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1 Introduction

Let (M, p) be a metric space. Suppose that the Hausdorff—Besicovitoarion
dimg [8] is well defined in(M, p). A transformationf : M — M is called dimen-
sion-preserving transformatiohd or DP-transformation if

dimp (f(E)) = dimg(E), YE C M.

Let G(M,dimg) be the set of allDP-transformations defined ofiV/, p). It is
easy to see tha¥ forms a group w.r.t. the composition of transformationss Well
known that any bi-Lipschitz transformation belongs to tnisup B]. However,G is
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372 0. Sutskyi

essentially wider than the group of all bi-Lipschitz trasrshations. In 2004, some
sufficient conditions for belonging of distribution funatis of random variable with
independent-adic digits to groupy was proved by G. Torbin et al2]. There exist
a lot of DP-functions that are not bi-Lipschitz.

Sufficient conditions for distribution functions of randemriables with indepen-
dents-adic digits to beDP have been found by G. Torbid§] in 2007. These con-
ditions were generalized f@ by G. Torbin [L4] and later forQ*- andQ-expansions
by S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G.@iar{3, 4].

Recently, G. Torbin and M. Ibragim proved rather generdiigeht conditions
for distribution functions of random variables with indedentQ-digits to be inDP-
class. The notion of fine covering system faithfulnessiiati; calculation p] plays
an important role in the proof of these conditions. Thisootjives us the possibility
to consider coverings by sets from some fandiland to be sure that a “dimension”
calculated in such a way is equal dom . Faithfulness of the family of alt-adic
cylinders (if s is fixed) have been proven by Billingsleg][in 1961. Faithfulness
of the family of Q-cylinders have been proven by M. Pratsiovytyi and A. Turbin
[16] in 1992, and faithfulness of the family @)*-cylinders (under the condition
of separation from zero of the corresponding coefficienssjehbeen proven by S.
Albeverio and G. Torbin]] in 2005. It is necessary to remark that the last result can
be easily generalized t9-expansion under a similar condition.

In 1982, C. Tricot 5] introduced the notion of packing dimensidim p. This di-
mension is in some sense dual to the Hausdorff—Besicovitelrasion: the definition
of dimy of a setF’ is based om-coverings of this figure, but the definition éfm p
is based orz-packings (the countable sets of disjoint open b&lIgr, cx), k € N,
with radii r;, < ¢ and centers;, € F'). The packing dimension has all “good” prop-
erties of a fractal dimension, such as the countable stabllherefore, proving or
disproving similar results fatim p is important. For example, we consider the group
of packing-dimension-preserving transformations#@rP-transformations).

Definition 1.1. The transformatiorf is said to be @D P-transformation if
VE C M, dimp(f(E))=dimp(E).

There are a lot of problems with proving of many conjectuaeslfm p because
work with packings is essentially more complicated thankaeith coverings 1]

These problems are solving bit by bit. For example, M. Ddshps proven the
Billingsley theorem for packing dimension; J. l9][obtained some sufficient condi-
tions for distribution functions of random variables wittdependen®-digits to be
in PDP-class. Namely, J. Li has proven the following theorem.

Theorem 1.1. Let F; bethe distribution function of a random variable £ with inde-
pendent Q-representation. If inf; ; ¢;; = ¢« > 0 and inf; ; p;; = p. > 0, then F¢
preserves the packing dimension if and only if

hi+ha+ -+ hg

lim su =1,
kosmo b1t ba ot by

where hj = — Z:zl Dij hlpij and bj = — Z:zl Dij In qij -
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In Remark 4.2 at the and of articl®][ we read: “The conditionsnf; ; ¢;; =
¢ > 0 andinf; ; p;; = p. > 0 play an important role in the proof of the theorem.
Open question: What can we say about the topic if we remosetbenditions?”

S. Albeverio, M. Pratsiovytyi, and G. Torbii]removed the conditioinf; ; p;; =
p« > 01in a similar situation forD P-transformations.

In case of packing dimension, the approach3jfif complicated because it re-
quires appropriate results about the fine packing systafditness for packing di-
mension calculation. Even the definition of the fine packiygtem faithfulness is a
problem because centers of all balls in packings should thesiset the dimension of
which is calculated.

The aim of this paper is to propose some alternative defmifahe packing di-
mension, uncentered packing dimensiodiii p( ). In the proposed definition, the
condition “the centers of balls should be in the figure theatision of which is cal-
culated” in the definition oflimp is replaced by “every ball should have a nonempty
intersection with the figure.” We prove that, in some widesslaf metric spaces (in-
cluding R™), the value of packing dimension with uncentered balls ischiag to
the value of classical packing dimension. Introductiontaf fine packing system
faithfulness notion is very simple in the case of proposdihdien. It allows us to
prove faithfulness (under the condition of separation famro of the coefficients) of
a Q-cylinder system and sufficient conditions for the disttibn function of a ran-
dom variable with independent-digits to be in thePDP-class. The corresponding
theorem is the main result of the paper.

Theorem 1.2. Letinf; ; ¢;j := gmin. Upposethat ¢min > 0. Let

T:{kmeNmk<%?}

Ty :=Tn{1,2,...,k};

In L
P

ZjETk '

B :=limsu

Let F¢ be the distribution function of a random variable £ with independent Q-
representation. Then F¢ preserves the packing dimension if and only if

dimp He = 1;
B =0.

2 Packing dimension

Let us recall the definition of packing dimension in the foriveq, for example, in
(8].

Definition 2.1. Let E C M ande > 0. A finite or countable famil{ E, } of open
balls is called ar-packing of a setF if
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1. |E;| < eforall i
2. ¢; € E, i € N, whereg; is the center of the baly;;
3. BE;NE; =woforalli,j, i # j.

Remark 2.1. The empty set of balls is a packing of any set.

Definition 2.2. Let E € M, « > 0, > 0. Then then-dimensional packing premea-
sure of a bounded sek is defined by

P(E) = sup{; B},

where the supremum is taken over all at most countaigackings{E;} of E (if
E; = @ forall j, thenPX(E) = 0).

Definition 2.3. The a-dimensional packing quasi-measure of a setF is defined by
PS(E) := lim PX(E).
e—=0

Definition 2.4. The a-dimensional packing measureis defined by
PE) := mf{z PS(E;): E C UEJ},
J

where the infimum is taken over all at most countable coveriig } of £, E; C M.
Definition 2.5. The nonnegative number

dimp(E) := inf{a: P*(E) =0}

is called theuncentered packing dimension of a setky C M.

3 Uncentered packing dimension

Definition 3.1. Let E C M ande > 0. A finite or countable famil{ E, } of open
balls is called amincentered e-packing of a setF if

1. |E;| < eforall i
2. E;NE # g,
3. BE;NE; =woforalld,j, i # j.

Remark 3.1. The empty set of balls is an uncentered packing of any set.

Definition 3.2. Let E € M, a > 0, e > 0. Then theuncentered a-dimensional
packing premeasure of a bounded sek is defined by

Pt (B) = sun{ 151 .

where the supremum is taken over all at most countable vewestat-packings{ E; }
of E.
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Definition 3.3. The uncentered a-dimensional packing quasi-measure of a setE is
defined by

,P(()l(unc( ) - hmp unc( )

e—0

Definition 3.4. Uncentered a-dimensional packing measure is defined by

Plone) (E mf{ZPO wne)(Bj) 1 E C|JE; }

where the infimum is taken over all at most countable coveriig } of £, E; C M.

Remark 3.2. If (M, p) = R! anda = 1, then thea-dimensional packing measure
and uncentered-dimensional packing measure are the Lebesgue measure.

Definition 3.5. The nonnegative number
dimp(une)(E) := inf{a : ’Pf‘unc)(E) = O}.

is called theuncentered packing dimension of a setky C M.

Theorem 3.1. Let (M, p) be a metric space. Let C € N. If for all » > 0 and for any
open ball I with |I| = 8r, thereexist at most N(I) ballsI;, i € {1,..., N(I)} such
that; c I, ie{1,....N(I),|L|=r, i€ {1,...,N(I)},and N(I) < C.Then

dimp(um) (E) = dimp (E)

Proof. Step 1. Let us prove the inequalitfim p(yy,) (E) > dimp(E).
By the definitions and supremum property we have
(B) =Py

P °(E).

unc)

By the limit property of inequalities we have

,P(()l(unc) (E) > Pél (E)
Hence,
leunc) (E) =P (E)
Let dim p(yne) (E) = ap. By the definition ofdim p .. (£) we have

Ve >0, PIT(E)=0.

(unc)

Therefore,
Ve >0, PLOTE(E) =0,

and, consequently,
dimp (E) < Qp.

Hence, it follows thatlim p( ) (E) > dimp(£), which is our claim.
Step 2. Let us show thatlim p () (E) < dimp(E).
If dimp(yne)(E) = 0, then the statement is true.
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Let us consider the casim p(,,,.)(E) # 0. Fix0 < t < s < dimp(yne) (E).
Sinces < dimp(unc) (£), we have

,P(Sunc) (E) = o0,

Therefore,
vr > O Pr(unc)( ) +00.

From this and from the supremum property, it follows thatr¢his an uncentered
packingV := {E;} of the setE with
STIE] > 1. (1)

Let us divide the packing into classes
Vi:={E; : 27 < B < 277},
Let n;, be the number of ball}.. We will show that
Jko : ng, = 2k°t(1 - 2t75).
To obtain a contradiction, suppose that
ny < 28(1—27%) forall k.
Then
SIEP <> 27y <Y oM (1-20) = (1-2070) ) J(270)" =
i k k k

which contradicts our assumptiof)(
Therefore, suclk, exists. Let us considdry,. We denote by4,, A, ..., Any,
the balls inV4,, that is,
Vi = {41, A2, ..., Ay}

Fix r := 27%0~1_Then the radius of any; is less thamn. Let T; be a point of4;
such thafl; € A; N E. LetV' be the set of balls with the centéFsand radius, that
is,

V' ={A;: A; = B(T;,r)}.
Fix
V' = {A;‘ c A = B(Ti,4r)}.
Let us divide the seY”’ into classed(;, K>, ..., K, as follows.

1. Letustake a ball; = A} and putitinK; together with all other ballgl; €
V’ such thatd] N A’ + 2.

2. Letus take an arbitrary ball’, € V' \ K, and put it inK, together with all
other ballsA; € V' \ K such thatd] N A’ # &,



PDP-transformations 377

3. Letus continue thisway until’\ (K; UK, U- - -UK]) # @. Since the number
of elements in a sdt” is a finite, we can find such a number

Now suppose that the balld; and A’ intersect each other. In other words,
p(T;,T;) < 2r. Therefore A; C Aj.

The radius of4; is greater tham/2. By the theorem condition, there are no more
thanC disjoint balls with radius:/2 in a ball with radiustr

Therefore, there are no more th@rballs in any clasg(;.

Moreover, in the case < m, the balls4), andA’; do not intersect each other.
Indeed, suppose otherwise. Thef is in a classi; or in a class with number less
thans.

Hence,

VN = {A./jl’ ;27"'7A.;L}
is a centered packing of a sét and thet-volume of this packing is less than the
t-volume of the uncentered packi®g, no more tharC' times. Therefore,

—k}ot —]C()t t—s
1|t 2 kot t—sy . 2 _1-2
Z‘Am Z Ny - C 220(1_2 ) c C :
V//
From this it follows that .
1-—2ts
Phio (B) > —F—.

By the inequality2—*° < r we get

. 1— 2t—s
P.(E) > — forall r > 0.

Consequently, as — 0, we get the inequality

1— 20+
PY(E) > —5—

Let us show thaP*(E) > 1=2—". Recall the definition

V@%m%Z%@WECU&}

where the infimum is taken over all at most countable coveringof a setF.

Let {E£;} be an at most countable covering Bt Sincedimp(unc)(E) > s,
there isjo such thaidimp,,.)(Ej,) > s (by the countable stability of the packing
dimensiondim p(,,,.)). In other words, we have

P(Sunc) (Ejo) = +00,
,Pg(unc) (Ejo) = +o0.
We conclude by the part of the theorem already provediftnat

1— 2t75
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and .
1—2t—s
;PS(EJ) > —F

But the previous inequality is true for an arbitrary covgr{iE; } of a set£' and for
the infimum for all coverings. Therefore,

1-2t°

t
>
PI(E) > —

and
dimp (E) 2 t.

Sincet-dim p () (£) can be approximated by 0, we gétnp () > dimp(ype) (E),
which completes the proof. O

Corollary 3.1. If M = R™, then dim p () (E) = dimp(E).

Proof. Let Bs, be a ball with radiusr, B, be a ball with radius, and\ be the
n-dimensional Lebesgue measure. Then

A(Bsy) = 8™ - A(B,).

Therefore, we can put no more thah= 8™ disjoint balls with radiir in a ball
with radius8r, which completes the proof. O

3.1 Packing dimension with respect to the family of sets
Let @ be a family of balls in a metric spa¢é/, p).

Definition 3.6. Let E € M, « > 0, > 0. Then then-dimensional packing premea-
sure of a bounded sel’ with respect tap is defined by

P(E, @) = sup{; B},

where the supremum is taken over all uncentergrhckings{E;} C & of E (if
{E;} = @, thenP(E, ) = 0).

Definition 3.7. The a-dimensional packing quasi-measure of a setF w.r.t. & is de-
fined by
PS(E,®) ;= lim PX(E, D).
e—0

Definition 3.8. The a-dimensional packing measurew.r.t. & is defined by
P(E, d) := inf{z PS(E;,®): E C UEJ}
J

where the infimum is taken over all at most countable coveriig } of £, E; C M.
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Definition 3.9. The nonnegative number
dimp(E,®) := inf{a : P*(E, ) =0}

is called thepacking dimension of a setFl C M w.r.t. .

Remark 3.3. In the definition ofdimp (£, @), we used uncentered packing. But we
will denote this dimension without indéunc) because:

1. We will work inIR™. In this space, centered and uncentered packing dimensions
are equal;

2. The centered packing dimension w.r.t. some family ofshialhot defined.

Theorem 3.2.

Proof. Let @, be the family of all open balls /. Then
Prluncy(E) = P (E, Po).
Since® C &, by the supremum property we have
PHE,P) < PHE,Py).
By the inequality for packing premeasures it follows that
dimp(E, @) < dimp(ype)(E),

which proves the theorem. O

4 Faithfulness of the open balls families for packing dimerisn calculation

Definition 4.1. Suppose that some open balls fan#gatisfies the following condi-
tion: forall E C M, dimp(ype)(E, ) = dimp(unc) (£). Thend is said to bdaithful
for uncentered packing dimension calculation.

Remark 4.1. The notion of faithfulness is introduced for the Hausddfésicovitch
dimensiondimg [11]. Itis clear that

v C 2M dimy (B, ®) > dimy (E).

Theorem 4.1 (The sufficient condition for the open-ball family to be Fditl for
packing dimension calculationBuppose that

1. ¢ isafamily of intervalsfrom[0; 1];

2. 3C > 0:V(a;b) C [0;1],3A(a;b) € P such that:
(@) 2t € A(a,b);
(0) Afa,b)  (as);
(©) |A apy = O

Then & isa faithful open-ball family for packing dimension calculation.
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Proof. Let E be any setee > 0, andr > 0. Let {E;} = {(a;;b;)} be a family of
disjoint intervals such thaﬁ%bi € Fandb; —a; <.
Then the following inequality holds:

Z | B < Z ’A(ai,bi)‘a O

Taking the supremum (over all sets of intervls; } satisfying the previous con-
ditions), we have
Pr(E) < sup |A(ai, b)|" - C*.
{E:}
Any set of intervals{ A(a;, b;)} satisfies the conditions from ther
definition. So,

(E, )

unc)
sup ‘A(ai,bi)’a O < Pllyne) (B, D) - C*.
{E:}
Therefore,
P(E) < P (E,®)-C“.

r(unc)

Taking the limit of both sides, we have
PS(E) < Pél(unc) (E,QS) O
Taking the infimum over all possible coverings of the Betve have

PYUE) < Pl (E, D) - C

(unc)

and
dimp (E) < dimP(unc) (E, Sp)

Since[0; 1] C RY, it follows that
dimp(E) = dimp(um) (E)
and
dimp(unc) (F) < dimp(um) (E, ).

Using
dimP(unc) (E) > dimP(unc) (E, QS) for all D,

we obtain thatp is a faithful open-ball family for the packing dimensionaalation.
O

5 Sufficient conditions for Q-expansion cylindric interval family to be faithful
TheQ-expansion of real numbers is a generalizatios-ekpansion and)-expansion
and was described, for example, #.[

Theorem 5.1. Let & be the system of cylindric intervals of some Q-expansion. Sup-
pose that

lIlf 4dij = Qmin > 0.
.3

Then @ isafaithful ball family for packing dimension calculation.
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Proof. Let~c~20 be the set of)-rational points, andZ’ be any subset of0; 1]. Let
E = E'\ Qo. SinceQ) is countable, it follows that

dimp(une) (Qo) =0, dimp(unc)(Qo, ) =0,
and
dimp(yne) (E') = dimp(yne) (E), dimp(yne) (E', ) = dimp(yne) (E, D).
The proof is completed by showing that
dimp (une) (£) = dimp(unc) (£, P)

for every sett? C [0; 1] if E does not conta}iﬁ?-rational points.
Let (a;b) C [0;1]. Let A(a,b) be the@-cylindric interval of the minimal rank

such that
a+b

2
Denote the rank ofA(a, b) by k. Since this rank is minimal, it follows that; b)
is a subset of one or two cylinders with rahk- 1. Let us denote the cylinder with
rankk — 1 that containgA(a, b) by A’. If the second cylinder exists, then we denote
it by A”.
Let us consider the following two cases.
Case 1. TheA” does not exist. Then

€ Aa;b) C (a;b).

|Afa,b)| <b—a < |4,

and, therefore,
‘A(CL, b)‘ P (b - a) * Qmin-

Case2. The A” exists. Then

Al 22b—a = |A(a,b)| > (b—a)-qr;in.

Summary of the two casesFor every intervala; b), there exists &)-cylindric
interval A(a, b) such thatt2 € A(a; b) and

|Aa,b)| > (b—a) - qf;i“.

It follows that the family® satisfies the conditions of Theoretrl and is faithful for
packing dimension calculation. O

Corollary 5.1. Let ¢ be a family of Q*-cylinders under the condition inf; ; ¢;; > 0.
Then @ isfaithful for packing dimension calculation.

Corollary 5.2. Let @ be a family of Q-cylinders. Then @ is faithful for packing di-
mension calculation.

Corollary 5.3. Let ¢ be a family of s-adic cylinders. Then @ is faithful for packing
dimension calculation.
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6 Proof of the main result

To prove the main result, we need the following two lemmas.
Lemma 6.1. Let Q bethe matrix ||gi||, i € N, k € {0,1,..., Ny — 1}.If

In g
lim 1 ik

=0
i—00 In(Giy 102 - - - iy (k—1))

for every sequence (i), then the open-ball family ¢ of the respective expansion cylin-
der interiorsis faithful for packing dimension calculation.

Proof. Letus fixasef C [0;1]. Letus fixany numbers: € N, § > 0 and consider
the following sets:

1nqikk(x)
ln(qill(‘r)qh?(x) cee qikfl(kfl)(x))

meg—{xEE: <5,Vk>m}.

Fix some valuen and consider any sé&t,,, s corresponding to this value. There
existse > 0 such thatc,,| > ¢ for any cylindere,, of rankm. Consider the centered
e-packing of the selV,,, s by intervalsE);.

For every intervaE;, there exists a cylindric interval(E;) such that:

1. A(E;) C Ej;
2. A(E;) contains the middle point; of the E;;
3. A(E;) has the minimal possible rank. We denote this rank;by

We will say that the cylinded\’(E;) is the “father” of A(E;) if A'(E;) D A(E;)
and the rank ofA’(E;) is equal toi; — 1. It is obvious thatA’(E;)| > 'Egj . There-
fore,

2| ACE;)|
Qikj kj (IJ)
Let us estimate the-volume of packing of the set by intervalst;:

;lEjla < ; |AE)|" - (#(:cj))

Qi ks

|E7| < , Whel'el'j € Wm,(;.

This inequality is equivalent to

Siel < S laE) " Jas) - (—2)
L J

B Qir; k

Let us estimate the expression

1n(|A(Ej)|6. (#@))a)

= 01n(qi,1(2)0ia2(2) - - - iy, 1 (-1 (*)) + a2 — alngi, k, (z;).
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Sincez; € W, s, it follows that
61n(gi 1 (%) giz2 () . .. qz'kj,l(kj—l)) < Ingiy kg (xj).
Therefore,
5 2 ¢
1n<|A(Ej)| . <7> > <aln2+ (1 —-a)lng, r,(z;) <aln2.
Qikj kj (‘TJ) !

Thus, we have

SIEr <2 A"
J J

Take the suprema over all possible centered packig$ of both parts of the pre-
vious inequality:
PE(Wins) < 2P0 (Win 5, D).

e(unc)

Take the limit ag — 0:

Ps (Wins) < 2Pg a0y (Win,s, D).

unc)

We obtain that
P (Wins) < 2P0 (W5, D).

(unc)

Denoteay = dimp(Wp, 5). Then for alla < ay, the left part is equal to infinity.
Thus, for alla: < av, the right part is equal to infinity too. It follows that

dimP(unc) (Wm,67 45) 2 a—9

and
dimP(unc) (Wm,év QS) 2 dlmP(Wmé) — 4.

Using the definition o#V,,, 5, we get

E= fj Wins.

m=1
Now, by packing dimension countable stability,
dimp(ync) (£, P) > dimp(E) — 0.
Sinced can be arbitrarily small,
dimp(une) (£, ) > dimp(E).

To complete the proof, it remains to note thatis any subset of0; 1]. Thus,® is
faithful. O

Lemma 6.2. Let & be a family of Q-expansion cylinders under the condition
inf ¢;; > 0. Let F¢ beadistribution function of arandomvariable ¢ with independent
Q-digits. Assume that the following condition holds:
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IACF(4,(2) _ |

n;ngom— , Vze[0;1], 2)

where A, (z) isthen-rank cylinder that contains .
Then ¢’ = F(&) isfaithful for packing dimension calculation.

Proof. @' is the family of cylinders for som@-expansion. Denote this expansion by
Q' and the corresponding numbegs by ;-

Itis not clear that conditioinf ¢;; > 0 holds, so we cannot Theoresril.

Let us show that the conditions of Lemréd. hold for this expansion. We have

and
1n/\(F(An(:17))) = 1n(qia] qéaz .. .q;mn).
Denote

Ing..
M = lim sup V) q”l/ )
i—00 hl(qul 435, - - 'q(i—l)ji—l)

To estimatel/, we need the following equation:

I A(F(An(2)) _ In(qy;, adj, - - Qi—1y;,_,) + Indgy,

n—=0 In /\(An (x)) n—0 hl(qul qz2jsy - - 'q(i—l)ji—l) +In qij; .

Dividing the nominator and denominator of the last fractiobhy
In(q1j, 42js - - - 4(i—1)5:_, ), We Obtain

Ingj;,

1+ 5

: 11 9255+ U= 1)5;_,) 1+M
lim izl = =1 = M=0.
n—0 In(q1jy 9255 ---9-1)j; ;) In qij, 140
7 7 7 7 7 7
(a1 Gy Uiryzy_y) 100005 Gy U1y, y)

It follows thatQ’ satisfies the conditions of Lemngal, and therefor@ is faithful.
O

Proof of the main result. Let us show that i is PDP, thendimp(pe) = 1.
Assume the converse. Then there exists afetsuch thatus(E,) = 1 and
dimp(E,) = a. ConsiderFe(E,). Sinceus(E,) = 1, we haver(E,) = 1, and
thUSdimp(Fg(Ea)) =1.
We obtain the following inequality:

dimp (Fe(Eqy)) = 1 # o = dimp(E,),

and this contradicts the assumption tiatis PDP. Therefore, we will show that if
Fg is PDP, thendimp(,ug) =1.
The next part of the proof consists of two steps:

1. If dimp(pe¢) = 1 andB = 0, thenF; is PDP;
2. Ifdimp(pe) = 1 andB # 0, thenF¢ is not PDP.
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Lete be some positive number such that %qmin. Consider the following sets:

Ek—{j JEeEN, <k |pij — aqij| < 516{0,1,...,3—1}},
T, ={1,2,...,k}\ TS,

1
= {k ke Napk < §Qmin}a
T, =TnN{1,2,...,k},
T =T\ Th.
Step 1. Let us show that itlimp(ne) = 1 andB = 0, thenF; is PDP. Since
B =0, we see that
; Inp;
i 2en 2P
k—oo  kIn qmin
Consider the fraction
In ILLE(AGIG2~~~ak(1))
In )‘(Aamz ak(x))
ZJGT+ In g, (2); + Z]ET NP, (2); + Z]ETk hlpag(ﬂﬂ)]
Z hlqaj z)j

Split this fraction into three terms. Consider the first term

2jert, MPay(a);
Zj In Qaj (z)j

It is easy to prove that

Z hlpaj(iﬂ)j 2 Z ln(qllj(w)j_a)

JETH, JETE,
Qo (x)i — €
— Z <1nqaj(m)j+1n<%>>
jGT;fk qaj(m)ﬂ
= Z (IHQa (z) ) | |
JGT:k mln

where|T .| is the number of elements iﬁj On the other hand,
D Wpayy < Y (Inday;) — 112 |
JETH, JETT,
Also,
| k| 2e . Z]ET+ lnpa](Z)J | k| 2e

1+ < lim <1-
Gmin * Ej:O In qa;(z)j ko0 Zg =0 In Qa;(z)j Qmin - Zj:O In Qa;(z)j

|T o l2e
Gmin"Y_5 o 10 Ga; ()5

(note that < 0).
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SiNCe¢min < ¢ij < Gmax and|T «| < k, we have
k- 2e _ 2jert, M Pay(a);s k- 2e
L o T e, S 00 S o i g
Gmin * K 111 Gmax k—o00 Z] -0 In Qo ()] Gmin *© K 111 Gmax
and
Z + lnpa z)j
14 2e < lim JETE, i ( 7<1_ 2e .
Gmin * In Gmax k— o0 Z 1n Qa;(x) Gmin * In Gmax

Sincee can be arbitrarily small, it follows that

ZjeT+ Inpg; ();
lim =1
koo YN gy, (x);

Similarly,
Qmin 2 — Qmin
T 1] ln< ) > pa); < Tkl 1n<T>.
JGTE k
Therefore,

2jet. . B Pa; (@) o [Ten (™) _ |7kl (0(gmin) +1n(1/2))
kIn Gmin = kln Gmin = kln Gmin

3

and the second term tends to zerdcas oco.
Consider the third term
ZjGTk 1npaj(m)j
22 4, (2);
It can be estimated by
ZjeTk Inp,
kln Gmin
and this value tends to zero As— oo because3 = 0.
We obtain that

3

lim 1223 (Aalag...ak(m))

koo A(A =t

alag...ak(w))

Denote by the cylinder family of giverQ-expansion. Denote the imagedby
P = Fe (D).

Using the Billingsley theorem for packing dimensidr?], we have

dimp(E, ®) = 1-dimp(F¢(E),®') VE C [0;1].

To prove thatdimp(E) = dimp(F¢(E)), it suffices to prove thab and®’ are
faithful.

Faithfulness ofp is already proved. Faithfulness @f was proved in Lemma 1
and Lemma 2. So, we have théiinp(E) = dimp(F¢(F)) andF¢ is a PDP-trans-
formation.
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Step 2. Let us show that iflimp(p¢) = 1 andB > 0, thenF; is not PDP.
Similarly to step 1, consider the fraction

1(Aayas...an(z))
MAdyaz...ak(z))
2 jert, MPa; @) + 2 jer. , WPaj@); + Xjer, M Pa; ()
22510 daj (2

and split it into three terms. It is easy to see that the finshteends to 1 and the
second term tends to 0 (&s— oco). Consider the third term.
SinceB > 0, there exists a subsequer{és,) such that

1
ZjETkm ln P_

lim L = B.

m—o0 km

Consider the set

akE{O,l,a5—1}|fk¢T
L = x:x:Aalaz...ak...Q '

ap = ng, it k € T, wherep,,, ; = min p;j
K2

Since the digits are in infinitely many places, it followstthéL) = 0. But combining

T,
1im | k’!n | —

m— 00

0

m

and the formula forim p (u¢ ), we havedimp (L) = 1. It follows that

1 Aaa a x
veel lim Awe e, @)

=1+ B.
m—oo In A(Aa1a2.--akm (I))

Thus, for any > 0, there existsn(d) such that for alin > m(d), we have

In
-0 <
1+B 5\111)\(

Aalag...akm (I))

< .
A <1+B+6

a1a2...0k,, (1))

Thus, we have
.. lnN(Aalag...ak(m))
minf T A

and (using the Billingsley theorem fdim p)

>1+ B -6,

alag...ak(w))

dimp_u(L) . (1 + B - 6) < dlmp(L),

that is,
. 1
Since the last inequality holds for anyit follows that
1
i <
dlmP(Fg(L)) ST:m

andF; is not aPDP-transformation. O
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Corollary 6.1. Letinf; ; gij := ¢min. SUppOSe that gmin > 0. Let

T := {k:kGN,pk < qn;n};

T, :=TnN{1,2,...,k};
ZjETk lnpi

J

B :=limsu
k~>oop k
Let F: be the distribution function of a random variable £ with independent Q*-
representation. Then F¢ preserves the packing dimension if and only if

dimp He = 1;
B =0.

Corollary 6.2. Let s € N, s > 2;

T:= {k:keN,pk<i};
2s
T, :=TnN{1,2,...,k};

1
Zje:r,c In 7

B :=limsu
k~>oop k
Let F¢ bethedistribution function of a randomvariable £ with independent s-adic
digits. Then F¢ preserves the packing dimension if and only if

dimp He = 1;
B =0.
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