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ABSTRACT  

 

In the present paper we consider the dynamics of special class of modulated regimes emerging 

in the Klein-Gordon trimer. In particular, this study unveils the unique states of resonant energy 

transfer manifested by the regular energy pulsations localized on the first two elements of the 

chain. This state is regarded as the higher dimensional analog of limiting phase trajectory 

corresponding to the regime of maximal energy transfer in the 2DOF, anharmonic, oscillatory 

models. We show that in contrast to the limiting phase trajectories, this special state of local 

energy transfer emerging in the Klein-Gordon trimer undergoes additional transition leading to 

its complete elimination. By employing the special order reduction procedure, we describe 

analytically the mechanism of formation and destruction of this peculiar, dynamical state. 

Finally, we demonstrate the strong correlation between the bifurcations of this state to the series 

of spontaneous transitions from localized to delocalized energy pulsations undergone by the 

impulsive response of the Klein-Gordon trimer. Results of the analytical model are well in 

agreement with these of the numerical simulations.   

 

1. INTRODUCTION  
 

Over the past decades, nonlinear resonant energy transport and energy localization has been a 

subject of a rapidly growing interest in various fields of nonlinear physics [1], physics of fluids 

[2-6], physics of plasma [7], ocean waves [8], semiconductors [9-11]. This well-known 

phenomenon of resonant energy transport gave rise to many novel ideas for practical 

applications in various fields of applied physics and engineering [1, 12-17]. Obviously enough, 

any possible application of the mechanism of nonlinear resonant energy transport to the real-

life physical systems requires the substantial theoretical understanding of the intrinsic 

mechanisms triggering the spontaneous energy flow. Unfortunately, the highly nonstationary 

nature of this complex, nonlinear phenomenon complicates the development of the analytical 

predictive capacity which has been proven to be successful only when studying the stationary 

or weakly nonstationary processes and their bifurcations. The latter has been associated with 

the well-known concept of nonlinear normal modes (NNMs) [18] broadly applied in the great 
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variety of physical systems. Importantly, the existing analytical methods which are appropriate 

for studying the stationary response regimes and NNMs are quite misleading when applied to 

the classical problems of nonlinear energy transfer emerging in various oscillatory models e.g. 

coupled anharmonic oscillators, anharmonic oscillatory chains, etc. Recently, the concept of 

limiting phase trajectories (LPTs) was introduced by Manevitch [19], which is quite natural for 

a rather comprehensive description of the regime of intense energy transfer - emerging in driven 

oscillators, coupled generators [20-25], coupled anharmonic oscillators [26 - 29] and oscillatory 

chains [30-32] as well as the unidirectional energy transport in the oscillatory models with the 

time varying parameters [33-35].  

According to the original definition, LPT corresponds to special regime of two coupled 

oscillators or, alternatively, an oscillator and an external energy source, manifested by the 

maximal possible energy transfer. In all the recent studies [20-35] concerning the LPTs authors 

mainly focused on the resonant interaction of the two coupled fields (e.g. two coupled 

oscillators, single oscillator driven by the external field, wave-wave interaction in the coupled 

oscillatory chains, etc.) However, emergence of resonant energy transfer in the dynamical 

systems admitting the higher dimensional resonance interactions establishes distinct challenges 

for analytical study and prediction of this highly nonstationary phenomenon.  

Analytical predictions of the complex transport phenomena emerging in the short anharmonic 

chains can be found in some theoretical studies (see e.g. [36,37]) which have analyzed the 

problem of energy transition to equipartition in short chains in the framework of the classical 

FPU problem. Another recent study has considered the fundamental problem of the resonant 

energy transport, emerging in the short FPU chains [31] using the recently developed 

methodology of limiting phase trajectories.  

In the present work we focus on the dynamics of special state of energy transfer emerging in 

the Klein-Gordon (K-G) trimer which constitutes the higher dimensional analog of the original 

limiting phase trajectories. This regime is characterized by its spatial localization on the first 

two elements of the trimer and near complete energy transfer between these elements. To study 

the global dynamics of this unique regime we use the regular multiscale analysis and derive the 

slow flow model of the K-G trimer.  The evolution of this nonstationary state is further analyzed 

using the Poincaré maps specially constructed for the slow flow model. We demonstrate that in 

contrast to the original limiting phase trajectory – its higher dimensional analog undergoes 

additional transition leading to its complete elimination. Moreover, we show that the well-

known mechanism of reconnection of the original limiting phase trajectories (i.e. passing from 

the moderate to intense energy transport) studied in the 2DOF models is topologically different 

in the case of the trimer chain. By employing the special, order reduction procedure, we 
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describe analytically the intricate mechanism of formation and destruction of this unique 

dynamical state.  

2. MODEL AND MOTIVATION  
 

The basic model under consideration is the Klein-Gordon trimer. The nondimensional 

equations of motion read 
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                        (2.1.1)      

Here nx - stands for the displacement of n-th oscillator in the trimer,   is a parameter of 

coupling,   is a formal small system parameter scaling the coupling and nonlinear terms. The 

scheme of the model under consideration is brought in Figure1. 

  

 
Figure 1.  Scheme of the model 

The ultimate goal of the present study is to describe the mechanism of emergence and 

destruction of the special energy transfer state characterized by moderate and intense energy 

pulsations localized on the first two elements of the K-G trimer. Here we particularly 

concentrate on the extension of the original LPT concept to the three degrees of freedom 

system. 

3. THEORETICAL STUDY 

 

3.1. Multi-scale analysis and derivation of the slow-flow model 

  

Given the resonant nature of the aforementioned energy transfer state, we anticipate its 

formation in the neighborhood of the fundamental 1:1:1 resonance. We introduce complex 

coordinates (C-V) as follows 

 ,  1,2,3n n nx ix n                    (3.1.1) 

Substituting (3.1.1) into (2.1.1), yields, 
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    (3.1.2) 

The energy transfer state under consideration involves the two characteristic time scales i.e. the 

scale of fast oscillations (
0t ) as well as the scale of slow energy pulsations (

1t ) between the 

coupled oscillators. The competition between the two scales of the dynamic process under 

consideration is shown on the schematic diagram of Error! Reference source not found.Figure 

2.  

 

Figure 2.  Schematic map of the time scales involved 

 

To analyze the dynamics of  (3.1.2) we employ a complex multi-scale expansion  
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  (3.1.3) 

Introducing (3.1.3) into (3.1.2) and expanding with respect to the like powers of   yields at the 

zeroth order: 

 
0 0 0,  1,2,3n ni n      (3.1.4) 

Solution of (3.1.4) yields, 

    0 1 0exp ,  1,2,3n n t it n     (3.1.5) 

Proceeding further with the next order of the multi-scale expansion, accounting for (3.1.5) and 

eliminating the secular terms, read  
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    (3.1.6)                                                                      

Before proceeding with the analysis of (3.1.6) we perform additional rescaling 
1 1

3 4
,

8 3
t


    

yielding the following set of modulation equations in the more simplified form, 
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The system in (3.1.7) possesses two conserved quantities 
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It is important to note, that without loss of generality we rescale the value of the first conserved 

quantity N  to unity ( 1N  ). Using (3.1.8) we introduce the spherical coordinates  
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Substituting (3.1.9) into (3.1.7) and using the coordinates of the relative phases, i.e. 

12 1 2 23 2 3,         allows the further reduction of the slow flow system from six to four 

dimensional sub-space which is spanned by the four angular coordinates. The reduced system, 

reads 
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Accordingly the second integral of motion is expressed in terms of the new coordinates 

( 12 23, , ,    ): 
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      (3.1.11) 

In the following section we study the dynamics of locally pulsating regimes exhibited by the 

reduced slow flow model given by (3.1.10). 

 

3.2. Localized states of resonant energy transfer 

  

3.2.1 Definition of the Extended Limiting Phase Trajectories 

 

Regimes of intense, resonant energy pulsations (strong resonant beats) excited in the 2DOF 

systems have been broadly considered for the symmetric [19],[24],[27], non-symmetric 
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[26],[38] as well as the weakly and strongly anharmonic cases [28]. Formation and bifurcations 

of these highly nonstationary states have been analyzed using the recently developed concept 

of limiting phase trajectories (LPT) [26-28, 44].  In the case of the conservative, two-degrees-

of-freedom systems the term limiting phase trajectory corresponds to the unique trajectory of 

the phase space, recurrently passing through the strictly localized state of complete energy 

localization on a single oscillator. This statement is true for both the symmetric and the 

asymmetric systems studied in [26-28, 44]. 

The concept of LPTs provides a useful analytical tool for an adequate description of energy 

transfer either in the system of two weakly coupled oscillators or in the system of externally 

driven oscillator [19–35]).  

The special type of initial conditions corresponding to the limiting phase trajectory (LPT) 

emerging in the anharmonic symmetric and asymmetric systems of two coupled oscillators 

([19],[26]) have been chosen in a way such that initial excitation (e.g. initial velocity or 

displacement) is applied solely on the first element of the system. In the same works authors 

have distinguished between the two types of LPT, i.e. LPT of the first (LPT-I) and the second 

(LPT-II) kinds. LPT of the first kind corresponds to the permanent energy localization on the 

first oscillator and weak energy transport between the two, whereas LPT of the second kind 

corresponds to the intense, recurrent energy transfer between the oscillators. In fact, LPT of the 

second kind defines the unique regime of maximal energy exchanges between the two coupled 

DOFs.  

As we pointed out above the main goal of the present work is to study the mechanism of 

formation and destruction of the similar regimes of weak and strong energy transfer between 

the first two elements of the K-G trimer. One of the most interesting properties of the regimes 

under consideration is their spatial localization on the first two elements of the trimer.  

As it will become clear from the results brought below, there is a possible co-existence of 

several regular (periodic and quasi-periodic) regimes manifested by the moderate and intense, 

recurrent energy pulsations similarly localized on the first two elements of the trimer model. 

However, among all the coexisting regimes of the regular, recurrent energy transfer (exhibited 

by (3.1.10)) one can single out the unique, periodic orbit with the properties similar to the 

original limiting phase trajectories [26-28,44].  This special periodic orbit can be considered as 

the higher dimensional analog of LPT and is referred to in the paper as the extended limiting 

phase trajectory (ELPT).  

We define the ELPT as special orbit of the slow-flow model (3.1.10) satisfying the following 

properties:  

1. Time periodicity – time periodic solution of (3.1.10)  

(* We note that the property of time periodicity is defined in accordance with the definition of 

the original limiting phase trajectory which is a time periodic solution) 
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2. Spatial localization – Solution of (3.1.10) which is spatially localized on one (the first) or 

both (the first and the second) elements of the trimer 

3. Minimal distance from the strictly localized state – among all the coexisting, periodic 

solutions satisfying the properties (1) and (2), ELPT has a minimal distance to the strictly 

localized state (i.e. 1 2 31, 0      or alternatively ( 0   ), complete energy localization 

on the first element).  

(** We note that this property is dictated by the definition of the original limiting phase 

trajectory (see e.g. [19], [26-28], [38]), which has been defined as a unique, periodic orbit which 

recurrently passes through the strictly localized state i.e. state of complete energy localization 

on the first (initially excited) element.)  

In the context of the considered 3DoF system (K-G trimer), ELPT can be viewed as a three 

dimensional analog of the non-symmetric LPT analyzed in [26], [38]. Similarly to the previous 

results concerning the original limiting phase trajectories the extended ones can also be 

distinguished by the form of energy localization and intensity of energy transport between the 

two elements of the chain: 

ELPT of the First Kind (ELPT-I) corresponds to the significant energy localization on the 

first element and moderate energy transport between the first and the second elements of the 

chain. 

ELPT of the Second Kind (ELPT-II) corresponds to the spatial energy localization on the 

first two elements of the chain, accompanied with the intense energy transport between 

them. In fact, ELPT-II possesses an additional (fourth) property of immense importance. 

4. Maximal Energy Transfer - among all the coexisting, periodic solutions satisfying the 

properties (1) and (2) – ELPT of the second kind corresponds to the special energy transfer 

state characterized by the maximal amount of energy exchange between the first and the second 

elements of the trimer. (*** We note that the last property of extreme energy transport is defined 

in accordance with the definition of the original limiting phase trajectory of the second kind 

(LPT-II) which defines the unique regime of maximal energy exchange between the two 

coupled DOFs.)   

As it will become evident from the results below, system under consideration (3.1.10) can also 

maintain the other types of periodic solutions satisfying the first and the second properties but 

not the last two. 

 

3.2.2 Evolution of the Extended Limiting Phase Trajectories 

 

In the present section we study the global evolution of the extended limiting phase trajectories 

(ELPTs) along with the variation of the system parameters. To this end we resort to the 

construction of Poincaré maps for the slow-flow model (3.1.10). Obviously enough, the global 
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dynamics of (3.1.10) is too complicated to be amenable by a straightforward analytical 

treatment. However, it is still possible to study the intrinsic mechanism of formation and 

destruction of the ELPT by constructing Poincaré maps for the slow flow system (3.1.10) at the 

fixed energy levels. Accordingly we fix the value of the Hamiltonian H (given in (3.1.11)) to 

some constant, thus restricting the flow of (3.1.10) to a three-dimensional iso-energetic 

manifold,  

 
12 23( , , , ; )H h       (3.1.12) 

By transversely intersecting the three-dimensional iso-energetic manifold by the cut plane 

 0:T   we construct the two dimensional Poincaré map :P Σ Σ , which is defined as 

    0 12 23,  0 ( , , , )H h          Σ     (3.1.13) 

The restriction 0    is intentionally imposed to make the constructed Poincaré map an 

orientation preserving. The fundamental time-periodic solutions of a basic period T correspond 

to the period-1 fixed points of the Poincaré map, i.e., periodic orbits of system (3.1.10) that 

recurrently pierce the cut section at a single point. Additional subharmonic solutions of periods 

nT may exist corresponding to period-n equilibrium points of Poincaré map, i.e., to orbits that 

pierce the cut section n times before repeating themselves. In the present study we construct the 

Poincaré map :P Σ Σ  such that the global flow defined by (3.1.10) is mapped onto the (

12 , ) plane. 

As it was pointed out in the previous subsection, apart from ELPT there exist additional 

periodic orbits (PO) of (3.1.10). These additional periodic solutions can be classified in 

accordance with the form of their localization. Here we define the three types of periodic orbits 

of (3.1.10) emerging as the 1-period fixed points of the Poincaré maps discussed below.  

1. Localized Periodic Orbit 100 – time-periodic orbit with spatial localization on the first 

element.  

2. Localized Periodic Orbit 110 – time-periodic orbit with spatial localization on the first two 

elements.  

3. Periodic Orbit (PO) – delocalized time-periodic orbit.  

These three distinct types of periodic orbits are denoted in the Poincaré sections as LPO {1,0,0}, 

LPO {1,1,0} and PO, accordingly. According to the new definition of a general class of the 

time periodic orbits – ELPT-I falls under the category of LPO {1,0,0} type orbits, while ELPT-

II falls under the category of LPO {1,1,0}.  Here we classified only few of the periodic solution 

relevant to the evolution of ELPT. The detailed classification of the entire family of periodic 

orbits of the slow flow model deserves a separate study and will be published elsewhere.  

As a next step we will further investigate the evolution of ELPT on the Poincaré sections along 

with the variation of the system parameters. Given the third property of ELPT it is convenient 

to study its evolution on the iso-energetic manifold corresponding to the strictly localized  state 
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( 0   ). This restriction immediately defines the following constant for the Hamiltonian 

(3.1.11), 

   1
2

i
h                                           (3.1.14) 

The Poincaré sections illustrated in Figure 3 (a-d) correspond to the different values of coupling 

parameter  .  In scope of the present study we focus solely on the evolution of ELPT. Let us 

start the discussion from the Poincaré section of Figure 3a corresponding to the lower value of 

coupling. 

   
Figure 3. Poincaré sections ( 0 0.34  ): (a) 0.15  ; (b) 0.17101  ; (c) 0.28  ; (d) 0.364  . 

 

Poincaré section of Figure 3a unveils two period-1 orbits.  As is shown in Figure 3a, one of 

the orbits corresponds to the ELPT-I whereas the second periodic orbit is an LPO with the 

spatial energy localization on the first element (LPO {1,0,0}). The time histories of these 

periodic orbits are shown in Figure 5(a, b).  Observation of these two plots - clearly shows that 

the second LPO is more distant from the localized state ( 1 1( ) ( ) 0     ) than the ELPT-I (as 

it is required by the third property of the previous section).  

Along with the periodic solutions of the Poincaré section it is essential to discuss the special 

family of the quasi-periodic orbits encircling the (ELPT-I) period-1 fixed points. These quasi-

periodic solutions encircling the ELPT-I center possess the similar properties of strong energy 

localization on the first element and weak quasi-periodic energy pulsations. It is thus rather 

natural to attribute this special class of quasi-periodic orbits to the same regular state of the 

weak local energy pulsations. To examine the further evolution of ELPT, we increase the value 

of the coupling strength. The corresponding Poincaré section is illustrated in Figure 3b. Results 
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of Figure 3b clearly show the coexistence of two period-1 fixed points (centers). The first 

center corresponds to the previously observed ELPT-I whereas the second center corresponds 

to the newborn orbit ELPT-II. The latter is formed through the typical (saddle – center) 

bifurcation. The time histories corresponding to the (ELPT-II) and these of (ELPT-I*) are 

shown in Figure 5 (c, d), correspondingly.  

Interestingly enough, the mechanism of formation of the ELPT-II in the considered 3DOF 

model qualitatively differs from the results reported for the 2DOF models [26], [38]. 

Indeed, as it was reported in [26-28], [38], the mechanism of formation of the LPT of the second 

kind in the 2DOF models is through its typical reconnection with the LPT of the first kind, 

bringing to the complete elimination of the latter. However, as we observe for the 3DOF case 

– formation of ELPT-II does not bring to the elimination of ELPT-I and there is a short 

overlapping region of both orbits (i.e. 1 0.17101ELPT   - formation of the ELPT-II, 

* 0.1991   - destruction of the ELPT-I). 

 

Figure 4. Poincaré section ( 0 0.34  ), 0.37   

 

It is important to point out that according to the above definition ELPT is defined as a unique 

solution. Thus, examining the third property of both coexisting orbits (ELPT-I and -II) we found 

out that the newly formed periodic solution (ELPT-II) has a minimal distance to the strictly 

localized state (this observation can be also inferred from the time histories shown in Figure 5 

(c, d)). It also means that in the overlapping region - ELPT-I cannot be regarded as ELPT orbit 

and is denoted in Figures 3b and 5d as ELPT-I*. Thus according to the above definition the 

new formed orbit (ELPT-II) constitutes the unique extended limiting phase trajectory of the 

second kind. Formation of ELPT-II has been recorded for ( 1 0.17101ELPT   ). In what 

follows we solely concentrate on the mechanisms of formation and destruction of ELPT-

II.  
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Arguing as above we note once again that the quasi-periodic solutions encircling the ELPT-II 

center possess the similar properties of energy localization on the first two elements of the chain 

and intense, quasi-periodic energy pulsations. It is thus rather natural to attribute this special 

class of quasi-periodic orbits to the same regular state of the intense local energy pulsations. 

Formation of this new regular state is further referred to as the first transition undergone by 

ELPT.  

To examine the further evolution of the ELPT we construct the additional Poincaré section 

(Figure 3c) for the significantly increased value of coupling ( 1 0.28ELPT   ). This section 

reveals four period-1 orbits. Three out of four periodic orbits belong to the LPO {1,1,0} while 

the fourth orbit is a delocalized orbit which does not fall under category of LPO {1,0,0} and 

LPO {1,1,0} orbits. As it is apparent from the previous discussion, among all the localized, 

periodic solutions of type (LPO {1,1,0}) there is a unique orbit admitting the definition of the 

extended limiting phase trajectory (see Figure 3c). To draw the comparison between the ELPT-

II and other (LPO) orbits of the section (corresponding to 0.28  ) we plot their time histories 

in Figure 6(a, b, c). As is evident from the results of Figure 6(a, b, c), among the three LPO 

orbits - ELPT-II shows the highest amount of energy transport (per one oscillation cycle) 

between the first and the second elements and has the minimal distance from the strictly 

localized state.  

Further inspection of the evolution of the Poincaré section with respect to the growing value of 

the coupling strength (  ) shows the gradual destruction of the resonance islands corresponding 

to all the LPO {1,1,0} – type orbits (including ELPT-II). In the Poincaré section of Figure 3d 

one can easily observe the annihilation of almost all resonant islands corresponding to the LPOs 

{1,1,0} besides the one of ELPT-II. Moreover, as it can be inferred from the results of Figure 

3d, ELPT-II undergoes the period-doubling bifurcation (PD). The time histories corresponding 

to the periodic orbit with the doubled-period is illustrated in Figure 6d and is denoted as ELPT-

II (PD).  

Further increase in the strength of coupling i.e.  0.37   shows the vanishing of all the 

resonant islands corresponding the LPO{1,1,0} type orbits. This can be clearly seen from the 

results of the Poincaré section of Figure 4. Evidently enough, the resonant island containing 

the ELPT-II is the "last surviving", regular state of energy transport localized on the first two 

elements of the trimer. In the present study we refer to the destruction of this regular state as 

the second transition occurring at ( 2 0.37ELPT  ). 

In Table 1 we summarize the transition values for the ELPT. In the following section we devise 

the analytical procedure based on the construction of the reduced order model predicting all the 

aforementioned transitions undergone by ELPTs.  
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Figure 5. Time histories of the amplitudes of the periodic orbits ( 1 2 3, ,   ) (a) ELPT-I ( 0.15  ); (b) LPO 

{1,0,0}  ( 0.15  ) ; (c) ELPT-II ( 0.17101  );  (d) LPO {1,0,0} ( 0.17101  ). Amplitudes 

1 2 3, ,    are plotted in bold solid red, bold solid green and dash-dot thin blue lines, respectively.   

 

 

Figure 6. Time histories of the amplitudes of the periodic orbits ( 1 2 3, ,   ) (a) ELPT {1,1,0} ( 0.28  ); (b) 

LPO {1,1,0} ( 0.28  , marked as LPO** in Figure 3c); (c) LPO {1,1,0} ( 0.28  , marked as LPO* in Figure 

3c);  (d) ELPT-II  ( 0.364  ); (e) PO ( 0.364  ). Amplitudes 1 2 3, ,    are plotted in bold solid red, bold 

solid green and dash-dot thin blue lines, respectively.   

 1st Transition 2nd Transition 

ELPT-II 

(Poincaré sections) 

 

  
1 0.17101ELPT   

(Formation of ELPT-II) 

 

2 0.37ELPT   

(Destruction of ELPT-II) 

 

Table 1. Transition values for ELPT  
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We note that numerical integration procedure of (3.1.10) used for the construction of Poincaré 

sections of the present subsection have been performed in Matlab using the ODE45 solver with 

the scalar relative error tolerance of 81 10  and a vector of absolute error tolerances AbsTol of

81 10 . The algorithm of ODE45 is based on an explicit Runge-Kutta (4,5) formula, the 

Dormand-Prince pair. It is also important to point out that in chaotic regions of the Poincaré 

sections it is rather hard to avoid the extra chaotic effects generated by the numerical solver due 

to the extreme sensitivity of the system to the initial conditions (in these regions). However in 

scope of the present work we mainly focus on the regular dynamics of (3.1.10). Zones of regular 

regimes have been reproduced on the Poincaré maps and no overlap with the chaotic regions 

has been observed. 

3.2.3 Analytical prediction of the zone of existence of strong, local energy 

pulsations (ELPT-II) 

 

In the present subsection we construct the simplified analytical model predicting the first and 

the second transitions undergone by ELPT-II defining the important zone of existence of the 

intermediate transport states of regular, localized, intense energy pulsations. As we have 

already emphasized above, the ELPTs can be viewed as a higher dimensional analogs of the, 

non-symmetric limiting phase trajectories emerging in the 2DOF systems [26], [38]. Motivated 

by this observation we are willing to apply the existing methodology of the limiting phase 

trajectories on the 3DOF system under consideration. To this extent we make the following 

assumption: 

For both kinds of ELPTs (i.e. I and II) we assume that the response on the third element of the 

chain is negligibly small (in comparison to the first and the second elements) i.e. 

1 3 2 3 1 2,  (where , (1))O        

Based on this assumption one can simplify the slow –flow model (3.1.10) by employing the 

idea of a 'master and slave' decomposition. To this end we approximate the response of the first 

two elements described by (3.1.7) with the reduced (approximate) 2DOF model by setting the 

amplitude of the response of the third element to zero in the first two equations of (3.1.7). This 

yields the following, non-symmetric 2DOF system. 

 
 

 

2

1 1 1 1 2

2

2 2 2 2 1

'

' 2

i i

i i

     

     

  

  
   (3.1.15) 

Proceeding along these lines, we simplify the third equation of (3.1.7) by neglecting the 

nonlinear term (due to the smallness of 3 1  ) and retain solely the terms containing  2 1 

as an external field exciting the third element  

 
3 2' i   (3.1.16) 
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Thus, application of the master and slave decomposition on the slow-flow model yields the two 

decoupled systems. The first system (3.1.15) depicts the dynamics of the free response of the 

first two coupled elements, while the second system (3.1.16) depicts the dynamics of the third 

element being excited by the response of the central element of the chain. In the following two 

subsections we use the decomposed system (3.1.15) and (3.1.16) to predict the formation and 

destruction of ELPT-II. 

 

3.2.3.1 Analytical estimates of the formation of ELPT-II 

 

To construct the analytical estimate for the numerically obtained critical value of the coupling 

strength (  ) corresponding to the formation of ELPT-II (
1

ELPT ) we resort to the (2DOF) 

theory of LPTs which has been recently applied on the planar non-symmetric anharmonic 

systems [26], [38]. Before proceeding with the analysis let us briefly sketch the idea of the 

approximation. Recalling that both ELPT-I and ELPT-II correspond to the significant energy 

localization on the first two elements of the trimer (i.e. 1 3 2 3,       ), thus formation 

of the ELPT-II can be associated with the well-known, global bifurcation ('reconnection') 

undergone by the limiting phase trajectories in the approximate, reduced order model (3.1.15) 

(see e.g. [26],[27],[38]). Thus, the critical value of 
1

LPT   corresponding to the point of 

'reconnection' undergone by the LPT in the 2DOF model (3.1.15) will constitute the crude, 

asymptotic estimate for the critical value ( 1

ELPT ) of the full model (3.1.10).  

The system (3.1.15) exactly falls under the category of the anharmonic system considered in 

[26], [38]. For the sake of clarity we briefly repeat the analysis developed in [26]. Obviously 

the system in (3.1.15) is integrable and possesses the two integrals of motion, namely the 

Hamiltonian 

  4 4 2 2

1 2 1 2 2
2

i
H i i             (3.1.17) 

and the occupation  number, 

 
2 2

1 2N      (3.1.18) 

Arguing exactly as above we set N to unity ( 1N  ) and introduce the angular coordinates, 

        1 2

1 2 1 2cos , sin ,
i i

e e
              (3.1.19) 

Here the angular amplitude   also stands for the energy distribution between the coupled 

elements,  1,2i i   is the absolute phase of the response of i-th element, while   is the 

relative phase. Substituting (3.1.19) into (3.1.15) yields the following planar system described 

in terms of the angular coordinates, 
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 

         

' sin

1
sin 2 ' sin 4 2 cos cos 2 sin 2

2

 

     

 

    
   (3.1.20) 

The system’s Hamiltonian given in (3.1.17) can be represented in the following angular form, 

           4 4 2sin cos sin 2 cos sin
2

i
H i i            (3.1.21) 

We proceed with finding the fixed points of (3.1.20). As is clear from the recent works 

(considering the theory of LPT), the fixed points of (3.1.20) play a crucial role in the global 

system dynamics. Apparently, fixed points of (3.1.20) admit the following set of algebraic 

equations (by setting the time derivatives of (3.1.20) to zero), 

      sin 4 cos 2
1

2
sin 2 0,  0

4


            (3.1.22) 

      sin 4 cos 2
1

2
sin 2 0,  

4


           (3.1.23) 

Obviously enough, solutions of (3.1.22) correspond to the in-phase nonlinear normal modes, 

whereas solutions of (3.1.23) correspond to the out-of-phase ones. To find all the solutions of 

(3.1.22) and (3.1.23) explicitly is beyond the scope of the current paper. In Figure 7 we 

illustrate the three phase portraits of the planar system (3.1.20) for the three distinct values of 

the coupling strength  . In terms of the slow-flow model (3.1.20), the regime of intense energy 

transport between the oscillators corresponds to a special orbit that passes through the state 

0   and reaches the vicinity of 
2


  . As can be easily deduced from (3.1.19), these two 

conditions ensure a nearly complete energy exchange between the oscillators. This special type 

of trajectory is referred to in the literature as a limiting phase trajectory of the second kind [26], 

[38]. 

In Figure 7a one can clearly see the existence of a special orbit containing the branch of 

1( ) 0   . This trajectory is denoted with a bold solid line. Apparently this orbit does not 

correspond to the intense energy transport between the oscillators as it stays away from / 2   

(which is a necessary condition for the significant energy transport to the second oscillator). 

We refer to this type of trajectory as the LPT of the first kind. This unique trajectory is 

characterized by the significant energy localization on the first element and moderate energy 

transport between the oscillators (see Figure 8a).  

Increasing the value of   up to a certain critical value ( 1

LPT  ), one observes a coalescence 

of the LPT of the first kind with a separatrix of a saddle point ( ,saddle     ) which is given 

by the solution of (3.1.23) (see Figure 7c). This coalescence of the LPT with the separatrix 

leads to the reconnection between the branches of LPT giving rise to the formation of the LPT 

of the second kind (see Figure 7b).  

As is clear from the discussion of the previous subsection, these regular LPT orbits constitute 

the lower dimensional analogs of ELPTs. Namely, there are clear similarities between the 
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ELPT-I and -II orbits and the LPTs of the first (LPT-I) and second (LPT-II) kind, respectively. 

For instance, similarly to the ELPT-I the LPT-I is localized on the first element and is 

manifested by the moderate energy pulsations. In the same manner, ELPT-II is similar to the 

regular LPT-II orbit as it exhibits the intense energy pulsations between the first two elements 

of the trimer. Moreover, both LPT and ELPT admit the property of having the minimal distance 

from the strictly localized state.  

To illustrate this similarity between these two unique solutions we plot the time histories for 

the amplitudes of 1 1 2 1( ) , ( )     (for the same value of the coupling parameter) corresponding 

to LPT of the reduce model (3.1.15) (Figure 8a, 8c) and ELPT of the trimer (3.1.7) (Figure 

8b, 8d) of both kinds. From the results of Figure 8 one can infer the striking similarity of these 

special orbits of the reduced and the full models. As we have already noted above, the main 

goal of the analysis of the simplified model (3.1.20) is the derivation of the analytical estimate 

for ( 1

ELPT ) corresponding to the numerically observed formation of ELPT-II in the trimer 

model. To this end we look for the special value of  corresponding to the 'reconnection' of the 

limiting phase trajectory in the approximate, simplified system(3.1.20). Following the results 

reported in [26], [38], we note once again that the limiting phase trajectory of (3.1.20), is 

uniquely defined as a special trajectory containing the branch of 1( ) 0   . As was shown in the 

same works, the analytical criterion for the derivation of the first, critical, value of coupling 

corresponding to the reconnection of LPT can be deduced directly from the Hamiltonian 

(3.1.21). Thus, LPT trajectory is implicitly defined by the Hamiltonian (3.1.21) as 

          4 4 2sin cos 2 sin 2 cos 2 sin 1LPT LPT LPT LPT LPT                  (3.1.24) 

As we pointed out above - the reconnection of the LPT of the first kind with that of the second 

kind occurs for the special value of coupling 1

LPT  where the LPT trajectory passes through 

the saddle point ( ,saddle     ) given by (3.1.23). Unfortunately, exact solution of (3.1.23) 

is a formidable task and therefore we formulate the analytical criterion for the coupling 

threshold 1

LPT   implicitly. Thus the critical value 1

LPT  and the corresponding value of the 

saddle  can be found from the simultaneous solution of the following set of trigonometric 

equations,   

 

        

     

4 4 1 1 2

1

1

sin cos 2 sin 2 2 sin 1

sin 4 cos 2 sin 2
24

1
0

saddle saddle LPT saddle LPT saddle

LPT

saddle LPT saddle saddle

     


   

   

  
  (3.1.25) 

Solution of (3.1.25) yields 1 0.1741LPT  .    
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Figure 7.  Phase portrait of the reduced system (3.1.20), a) (β=0.15); b) (β=0.18); c) (β=0.1741); The LPT is denoted 

with a bold solid line.  

Surprisingly enough, the derived analytical estimate for the critical coupling strength 

corresponding to the formation of ELPT-II in the trimer model is fairly close to the true result 

(i.e.
1 10.1741,  0.17101LPT ELPT   ).  

 

Figure 8. Time histories of LPT of (3.1.20) and ELPT of (3.1.10)  (a) (LPT-I) β=0.15; (b) (ELPT-I) β=0.15;  (c) 

(LPT-II) β=0.18; (d) (ELPT-II) β=0.18;  LPT is denoted with the bold solid line, ELPT is denoted by. Blue line 

denotes the amplitude of the response of the first element  1 1( )  , the green line denotes the responses of the 

second one  2 1( )  . 

3.2.3.2 Analytical estimates of the destruction of ELPT-II 

 

In the previous subsection we observed the second transition (destruction) of ELPT at (

2 0.37ELPT  ). Based on the same 'master-and-slave' decomposition given in (3.1.15) and 

(3.1.16), we are willing to derive the crude analytical prediction of the destruction of the last 

surviving, regular transport state manifested by the intense, local energy pulsations.  
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To find the analytical criterion for the second transition of the ELPT we use the quite naive 

physical reasoning. In fact as it was discussed in the previous sections, the annihilation of the 

ELPT-II island is succeeded by the formation of the complete, delocalized resonant energy 

exchanges among all the elements of the chain. This also means that the third element of the 

chain becomes strongly excited. This high amplitude excitation of the third element signifies 

the breakdown of energy localization assumed for the first two elements of the chain resulting 

in the massive, resonant energy transport to the third element. This spontaneous energy 

delocalization is a direct outcome of internal resonant excitation of the third element induced 

by the local resonant pulsations localized on the first two elements of the chain. 

This resonance condition can be formulated for the decomposed systems given by (3.1.15) and 

(3.1.16). As it has been mentioned above, regime of the strongest possible energy pulsations 

emerging in the first coupled system (3.1.15) exactly corresponds to the LPT of the second 

kind. This unique solution is used as an external excitation of the second decomposed system 

(3.1.16). Let us write the response of the second element ( 2 1( )  ) of (3.1.15) corresponding to 

the limiting phase trajectory of the second kind as, 

   2

2 sin LPT IIi

LPT II LPT II e
  

   (3.1.26) 

here 2 ,LPT II LPT II    stand for the angular coordinates of energy distribution and absolute phase 

accordingly and correspond to the unique limiting phase trajectory of the second kind of the 

planar system. Using (3.1.26) together with (3.1.16) we focus on the response of the third 

element given by, 

   2

3 ' sin LPT IIi

LPT IIi e
   

  (3.1.27) 

To assess the intrinsic resonance condition between the regime of local energy pulsations 

(localized on the first two elements of the chain) and the third element we examine the structure 

of the external force (i.e.   2sin LPT IIi

LPT IIi e
  


). First of all we notice that the external excitation 

is composed of the multiplication of the two signals, namely  sin LPT II 
 and 2 LPT IIi

e
  . Obviously 

enough, the first signal is perfectly periodic with respect to the fundamental period of the 

limiting phase trajectory (LPT-II) (i.e.    1 1sin ( ) sin ( )LPT II LPT II LPT IIT       ). Here we denote 

the period of LPT-II as 
LPT IIT 

 and the corresponding frequency of energy exchange as 

12LPT II LPT IIT 

   . Theoretical description of the second signal ( 2 LPT IIi
e
  ) turns out to be a 

somewhat more complex as the absolute phase (
2 1( )  ) of the second element contains both the 

monotonously growing component (constant drift) as well as the oscillating one. To show this 

we reconsider the differential equations depicting the evolution of the absolute phases for the 

limiting phase trajectory, 
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       

       

21

1

1

22

2

1

cos tan cos ,

sin 2 cot cos ,

LPT

LPT LPT LPT LPT LPT

LPT

LPT LPT LPT LPT LPT

d
f

d

d
f

d


    




    



    

    

    (3.1.28)       

(This set of equations (3.1.28) corresponding to evolution of the absolute phases can be easily 

derived from (3.1.15) using (3.1.19)). As it was discussed in the previous works [27] ,LPT LPT 

are even and odd periodic functions, accordingly, and therefore admit the following cosine and 

sine Fourier expansions,  

    0 1 1

1 1

cos , sinLPT n LPT LPT n LPT

n n

A A n B n  
 

 

        (3.1.29) 

For the technical reasons pointed out below it is convenient to present the absolute phase of the 

second element
2 1( )   in terms of 

1 1( )   and LPT  functions 

 
2 1LPT LPT LPT                                             (3.1.30) 

Using (3.1.29) one can show that the  1 ,LPT LPTf    can be expressed in terms of the Fourier 

series, 

       1 1 1 2 1

1

, cos sinLPT LPT rot n LPT n LPT

n

f D n D n  




        (3.1.31) 

Direct integration of (3.1.31) with respect to 
1  leads to the following general expression for

1LPT , 

 
    

   

1 0 1 1 1 2 1

1

1 1

1 2 2 1

cos sin

,

LPT rot n LPT n LPT

n

n n LPT n n LPT

C D n D n

D D n D D n

   




 

     

    


 (3.1.32) 

Using the Fourier expansion of (3.1.29) and (3.1.32) in (3.1.30), yields, the following general 

expression for 2LPT , 

 
    2 0 1 1 1 2 1

1

2 2

cos sin ,LPT rot n LPT n LPT

n

n n n

C D n D n

D D B

   




     

 


 (3.1.33) 

Here rot is a special Fourier coefficient corresponding to the rotational speed of the absolute 

phase. Using, (3.1.26) and (3.1.33) in (3.1.27), yields, 

 
        

 

3

0 1 1 1 1 2 1

1 11

0

sin cos exp exp cos sin

exp

n LPT rot n LPT n LPT

n n

d
A A n i i D n D n

d

i iC


    



 

 

 

   
        

   



 
 

(3.1.34)                               

As it can be easily inferred from (3.1.34), the secular growth of the response of the third element 

is obtained when the following (1:1) resonant condition holds, 

   LPT rot                    (3.1.35) 

Obviously enough, both LPT  and rot  depend on the strength of the coupling (  ). Thus, 

finding the explicit dependence of both frequencies (i.e. frequency of the LPT regime and 
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rotation frequency of the absolute phase) one can roughly estimate the critical value of coupling 

strength leading to the destruction of the ELPT-II. The details of the approximate analytical 

solution of (3.1.35) are brought in the appendix. Solution of (3.1.35) yields the critical value of 

2 0.3968ANAL  .  

In addition to the analytic derivation of the theoretical criterion predicting the destruction of 

ELPT we have used an alternative numerical method based on the Fast Fourier Transform 

(FFT) illustrating the evolution of both frequencies (i.e. ,LPT rot  ) with respect to the 

growing value of the coupling parameter (  ) (see Figure 9). Both frequencies ( ,LPT rot  ) 

are extracted from the post-processed, numerically computed signals  1 sin LPT IISig    and 

 22 sin LPT IISig   . From the diagram of Figure 9 we find out that the intersection of both the 

rotation and LPT frequencies (i.e. 1:1 resonance) occurs at 
2

_ 0.3649ELPT FFT    which is 

fairly close to the numerically derived threshold (
2 0.37ELPT   ). As is also clear from the 

results of Figure 9, the Fast Fourier Transform analysis  provides a better prediction than the 

analytical approximation based on the first order saw-tooth approximation of the limiting phase 

trajectory. Results of the theoretical predictions and numerical findings (Subsection 3.2.2) of 

the critical parameters of coupling leading to the formation and the destruction of ELPT-II are 

summarized in Table 2Error! Reference source not found. and are found to be in the very good 

agreement with the numerical analysis of the full, slow-flow model (3.1.10). 

 

Figure 9. Frequency evolution diagram based on the FFT analysis of  ( LPT  - blue line,  rot  - red line) 

 



21 
 

 1st Transition 2nd Transition 

ELPT-II  

Numerical Simulations 

 

1 0.17101ELPT   

(Formation of ELPT-II) 

      

2 0.37ELPT   

      ( Destruction of ELPT-II) 

 

ELPT-II 

Theoretical prediction 

 

1 0.1741LPT   

(Formation of ELPT-II) 

2 0.3968ANAL   

(Destruction of ELPT-II) 
2 0.3649FFT   

Table 2. Transition values for ELPT: Analytical vs. Numerical 

 

4. NUMERICAL SIMULATIONS 
 

4.1. Numerical verifications of the Slow-Flow model 

 

In the present section we perform numerical verifications of the validity of a theoretical model 

devised in the preceding section. We note that all the numerical integrations of (2.1.1) of the 

present section have been performed in Matlab using the same ODE45 solver as in Section 

3.2.2 with the scalar relative error tolerance of 81 10  and a vector of absolute error 

tolerances of 81 10 .  We start numerical verifications from a comparison of the time histories 

of a true system response (2.1.1) with that of a slow-flow envelope obtained from (3.1.6). To 

this end we plot the time histories of the response of (2.1.1) corresponding to the case of 

periodic, energy pulsations predicted by the extended limiting phase trajectories of the slow 

flow model (3.1.6) (Figure 10).  

 

Figure 10. Time histories of the response (velocities) of the original model (2.1.1) vs. slow flow model (3.1.6). (Left 

panel) Energy localization on the first element corresponding to the ELPT–I, 0.15  . (Right panel) Extreme 

energy transport between the first and the second elements corresponding to the ELPT-II, 0.28  .  

In Figure 10 (Left Panel) we plot the response of the full model (2.1.1) predicted by the ELPT-

I (
1

ELPT  ) whereas in Figure 10 (Right Panel) we plot the response of the full model (2.1.1) 
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predicted by the ELPT-II (
1 2

ELPT ELPT    ). From the results of Figure 10 one can clearly 

observe the very good correspondence between the slow-flow model (2.1.1) and the full model 

(3.1.6).  

 

     4.2 Numerical evidences of the consecutive transitions from localized to delocalized 

states emerging in the impulsively excited K-G trimer model 

 

To illustrate the importance of the devised theoretical predictive capacity we demonstrate the 

spontaneous transitions between the different states of energy pulsations emerging in the 

impulsively excited K-G trimer chain. To this end we perform the series of numerical 

simulations of the impulsive response (IR) of the full model for the gradually increasing value 

of the coupling parameter ( ). By the term impulsive response we refer to the response of 

(2.1.1) to the strictly localized initial excitation (
1 1(0) 1, (0) 0,  (0) (0) 0,  ( 2,3)i ix x x x i     ). 

The total integration time for each particular run of (2.1.1) is ( 5000fT  time units). For each 

IR derived from numerical integration of (2.1.1) we compute the maximal amplitude of the 

instantaneous energy

2

2 41 1

2 2 4

n

n n n

dx
E x x

dt

 
   

 
 , ( ) recorded on each element of the 

trimer over the entire period of numerical simulation. In Figure 11 we plot the maximal 

amplitudes of the response (recorded for each element of the chain) versus the coupling 

parameter ( ).  

As is evident from the diagram of Figure 11 there are two consecutive transitions between the 

aforementioned pulsating states of the impulsive response. Thus for the lower values of 

coupling (below the first transition
_ 0.1577IR I   ) energy is highly localized on the first 

element of the chain. In this state of the system, weak energy transport from the first element 

to the rest elements of the chain is recorded. In Figure 11 this region is labeled as a region of 

weak energy pulsations.  

Right above the first transition threshold (
_IR I  ) we observe the formation of intense energy 

pulsations localized between the first two elements of the trimer and low energy excitation 

recorded on the third one. In Figure 11 this region of existence of this intermediate state of IR 

as a region of intense energy pulsations.   

Finally, complete delocalization of the IR resulted in the irregular energy pulsations spanning 

the entire chain can be inferred from the diagram above the second threshold 

( _ 0.2914IR II   ). In this region we specially note the existence of the interior interval (

0.2914 0.3168  ) showing the intermittent behavior of the IR. Thus, along with the variation 



1,2,3n 


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of the coupling parameter (within this interval) we observe the frequent transitions exhibited 

by IR between the states of the local intense energy pulsations and complete energy 

delocalization. In the same diagram (Figure 11) we denote this special interval as the region of 

intermittency. We note that for 0.3168   one can clearly infer from the diagram the 

elimination of the intermittent behavior of IR followed by the formation of permanent 

delocalized state. This state is labeled in the diagram (Figure 11) as a uniform energy spreading.     

To showcase the correlation of the spontaneous transitions undergone by IR of (2.1.1) to the 

evolution of ELPT-II (analyzed in the previous section) we denoted the zone of existence of 

ELPT-II on the transition diagram (Figure 11) with the blue vertical lines. As is evident from 

the results of Figure 11, the derived theoretical model provides fairly close though restrictive 

criteria predicting the zone of existence of the intermediate state of local, intense energy 

pulsations emerging in the impulsively excited K-G trimer. The critical values of the coupling 

parameter (  ) corresponding to the consecutive transitions of IR of (2.1.1) and these 

corresponding to the formation and destruction of ELPT-II of (3.1.10) are summarized in Table 

3. 

 

5. CONCLUSIONS  

 

In the present work we studied the mechanism of formation and destruction of special class of 

dynamical regimes manifested by the moderate as well as the intense energy pulsations excited 

on the first two elements of the anharmonic K-G trimer. Analysis of the global evolution of the 

slow-flow on the Poincaré maps has revealed the formation of a special type of local, energy-

pulsating states corresponding to the periodic and quasi-periodic energy pulsations established 

between the first two elements of the trimer. As it is shown in the paper this special locally 

pulsating, periodic regime constitute the higher dimensional analog of the limiting phase 

trajectory considered in the 2DOF anharmonic, non-symmetric models and is referred to as 

ELPT. Detailed analytical and numerical study of the formation and destruction of this special 

dynamical regime is pursued in the paper. We show that unlike its lower dimensional 

counterpart, extended limiting phase trajectory undergoes additional bifurcation leading to its 

complete elimination. The mechanism of formation and destruction of this special dynamical 

state is predicted using the reduced order model.    
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Figure 11. Consecutive transitions of the IR from the highly localized to delocalized transport state in the original 

model (2.1.1). Upper panel: the first element, Central panel: the central element, Lower panel: the third element. 

The first and the second transitions undergone by the IR and the ELPT-II obtained in the slow-flow model (Table 3) 

are marked with the vertical, solid lines, accordingly. Initial conditions:     10 0, ' 0 , 1,2,3k k kx x k   . 

Using the previous results of the limiting phase trajectories we predict analytically the two 

consecutive transitions undergone by the ELPT. As it is confirmed by the numerical simulations 

of both slow-flow and the full models, the formation and destruction of the ELPT-II provides 

the rather restrictive criteria for the zone of existence, of the special dynamical states of intense 

energy pulsations - localized on the first two elements of the impulsively excited K-G trimer. 

All the analytical results are in a good agreement with numerical simulations of both slow-flow 

model and the original system.   

 1st Transition 2nd Transition 

 

Impulsive response of the 

K-G trimer 

(Full-Model (2.1.1)) 

 

 
1 0.1577IR   

      

 
2 0.2914IR   

 

 

 

ELPT-II 

Poincaré maps 

(Slow-Flow) 

 

1 0.17101ELPT   

(Formation of ELPT-II) 

      

2 0.37ELPT   

( Destruction of ELPT-II) 

 

 

ELPT-II- 

Theoretical prediction 

(Slow -Flow) 
 

1 0.1741ANAL   

(Formation of ELPT-II) 

2 0.3649FFT   
2 0.3968ANAL   

(Destruction of ELPT-II) 

 
Table 3. Summary of the transition values for the IR of the full (2.1.1) and slow-flow models (3.1.7). 

 

APPENDIX 

 



25 
 

As it was demonstrated in the previous studies the limiting phase trajectory of the second kind 

can be approximated by employing the method of non-smooth time transformations (NSTT) 

developed at first by Pilipchuck [39-41]. Thus, recent works [19-29] devoted to the analysis of 

LPTs in the lower dimensional systems, have shown that the waveform of these trajectories can 

be approximated in terms of the saw-tooth functions.    

 
2

arcsin sin ,
2

t d
e

dt

 




  
   

  
 (A.1) 

It is rather natural to seek for the LPT solution using the basis of saw-tooth functions (A.1), in 

the following form,  

         1; ,X eY X eY
a   


               

 
 (A.2) 

Using simple algebraic manipulation it can be easily shown that     0Y X    . Substituting 

(A.2) into (3.1.20), yields  

       

  1

sin

sin(2 ) sin 4 2 cos 2 cos sin 2
2

| 0

X a Y

a
X Y X a X Y a X

Y

 

     

 



 

 

 

   



       (A.3) 

where (.)  stands for the first derivative with respect to the non-smooth function ( ). 

Proceeding with the method of successive approximations we assume the following generating 

function for the angular variable LPT  at the first stage of approximation, 

 (1) (0)1
0,   1

,
,  

X K Y
a K otherwise

 




    
  

 (A.4) 

Plugging (A.4) into the first equation of (A.3), yields 

 (1) sinX a K    (A.5) 

Solution of (A.5) reads, 

  (1) 1sinX a K
a


     

 
  (A.6) 

Consistency relation between (A.6) and the first equation of (A.4), yields the important relation 

between the period of energy exchange process ( 2a ) and the amplitude of the limiting phase 

trajectory ( K ) 

  
12 sin

2   , 2
sin

LPT LPT LPT

K K
T a T

K K







              (A.7) 

To find the approximation for the amplitude of the limiting phase trajectory ( K ) we resort to 

the corresponding Hamiltonian of the planar system (3.1.24). Thus plugging (A.2) into (3.1.24), 

yields   

           2 2sin 4 sin 2 cos ( si 02 ) 4 nX X e Y X                         (A.8) 
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Inserting the obtained approximation (A.4) into (A.8) and imposing the boundary conditions 

defined in (A.3) (   1| 0Y    ), yields 

      2 2sin 4 sin 2 4 sin 02K K K         (A.9) 

Equation (A.9) implicitly defines the amplitude of LPT as a function of coupling parameter (

 K K  ). Thus, solving (A.7) and (A.9) simultaneously for the given value of coupling (  ) 

yields the time period (
LPTT ) and consequently the frequency (  

1
2LPT LPTT


  ) of the limiting 

phase trajectory (LPT) of the second kind. It is worth noting that the equation (A.8) can be used 

further for the derivation of the next order approximation for the  Y   

      (1) (1) (1) (1 1 1)1
cos tan sin cos ,  

2
1Y X X X      

  
 

             (A.10) 

In Figure A1 (a, b) we plot the time histories of the response of the planar system (3.1.20)

corresponding to the limiting phase trajectory together with its first order approximation. 

 

Figure A1. Time histories of the response of the planar system (3.1.20) corresponding to the limiting phase 

trajectory. Numerical simulation of (3.1.20) is denoted with the solid blue lines, analytical approximation is denoted 

with the solid red and light blue lines 

Our next goal is finding the analytical approximation for the rotation frequency of the absolute 

phase ( rot ) defined above. According to (3.1.31) rot  is the first Fourier coefficient in the 

expansion which is defined as follows, 

     1 1 1 1

0

1
,

LPTT

rot LPT LPT

LPT

f d
T

       (A.11) 

Using the derived approximation ( (1) (1),LPT LPTX Y e     ) in (3.3.35) one arrives at the 

following closed form approximation corresponding to the rotation frequency of the absolute 

phase, 

 
   sin 2 tan3 3

2 4 8 2
rot

K K

K K
       (A.12) 
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Equating 
LPT (given in (A.7)) with (A.3) and accounting for (A.9) we obtain the theoretical 

prediction for the critical value of the coupling parameter ( 2

_ 0.3968ELPT ANAL  ) corresponding 

to the destruction of the entire state of local, intense energy transfer. This case of the destruction 

of the resonance islands corresponding to (ELPT-II) has been observed in the Poincaré section 

of Figure 4. 
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