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Abstract The article is devoted to finding conditions for the packing dimension preservation
by distribution functions of random variables with independentQ̃-digits.

The notion of “faithfulness of fine packing systems for packing dimension calculation”
is introduced, and connections between this notion and packing dimension preservation are
found.
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1 Introduction

Let (M,ρ) be a metric space. Suppose that the Hausdorff–Besicovitch dimension
dimH [8] is well defined in(M,ρ). A transformationf : M → M is called dimen-
sion-preserving transformation [13] or DP-transformation if

dimH

(

f(E)
)

= dimH(E), ∀E ⊂ M.

Let G(M, dimH) be the set of allDP-transformations defined on(M,ρ). It is
easy to see thatG forms a group w.r.t. the composition of transformations. Itis well
known that any bi-Lipschitz transformation belongs to thisgroup [8]. However,G is
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essentially wider than the group of all bi-Lipschitz transformations. In 2004, some
sufficient conditions for belonging of distribution functions of random variable with
independents-adic digits to groupG was proved by G. Torbin et al. [2]. There exist
a lot ofDP-functions that are not bi-Lipschitz.

Sufficient conditions for distribution functions of randomvariables with indepen-
dents-adic digits to beDP have been found by G. Torbin [13] in 2007. These con-
ditions were generalized forQ by G. Torbin [14] and later forQ∗- andQ̃-expansions
by S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G. Torbin [3, 4].

Recently, G. Torbin and M. Ibragim proved rather general sufficient conditions
for distribution functions of random variables with independentQ̃-digits to be inDP-
class. The notion of fine covering system faithfulness fordimH calculation [5] plays
an important role in the proof of these conditions. This notion gives us the possibility
to consider coverings by sets from some familyΦ and to be sure that a “dimension”
calculated in such a way is equal todimH . Faithfulness of the family of alls-adic
cylinders (if s is fixed) have been proven by Billingsley [6] in 1961. Faithfulness
of the family of Q-cylinders have been proven by M. Pratsiovytyi and A. Turbin
[16] in 1992, and faithfulness of the family ofQ∗-cylinders (under the condition
of separation from zero of the corresponding coefficients) have been proven by S.
Albeverio and G. Torbin [1] in 2005. It is necessary to remark that the last result can
be easily generalized tõQ-expansion under a similar condition.

In 1982, C. Tricot [15] introduced the notion of packing dimensiondimP . This di-
mension is in some sense dual to the Hausdorff–Besicovitch dimension: the definition
of dimH of a setF is based onε-coverings of this figure, but the definition ofdimP

is based onε-packings (the countable sets of disjoint open ballsBk(rk, ck), k ∈ N,
with radii rk 6 ε and centersck ∈ F ). The packing dimension has all “good” prop-
erties of a fractal dimension, such as the countable stability. Therefore, proving or
disproving similar results fordimP is important. For example, we consider the group
of packing-dimension-preserving transformations (orPDP-transformations).

Definition 1.1. The transformationf is said to be aPDP -transformation if

∀E ⊂ M, dimP

(

f(E)
)

= dimP (E).

There are a lot of problems with proving of many conjectures for dimP because
work with packings is essentially more complicated than work with coverings [10].

These problems are solving bit by bit. For example, M. Das [7] has proven the
Billingsley theorem for packing dimension; J. Li [9] obtained some sufficient condi-
tions for distribution functions of random variables with independent̃Q-digits to be
in PDP -class. Namely, J. Li has proven the following theorem.

Theorem 1.1. Let Fξ be the distribution function of a random variable ξ with inde-
pendent Q̃-representation. If infi,j qij = q∗ > 0 and infi,j pij = p∗ > 0, then Fξ

preserves the packing dimension if and only if

lim sup
k→∞

h1 + h2 + · · ·+ hk

b1 + b2 + · · ·+ bk
= 1,

where hj = −
∑nj

i=1 pij ln pij and bj = −
∑nj

i=1 pij ln qij .
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In Remark 4.2 at the and of article [9], we read: “The conditionsinfi,j qij =
q∗ > 0 andinf i,j pij = p∗ > 0 play an important role in the proof of the theorem.
Open question: What can we say about the topic if we remove these conditions?”

S. Albeverio, M. Pratsiovytyi, and G. Torbin [3] removed the conditioninfi,j pij =
p∗ > 0 in a similar situation forDP-transformations.

In case of packing dimension, the approach of [3] is complicated because it re-
quires appropriate results about the fine packing system faithfulness for packing di-
mension calculation. Even the definition of the fine packing system faithfulness is a
problem because centers of all balls in packings should be inthe set the dimension of
which is calculated.

The aim of this paper is to propose some alternative definition of the packing di-
mension, uncentered packing dimension ordimP (unc). In the proposed definition, the
condition “the centers of balls should be in the figure the dimension of which is cal-
culated” in the definition ofdimP is replaced by “every ball should have a nonempty
intersection with the figure.” We prove that, in some wide class of metric spaces (in-
cludingR

n), the value of packing dimension with uncentered balls is matching to
the value of classical packing dimension. Introduction of the fine packing system
faithfulness notion is very simple in the case of proposed definition. It allows us to
prove faithfulness (under the condition of separation fromzero of the coefficients) of
a Q̃-cylinder system and sufficient conditions for the distribution function of a ran-
dom variable with independent̃Q-digits to be in thePDP -class. The corresponding
theorem is the main result of the paper.

Theorem 1.2. Let infi,j qij := qmin. Suppose that qmin > 0. Let

T :=

{

k : k ∈ N, pk <
qmin

2

}

;

Tk := T ∩ {1, 2, . . . , k};

B := lim sup
k→∞

∑

j∈Tk
ln 1

pj

k
.

Let Fξ be the distribution function of a random variable ξ with independent Q̃-
representation. Then Fξ preserves the packing dimension if and only if

{

dimP µξ = 1;

B = 0.

2 Packing dimension

Let us recall the definition of packing dimension in the form given, for example, in
[8].

Definition 2.1. Let E ⊂ M andε > 0. A finite or countable family{Ej} of open
balls is called anε-packing of a setE if
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1. |Ei| 6 ε for all i;

2. ci ∈ E, i ∈ N, whereci is the center of the ballEi;

3. Ei ∩ Ej = ∅ for all i, j, i 6= j.

Remark 2.1. The empty set of balls is a packing of any set.

Definition 2.2. LetE ⊂ M , α > 0, ε > 0. Then theα-dimensional packing premea-
sure of a bounded setE is defined by

Pα
ε (E) := sup

{

∑

i

|Ei|
α

}

,

where the supremum is taken over all at most countableε-packings{Ej} of E (if
Ej = ∅ for all j, thenPα

ε (E) = 0).

Definition 2.3. Theα-dimensional packing quasi-measure of a setE is defined by

Pα
0 (E) := lim

ε→0
Pα
ε (E).

Definition 2.4. Theα-dimensional packing measure is defined by

Pα(E) := inf

{

∑

j

Pα
0 (Ej) : E ⊂

⋃

Ej

}

,

where the infimum is taken over all at most countable coverings{Ej} of E,Ej ⊂ M.

Definition 2.5. The nonnegative number

dimP (E) := inf
{

α : Pα(E) = 0
}

is called theuncentered packing dimension of a setE ⊂ M .

3 Uncentered packing dimension

Definition 3.1. Let E ⊂ M andε > 0. A finite or countable family{Ej} of open
balls is called anuncentered ε-packing of a setE if

1. |Ei| 6 ε for all i;

2. Ei ∩ E 6= ∅;

3. Ei ∩ Ej = ∅ for all i, j, i 6= j.

Remark 3.1. The empty set of balls is an uncentered packing of any set.

Definition 3.2. Let E ⊂ M , α > 0, ε > 0. Then theuncentered α-dimensional
packing premeasure of a bounded setE is defined by

Pα
ε(unc)(E) := sup

{

∑

i

|Ei|
α

}

,

where the supremum is taken over all at most countable uncenteredε-packings{Ei}
of E.
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Definition 3.3. Theuncentered α-dimensional packing quasi-measure of a setE is
defined by

Pα
0(unc)(E) := lim

ε→0
Pα
ε(unc)(E).

Definition 3.4. Uncentered α-dimensional packing measure is defined by

Pα
(unc)(E) := inf

{

∑

j

Pα
0(unc)(Ej) : E ⊂

⋃

Ej

}

,

where the infimum is taken over all at most countable coverings{Ej} of E,Ej ⊂ M.

Remark 3.2. If (M,ρ) = R
1 andα = 1, then theα-dimensional packing measure

and uncenteredα-dimensional packing measure are the Lebesgue measure.

Definition 3.5. The nonnegative number

dimP (unc)(E) := inf
{

α : Pα
(unc)(E) = 0

}

.

is called theuncentered packing dimension of a setE ⊂ M .

Theorem 3.1. Let (M,ρ) be a metric space. Let C ∈ N. If for all r > 0 and for any
open ball I with |I| = 8r, there exist at most N(I) balls Ii, i ∈ {1, . . . , N(I)} such
that Ii ⊂ I, i ∈ {1, . . . , N(I), |Ii| = r, i ∈ {1, . . . , N(I)}, and N(I) ≤ C. Then

dimP (unc)(E) = dimP (E).

Proof. Step 1. Let us prove the inequalitydimP (unc)(E) > dimP (E).
By the definitions and supremum property we have

Pα
r(unc)(E) > Pα

r (E).

By the limit property of inequalities we have

Pα
0(unc)(E) > Pα

0 (E).

Hence,
Pα
(unc)(E) > Pα(E).

Let dimP (unc)(E) = α0. By the definition ofdimP (unc)(E) we have

∀ε > 0, Pα0+ε
(unc)(E) = 0.

Therefore,
∀ε > 0, Pα0+ε

0 (E) = 0,

and, consequently,
dimP (E) 6 α0.

Hence, it follows thatdimP (unc)(E) > dimP (E), which is our claim.
Step 2. Let us show thatdimP (unc)(E) 6 dimP (E).
If dimP (unc)(E) = 0, then the statement is true.
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Let us consider the casedimP (unc)(E) 6= 0. Fix 0 < t < s < dimP (unc)(E).
Sinces < dimP (unc)(E), we have

Ps
(unc)(E) = +∞,

Ps
0(unc)(E) = +∞.

Therefore,
∀r > 0, Ps

r(unc)(E) = +∞.

From this and from the supremum property, it follows that there is an uncentered
packingV := {Ei} of the setE with

∑

i

|Ei|
s > 1. (1)

Let us divide the packingV into classes

Vk :=
{

Ei : 2
−k−1

6 |Ei| < 2−k
}

.

Let nk be the number of ballsVk. We will show that

∃k0 : nk0 > 2k0t
(

1− 2t−s
)

.

To obtain a contradiction, suppose that

nk < 2kt
(

1− 2t−s
)

for all k.

Then
∑

i

|Ei|
s <

∑

k

2−ks ·nk <
∑

k

2−ks ·2kt
(

1−2t−s
)

=
(

1−2t−s
)

·
∑

k

(

2t−s
)k

= 1,

which contradicts our assumption (1).
Therefore, suchk0 exists. Let us considerVk0 . We denote byA1, A2, . . . , Ank0

the balls inVk0 , that is,
Vk0 = {A1, A2, . . . , Ank0

}.

Fix r := 2−k0−1. Then the radius of anyAi is less thanr. LetTi be a point ofAi

such thatTi ∈ Ai ∩E. LetV ′ be the set of balls with the centersTi and radiusr, that
is,

V ′ =
{

A′
i : A

′
i = B(Ti, r)

}

.

Fix
V ∗ =

{

A∗
i : A∗

i = B(Ti, 4r)
}

.

Let us divide the setV ′ into classesK1,K2, . . . ,Kl as follows.

1. Let us take a ballA′
j1

= A′
1 and put it inK1 together with all other ballsA′

i ∈
V ′ such thatA′

i ∩ A′
j1

6= ∅.

2. Let us take an arbitrary ballA′
j2

∈ V ′ \K1 and put it inK2 together with all
other ballsA′

i ∈ V ′ \K1 such thatA′
i ∩ A′

j2
6= ∅.
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3. Let us continue this way untilV ′\(K1∪K2∪· · ·∪Kl) 6= ∅. Since the number
of elements in a setV ′ is a finite, we can find such a numberl.

Now suppose that the ballsA′
i and A′

j intersect each other. In other words,
ρ(Ti, Tj) 6 2r. Therefore,Aj ⊂ A∗

i .
The radius ofAj is greater thanr/2. By the theorem condition, there are no more

thanC disjoint balls with radiusr/2 in a ball with radius4r
Therefore, there are no more thanC balls in any classKi.
Moreover, in the casei < m, the ballsA′

ji
andA′

jm
do not intersect each other.

Indeed, suppose otherwise. ThenA′
jm

is in a classKi or in a class with number less
thani.

Hence,
V ′′ =

{

A′
j1
, A′

j2
, . . . , A′

jl

}

is a centered packing of a setE, and thet-volume of this packing is less than the
t-volume of the uncentered packingVk0 no more thanC times. Therefore,

∑

V ′′

∣

∣A′
ji

∣

∣

t
> nk0 ·

2−k0t

C
> 2k0t

(

1− 2t−s
)

·
2−k0t

C
=

1− 2t−s

C
.

From this it follows that

Pt
2−k0 (E) >

1− 2t−s

C
.

By the inequality2−k0 < r we get

Pt
r(E) >

1− 2t−s

C
for all r > 0.

Consequently, asr → 0, we get the inequality

Pt
0(E) >

1− 2t−s

C
.

Let us show thatPt(E) > 1−2t−s

C
. Recall the definition

Pt(E) = inf

{

∑

j

Pt
0(Ej) : E ⊂

⋃

Ej

}

,

where the infimum is taken over all at most countable coveringsEj of a setE.
Let {Ej} be an at most countable covering ofE. SincedimP (unc)(E) > s,

there isj0 such thatdimP (unc)(Ej0 ) > s (by the countable stability of the packing
dimensiondimP (unc)). In other words, we have

Ps
(unc)(Ej0 ) = +∞,

Ps
0(unc)(Ej0 ) = +∞.

We conclude by the part of the theorem already proved forE that

Pt
0(Ej0 ) >

1− 2t−s

C
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and
∑

j

Pt
0(Ej) >

1− 2t−s

C
.

But the previous inequality is true for an arbitrary covering {Ej} of a setE and for
the infimum for all coverings. Therefore,

Pt(E) >
1− 2t−s

C

and
dimP (E) > t.

Sincet-dimP (unc)(E) can be approximated by 0, we getdimP (E) > dimP (unc)(E),
which completes the proof.

Corollary 3.1. If M = R
n, then dimP (unc)(E) = dimP (E).

Proof. Let B8r be a ball with radius8r, Br be a ball with radiusr, andλ be the
n-dimensional Lebesgue measure. Then

λ(B8r) = 8n · λ(Br).

Therefore, we can put no more thanC = 8n disjoint balls with radiir in a ball
with radius8r, which completes the proof.

3.1 Packing dimension with respect to the family of sets

LetΦ be a family of balls in a metric space(M,ρ).

Definition 3.6. LetE ⊂ M , α > 0, ε > 0. Then theα-dimensional packing premea-
sure of a bounded setE with respect toΦ is defined by

Pα
ε (E,Φ) := sup

{

∑

i

|Ei|
α

}

,

where the supremum is taken over all uncenteredε-packings{Ei} ⊂ Φ of E (if
{Ei} = ∅, thenPα

ε (E,Φ) = 0).

Definition 3.7. Theα-dimensional packing quasi-measure of a setE w.r.t. Φ is de-
fined by

Pα
0 (E,Φ) := lim

ε→0
Pα
ε (E,Φ).

Definition 3.8. Theα-dimensional packing measure w.r.t.Φ is defined by

Pα(E,Φ) := inf

{

∑

j

Pα
0 (Ej , Φ) : E ⊂

⋃

Ej

}

,

where the infimum is taken over all at most countable coverings{Ej} of E,Ej ⊂ M.
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Definition 3.9. The nonnegative number

dimP (E,Φ) := inf
{

α : Pα(E,Φ) = 0
}

is called thepacking dimension of a setE ⊂ M w.r.t.Φ.

Remark 3.3. In the definition ofdimP (E,Φ), we used uncentered packing. But we
will denote this dimension without index(unc) because:

1. We will work inRn. In this space, centered and uncentered packing dimensions
are equal;

2. The centered packing dimension w.r.t. some family of balls is not defined.

Theorem 3.2.
dimP (E,Φ) 6 dimP (unc)(E).

Proof. LetΦ0 be the family of all open balls ofM . Then

Pα
r(unc)(E) = Pα

r (E,Φ0).

SinceΦ ⊆ Φ0, by the supremum property we have

Pα
r (E,Φ) 6 Pα

r (E,Φ0).

By the inequality for packing premeasures it follows that

dimP (E,Φ) 6 dimP (unc)(E),

which proves the theorem.

4 Faithfulness of the open balls families for packing dimension calculation

Definition 4.1. Suppose that some open balls familyΦ satisfies the following condi-
tion: for allE ⊂ M , dimP (unc)(E,Φ) = dimP (unc)(E). ThenΦ is said to befaithful
for uncentered packing dimension calculation.

Remark 4.1. The notion of faithfulness is introduced for the Hausdorff–Besicovitch
dimensiondimH [11]. It is clear that

∀Φ ⊂ 2M , dimH(E,Φ) > dimH(E).

Theorem 4.1 (The sufficient condition for the open-ball family to be faithful for
packing dimension calculation). Suppose that

1. Φ is a family of intervals from [0; 1];

2. ∃C > 0 : ∀(a; b) ⊂ [0; 1], ∃∆(a; b) ∈ Φ such that:

(a) a+b
2 ∈ ∆(a, b);

(b) ∆(a, b) ⊂ (a; b);

(c) b−a
|∆(a,b)| > C.

Then Φ is a faithful open-ball family for packing dimension calculation.
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Proof. Let E be any set,α > 0, andr > 0. Let {Ei} = {(ai; bi)} be a family of
disjoint intervals such thatai+bi

2 ∈ E andbi − ai < r.
Then the following inequality holds:

∑

i

|Ei|
α
6

∑

i

∣

∣∆(ai, bi)
∣

∣

α
· Cα.

Taking the supremum (over all sets of intervals{Ei} satisfying the previous con-
ditions), we have

Pα
r (E) 6 sup

{Ei}

∣

∣∆(ai, bi)
∣

∣

α
· Cα.

Any set of intervals{∆(ai, bi)} satisfies the conditions from thePα
r(unc)(E,Φ)

definition. So,
sup
{Ei}

∣

∣∆(ai, bi)
∣

∣

α
· Cα

6 Pα
r(unc)(E,Φ) · Cα.

Therefore,
Pα
r (E) 6 Pα

r(unc)(E,Φ) · Cα.

Taking the limit of both sides, we have

Pα
0 (E) 6 Pα

0(unc)(E,Φ) · Cα.

Taking the infimum over all possible coverings of the setE, we have

Pα(E) 6 Pα
(unc)(E,Φ) · Cα

and
dimP (E) 6 dimP (unc)(E,Φ).

Since[0; 1] ⊂ R
1, it follows that

dimP (E) = dimP (unc)(E)

and
dimP (unc)(E) 6 dimP (unc)(E,Φ).

Using
dimP (unc)(E) > dimP (unc)(E,Φ) for all Φ,

we obtain thatΦ is a faithful open-ball family for the packing dimension calculation.

5 Sufficient conditions forQ̃-expansion cylindric interval family to be faithful

TheQ̃-expansion of real numbers is a generalization ofs-expansion andQ-expansion
and was described, for example, in [4].

Theorem 5.1. Let Φ be the system of cylindric intervals of some Q̃-expansion. Sup-
pose that

inf
i,j

qij = qmin > 0.

Then Φ is a faithful ball family for packing dimension calculation.
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Proof. Let Q̃0 be the set ofQ̃-rational points, andE′ be any subset of[0; 1]. Let
E = E′ \ Q̃0. SinceQ̃0 is countable, it follows that

dimP (unc)(Q̃0) = 0, dimP (unc)(Q̃0, Φ) = 0,

and

dimP (unc)

(

E′
)

= dimP (unc)(E), dimP (unc)

(

E′, Φ
)

= dimP (unc)(E,Φ).

The proof is completed by showing that

dimP (unc)(E) = dimP (unc)(E,Φ)

for every setE ⊂ [0; 1] if E does not contaiñQ-rational points.
Let (a; b) ⊂ [0; 1]. Let ∆(a, b) be theQ̃-cylindric interval of the minimal rank

such that
a+ b

2
∈ ∆(a; b) ⊂ (a; b).

Denote the rank of∆(a, b) by k. Since this rank is minimal, it follows that(a; b)
is a subset of one or two cylinders with rankk − 1. Let us denote the cylinder with
rankk − 1 that contains∆(a, b) by∆′. If the second cylinder exists, then we denote
it by ∆′′.

Let us consider the following two cases.

Case 1. The∆′′ does not exist. Then
∣

∣∆(a, b)
∣

∣ 6 b− a 6
∣

∣∆′
∣

∣,

and, therefore,
∣

∣∆(a, b)
∣

∣ > (b− a) · qmin.

Case 2. The∆′′ exists. Then
∣

∣∆′
∣

∣ · 2 > b − a ⇒
∣

∣∆(a, b)
∣

∣ > (b− a) ·
qmin

2
.

Summary of the two cases.For every interval(a; b), there exists ãQ-cylindric
interval∆(a, b) such thata+b

2 ∈ ∆(a; b) and

∣

∣∆(a, b)
∣

∣ > (b− a) ·
qmin

2
.

It follows that the familyΦ satisfies the conditions of Theorem4.1and is faithful for
packing dimension calculation.

Corollary 5.1. Let Φ be a family of Q∗-cylinders under the condition infi,j qij > 0.
Then Φ is faithful for packing dimension calculation.

Corollary 5.2. Let Φ be a family of Q-cylinders. Then Φ is faithful for packing di-
mension calculation.

Corollary 5.3. Let Φ be a family of s-adic cylinders. Then Φ is faithful for packing
dimension calculation.
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6 Proof of the main result

To prove the main result, we need the following two lemmas.

Lemma 6.1. Let Q̃ be the matrix ‖qik‖, i ∈ N, k ∈ {0, 1, . . . , Nk − 1}. If

lim
i→∞

ln qikk
ln(qi11qi22 . . . qik−1(k−1))

= 0

for every sequence (ik), then the open-ball family Φ of the respective expansion cylin-
der interiors is faithful for packing dimension calculation.

Proof. Let us fix a setE ⊂ [0; 1]. Let us fix any numbersm ∈ N, δ > 0 and consider
the following sets:

Wm,δ =

{

x ∈ E :
ln qikk(x)

ln(qi11(x)qi22(x) . . . qik−1(k−1)(x))
< δ, ∀k > m

}

.

Fix some valuem and consider any setWm,δ corresponding to this value. There
existsε > 0 such that|cm| > ε for any cylindercm of rankm. Consider the centered
ε-packing of the setWm,δ by intervalsEj .

For every intervalEj , there exists a cylindric interval∆(Ej) such that:

1. ∆(Ej) ⊂ Ej ;

2. ∆(Ej) contains the middle pointxj of theEj ;

3. ∆(Ej) has the minimal possible rank. We denote this rank byij.

We will say that the cylinder∆′(Ej) is the “father” of∆(Ej) if ∆′(Ej) ⊃ ∆(Ej)

and the rank of∆′(Ej) is equal toij − 1. It is obvious that|∆′(Ej)| >
|Ej |
2 . There-

fore,

|Ej | 6
2|∆(Ej)|

qikj kj
(xj)

, wherexj ∈ Wm,δ.

Let us estimate theα-volume of packing of the setE by intervalsEj :

∑

k

|Ej |
α
6

∑

k

∣

∣∆(Ej)
∣

∣

α
·

(

2

qikj kj
(xj)

)α

.

This inequality is equivalent to

∑

k

|Ej |
α
6

∑

k

∣

∣∆(Ej)
∣

∣

α−δ
·
∣

∣∆(Ej)
∣

∣

δ
·

(

2

qikj kj
(xj)

)α

.

Let us estimate the expression

ln

(

∣

∣∆(Ej)
∣

∣

δ
·

(

2

qikj kj
(xj)

)α)

= δ ln
(

qi11(x)qi22(x) . . . qikj−1(kj−1)(x)
)

+ α ln 2− α ln qikj kj
(xj).
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Sincexj ∈ Wm,δ, it follows that

δ ln
(

qi11(x)qi22(x) . . . qikj−1(kj−1)

)

6 ln qikj kj
(xj).

Therefore,

ln

(

∣

∣∆(Ej)
∣

∣

δ
·

(

2

qikj kj
(xj)

)α)

6 α ln 2 + (1− α) ln qikj kj
(xj) 6 α ln 2.

Thus, we have
∑

j

|Ej |
α
6 2

∑

j

∣

∣∆(Ej)
∣

∣

α−δ
.

Take the suprema over all possible centered packings{Ej} of both parts of the pre-
vious inequality:

Pα
ε (Wm,δ) 6 2Pα−δ

ε(unc)(Wm,δ, Φ).

Take the limit asε → 0:

Pα
0 (Wm,δ) 6 2Pα−δ

0(unc)(Wm,δ, Φ).

We obtain that
Pα(Wm,δ) 6 2Pα−δ

(unc)(Wm,δ, Φ).

Denoteα0 = dimP (Wm,δ). Then for allα < α0, the left part is equal to infinity.
Thus, for allα < α0, the right part is equal to infinity too. It follows that

dimP (unc)(Wm,δ, Φ) > α− δ

and
dimP (unc)(Wm,δ, Φ) > dimP (Wm,δ)− δ.

Using the definition ofWm,δ, we get

E =

∞
⋃

m=1

Wm,δ.

Now, by packing dimension countable stability,

dimP (unc)(E,Φ) > dimP (E)− δ.

Sinceδ can be arbitrarily small,

dimP (unc)(E,Φ) > dimP (E).

To complete the proof, it remains to note thatE is any subset of[0; 1]. Thus,Φ is
faithful.

Lemma 6.2. Let Φ be a family of Q̃-expansion cylinders under the condition
inf qij > 0. Let Fξ be a distribution function of a random variable ξ with independent
Q̃-digits. Assume that the following condition holds:
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lim
n→∞

lnλ(F (∆n(x)))

lnλ(∆n(x))
= 1, ∀x ∈ [0; 1], (2)

where ∆n(x) is the n-rank cylinder that contains x.
Then Φ′ = F (Φ) is faithful for packing dimension calculation.

Proof. Φ′ is the family of cylinders for somẽQ-expansion. Denote this expansion by
Q̃′ and the corresponding numbersqij by q′ij .

It is not clear that conditioninf q′ij > 0 holds, so we cannot Theorem5.1.
Let us show that the conditions of Lemma6.1hold for this expansion. We have

F
(

∆Q̃
a1a2...an

(x)
)

= ∆Q̃′

a1a2...an
(x)

and
lnλ

(

F
(

∆n(x)
))

= ln
(

q′1a1
q′2a2

. . . q′nan

)

.

Denote

M = lim sup
i→∞

ln q′iji
ln(q′1j1q

′
2j2

. . . q′(i−1)ji−1
)
.

To estimateM , we need the following equation:

lim
n→0

lnλ(F (∆n(x)))

lnλ(∆n(x))
= lim

n→0

ln(q′1j1q
′
2j2

. . . q′(i−1)ji−1
) + ln q′iji

ln(q1j1q2j2 . . . q(i−1)ji−1
) + ln qiji

.

Dividing the nominator and denominator of the last fractionby
ln(q1j1q2j2 . . . q(i−1)ji−1

), we obtain

lim
n→0

1 +
ln q′iji

ln(q′1j1
q′2j2

...q′
(i−1)ji−1

)

ln(q1j1 q2j2 ...q(i−1)ji−1
)

ln(q′1j1
q′2j2

...q′
(i−1)ji−1

) +
ln qiji

ln(q′1j1
q′2j2

...q′
(i−1)ji−1

)

=
1 +M

1 + 0
= 1 ⇒ M = 0.

It follows thatQ̃′ satisfies the conditions of Lemma6.1, and thereforeΦ′ is faithful.

Proof of the main result. Let us show that ifFξ isPDP , thendimP (µξ) = 1.
Assume the converse. Then there exists a setEα such thatµξ(Eα) = 1 and

dimP (Eα) = α. ConsiderFξ(Eα). Sinceµξ(Eα) = 1, we haveλ(Eα) = 1, and
thusdimP (Fξ(Eα)) = 1.

We obtain the following inequality:

dimP

(

Fξ(Eα)
)

= 1 6= α = dimP (Eα),

and this contradicts the assumption thatFξ is PDP . Therefore, we will show that if
Fξ is PDP , thendimP (µξ) = 1.

The next part of the proof consists of two steps:

1. If dimP (µξ) = 1 andB = 0, thenFξ isPDP ;

2. If dimP (µξ) = 1 andB 6= 0, thenFξ is notPDP .
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Let ε be some positive number such thatε < 1
2qmin. Consider the following sets:

T+
ε,k =

{

j : j ∈ N, j 6 k, |pij − qij | 6 ε, i ∈ {0, 1, . . . , s− 1}
}

,

T−
ε,k = {1, 2, . . . , k} \ T+

ε,k,

T =

{

k : k ∈ N, pk <
1

2
qmin

}

,

Tk = T ∩ {1, 2, . . . , k},

Tε,k = T−
ε,k \ Tk.

Step 1. Let us show that ifdimP (µξ) = 1 andB = 0, thenFξ is PDP . Since
B = 0, we see that

lim
k→∞

∑

j∈Tk
ln pj

k ln qmin
= 0.

Consider the fraction

lnµξ(∆a1a2...ak(x))

lnλ(∆a1a2...ak(x))

=

∑

j∈T
+
ε,k

ln paj(x)j +
∑

j∈Tε,k
ln paj(x)j +

∑

j∈Tk
ln paj(x)j

∑

j ln qaj(x)j
.

Split this fraction into three terms. Consider the first term
∑

j∈T+
ε,k

ln paj(x)j
∑

j ln qaj(x)j
.

It is easy to prove that
∑

j∈T
+
ε,k

ln paj(x)j >
∑

j∈T
+
ε,k

ln(qaj(x)j − ε)

=
∑

j∈T
+
ε,k

(

ln qaj(x)j + ln

(

qaj(x)j − ε

qaj(x)j

))

>
∑

j∈T
+
ε,k

(ln qaj(x)j) + |T+
ε,k| ·

2ε

qmin
,

where|T+
ε,k| is the number of elements inT+

ε,k. On the other hand,

∑

j∈T
+
ε,k

ln paj(x)j 6
∑

j∈T
+
ε,k

(ln qaj(x)j)− |T+
ε,k| ·

2ε

qmin
.

Also,

1+
|T+

ε,k| · 2ε

qmin ·
∑k

j=0 ln qaj(x)j

6 lim
k→∞

∑

j∈T
+
ε,k

ln paj(x)j

∑k
j=0 ln qaj(x)j

6 1−
|T+

ε,k| · 2ε

qmin ·
∑k

j=0 ln qaj(x)j

(note that
|T+

ε,k
|·2ε

qmin·
∑

k
j=0 ln qaj (x)j

< 0).
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Sinceqmin 6 qij 6 qmax and|T+
ε,k| 6 k, we have

1 +
k · 2ε

qmin · k ln qmax
6 lim

k→∞

∑

j∈T
+
ε,k

ln paj(x)j

∑k
j=0 ln qaj(x)j

6 1−
k · 2ε

qmin · k ln qmax

and

1 +
2ε

qmin · ln qmax
6 lim

k→∞

∑

j∈T
+
ε,k

ln paj(x)j

∑k
j=0 ln qaj(x)j

6 1−
2ε

qmin · ln qmax
.

Sinceε can be arbitrarily small, it follows that

lim
k→∞

∑

j∈T
+
ε,k

ln paj(x)j

∑k
j=0 ln qaj(x)j

= 1.

Similarly,

|Tε,k| ln

(

qmin

2

)

6
∑

j∈Tε,k

ln paj(x)j 6 |Tε,k| ln

(

2− qmin

2

)

.

Therefore,
∑

j∈Tε,k
ln paj(x)j

k ln qmin
6

|Tε,k| ln(
qmin

2 )

k ln qmin
6

|Tε,k|(ln(qmin) + ln(1/2))

k ln qmin
,

and the second term tends to zero ask → ∞.
Consider the third term

∑

j∈Tk
ln paj(x)j

∑

j ln qaj(x)j
.

It can be estimated by
∑

j∈Tk
ln pj

k ln qmin
,

and this value tends to zero ask → ∞ becauseB = 0.
We obtain that

lim
k→∞

µξ(∆a1a2...ak(x))

λ(∆a1a2...ak(x))
= 1.

Denote byΦ the cylinder family of givenQ̃-expansion. Denote the image ofΦ by
Φ′ = Fξ(Φ).

Using the Billingsley theorem for packing dimension [12], we have

dimP (E,Φ) = 1 · dimP

(

Fξ(E), Φ′
)

∀E ⊂ [0; 1].

To prove thatdimP (E) = dimP (Fξ(E)), it suffices to prove thatΦ andΦ′ are
faithful.

Faithfulness ofΦ is already proved. Faithfulness ofΦ′ was proved in Lemma 1
and Lemma 2. So, we have thatdimP (E) = dimP (Fξ(E)) andFξ is aPDP -trans-
formation.
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Step 2. Let us show that ifdimP (µξ) = 1 andB > 0, thenFξ is notPDP .
Similarly to step 1, consider the fraction

µ(∆a1a2...ak(x))

λ(∆a1a2...ak(x))

=

∑

j∈T
+
ε,k

ln paj(x)j +
∑

j∈Tε,k
ln paj(x)j +

∑

j∈Tk
ln paj(x)j

∑

j ln qaj(x)j

and split it into three terms. It is easy to see that the first term tends to 1 and the
second term tends to 0 (ask → ∞). Consider the third term.

SinceB > 0, there exists a subsequence(km) such that

lim
m→∞

∑

j∈Tkm
ln 1

pj

km
= B.

Consider the set

L =

{

x : x = ∆a1a2...ak...;

{

ak ∈ {0, 1, . . . , s− 1} if k /∈ T

ak = nk, if k ∈ T, wherepnkk = min
i

pik

}

.

Since the digits are in infinitely many places, it follows that λ(L) = 0. But combining

lim
m→∞

|Tkm
|

km
= 0

and the formula fordimP (µξ), we havedimP (L) = 1. It follows that

∀x ∈ L lim
m→∞

lnµ(∆a1a2...akm (x))

lnλ(∆a1a2...akm (x))
= 1 +B.

Thus, for anyδ > 0, there existsm(δ) such that for allm > m(δ), we have

1 +B − δ 6
lnµ(∆a1a2...akm (x))

lnλ(∆a1a2...akm (x))
6 1 +B + δ.

Thus, we have

lim inf
k→∞

lnµ(∆a1a2...ak(x))

lnλ(∆a1a2...ak(x))
> 1 +B − δ,

and (using the Billingsley theorem fordimP )

dimP−µ(L) · (1 +B − δ) 6 dimP (L),

that is,

dimP

(

Fξ(L)
)

6
1

1 +B − δ
.

Since the last inequality holds for anyδ, it follows that

dimP

(

Fξ(L)
)

6
1

1 +B
,

andFξ is not aPDP -transformation.
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Corollary 6.1. Let infi,j qij := qmin. Suppose that qmin > 0. Let

T :=

{

k : k ∈ N, pk <
qmin

2

}

;

Tk := T ∩ {1, 2, . . . , k};

B := lim sup
k→∞

∑

j∈Tk
ln 1

pj

k
.

Let Fξ be the distribution function of a random variable ξ with independent Q∗-
representation. Then Fξ preserves the packing dimension if and only if

{

dimP µξ = 1;

B = 0.

Corollary 6.2. Let s ∈ N, s > 2;

T :=

{

k : k ∈ N, pk <
1

2s

}

;

Tk := T ∩ {1, 2, . . . , k};

B := lim sup
k→∞

∑

j∈Tk
ln 1

pj

k
.

Let Fξ be the distribution function of a random variable ξ with independent s-adic
digits. Then Fξ preserves the packing dimension if and only if

{

dimP µξ = 1;

B = 0.
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