 0.00000001
Median 0.0002559 0.0000266 0.0000027 0.0000002
St. deviation 0.0003584 0.0000354 0.0000035 0.0000003
Excess 0.1947561 0.1687356 −0.0576859 0.0700827
Skewness −0.1691937 −0.0097185 −0.1643507 −0.0522007
Min −0.09961% −0.00861% −0.00088% −0.00011%
Max 0.12871% 0.01464% 0.00126% 0.00013%
Count 1000 1000 1000 1000

α = 100
Average 0.02692% 0.00268% 0.00025% 0.00002%
St. error 0.0000118 0.0000012 0.0000001 0
Median 0.0002712 0.0000265 0.0000027 0.0000002
St. deviation 0.0003735 0.0000377 0.0000036 0.0000003
Excess 0.17242 0.070383 0.3383414 0.0853763
Skewness −0.0299531 −0.0195205 −0.1914745 −0.0371876
Min −0.09174% −0.01068% −0.00112% −0.00011%
Max 0.16291% 0.01411% 0.00139% 0.00014%
Count 1000 1000 1000 1000

with average (or root mean square) volatility over the time interval to maturity (see,
e.g., [10, 19]). Thus, the formula remains similar to (8) and (10).
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It has been shown that deterministic volatility does not reflect the real-world
stochastic dynamics correctly [3, 15], and such models have begun falling out of
favor in the mid-1980s. The shift to stochastic volatility models was boosted by rapid
development of computational tools.

Nevertheless, deterministic volatility is suitable for the purpose of our investi-
gation since we can calculate the exact price of the option for the continuous time
model.

In order to analyze the deterministic time-dependent volatility case, it looks nat-
ural to let the Brownian noise term in the definition ofYt vanish. Thus, we get

dYt = −αYtdt, (19)

which is a familiar linear differential equation solved by

Yt = Y0 e
−αt . (20)

For the same transformation functionsσ and sets of parameters as in the previous
section, we calculate the prices of European call option in the continuous case using
(8) and compare it with the prices of the same option calculatedusing (10)–(13) with

Y
(m)
l+1 = (1− α∆t)Y

(m)
l . (21)

We use the time step of 0.01 and only 10 simulations per combination of inputs. As
before, all calculations are performed in Matlab 7.9.0.

Table7 presents the results of calculations. Comparison of two approaches reveals
that the Euler–Maruyama scheme provides a good approximation for the exact option
price. In the case of fast mean-reversion, the results coincide when rounded to sixth
digit.

Table 7.Approximate option prices versus true option prices for deterministic volatility

T α r K a b ÊP̂m EV ÊP̂m EV

σ
2(Ys) = a‖Ys‖+ b σ

2(Ys) = eYs +0.2
0.25 1 0 0.8 1 0 0.203891 0.203888 0.316223 0.316220
0.5 1 0 0.8 1 0 0.211556 0.211549 0.390150 0.390147
1 1 0 0.8 1 0 0.223003 0.222994 0.490305 0.490302
0.25 1 0.01 1 1 0.2 0.107942 0.107935 0.224736 0.224733
0.5 1 0.01 1 1 0.2 0.150207 0.150199 0.312794 0.312791
1 1 0.01 1 1 0.2 0.206464 0.206457 0.429067 0.429064
0.25 1 0.02 1.2 1 1 0.141317 0.141313 0.159958 0.159954
0.5 1 0.02 1.2 1 1 0.227633 0.227629 0.253710 0.253706
1 1 0.02 1.2 1 1 0.345261 0.345257 0.379955 0.379952
0.25 100 0 0.8 1 0 0.200000 0.200000 0.309950 0.309950
0.5 100 0 0.8 1 0 0.200000 0.200000 0.382107 0.382106
1 100 0 0.8 1 0 0.200000 0.200000 0.481610 0.481610
0.25 100 0.01 1 1 0.2 0.091044 0.091044 0.217149 0.217149
0.5 100 0.01 1 1 0.2 0.128449 0.128449 0.303457 0.303457
1 100 0.01 1 1 0.2 0.181507 0.181507 0.419198 0.419198
0.25 100 0.02 1.2 1 1 0.133108 0.133108 0.152065 0.152065
0.5 100 0.02 1.2 1 1 0.217100 0.217100 0.243748 0.243748
1 100 0.02 1.2 1 1 0.333759 0.333759 0.369312 0.369312
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Remark5.1. In this paper, we consider the price of the option at the initial time mo-
ment. However, all the above considerations are applicablefor any valuation date
t between the initial time moment and maturity. Some obvious changes need to be

made, for example, the function̄σt :=
√

1
T−t

∫ T

t
σ2(Ys)ds ≥ 0 needs to be intro-

duced instead of̄σ, andT needs to be substituted byT − t in (8)–(13).

Appendix A. The Euler scheme: definitions and auxiliary results

The reader is advised to refer to [8], which provides in-depth study of numerical
approximations of stochastic differential equations.

Consider the stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt, t ∈ [t0, T ], (22)

and assume that there is a unique strong solutionX(t) with X(t0) = X0. In order
for this to be the case, certain assumptions need to be made about the functionsa
and b. Namely, refer to the following assumptions (assumptions (A1)–(A4) in [8],
pp. 128–129):

A1) a = a(t, x) andb = b(t, x) are jointlyL2-measurable in(t, x) ∈ [t0, T ]×R;

A2) the functionsa andb satisfy the Lipschitz condition w.r.t.x, that is, there exists
a constantK > 0 such that

∣

∣a(t, x)− a(t, y)
∣

∣ ≤ K|x− y|

and
∣

∣b(t, x)− b(t, y)
∣

∣ ≤ K|x− y|
for all t ∈ [t0, T ] andx, y ∈ R;

A3) there exists a constantK > 0 such that

∣

∣a(t, x)
∣

∣

2 ≤ K
∣

∣1 + |x|2
∣

∣

and
∣

∣b(t, x)
∣

∣

2 ≤ K
∣

∣1 + |x|2
∣

∣

for all t ∈ [t0, T ] andx, y ∈ R;

A4) Xt0 isFt0-measurable withE|Xt0 |2 < ∞.

LetX(m)
t be a discretization scheme of the processXt.

Definition. (See [8].) We shall say that an approximating processX
(m)
t converges in

the strong sense with orderγ ∈ (0,∞] to the true processXt if there exists a finite
constantK such that

E
(∣

∣Xt −X
(m)
t

∣

∣

)

≤ Km−γ.

The same terminology will be applied to the functions of approximating pro-
cesses.
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Definition. (See [8].) We shall say that a discrete time approximation schemeX
(m)
t

is strongly consistent if there exists a nonnegative functionc = c(m) with

lim
m→∞

c(m) = 0

such that

E

(
∣

∣

∣

∣

E

(

X
(m)
i+1 −X

(m)
i

T/m

∣

∣

∣
FiT/m

)

− a

(

iT

m
,X

(m)
i

)
∣

∣

∣

∣

2)

≤ c(m)

and

E

(

m

T

∣

∣

∣

∣

X
(m)
i+1 −X

(m)
i −E

(

X
(m)
i+1 −X

(m)
i

∣

∣FiT/m

)

− b

(

iT

m
,X

(m)
i

)

∆Wi

∣

∣

∣

∣

2)

≤ c(m)

for all fixed valuesX(m)
i = y andi = 0, 1, . . . ,m.

Theorem. (See [8], 9.6.2, p. 324.) Let assumptions (A1)–(A4) hold for(22). Then a
strongly consistent equidistant-time discrete approximation X(m) of the processX
on [t0, T ], withX

(m)
t0 = Xt0 , converges strongly toX .

Evidently, the Euler schemeY (m) introduced to approximateY in Section 2
satisfies all the above requirements and hence converges strongly. Moreover, it is
a well-known fact that, in general, the convergence of the Euler approximation is
of order 0.5. One can check these propositions using the estimates of the rate of
convergence provided in [8] by the proof of Theorem 9.6.2 and Exercise 9.6.3.

However, our case is more specific sinceY (m) approximates the diffusion process
with additive noise, that is,b(t, x) = k is constant.Hence, the following proposition
holds.

Proposition. Y (m) is the Milstein scheme and thus converges strongly with order 1.

Really, the only difference in representation ofY (m) as the Milstein scheme com-
pared to the Euler one is in the additional summand of the form

1

2
bb′
((

∆ZQ
)2 − T/m

)

,

which is identically zero for the constant functionb. The Milstein scheme is known
to converge with order 1 (see, e.g., [8], Theorem 10.6.3, p. 361).
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