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SCALE DYNAMICAL ORIGIN OF MODIFICATION OR ADDITION

OF POTENTIAL IN MECHANICS. A POSSIBLE FRAMEWORK

FOR THE MOND THEORY AND THE DARK MATTER.

by

Frédéric Pierret

Abstract. — Using our mathematical framework developed in [CP15] called scale dynamics, we
propose in this paper a new way of interpreting the problem of adding or modifying potentials
in mechanics and specifically in galactic dynamics. An application is done for the two-body
problem with a Keplerian potential showing that the velocity of the orbiting body is constant.
This would explain the observed phenomenon in the flat rotation curves of galaxies without
adding dark matter or modifying Newton’s law of dynamics.
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1. Introduction

Nowadays, one of the most important problem in galactic dynamics and cosmology
concerns the so-called missing mass or dark matter (see [SM02]). In particular, this mass
would be responsible of the flat rotation curves of spiral galaxies. The usual approach is
to add a huge amount of invisible and unknown matter to solve the problem. However,
having direct observational evidences of the presence and proof of the existence of such
kind of matter is still a failure. Another approach has been proposed in [Mil83] known
as MOND for MOdified Newtonian Dynamics. It consists in modifying Newton’s equation
which is a linear relation between the force and the acceleration in a non-linear one when
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the acceleration is weak with respect to a constant fixed by the theory. Up to a choice
of functions in the theory, it well explains at the galactic level the behavior of the rota-
tion curves (see e.g. [Bek84, Mil09, BN11] with references therein for a review of the
best formulation of MOND at the non-relativistic level with a modified Poisson equation).
In both cases, it can be seen as adding a potential of matter or modifying the initial potential.

In our recent work [CP15], we developed a mathematical formalism to take into account
scale formulation of dynamical systems. When modeling a dynamical system, the notion of
scale naturally occurs at different levels. For example, taking into account the notion of
scale can be of dynamical origin as in fluid dynamics or geometric as in the study of certain
fractal objects. More generally, this concept appears when attempting to characterize the
nature of a trajectory. Indeed, for example in mechanics, a finite set of observational data
is limited by a scale resolution. From this problem, we developed the formalism of scale

dynamics which allows taking into account dynamical effects induced by the nature of the
observed behavior. To illustrate this formalism, we have shown that the Newton equation
and the Schrödinger equation were equivalent assuming that the nature of the trajectories
was fractional. This is the case for typical trajectories in quantum mechanics (see [FH12]).
This approach is different from the usual one in classical mechanics. Indeed, from our point
of view, classical mechanics is formulated assuming a linear scale regime, i.e. the asymptotic
models has a differentiable motion. Such an approach to change the scale regime can be
used to think about a new possible explanation of the problem of dark matter, and by
consequent, to the MOND theory, using scale dynamics. This idea is supported by the work
of L. Nottale on scale relativity. Indeed, he used the notion of fractal space-time to show
that the constant velocity curves in galaxies can be explained by the fractal behavior of
the dynamics (see [Not93, Not11] and references therein). In this paper, we propose to
apply our formalism to mechanics to show that the scale formulation of the Newton equation
exhibit dynamical effects induced by the scale regime observed or chosen. These supple-
mentary dynamical terms can be interpret as a modification or an addition of potentials.
Moreover, applying it to the two body problem, with a particular fractional scale regime,
we recover the result obtained by L. Nottale, i.e. the velocity of the orbiting body is constant.

The plan of the paper is as follows:

In Section 2, we remind the basic tools from scale dynamics concerning the asymptotic
formulation of models and operators under a particular scale regime. In Section 3, we
develop the main equations of this paper from the scale formulation of Newton’s equation.
Particularly, under a fractional scale regime, we obtain a fractional Hamilton-Jacobi equation
and a fractional version of the Virial theorem. In Section 5, we apply the development in
the previous section on the two-body problems and we show that the velocity of the orbiting
body tend to be constant.

2. Reminder about asymptotic models and differential operators from scale

dynamics

We remind in this section the basis of scale dynamics about the asymptotic models and
operators constructed from the scale formulation and definitions of objects. The definition
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are directly extended to R
d. For complete details, we refer to our paper [CP15].

The construction of asymptotic models and differential operators are based from the global
behavior observed of a phenomenon at different scale, i.e. the observed scale regime. From
this, one can assume that on this scale range, the asymptotic behavior will be the same. Doing
so, one can obtain the construction of an asymptotic model representing the phenomenon at
the continuous level in a regular part and a deviant part which contains the information on the
observed behavior. For example, observing a linear scale regime on a specific scale range, one
can construct an asymptotic continuous model which will be, from the definition of a linear
scale regime, differentiable. In consequence, the deviant part will be zero. But, observing a
fractional scale regime, one can construct an asymptotic model which will have by definition,
a non zero deviant part. For any asymptotic model X∞ ∈ R

d, we denote

X∞ = X⋆
∞ +D∞ (1)

where X⋆
∞ is the regular part of X∞ and D∞ is the deviant part of X∞. The ∆∞ and ∇∞

derivatives are respectively defined for any asymptotic models X∞ as

∆∞X∞ :=
d+

dt
X⋆

∞ and ∇∞X∞ :=
d−

dt
X⋆

∞ (2)

In fact, the operators ∆∞ and ∇∞ extract the right and left derivatives of the regular part
of X∞. We are interested in asymptotic models which are not differentiable, i.e. asymptotic
models which are not obtained with a linear scale regime. The “first simple” class of such
models is characterized by the comparison class

F = {fα(t) = tα, 0 < α < 1} . (3)

The class F defines the fractional scale behavior. We assume that X∞ has a fractional scale
regime of order α on each its dimension, and we denote by jα = E(1/α), the integer part of
1/α. The definitions of ∆∞ and ∇∞ derivatives over sufficiently smooth function f(t,X) are
given by

∆∞f(t,X∞) :=
d+

dt
f(t,X⋆

∞) +
d
∑

k1,...,kjα=1

λ+k1 . . . λ
+
kjα

jα!

∂jαf(t,X⋆
∞)

∂k1 . . . ∂kjα
(4)

and

∇∞f(t,X∞) :=
d−

dt
f(t,X⋆

∞) + (−1)jα−1
d
∑

k1,...,kjα=1

λ−k1 . . . λ
−
kjα

jα!

∂jαf(t,X⋆
∞)

∂k1 . . . ∂kjα
(5)

where λ+ =
(

λ+1 , . . . , λ
+
d

)T
and λ− =

(

λ−1 , . . . , λ
−
d

)T
are the vectors containing the comparison

constants for the ∆∞ and ∇∞ derivatives of the fractional regime on each dimension of Rd.
In order to compute quantities containing all the dynamical information contained in the ∆∞
and ∇∞ derivatives, one can consider the differential operator denoted by 2∞ which is the
linear operator defined by

2∞ =
1

2
(∆∞ +∇∞) + i

η

2
(∆∞ −∇∞) , (6)

where i2 = −1 and η = {−1, 1,−i, i}. In that case, we have

2∞f(t,X∞) :=
2

2t
f(t,X⋆

∞) +
λk1,...,kjα
jα!

∂jαf(t,X⋆
∞)

∂k1 . . . ∂kjα
, (7)
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where
2

2t
:=

1

2

(

d+

dt
+
d−

dt

)

+ i
η

2

(

d+

dt
− d−

dt

)

, (8)

and

λk1,...,kjα =
1

2

(

λ+k1 . . . λ
+
kjα

+ (−1)jα−1λ−k1 . . . λ
−
kjα

)

+ i
η

2

(

λ+k1 . . . λ
+
kjα

+ (−1)jαλ−k1 . . . λ
−
kjα

)

.
(9)

3. Asymptotic Newton’s equation under fractional scale regime

We consider the classical equation obtained by Newton to describe the dynamical behavior
of a particle of mass m under the action of a force deriving from a potential U . Precisely, we
call Newton’s equation the following ordinary differential equation

m
dV

dt
= −gradU(X), (10)

with X ∈ R
d and where V = dX

dt
. This equation can be seen as a result of a scale formulation

with a linear scale regime, i.e. the asymptotic behavior is differentiable. We now consider the
scale formulation of the Newton equation under a fractional scale regime. The asymptotic
Newton’s equation associated is given by (see [CP15])

m2∞V∞ = −gradU(X∞) (11)

where V∞ = 2∞X∞ := 2

2t
X⋆

∞. As there is no confusion possible with scale functions

introduced in [CP15], for notation convenience, we remove the ∞ sign on X and V.

The Lagrangian formulation of the asymptotic Newton’s equation allows us to relate the
velocity to the action functional A(t,X) as

mV(t,X) = gradA(t,X) (12)

where the function A(t,X) is differentiable with respect to t and X. From this formulation,
we obtain the following asymptotic fractional Hamilton-Jacobi equation:

Lemma 1. — The asymptotic fractional Hamilton-Jacobi equation associated to the action

functional A is given by

∂A
∂t

+
(gradA)2

2m
+

d
∑

k1,...,kjα=1

λk1...kjα
jα!

∂jαA
∂xk1 . . . ∂xkjα

+ U = 0 (13)

The proof is given in Appendix 7.1.

The complex definition of the Box derivative 2

2t
induces two components (v,u) for the

velocity as V = v+ iηu. In consequence, we can decompose the action functional A in two
parts (S,R) as follows

A = S + iηR, (14)

with v = gradS
m

and u = gradR
m

. Now, identifying the real and the imaginary parts of the
asymptotic fractional Hamilton-Jacobi equation, we obtain
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Corollary 2. — Let λ = λℜ + iηλℑ. The real and imaginary parts of the asymptotic frac-

tional Hamilton-Jacobi equation are respectively given by






























∂S
∂t

+
(gradS)2

2m
− η2

(gradR)2

2m
+

d
∑

k1,...,kjα=1

1

jα!

∂jα

∂xk1 . . . ∂xkjα

(

λℜS − η2λℑR
)

+ U = 0,

∂R
∂t

+
gradS · gradR

m
+

d
∑

k1,...,kjα=1

1

jα!

∂jα

∂xk1 . . . ∂xkjα

(

λℑ
2
S +

λℜ
2
R
)

= 0.

(15)

In the linear scale regime case, i.e. λk1...kjα = 0 for all k1 . . . kjα ≥ 1 and R = 0, the system
of equations (15) reduces to the usual Hamilton-Jacobi equation

∂S
∂t

+
(gradS)2

2m
+ U = 0, (16)

where the Hamiltonian HS associated to the action functional S is defined as HS = −∂S
∂t
. In

the fractional scale regime it defines a two dimensional Hamiltonian HS,R as

HS,R = − ∂

∂t

(

S
R

)

. (17)

As we can see, the first component of this two dimensional Hamiltonian can be seen as adding
extra terms to the Hamiltonian of the linear scale regime HS . Knowing the solution of R,
it can be interpreted as a modification or an addition of the potential U . This is exactly
the motivation of using the framework of scale dynamics which induces naturally dynamical
effects depending on the scale regime.

In order to illustrate our formalism and to apply it to mechanics, we made the following
assumptions on the fractional scale regime:

Assumption I. — The fractional scale regime is of order α = 1
2 , i.e. jα = 2.

Assumption II. — The fractional scale regime is uniform and has independent components,

i.e. for all 1 ≤ i, j ≤ d and i 6= j we have

λ+kiλ
+
kj

=
(

λ+
)2
δki,kj and λ−kiλ

−
kj

=
(

λ−
)2
δki,kj ,

where δ is the Kronecker delta. It follows that λkikj = λδki,kj with

λ =

(

λ+ − λ−

2
+ iη

λ+ + λ−

2

)

.

In consequence, we obtain the following lemma:

Lemma 3. — Under Assumptions I and II, the asymptotic fractional Hamilton-Jacobi equa-

tion of order 2 associated to the action functional A is given by

∂A
∂t

+
(gradA)2

2m
+
λ

2
lapA+ U = 0 (18)



6 FRÉDÉRIC PIERRET

and its real and imaginary parts are given by


















∂S
∂t

+
(gradS)2

2m
+
λℜ
2
lapS − η2

(

(gradR)2

2m
+
λℑ
2
lapR

)

+ U = 0,

∂R
∂t

+
gradS · gradR

m
+
λℑ
2
lapS +

λℜ
2
lapR = 0.

(19)

In classical mechanics, an important relation can be derived from the Newton equation
which is known as the Virial theorem. The asymptotic fractional Newton equation allows
obtaining a generalization of this theorem.

Lemma 4. — Let I = mX2 be the quantity called the moment of inertia. Under Assumptions

I and II and assuming the potential U is a homogeneous function of order γ then, we have

1

2
2

2
∞I = 2K − γU + λmdivV, (20)

where K = 1
2mV2 is the kinetic energy. If the system is at the equilibrium, i.e. 1

22
2
∞I = 0

then, we have the generalized Virial theorem given by the relation

2K + λmdivV = γU. (21)

The proof is given in Appendix 7.2.

4. From Newton to Schrödinger equation and vice versa

In order to obtain R to have the induced dynamical effects from the scale regime on
the classical motion, a way to solve analytically the asymptotic fractional Hamilton-Jacobi
equation (18) or the system (19), is to use the following change of variable:

ψ(t,X) = e
−ηR(t,X)+iS(t,X)

K (22)

with K a real constant. It follows that A(t,X) = −iK lnψ(t,X). Using the same kind of
computations as in [CP15], from the asymptotic fractional Hamilton-Jacobi equation (18),
we obtain the following partial differential equation satisfied by ψ:

iK
∂ψ

∂t
+
iKλ

2
lapψ +

(gradψ)2

ψ

(

K

m
− iλ

)

K

2
− Uψ = 0, (23)

which is the non-linear Schrödinger equation. A convenient way to write the function ψ is to

consider the positive defined function P as
√
P = e−

ηR
K . In that case, we have ψ =

√
Pe

iS
K

and from this definition, we obtain the following lemma:

Lemma 5. — Considering the change of variable (22) with
√
P = e−

ηR
K , the asymptotic

fractional Hamilton-Jacobi equation (18) is equivalent to


















∂S
∂t

+
(gradS)2

2m
+
λℜ
2
lapS − K2

2m

lap (
√
P )√

P
+
K

2

(

K

m
+ ηλℑ

)

lap
(

ln
√
P
)

+ U = 0,

∂P

∂t
+ div

(

P · gradS
m

)

− P · lapS
m

(

1 + η
mλℑ
K

)

+
Kλℜ
2

lap (ln
√
P ) = 0

(24)
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The proof is given in Appendix 7.3.

From the previous derivation, we have a general formulation of the asymptotic Newton
equation through the asymptotic fractional Hamilton-Jacobi equation and the Schrödinger
equation under Assumptions I and II. In order to solve the non-linear Schrödinger equation
(23) for the Kepler problem in the next section, we make a last assumption on the fractional
scale regime:

Assumption III. — The fractional scale regime is uniform over time derivatives, i.e. Λ :=
λ+ = λ−.

Then, we have:

Corollary 6. — Specializing the 2∞ derivative to η = −1, under Assumptions I–III, the

non-linear Schrödinger equation (23) is equivalent

iK
∂ψ

∂t
+
KΛ

2
lapψ +

(gradψ)2

ψ

(

K

m
− Λ

)

K

2
− Uψ = 0, (25)

and the asymptotic fractional Hamilton-Jacobi equation (24) is equivalent to


















∂S
∂t

+
(gradS)2

2m
− K2

2m

lap (
√
P )√

P
+
K

2

(

K

m
− Λ

)

lap
(

ln
√
P
)

+ U = 0,

∂P

∂t
+ div

(

P · gradS
m

)

+ P · lapS
m

(

mΛ

K
− 1

)

= 0

(26)

In the special case where K = mΛ the non-linear Schrödinger equation (23) is equivalent

to the linear Schrödinger equation

imΛ
∂ψ

∂t
+
mΛ2

2
lapψ − Uψ = 0, (27)

and the asymptotic fractional Hamilton-Jacobi equation (24) is equivalent to


















∂S
∂t

+
(gradS)2

2m
− mΛ2

2

lap (
√
P )√

P
+ U = 0,

∂P

∂t
+ div

(

P · gradS
m

)

= 0.

(28)

Remark 1. — The extra term −mΛ2

2
lap (

√
P )√

P
in the first equation of the asymptotic fractional

Hamilton-Jacobi equation lead us to interpret it as an additional potential which found its

nature in the fractional scale regime of the motion.

5. Application to the Kepler problem

We now apply our previous derivation to the Kepler problem. Consider two bodies of mass
M and m in the Euclidean space R3. In that case, the potential U is a homogeneous function
or order −1 and is given by the well-known relation

U = −k
r
, (29)
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with k = GMm, G is the universal constant of gravitation and r =
√
X ·X is the distance

between the two bodies at each instant.

In order to solve the Schrödinger equations (25) and (27), we use the separation variable
method. Indeed, we look for function ψ as

ψ(t,X) = f(t)Ψ(X), (30)

with f(t) = e−
iEt
K , E the total energy of the system and Ψ is a function depending only on

the position. In consequence, the (25) is equivalent to

lapΨ+
(gradΨ)2

Ψ

(

K

mΛ
− 1

)

+
2

KΛ
(E − U)Ψ = 0, (31)

In spherical coordinates (r, φ, θ), the function Ψ can be expressed in terms of three functions
R,Φ,Θ as

Ψ(X) = R(r)Θ(θ)Φ(φ). (32)

Inserting the expression of Ψ(X) in the Equation (31) lead us to solve by the separation
variable method, the three differential equations:







































d2R

dr2
+

2

r

dR

dr
+

(

K

mΛ
− 1

)

1

R

(

dR

dr

)2

+

(

2

KΛ
(E − U)− C ′

r2

)

R = 0,

d2Θ

dθ2
+

1

tan θ

dΘ

dθ
+

(

K

mΛ
− 1

)

1

Θ

(

dΘ

dθ

)2

+

(

C ′ − C

sin2 θ

)

Θ = 0

d2Φ

dφ2
+

(

K

mΛ
− 1

)

1

Φ

(

dΦ

dφ

)2

− CΦ = 0.

(33)

where C and C ′ are the real constants from the successive use of separation variable method.
Now, we look for the so-called ground state solution of the Schrodinger equation, i.e. the
constants C and C ′ are set to zero. The ground state energy E = −E0 is defined by

E0 =
k2

2m2Λ2 .

In the linear case, the ground state solution of the Schrödinger equation (27) corresponds
to the well-known ground state solution of the Hydrogen atom model (see [CTDL77]) but
in this problem, with the Keplerian potential. Solving Equations (33), the solution in term

of
√
P is given by

√
P =

(

C1 +C2

mΛ2

)

e
− 2r

r0 , (34)

where r0 =
2Λ2

GM
and C1, C2 are two integration real constants.

Remark 2. — We keep the arbitrary constants of integration because we do not need their

explicit value for what follows.

In consequence, we obtain the expression of extra term denoted Uadd = −mΛ2

2
lap (

√
P )√

P
as

Uadd = −GMm

r0

(

1− r0
r

)

. (35)
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In the non-linear case, we obtain the ground state solution in term of
√
P as

√
P = C1e

−GMm
ΛK

r−Λm
K

ln r+mΛ
K

ln

(

Λ2e
2r
r0 −2GMEi

(

2r
r0

)

r−C2Λ2r

)

(36)

where C1, C2 are two real integration constants and Ei is the exponential integral function

defined by Ei(x) =
∫ x

−∞
e−t

t
dt. In that case, we obtain the same expression for Uadd.

Remark 3. — We expected to obtain the same extra potential in the two cases. Indeed, the

non-linearity is linked to the choice of the constant K. This constant could not be independent

of the problem and induces a dynamical effect because it would add an arbitrary degree of

freedom. Even if, in the change of variable with the ψ function, K could be chosen arbitrary,

the contribution of the non-linearity related to K and its arbitrary choice is destroyed in the

asymptotic fractional Hamilton-Jacobi.

In order to obtain of the velocity of the orbiting body, we use our derivation of the gener-
alized Virial theorem (21). The real part of Equation (21) is equivalent to

mv2 = −U +
mΛ2

2

lap (
√
P )√

P
= −U − Uadd. (37)

In consequence, we obtain

‖v‖ =

√

GM

r0
, (38)

which means that the velocity of the orbiting body is constant (see Figure 1 for an illustration
with GM = 1 and Λ = 1).

Remark 4. — In this particular case of fractional scale regime, we recover rigorously the

result obtained in [Not11, DRN03].

Such a situation of Keplerian motion would appear in the outer region of a galaxy. It
would explain the observed constant velocity in spiral galaxies far away from its galactic
center. In consequence, modifying the law of gravitation as in MOND theory would only
result in interpolating the supplementary terms appearing due to the scale formulation of
Newton’s equation, which is in that case, a scale formulation with a fractional scale regime.

6. Conclusion

In this paper, we showed that the scale dynamical formulation of Newton’s equation gen-
erates supplementary dynamical terms which could be interpret as a modification of the
potential, as in MOND theory, or an addition of an extra potential, as it is done with dark
matter. Moreover, it is supported by the intriguing fact that when considering our approach
for the two body problem, it shows that the velocity of the orbiting body tends to be a
constant, as it is observed for the flat rotation curves of galaxies. One has to notice that
more complicated scale regime can be chosen such as logarithmic comparison scale or Hardy
comparison scale (see [Tri99]) but as we can see, choosing the fractional scale regime of order
1/2 already leads to a probable explanation of strange effects such as the dark matter.
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Figure 1. Illustration of the square of the orbiting body velocity depending of the
potential term in the fractional Virial theorem.

7. Appendix

7.1. Proof of Lemma 1. — By definition of the asymptotic Box derivative 2∞, we have

2∞ (gradA(t,X)) =
∂gradA(t,X⋆)

∂t
+ grad (gradA(t,X⋆)) · 2∞X⋆

+

d
∑

k1,...,kjα=1

λk1...kjα
jα!

∂jαgradA(t,X⋆)

∂xk1 . . . ∂xkjα
.

(39)

As 2∞X = V = gradA
m

and A is differentiable, we obtain

∂gradA(t,X⋆)

∂t
= grad

∂A(t,X⋆)

∂t
, (40)

grad (gradA(t,X⋆)) · 2∞X⋆ = grad

(

(gradA(t,X⋆))2

2m

)

. (41)

As the partial derivatives and the gradient commute for the scalar function A, we obtain

2∞ (gradA(t,X)) = grad

[

∂A(t,X⋆)

∂t
+

(gradA(t,X⋆))2

2m

+

d
∑

k1,...,kjα=1

λk1...kjα
jα!

∂jαA(t,X⋆)

∂xk1 . . . ∂xkjα



 .

(42)



SCALE DYNAMICAL ORIGIN OF MODIFICATION OR ADDITION OF POTENTIAL 11

From the asymptotic Newton equation, we obtain

grad

[

∂A(t,X⋆)

∂t
+

(gradA(t,X⋆))2

2m

+

d
∑

k1,...,kjα=1

λk1...kjα
jα!

∂jαA(t,X⋆)

∂xk1 . . . ∂xkjα
+ U



 = 0.

(43)

Integrating with respect to the spatial variable, we obtain

∂A(t,X⋆)

∂t
+

(gradA(t,X⋆))2

2m
+

d
∑

k1,...,kjα=1

λk1...kjα
jα!

∂jαA(t,X⋆)

∂xk1 . . . ∂xkjα
+ U = C(X⋆), (44)

where C(X⋆) is an arbitrary continuous function. We can always choose C(X⋆) = 0 and by
consequence, we obtain the result.

7.2. Proof of Lemma 4. — We have

2∞I = 2m
(

X · 2

2t
X⋆ + lap (X⋆)2

)

. (45)

By definition, 2∞X = 2

2t
X⋆ = V then,

2
2
∞I = 2m

[

2

2t
X⋆ · 2∞X+X · 2

2t
(2∞X) +

λ

2
lap (2∞X ·X)

]

. (46)

As lap (V ·X) = (lapV) ·X+ 2divV. Then, we have

2
2
∞I = 2mV ·V+ 2mX ·

[

2

2t
V+

λ

2
lapV

]

+ 2mλdivV. (47)

By definition of 2∞ and using the asymptotic Newton equation, we obtain

2mX ·
[

2

2t
V+

λ

2
lapV

]

= −2X · gradU. (48)

As U is an homogeneous function of order γ, we have X · gradU = γU . Inserting this
expression into 2

2
∞I concludes the proof.

7.3. Proof of Lemma 24. — Remarking that for any function f , we have the identity

(grad (ln f))2 + lap (ln f) =
lap f

f
. (49)

Then, by definition and using the identity with f =
√
P , we obtain

(gradR)2

2m
+
λℑ
2
lapR =

K2

2m

lap (
√
P )√

P
+
K

2

(

K

m
+ ηλℑ

)

lap
(

ln
√
P
)

. (50)

The last steps of the proof follows from simple computations.
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