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On ground state of non local Schrödinger
operators. ∗
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Abstract

We study a ground state of a non local Schrödinger operator as-
sociated with an evolution equation for the density of population in
the stochastic contact model in continuum with inhomogeneous mor-
tality rates. We found a new effect in this model, when even in the
high dimensional case the existence of a small positive perturbation
of a special form (so-called, small paradise) implies the appearance
of the ground state. We consider the problem in the Banach space of
bounded continuous functions Cb(R

d) and in the Hilbert space L2(Rd).
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discrete spectrum, spectral radius
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1 Introduction

The asymptotic behavior of stochastic infinite-particle systems in continuum
can be studied in terms of evolution equations for correlation functions. For
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the stochastic contact model in the continuum [2] the evolution equation
for the first correlation function (i.e., the density of the system) is closed
and it can be considered separately from equations for higher-order correla-
tion functions [1]. In this case we have the following evolution problem for
u ∈ C([0,∞); E) associated with a nonlocal diffusion generator L:

∂u

∂t
= Lu, u = u(t, x), x ∈ Rd, t ≥ 0, u(0, x) = u0(x) ≥ 0. (1)

in a proper functional space E . As E , we consider in our paper two spaces:
Cb(R

d), the Banach space of bounded continuous functions on Rd, and L2(Rd).
These spaces are corresponding to two different regimes in the contact model:
systems with bounded density and ones essentially localized in the space.

The operator L has the following form:

Lu(x) = −m(x)u(x) +

∫

Rd

a(x− y)u(y)dy, (2)

where a(x) ≥ 0, a ∈ L1(Rd) is an even continuous function such that:

∫

Rd

a(x)dx = 1,

∫

Rd

|x|2a(x)dx <∞; (3)

ã(p) =

∫

Rd

e−i(p,x)a(x)dx ∈ L1(Rd); then ã(p) ∈ L2(Rd) since |ã(p)| ≤ 1. (4)

The function a(x − y) is the dispersal kernel associated with birth rates
in the contact model. The function m(x) is related with mortality rates. We
assume here that

m(x) ∈ Cb(R
d), 0 ≤ m(x) ≤ 1, m(x) → 1, |x| → ∞. (5)

The contact model with homogeneous mortality rates m(x) ≡ const has
been studied in [1]. It was proved there that only in the case m(x) ≡ 1
there exists a family of stationary measures of the model (for d ≥ 3); if
m(x) ≡ m 6= 1, then the density of population either exponentially growing
(supercritical regime: m < 1) or exponentially decaying (subcritical regime:
m > 1).

Here we are interesting in local perturbations of the stationary regime,
when m(x) is an inhomogeneous in space non-negative function. We prove
that local fluctuations of the mortality with respect to the critical value
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m(x) ≡ 1 can push the system away from the stationary regime. As a
result of such local perturbations, we will observe exponentially increasing
density of population everywhere in the space. The goal of this paper is to
obtain conditions on the mortality rates which give the existence of a positive
discrete spectrum of the operator (2) in the spaces Cb(R

d) and L2(Rd), and
to prove the existence and uniqueness of a positive eigenfunction ψ(x) > 0
corresponding to the maximal eigenvalue λ0 > 0 of the operator L. We call
this function the ground state of the operator L.

We prove in the paper that in small dimensions d = 1, 2 a positive dis-
crete spectrum of the operator L is nonempty for any (small) local positive
fluctuation V (x) = 1−m(x) of the mortality m(x) from the critical value. If
d ≥ 3, then a positive eigenvalue appears in two cases: if exists such a region
of any (small) positive volume, where the fluctuation V (x) is equal to 1, or
if V (x) is positive and less than 1 in a large enough region. We stress that
the function V (x) should be bounded from above by 1, since the mortality
m(x) ≥ 0 is a non-negative function. Thus in the high dimensional case
d ≥ 3 we observe crucially new effects different from those of the Shrödinger
operators. We prove that small (in the integral sense) perturbations V (x)
of the mortality m(x) from the critical value m(x) ≡ 1 imply the existence
of positive eigenvalues of the non local operator (2). The analogous result is
proved for the model in the subcritical regime.

2 Spectral properties of L

In this section we describe a general approach to study a discrete spectrum of
the operator L in both spaces Cb(R

d) and L2(Rd). This approach is based on
the analytic Fredholm theorem and the study of a spectral radius of compact
operators.

The operator L can be rewritten as

Lu(x) = L0u(x) + V (x)u(x), u(x) ∈ Cb(R
d), (6)

L0u(x) =

∫

Rd

a(x− y)(u(y)− u(x))dy, V (x) = 1−m(x).

The potential 0 ≤ V (x) ≤ 1 describes local (negative) fluctuations of the
mortality, and we assume that

V (x) ∈ Cb(R
d) and lim

|x|→∞
V (x) = 0.
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The operator L0 is bounded and dissipative in Cb(R
d):

‖(λ− L0)f‖ ≥ λ‖f‖ for λ ≥ 0.

Lemma 1 The operator L has only discrete spectrum in the half-plane

D = {λ ∈ C | Reλ > 0}.

Proof is based on the analytic Fredholm theorem for analytic operator-
valued functions, see [4], [5]. Since for any λ ∈ D the resolvent (L0 − λ)−1 is
a bounded operator, we have

(λ− L0 − V ) = (λ− L0)(1− (λ− L0)
−1V ), (7)

and
(λ− L0 − V )−1 = (1− (λ− L0)

−1V )−1 (λ− L0)
−1. (8)

Using the Neumann series for the operator (λ− L0)
−1 we get:

(λ− L0)
−1 =

1

λ+ 1
+

1

λ+ 1
Aλ, (9)

where

Aλ = (λ+ 1)(λ− L0)
−1 − 1 =

∞∑

n=1

a∗n

(λ+ 1)n
, (10)

and Aλ is a bounded convolution operator when λ ∈ D. The decomposition
(9) for (λ− L0)

−1 is the crucial point of our reasoning. The kernel of Aλ is

Gλ(x− y) =
1

(2π)d

∫

Rd

e−i(p,x−y) ã(p) dp

λ+ 1− ã(p)
=

(
∞∑

n=1

a∗n

(λ+ 1)n

)
(x− y),

(11)
and, in particular,

Gλ(u) ∈ Cb(R
d) and

∫

Rd

Gλ(u) du < ∞, ∀λ ∈ D. (12)

We denote by Wλ an operator of multiplication by the function

Wλ = 1− V

λ+ 1
.
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It is a bounded operator with the bounded inverse operatorW−1
λ when λ ∈ D.

Then (9) implies

1− (λ− L0)
−1V = Wλ −

1

λ+ 1
AλV,

and we can rewrite (8) in the following way:

(λ− L0 − V )−1 = (1−Qλ)
−1 ((λ− L0)Wλ)

−1
, (13)

where

Qλ =
1

λ+ 1
W−1

λ AλV. (14)

The relations (11) - (12) for the kernel Gλ(x− y) of the operator Aλ and
the conditions on the potential V (x) imply that Qλ is the compact operator.
Really, let us define the truncated operator of multiplication on the potential
V (r)(x) = χr(x)V (x) and the convolution operator A

(r)
λ with the truncated

kernel G
(r)
λ (x) = χr(x)Gλ(x), where χr(x) is the indicator function of the

ball Br = {x : |x| < r}. Obviously, the operators A
(r)
λ V (r) are compact for

any r > 0, and A
(r)
λ , V (r) converge in norm to Aλ, V correspondingly. Thus

we conclude that AλV is the compact operator.
Consequently, Qλ is an analytic operator-valued function, such that Qλ

is a compact operator for any λ ∈ D. Then using the analytic Fredholm
theorem [5] (Theorem VI.14) we get that the function (1−Qλ)

−1 is a mero-
morphic function in D. Since ((λ−L0)Wλ)

−1 is a bounded operator, we can
conclude that the operator L has only a discrete spectrum in D. �

Remark 2 The representations (10)-(11) imply that
1) Aλ is a positivity improving operator for all λ > 0, since Gλ(x−y) > 0, ∀ x, y ∈
Rd,
2) Gλ(x− y) is monotonically decreasing with respect to λ > 0,
3) formulas (14), (10), (11) imply that Qλ, λ > 0, is a positivity improving
compact integral operator in Cb(R

d) with the kernel

Qλ(x, y) =
Gλ(x− y)V (y)

λ+ 1− V (x)
. (15)

We study next the behavior of the spectral radius r(Qλ) of the operator
Qλ as a function of λ when λ > 0.
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Remark 3 From the known formula for the spectral radius it follows that
if Q is a positive operator, and if there exists a function ϕ(x) ∈ E , ϕ ≥ 0,
‖ϕ‖ = 1, such that

Qϕ(x) ≥ c0ϕ(x), (16)

then
r(Q) ≥ c0,

(see e.g. [3], Theorem 6.2)

Lemma 4 The spectral radius r(Qλ) is continuous and monotonically de-
creasing with respect to λ > 0. Moreover, r(Qλ) → 0 for λ→ +∞.

Proof. The continuity of the spectral radius follows from the compactness
and continuity in λ of the operator Qλ.

The second statement of the lemma follows from the fact, that if A,B are
positive operators, such that A ≤ B in the order sense defined by the cone of
positive functions, then r(A) ≤ r(B). Really, it is easy to see that for both
our spaces E norms of positive operators A,B are attained on non negative
functions:

‖A‖ = sup
f≥0

‖Af‖
‖f‖ ,

and the same for B. Thus, ‖A‖ ≤ ‖B‖.
Analogously, for any n ∈ N we have ‖An‖ ≤ ‖Bn‖, and consequently,

r(A) ≤ r(B) due to the formula for the spectral radius r(A) = limn→∞
n

√
‖An‖.

The positive kernel Qλ(x, y) of the operator Qλ is the monotonically decreas-
ing function of λ > 0. Thus we have

0 ≤ Qλ1
≤ Qλ2

, when λ1 > λ2,

and consequently, the spectral radius r(Qλ) is monotonically decreasing with
respect to λ > 0. The convergence to 0 follows from (14). �

As follows from (7), the equation on the eigenfunction ψ

(L0 + V − λ)ψ = 0, λ > 0, (17)

can be written as
Qλψ(x) = ψ(x). (18)

where Qλ is a compact positive operator defined by (14).
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Using Lemma 4 we can conclude that if

lim
λ→0+

r(Qλ) > 1, (19)

then there exists such λ > 0 that

r(Qλ) = 1, and r(Qλ′) < 1 for λ′ > λ. (20)

If r(Qλ) < 1 for all λ > 0, then the positive spectrum of L is absent. For
example, the positive spectrum of L is absent in Cb(R

d) if d ≥ 3, V ∈
L1(Rd), 0 ≤ V (x) ≤ 1− ε < 1, and L1-norm of V is small enough.

From (20) it follows by the Krein-Rutman theorem ([3], Theorem 6.2) that
1 is the eigenvalue of Qλ with a positive eigenfunction ψλ(x) > 0. Obviously,
λ is the maximal positive eigenvalue of the operator L, and ψλ(x) is the
ground state of the operator L. The uniqueness of the ground state ψλ(x) > 0
of the operator L in the space L2(Rd) follows from the positivity improving
property of the semigroups etL0 and etL, see e.g. [6], Theorem XIII.44. The
last semigroup is positivity improving due to the Feynman-Kac formula.

Lemma 5 1. If the ground state ψλ(x) ∈ Cb(R
d), then ψλ(x) → 0 as |x| →

∞.
2. If the ground state ψλ(x) ∈ L2(Rd), then ψλ(x) ∈ Cb(R

d) ∩ L2(Rd) and
ψλ(x) → 0 as |x| → ∞.
3. If the ground state ψλ(x) ∈ Cb(R

d) and V (x) ∈ L2(Rd), then ψλ(x) ∈
L2(Rd). In particular, if the potential V (x) ∈ C0(R

d) then ψλ(x) ∈ L2(Rd).

Proof. 1. The ground state ψλ(x) satisfies the equation (18) with Qλ

defined by (14). Since V (x) → 0 as |x| → ∞ and Gλ(x) ∈ L1(Rd) by (12),
then from the Lebesgue convergence theorem it follows that the convolution
of the functions V ψλ and Gλ tends to 0 for |x| → ∞. Thus, all eigenfunctions
ψλ(x) ∈ Cb(R

d) for positive λ tend to 0 when |x| → ∞.
2. We again use the equation (18) for the function ψλ(x). Since V (x) is

bounded, then (V ψλ)(x) ∈ L2(Rd) and (Ṽ ψλ)(p) ∈ L2(Rd). Using (11) and

(4) we conclude that G̃λ(p) ∈ L2(Rd) (λ > 0). Then (ÃλV ψλ)(p) ∈ L1(Rd)
as a product of two functions from L2(Rd). Consequently, (AλV ψλ)(x) ∈
Cb(R

d), and ψλ(x) = Qλψλ(x) ∈ Cb(R
d), since W−1

λ ∈ Cb(R
d) for any λ > 0.

3. The statement directly follows from (18). �
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3 Ground state in Cb(R
d)

Now we formulate conditions on V (x) which give the existence of the ground
state ψ(x). We omit the subscript λ in ψλ(x) in the subsequent text.

Theorem 6 Let d = 1, 2. Then for any V 6≡ 0 the operator L = L0 + V

has a positive eigenvalue λ > 0 with the corresponding positive eigenfunction
ψ(x) > 0.

Proof. Conditions on the function a(x) imply that ã(p) = 1 − (Cp, p) +
o(|p|2) as |p| → 0. Let us take a function ϕ(x) ∈ C0(R

d), ϕ ≥ 0, ‖ϕ‖ = 1

such that (Ṽ ϕ)(0) =
∫
V (x)ϕ(x)dx > 0. Then for any x ∈ supp ϕ

(Qλϕ)(x) =
1

λ+ 1− V (x)

∫

Rd

Gλ(x− y)V (y)ϕ(y) dy =

1

λ+ 1− V (x)

∫

Rd

∫

Rd

e−ipx+ipy ã(p) dp

λ+ 1− ã(p)
V (y)ϕ(y) dy =

1

λ+ 1− V (x)

∫

Rd

ã(p)e−ipx

λ + 1− ã(p)
(Ṽ ϕ)(p) dp→ ∞.

The continuous functions Uλ(x) = (Qλϕ)
−1(x) tend to 0 monotonically

as λ → 0+ by Remark 2 and uniformly on supp ϕ by the Dini theorem.
Thus for any c0 there exists λ > 0 for which (16) is fulfilled. Consequently,
limλ→0+ r(Qλ) = ∞ and (19) holds. �

For dimensions d ≥ 3, the integral in (11) has a finite limit as λ → 0+
and

sup
λ

sup
x,y

Gλ(x− y) ≤ sup
x,y

G0(x− y) ≤
∫

Rd

|ã(p)| dp
|1− ã(p)| = g0 <∞. (21)

Thus the existence of the ground state in the case d ≥ 3 depends on the
properties of V (x).

Theorem 7 (small paradise) Let d ≥ 3. Assume that there exists δ > 0
such that V (x) = 1 when x ∈ Bδ, where Bδ is a ball of a radius δ. Then the
ground state of L exists.
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Proof. It is enough to show (19). Let us take for a given 0 < δ < 1 a
”continuous approximation” of the indicator function χ̂Bδ

(x):

χ̂Bδ
(x) = 0, x ∈ Rd\Bδ, χ̂Bδ

(x) = 1, x ∈ B0.9δ,

where B0.9δ ⊂ Bδ, and 0 ≤ χ̂Bδ
(x) ≤ 1, x ∈ Bδ\B0.9δ. Then for any λ ∈ (0, 1)

and any x ∈ Bδ we get:

Qλχ̂Bδ
(x) =

∫

Bδ

Qλ(x, y)χ̂Bδ
(y)dy ≥ 1

λ

∫

B0.9δ

Gλ(x−y)dy ≥ vol(B0.9δ)

λ
κ1,

(22)
where vol(B0.9δ) is the volume of the ball B0.9δ ⊂ Bδ, and κ1 is defined as

κ1 = min
x,y∈B1

G1(x− y) < min
λ∈(0,1)

min
x,y∈Bδ

Gλ(x− y) (23)

Thus limλ→0+ r(Qλ) = ∞ for any δ > 0. �

Remark 8 Let d ≥ 3. For any δ > 0 there is ε > 0 such that if V (x) ≥ 1−ε
for x ∈ Bδ, then the ground state of L exists.

The proof of the statement follows the similar reasoning as above in The-
orem 7.

Proposition 9 (dependence λ on δ) Let d ≥ 3. Denote by

L(δ) = L0 + V δ, δ ∈ (0, 1),

the family of operators of the form (2), where V δ = V δ
1 + V δ

2 with

V δ
1 = χBδ

(x), V δ
2 (x) ≥ 0, and

∫

Rd

V δ
2 (x)dx ≤ c0δ

d.

Let λ(δ) be the maximal eigenvalue of L(δ). Then λ(δ) → 0+ as δ → 0+.

Proposition follows from two-sided estimate on the spectral radius r(Qλ):

c1δ
d

λ
≤ r(Qλ) ≤ c2δ

d

λ
. (24)

The upper bound in (24) follows from the evident inequality:

r(Qλ) ≤ ‖Qλ‖ ≤ sup
x

∫

Rd

|Qλ(x, y)|dy

and the estimate (21). The lower bound follows from the estimate (22).
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Theorem 10 Assume that for some β ∈ (0, 1) there exists R > 0 such that

β ≤ V (x) ≤ 1, x ∈ BR. (25)

Then the ground state of the operator L exists for R = R(β) sufficiently large.

Proof. We will prove that there exists a ground state ψ of the operator
L, such that ψ ∈ L2(Rd). Then from Lemma 5 it follows that ψ ∈ Cb(R

d).
To prove the existence of ψ ∈ L2(Rd) it is sufficient to verify that the

quadratic form (Lf, f) is positive for some f ∈ L2(Rd). Let us take f = χBR
.

Then
(LχBR

, χBR
) = (L0χBR

, χBR
) + (V χBR

, χBR
), (26)

and
(V χBR

, χBR
) ≥ β vol(BR). (27)

For the operator L0 we have:

−(L0f, f) =

∫ ∫
a(y − x)(f(x)− f(y))f(x)dydx =

1

2

∫ ∫
a(y − x)(f(x)− f(y))2dydx.

Consequently, the first term in (26) can be written as

−(L0χBR
, χBR

) =

∫

|x|<R

∫

|y|>R

a(y − x)dxdy ≤
∫

|x|<R

∫

|x|+|z|>R

a(z)dxdz =

Cd

∫ R

0

rd−1

∫

|z|>R−r

a(z)dzdr = Cd

∫

Rd

a(z)

∫ R

(R−|z|)+

rd−1drdz =

CdR
d

d

∫

Rd

a(z)

(
1−

(
1− |z|

R

)d

+

)
dz.

Here CdR
d

d
= vol(BR). Thus,

1

vol(BR)
(L0χBR

, χBR
) → 0 as R → ∞. (28)

Finally, (26) - (28) imply that the operator L has a positive discrete spectrum
and a ground state if R is taken sufficiently large. �
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4 Ground state in L2(Rd)

Now we can omit the condition of the continuity of V (x). The statements
of Lemmas 1,4 hold in the space L2(Rd), since the operator Qλ defined by
(14) is a compact positive operator in the order sense in L2(Rd). The further
consideration of the problem in the space L2(Rd) is simpler because the
operator L = L0 + V is a bounded self-adjoint operator in L2(Rd). The
analysis of the operator L is based on transformations of equation (17), that
are analogous to the transformations exploited in the theory of Schrödinger
operators. As a result, the ground state problem can be reduced to the
spectral analysis of a compact positive self-adjoint operator.

The equation (17) on the eigenfunction ψ(x) can be rewritten in the
following way:

V 1/2(λ− L0)
−1V 1/2u = u, (29)

where
u = V 1/2ψ, ψ = (λ− L0)

−1V 1/2u.

Inserting (9) to (29) we get that (29) is equivalent to the following equation:

Sλu = u, where Sλ =
1

λ+ 1
W−1

λ V 1/2AλV
1/2, (30)

and Aλ is defined by (10). Sλ is a compact positive operator, and it is similar
to the compact positive symmetric operator

Ŝλ =
1

λ+ 1
W

−1/2
λ V 1/2AλV

1/2W
−1/2
λ .

Consequently the spectra of operator Sλ and self-adjoint operator Ŝλ are the
same, and

r(Sλ) = r(Ŝλ) = ‖Ŝλ‖L2. (31)

The spectral radius r(Sλ) of the operator Sλ has the same properties as in
Lemma 4.

All statements of Theorems 6,7,10 are also valid in the space L2(Rd).
In the proof of Theorem 6 we have to use the variational principle for Ŝλ

instead of Remark 3. The upper bound for the spectral radius follows from
the inequality

r(Ŝλ) = ‖Ŝλ‖L2 ≤
(∫

Rd

∫

Rd

Ŝ2
λ(x, y)dxdy

)1/2

.

11



Remark 11 If the potential V ∈ L1(Rd), then from (18) and Lemma 5 it
follows that ψ(x) ∈ L1(Rd) for any λ > 0.

5 The subcritical regime

We consider in this section a local perturbation in the form of ”small par-
adise” for the subcritical regime: m(x) ≡ m > 1. In this case the non local
operator L has a form

Lu(x) = −m̃(x)u(x) +

∫

Rd

a(x− y)u(y)dy. (32)

It can be rewritten as

Lu(x) = L0u(x) + D(x)u(x), (33)

where

L0u(x) =

∫

Rd

a(x− y)(u(y)− u(x))dy, (34)

D(x) = 1− m̃(x) = Ṽ (x)− h, h = m− 1 > 0, (35)

and

Ṽ (x) = m− m̃(x), 0 ≤ Ṽ (x) ≤ m, Ṽ (x) → 0 as |x| → ∞. (36)

If Ṽ (x) ≡ 0, then from (33)-(35) it follows that

(Lu, u) ≤ −h(u, u), h = m− 1 > 0.

The equation on a positive eigenvalue of the operator (33) and the corre-
sponding eigenfunction ψ(x)

L0ψ + Dψ = λ̂ψ, λ̂ > 0,

is equivalent to the above equations (17) - (18) with

Qλ(x, y) =
Gλ(x− y)Ṽ (y)

λ+ 1− Ṽ (x)
, 0 ≤ Ṽ (x) ≤ m

under additional condition: λ > h. Moreover, as follows from Lemma 5, in
this case the ground state ψ(x) ∈ L2(Rd).
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Theorem 12 (small paradise in the subcritical regime) For any d ≥ 1,
assume that there exists δ > 0 such that Ṽ (x) = m when x ∈ Bδ, where Bδ

is a ball of a radius δ. Then the ground state of L = L0 +D exists.

Proof. It is enough to prove inequality similar to (19):

lim
λ→h+

r(Qλ) > 1.

Using the same reasoning as in Theorem 7 for the normalized indicator
function φδ(x) =

1√
|Bδ|

χBδ
(x) we get for any x ∈ Bδ:

Qλφδ(x) =

∫

Bδ

Qλ(x, y)φδ(y)dy ≥ m

(λ+ 1−m)
√

|Bδ|

∫

Bδ

Gλ(x−y)dy → ∞

as λ → h+. Thus limλ→h+ r(Qλ) = ∞ for any δ > 0, and equation (18) has
a solution which is the ground state ψ(x) > 0 corresponding to the maximal
eigenvalue λ̂ = λ− h > 0 of the operator (33). �

Theorem 12 means that any local perturbation in the form of small par-
adise in the subcritical regime produces a crucial change in the asymptotic
behavior of the system: instead of the exponentially decreasing population
density one can find an exponentially increasing population everywhere in
the space, and the density profile is described by the corresponding ground
state ψ(x).

6 Concluding remarks

Existence and uniqueness of the ground state of the operator L in L2(Rd)
immediately implies the following asymptotic formulas on the solution u(x, t)
of the evolution problem (1).

Proposition 13 Assume that there exists a unique ground state ψ > 0 of
the operator L in L2(Rd), and λ > 0 be the maximal eigenvalue.

Then in L2(Rd) the following asymptotic formula holds:

u(x, t) = etλc0ψ(x)(1 + o(1)) (t→ ∞), (37)

where c0 = (u0, ψ)L2 > 0 for any initial condition u0 ≥ 0, u0 6≡ 0.
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In Cb(R
d) for any u0(x) ≥ 0, u0 6≡ 0, and any bounded domain D ⊂ Rd

we have ∫

D

u(x, t)dx → ∞ as t→ ∞.

Proof. The operator (2) is a bounded self-adjoint operator in L2(Rd).
Then the asymptotic (37) is a direct consequence of the spectral decomposi-
tion for the operator L.

Let us fix a ball B such that B ∩ supp u0 6= ∅, and denote uB0 (x) =
u0(x) · χB(x). Then uB0 (x) ∈ L2(Rd), uB0 6≡ 0. Using the positivity of the
semigroup etL we have for any bounded domain D

∫

D

u(x, t)dx = 〈u(·, t), χD(·)〉 = 〈etLu0, χD〉 ≥

〈etLuB0 , χD〉 ∼ eλtc0(ψ, χD)L2 → ∞ (t→ ∞) (38)

with c0 = (uB0 , ψ)L2 > 0. �

Conclusions. Since u(t, x), x ∈ Rd describes the density of the popula-
tion at time t, then the asymptotic (38) means that, in the case when the
operator L has a positive eigenvalue λ > 0, the population is exponentially
increasing everywhere in the space. Moreover in the case L2(Rd), for any
initial density u(0, x) = u0(x) ≥ 0 the shape of u(t, x) tends to the shape of
the ground state ψ(x) of the operator L up to the multiplication on eλt.

If m(x) ≡ 0, then the total mass grows as et. So the exponent λ of the
growth in the case of existence of the ground state is in the interval (0, 1].

To observe the exponential growing of the density in small dimensions
d = 1, 2, it is enough to have any small region where mortality is less than 1
(Theorem 6). If d ≥ 3, then a positive eigenvalue appears in two cases:
1) if there is a region of a positive volume, where the mortality is equal to 0
(Theorem 7) (small paradise);
2) if the mortality has an upper bound less than 1 in a region, and the size
of the region depends on the upper bound of the mortality (Theorem 10).

We found that perturbations in the form of small paradise are very pow-
erful: they switch a subcritical regime in the system (with exponentially
decreasing population density) to a supercritical regime with exponentially
increasing population (Theorem 12).

Next natural question is what happens if the mortality m(x) is greater
than 1 (or even m(x) is a growing function) outside of a region, where the
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mortality has a local negative fluctuations. Is it possible that an active grow-
ing inside of a bounded region can be stronger than the influence of a large
mortality outside? We suppose to study this question in a forthcoming paper.
We also plan to continue spectral analysis of the operator L in more details
including the study of continuous spectrum and the study of a structure of
the ground state.
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