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Abstract

This paper describes a regularized variant of the alternating direction method of multipli-
ers (ADMM) for solving linearly constrained convex programs. It is shown that the pointwise
iteration-complexity of the new method is better than the corresponding one for the standard
ADMM method and that, up to a logarithmic term, is identical to the ergodic iteration-complexity
of the latter method. Our analysis is based on first presenting and establishing the pointwise
iteration-complexity of a regularized non-Euclidean hybrid proximal extragradient framework
whose error condition at each iteration includes both a relative error and a summable error. It is
then shown that the new method is a special instance of the latter framework where the sequence
of summable errors is identically zero when the ADMM stepsize is less than one or a nontrivial
sequence when the stepsize is in the interval [1, (1 +

√
5)/2).
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1 Introduction

The goal of this paper is to present a regularized variant of the alternating direction method of
multipliers (ADMM) for solving the linearly constrained convex problem

inf{f(y) + g(s) : Cy +Ds = c} (1)

where X , Y and S are inner product spaces, f : Y → (−∞,∞] and g : S → (−∞,∞] are proper
closed convex functions, C : Y → X and D : S → X are linear operators, and c ∈ X .
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The standard ADMM for solving (1) recursively computes a sequence {(sk, yk, xk)} as follows.
Given (yk−1, xk−1), it computes (sk, yk, xk) as:

sk = argmins

{
g(s) − 〈xk−1,Ds〉X +

β

2
‖Cyk−1 +Ds− c‖2X

}
,

yk = argminy

{
f(y)− 〈xk−1, Cy〉X +

β

2
‖Cy +Dsk − c‖2X

}
,

xk = xk−1 − θβ [Cyk +Dsk − c]

where β > 0 is a fixed penalty parameter and θ > 0 is a fixed stepsize.
The ADMM was introduced in [8, 10] and is thouroughly discussed in [2, 9]. Recently, there has

been some growing interest in this method (see for instance [1, 4, 6, 11, 13, 26, 32] and the references
cited therein). To discuss the complexity results about the ADMM, we use the terminology weak
pointwise or strong pointwise bounds to refer to complexity bounds relative to the best of the k first
iterates or the last iterate, respectively, to satisfy a suitable termination criterion. The first iteration-
complexity bound for the ADMM was established only recently in [25] under the assumption that
C is injective. More specifically, its ergodic iteration-complexity is derived in [25] for any θ ∈ (0, 1]
while a weak pointwise iteration-complexity easily follows from the approach in [25] for any θ ∈ (0, 1).
Subsequently, without assuming that C is injective, [15] established the ergodic iteration-complexity
of the ADMM with θ = 1, and also of a variant of the ADMM method, namely, the split inexact
Uzawa method [33]. Paper [14] establishes the weak pointwise and ergodic iteration-complexity of a
class of ADMM type methods which includes the standard ADMM for any θ ∈ (0, (1 +

√
5)/2). A

strong pointwise iteration-complexity bound for the ADMM with θ ∈ (0, 1] is derived in [16]. Finally,
a number of papers (see for example [4, 5, 7, 12, 13, 21] and references therein) have developed
pointwise and/or ergodic iteration-complexity bounds for other variants of the ADMM which are
quite similar to the corresponding ones for the standard ADMM.

Although different termination criteria are used in the aforementioned papers, their complexity
results can be easily rephrased in terms of a simple termination, namely: for a given ρ > 0, terminate
with a quadruple (s, y, x, x′) ∈ S × Y × X × X satisfying

max{‖Cy +Ds− c‖, ‖x′ − x‖} ≤ ρ, 0 ∈ ∂ρg(s)−D∗x, 0 ∈ ∂ρf(y)− C∗x′.

In terms of this termination, the best pointwise iteration-complexity bounds are O(ρ−2) while the
best ergodic ones are O(ρ−1) but the pointwise results guarantee that above two inclusions hold with
ρ = 0 (i.e., with ∂ρ replaced by ∂). This paper presents a regularized ADMM whose strong pointwise
iteration-complexity is O(ρ−1 log(ρ−1)) for any stepsize θ ∈ (0, (1 +

√
5)/2), and hence improves the

aforementioned pointwise iteration complexity by an O(ρ log(ρ−1)) factor.
It is well-known (e.g., see [25]) that the standard ADMM with θ ∈ (0, 1] and C injective can be

viewed as an inexact proximal point (PP) method, more specifically, as an instance of the hybrid
proximal extragradient (HPE) framework proposed by [30]. In contrast to the original Rockafel-
lar’s PP method which is based on a summable error condition, the HPE framework is based on a
relative HPE error condition involving Euclidean distances. Convergence results for the HPE frame-
work are studied in [30], and its weak pointwise and ergodic iteration-complexities are established
in [23] (see also [24, 25]). Applications of the HPE framework to the iteration-complexity analysis
of several zero-order (resp., first-order) methods for solving monotone variational inequalities and
monotone inclusions (resp., saddle-point problems) are discussed in [17, 18, 23, 24, 25]. Paper [31]
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describes and studies the convergence of a non-Euclidean HPE (NE-HPE) framework which essen-
tially generalizes the HPE one to the context of general Bregman distances. The latter framework
was further generalized in [20] where its ergodic iteration-complexity was established. More specifi-
cally, consider the monotone inclusion problem 0 ∈ T (z) where T is a maximal monotone operator
and let w be a convex differentiable function. Recall that for a given pair (z−, λ) = (zk−1, λk), the
exact PP method computes the next iterate z = zk as the (unique) solution of the prox-inclusion
λ−1[∇w(z−) − ∇w(z)] ∈ T (z). An instance of the NE-HPE framework described in [20] computes
an approximate solution of this inclusion based on the following relative NE-HPE error criterion: for
some tolerance σ ∈ [0, 1], a triple (z̃, z, ε) = (z̃k, zk, εk) is computed such that

r :=
1

λ
[∇w(z−)−∇w(z)] ∈ T ε(z̃), (dw)z(z̃) + λε ≤ σ(dw)z−(z̃) (2)

where dw is the Bregman distance defined as (dw)z(z
′) = w(z′) − w(z) − 〈∇w(z), z′ − z〉 for every

z, z′ and T ε denotes the ε-enlargement [3] of T (it has the property that T ε(u) ⊃ T (u) for each u
with equality holding when ε = 0). Clearly, if σ = 0 in (2), then z = z̃ and ε = 0, and the inclusion
in (2) reduces to the prox-inclusion. Also, the HPE framework is the special case of the NE-HPE
one in which w(·) = ‖ · ‖2/2 and ‖ · ‖ is the Euclidean norm.

Section 2 considers a MIP of the form 0 ∈ (S+T )(z) where T is monotone, S is µ-monotone with
respect to w for some µ > 0 (see condition A1) and w is a regular distance generating function (see
Definition 2.2). It then presents and establishes the strong pointwise iteration-complexity of a variant
of the NE-HPE framework for solving such a MIP in which the inclusion in (2) is strengthened to
r ∈ S(z̃) + T ε(z̃) but its error condition is weakened in that an additional nonnegative tolerance is
added to the right hand side of the inequality in (2) which is τ -upper summable. This extension of
the error condition will be useful in the analysis of the regularized ADMM of Section 4 with ADMM
stepsizes θ > 1.

Section 3 presents and establishes the strong pointwise iteration-complexity of a regularized
NE-HPE framework which solves the inclusion 0 ∈ T (z) with no assumption on T other than mono-
tonicity. The latter framework is based on the idea of invoking the above NE-HPE variant to solve
perturbed MIPs of the form 0 ∈ (S + T )(z) where S(·) = µ[∇w(·) −∇w(z0)] for some µ > 0, point
z0 and regular distance generating function w.

Section 4 presents and establishes the O(ρ−1 log(ρ−1)) strong pointwise iteration-complexity of a
regularized ADMM whose description depends on β, θ (as the standard ADMM) and a regularization
parameter µ. It is well-known that (1) can be reformulated as a monotone inclusion problem of the
form 0 ∈ T (z) with z = (x, y). The regularized ADMM can be viewed as a special instance of
the regularized NE-HPE framework applied to the latter inclusion where: i) all stepsizes λk’s are
equal one; ii) the distance generating function w depends on β, θ and operator C as in relation (57);
and, iii) the sequence of τ -upper summable errors is zero when the ADMM stepsize θ ∈ (0, 1) and
nontrival (and hence nonzero) when θ ∈ [1, (1 +

√
5)/2). Hence, the iteration complexity analysis

of the regularized ADMM for the case in which θ ∈ [1, (1 +
√
5)/2) requires both a combination of

relative and τ -upper summable errors while the one for the case of θ ∈ (0, 1) requires only relative
errors. Moreover, the distance generating function w is strongly convex only when C is injective
but is always regular and hence fulfills the conditions required for the iteration-complexity results of
Section 3 to hold.

This paper is organized as follows. Subsection 1.1 presents the notation and review some ba-
sic concepts about convexity and maximal monotone operators. Section 2 introduces the class of
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regular distance generating functions and presents the aforementioned variant of the NE-HPE frame-
work. Section 3 presents the regularized NE-HPE framework and its complexity analysis. Section 4
contains two subsections. Subsection 4.1 describes the regularized ADMM and its pointwise iteration-
complexity result whose proof is given in Subsection 4.2. Finally, the appendix reviews some basic
results about dual seminorms and existence of optimal solutions and/or Lagrange multipliers for
linearly constrained convex programs, and presents the proofs of two results of Subsection 4.2.

1.1 Basic concepts and notation

This subsection presents some definitions, notation and terminology needed by our presentation.
The set of real numbers is denoted by R. The set of non-negative real numbers and the set

of positive real numbers are denoted by R+ and R++, respectively. For t > 0, we let log+(t) :=
max{log t, 0}.

Let Z be a finite-dimensional real vector space with inner product denoted by 〈·, ·〉 and let ‖ · ‖
denote an arbitrary seminorm in Z. Its dual (extended) seminorm, denoted by ‖ · ‖∗, is defined as
‖·‖∗ := sup{〈·, z〉 : ‖z‖ ≤ 1}. Some basic properties of the dual seminorm are given in Proposition A.1
in Appendix A.

Given a set-valued operator S : Z ⇒ Z, its domain is denoted by Dom(S) := {z ∈ Z : S(z) 6= ∅}
and its inverse operator S−1 : Z ⇒ Z is given by S−1(v) := {z : v ∈ S(z)}. The operator S is said
to be monotone if

〈z − z′, s− s′〉 ≥ 0 ∀ z, z′ ∈ Z,∀ s ∈ S(z),∀ s′ ∈ S(z′).

Moreover, S is maximal monotone if it is monotone and, additionally, if T is a monotone operator
such that S(z) ⊂ T (z) for every z ∈ Z then S = T . The sum S + T : Z ⇒ Z of two set-valued
operators S, T : Z ⇒ Z is defined by (S + T )(x) := {a + b ∈ Z : a ∈ S(x), b ∈ T (x)} for every
z ∈ Z. Given a scalar ε ≥ 0, the ε-enlargement T [ε] : Z ⇒ Z of a monotone operator T : Z ⇒ Z is
defined as

T [ε](z) := {v ∈ Z : 〈v − v′, z − z′〉 ≥ −ε, ∀z′ ∈ Z,∀ v′ ∈ T (z′)} ∀z ∈ Z. (3)

Recall that the ε-subdifferential of a proper closed convex function f : Z → [−∞,∞] is defined
by ∂εf(z) := {v ∈ Z : f(z′) ≥ f(z) + 〈v, z′ − z〉 − ε ∀z′ ∈ Z} for every z ∈ Z. When ε = 0, then
∂0f(x) is denoted by ∂f(x) and is called the subdifferential of f at x. The operator ∂f is trivially
monotone if f is proper. If f is a proper lower semi-continuous convex function, then ∂f is maximal
monotone [28]. The conjugate f∗ of f is the function f∗ : Z → [−∞,∞] defined as

f∗(v) = sup
z∈Z
〈v, z〉 − f(z) ∀v ∈ Z.

2 A non-Euclidean HPE framework for a special class of MIPs

This section describes and derives convergence rate bounds for a non-Euclidean HPE framework for
solving inclusion problems consisting of the sum of two operators, one of which is assumed to be
µ-monotone with respect to a Bregman distance for some µ > 0. The latter concept implies strong
monotonicity of the operator when the Bregman distance is nondegenerate, i.e., its associated distance
generating function is strongly monotone. However, it should be noted that when the Bregman
distance is degenerate, the latter concept does not imply strong monotonicity of the operator.
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We start by introducing the definition of a distance generating function and its corresponding
Bregman distance adopted in this paper.

Definition 2.1. Let W ⊂ Z be a convex set. A continuous convex function w : W → R is called a
distance generating function if int(W ) 6= ∅ and w is continuously differentiable on int(W ). Moreover,
w induces the Bregman distance dw : W × int(W )→ R defined as

(dw)(z′; z) := w(z′)− w(z) − 〈∇w(z), z′ − z〉 ∀z′ ∈W, ∀z ∈ int(W ). (4)

For simplicity, for every z ∈ int(W ), the function (dw)( · ; z) will be denoted by (dw)z so that

(dw)z(z
′) = (dw)(z′; z) ∀z ∈ int(W ), ∀z′ ∈W.

The following useful identities follow straightforwardly from (4):

∇(dw)z(z′) = −∇(dw)z′(z) = ∇w(z′)−∇w(z) ∀z, z′ ∈ int(W ), (5)

(dw)v(z
′)− (dw)v(z) = 〈∇(dw)v(z), z′ − z〉+ (dw)z(z

′) ∀z′ ∈W, ∀v, z ∈ int(W ). (6)

Our analyses of the non-Euclidean HPE frameworks presented in Sections 2 and 3 require an
extra property of the distance generating function, namely, that of being regular with respect to a
seminorm.

Definition 2.2. For given positive constants α and L, closed convex set Z ⊂ int(W ) and seminorm
‖ · ‖ in Z, a distance generating function w : W → R is said to be (α,L)-regular with respect to
(Z, ‖ · ‖) if

(dw)z(z
′) ≥ α

2
‖z − z′‖2 ∀z, z′ ∈ Z, (7)

‖∇w(z) −∇w(z′)‖∗ ≤ L‖z − z′‖ ∀z, z′ ∈ Z. (8)

Note that if the seminorm in Definition 2.2 is a norm, then (7) implies that w is strongly convex,
in which case the corresponding dw is said to be nondegenerate. However, since we are not necessarily
assuming that ‖ · ‖ is a norm, our approach includes the case of w being not strongly convex, or
equivalently, dw being degenerate (e.g., see Example 2.3(b) below).

Some examples of regular distance generating functions are as follows.

Example 2.3. a) The distance generating function w : Z → R defined by w(·) := 〈·, ·〉/2 is a (1, 1)-
regular with respect to (Z, ‖ · ‖) where ‖ · ‖ := 〈·, ·〉1/2.
b) Let A : Z → Z be a self-adjoint positive semidefinite linear operator. The distance generating
function w : Z → R defined by w(·) := 〈A(·), ·〉/2 is a (1, 1)-regular with respect to (Z, ‖ · ‖) where
‖ · ‖ := 〈A(·), ·〉1/2.
c) Let δ ∈ (0, 1] be given and define W := {x ∈ R

n : xi + δ/n > 0, ∀i = 1, . . . , n}. The distance
generating function w : W → R defined by w(x) :=

∑n
i=1(xi + δ/n) log(xi + δ/n) for every x ∈ W

is a (1/(1 + δ), n/δ)-regular with respect to (Z, ‖ · ‖1) where Z = {x ∈ R
n :
∑n

i=1 xi = 1, xi ≥ 0, i =
1, . . . , n}.

The following result gives some useful properties of regular distance generating functions.
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Lemma 2.4. Let w : W → R be an (α,L)-regular distance generating function with respect to
(Z, ‖ · ‖) as in Definition 2.2. Then,

(
1 +

1

t

)−1

(dw)z(z
′) ≤ L

α

[
(dw)z(z̃) + t(dw)z̃(z

′)
]
∀t > 0, ∀ z, z′, z̃ ∈ Z; (9)

‖∇(dw)z′(z)‖∗ ≤
√
2L√
α

[(dw)z′(z)]
1/2 ∀ z, z′ ∈ Z. (10)

Proof. Using (4) and (8), it is easy to see that

(dw)z(z
′) = w(z′)− w(z) − 〈∇w(z), z′ − z〉 ≤ L

2
‖z − z′‖2 ∀z, z′ ∈ Z. (11)

To show (9), let t > 0 and z, z′, z̃ ∈ Z be given. By (7), we have

(dw)z(z̃) + t(dw)z̃(z
′) ≥ α

2

(
‖z − z̃‖2 + t‖z̃ − z′‖2

)
. (12)

Using the fact that

min
γ1,γ2
{γ21 + tγ22 | γ1, γ2 ≥ 0, γ1 + γ2 ≥ ‖z − z′‖} = (1 + 1/t)−1‖z − z′‖2

and (γ1, γ2) = (‖z − z̃‖, ‖z̃ − z′‖) is a feasible point for the above problem, we then conclude that

‖z − z̃‖2 + t‖z̃ − z′‖2 ≥ (1 + 1/t)−1‖z − z′‖2

which, together with (11) and (12), immediately yields (9). Finally, it is easy to see that (10)
immediately follows from (5), (7) and (8).

Throughout this section, we assume that w : W → R is an (α,L)-regular distance generating
function with respect to (Z, ‖ · ‖) where Z ⊂ int(W ) is a closed convex set and ‖ · ‖ is a seminorm
in Z. Our problem of interest in this section is the MIP

0 ∈ S(z) + T (z) (13)

where S, T : Z ⇒ Z are monotone operators and the following conditions hold:

A0) Dom(T ) ⊂ Z;

A1) S is µ-monotone on Z with respect to w, i.e., there exists a constant µ > 0 such that

〈z − z′, s− s′〉 ≥ µ[(dw)z(z
′) + (dw)z′(z)] ∀ z, z′ ∈ Z,∀ s ∈ S(z),∀ s′ ∈ S(z′); (14)

A2) the solution set (S + T )−1(0) of (13) is nonempty.

We observe that when the seminorm ‖·‖ is a norm, then (14) implies that S is strongly monotone.
However, the latter needs not be the case when ‖ · ‖ is not a norm.

We now state a non-Euclidean-HPE (NE-HPE) framework for solving (13) which generalizes the
ones studied in [20, 31].
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Framework 1 (A NE-HPE variant for solving (13)).

(0) Let z0 ∈ Z, η0 ≥ 0, τ > 0 and σ ∈ [0, 1) be given, and set k = 1;

(1) choose λk > 0 and find (z̃k, zk, εk, ηk) ∈ Z × Z × R+ × R+ such that

rk :=
1

λk
∇(dw)zk(zk−1) ∈

(
S(z̃k) + T [εk](z̃k)

)
, (15)

(dw)zk (z̃k) + λkεk + ηk ≤ σ(dw)zk−1
(z̃k) + (1− τ)ηk−1; (16)

(2) set k ← k + 1 and go to step 1.

end

We now make some remarks about Framework 1. First, it does not specify how to find λk and
(z̃k, zk, εk, ηk) satisfying (15) and (16). The particular scheme for computing λk and (z̃k, zk, εk, ηk)
will depend on the instance of the framework under consideration and the properties of the operators
S and T . Second, if w is strongly convex on Z, σ = 0 and η0 = 0, then (16) implies that εk = 0,
ηk = 0 and zk = z̃k for every k, and hence that rk ∈ (S+T )(zk) in view of (15). Therefore, the HPE
error conditions (15)-(16) can be viewed as a relaxation of an iteration of the exact non-Euclidean
proximal point method, namely,

0 ∈ 1

λk
∇(dw)zk−1

(zk) + (S + T )(zk).

Third, if w is strongly convex on Z, then it can be shown that the above inclusion has a unique
solution zk, and hence that, for any given λk > 0, there exists a quadruple (z̃k, zk, εk, ηk) of the
form (zk, zk, 0, 0) satisfying (15)-(16) with σ = 0. Clearly, computing the quadruple in this (exact)
manner is expensive, and hence computation of (inexact) quadruples satisfying the HPE (relative)
error conditions with σ > 0 is more computationally appealing. Fourth, even though the definition
of a regular distance generating function does not exclude the case in which w is constant, such a
case is not interesting from an algorithmic analysis point of view. In fact, if η0 = 0 and w is constant,
then we have that z̃1 is already a solution of (13) since it follows from (16) with k = 1 that ε1 = 0,
and hence that 0 ∈ (S + T )(z̃1) in view of (15) with k = 1. Fifth, the more general HPE error
condition (16) is clearly equivalent to

dwzk(z̃k) + λkεk ≤ σdwzk−1
(z̃k) + η̃k

where η̃k = (1 − τ)ηk−1 − ηk. The consideration of this additional error {η̃k} will be useful in the
analysis of the ADMM variant studied in Section 4. It is a simple verification to see that {η̃k} is
ξ-upper summable, i.e.,

lim sup
k→∞

k∑

j=1

η̃j
(1− ξ)j

<∞,

for any ξ ∈ [0, τ ]. Hence, if {η̃k} is nonnegative, then it is summable in the sense that
∑∞

k=1 η̃k <∞.
We now make some remarks about the relationship of Framework 1 with the ones studied in

[20, 22, 31]. First, Framework 1 with S = 0 and {ηk} identically zero reduces to the one studied
in [20] and also to the one in [31] if {εk} is chosen to be identically zero. However, unless w is
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constant, condition A1 does not allow us to take S = 0, and hence the convergence rate results of
this section do not apply to the setting of [20], and hence of [31]. Second, in contrast to [20], the
regularity condition on w and the µ-monotonicity of S with respect to w allow us to establish a
geometric (pointwise) convergence rate for the sequence {dwzk(z

∗) + ηk} for any z∗ ∈ (S + T )−1(0)
(see Proposition 2.6 below). Third, when w is the usual Euclidean distance generating function as
in Example 2.3(a) and {ηk} is identically zero, Framework 1 and the corresponding results derived
in this section reduce to the ones studied in Subsection 2.2 of [22].

We also remark that the special case of Framework 1 in which S(·) = µ∇dwz0(·) for some z0 ∈ Z
and µ > 0 sufficiently small will be used in Section 3 as a way towards solving the inclusion 0 ∈ T (z).
The resulting framework can then be viewed as a regularized NE-HPE framework in the sense that
the operator T is slightly perturbed and regularized by the operator µ∇dwz0(·).

In the remaining part of this section, we focus our attention on establishing convergence rate
bounds for the sequence {dwzk(z

∗) + ηk} and the sequence of residual pairs {(rk, εk)} generated by
any instance of Framework 1. We start by deriving a preliminary technical result.

Lemma 2.5. For every k ≥ 1, the following statements hold:

(a) for every z ∈W , we have

(dw)zk−1
(z)− (dw)zk (z) = (dw)zk−1

(z̃k)− (dw)zk(z̃k) + λk〈rk, z̃k − z〉;

(b) for every z ∈W , we have

(dw)zk−1
(z) − (dw)zk(z) + (1− τ)ηk−1 ≥ (1− σ)(dw)zk−1

(z̃k) + λk(〈rk, z̃k − z〉+ εk) + ηk;

(c) for every z∗ ∈ (S + T )−1(0), we have

(dw)zk−1
(z∗)− (dw)zk(z

∗) + (1− τ)ηk−1 ≥ (1− σ)(dw)zk−1
(z̃k) + λkµ(dw)z̃k (z

∗) + ηk.

Proof. (a) Using (6) twice and using the definition of rk given by (15), we obtain

(dw)zk−1
(z) − (dw)zk (z) = (dw)zk−1

(zk) + 〈∇(dw)zk−1
(zk), z − zk〉

= (dw)zk−1
(zk) + 〈∇(dw)zk−1

(zk), z̃k − zk〉+ 〈∇(dw)zk−1
(zk), z − z̃k〉

= (dw)zk−1
(z̃k)− (dw)zk (z̃k) + 〈∇(dw)zk−1

(zk), z − z̃k〉
= (dw)zk−1

(z̃k)− (dw)zk (z̃k) + λk〈rk, z̃k − z〉.

(b) This statement follows as an immediate consequence of item (a) and (16).
(c) Let z∗ ∈ (S + T )−1(0) be. Then, there exists a∗ ∈ Z such that a∗ ∈ S(z∗) and −a∗ ∈ T (z∗).

In view of (15), we can write rk as rk = rak + rbk where rak ∈ S(z̃k) and rbk ∈ T εk(z̃k). Since a
∗ ∈ S(z∗)

and rak ∈ S(z̃k), condition A1 implies that 〈rak − a∗, z̃k − z∗〉 ≥ µ(dw)z̃k (z
∗). On the other hand,

since −a∗ ∈ T (z∗) and rbk ∈ T εk(z̃k), (3) implies that 〈rbk + a∗, z̃k − z∗〉 ≥ −εk. Hence,

〈rk, z̃k − z∗〉+ εk = 〈rak − a∗, z̃k − z∗〉+ 〈rbk + a∗, z̃k − z∗〉+ εk ≥ µ(dw)z̃k(z
∗), (17)

which together with item (b) with z = z∗ yields (c).

Under the assumption that the sequence of stepsizes {λk} is bounded away from zero, the following
result shows that the sequence {dwzk(z

∗) + ηk} converges geometrically to zero for every solution z∗

of (13).
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Proposition 2.6. Assume that there exists λ > 0 such that λk ≥ λ for all k and define

τ := min

{
α

L

(
1

1− σ
+

1

µλ

)−1

, τ

}
∈ (0, 1) (18)

where µ is as in A1. Then, for every k ≥ 1 and z∗ ∈ (S + T )−1(0),

(dw)zk(z
∗) + ηk ≤ (1− τ)k [(dw)z0(z

∗) + η0] , (19)

‖∇(dw)z∗(z̃k)‖∗ ≤
√
2L√
α

[
1 +

1√
1− σ

]
(1− τ)(k−1)/2[(dw)z0(z

∗) + η0]
1/2. (20)

Proof. Let z∗ ∈ (S + T )−1(0) be given. It follows from Lemma 2.5(c) and inequality (9) with
t = µλk/(1− σ), z = zk−1, z̃ = z̃k and z′ = z∗ that

(dw)zk (z
∗) + ηk ≤

(
1− α

L

(
1

1− σ
+

1

µλk

)−1
)
(dw)zk−1

(z∗) + (1− τ)ηk−1

≤ (1− τ)
[
(dw)zk−1

(z∗) + ηk−1

]

where the second inequality is due to the assumption that λk ≥ λ for all k and the definition of τ
in (18). Clearly, (19) follows from last inequality.

Now, Lemma 2.5(c) implies that

(1− σ)(dw)zk−1
(z̃k) ≤ (dw)zk−1

(z∗) + ηk−1,

which combined with (19) yields

(1− σ)(dw)zk−1
(z̃k) ≤ (1− τ)k−1 ((dw)z0(z

∗) + η0) . (21)

On the other hand, using (5), inequality (10) and the triangle inequality, we have

‖∇(dw)z∗(z̃k)‖∗ ≤ ‖∇(dw)zk−1
(z∗)‖∗ + ‖∇(dw)zk−1

(z̃k)‖∗

≤
√
2L√
α

[
((dw)zk−1

(z∗))1/2 + ((dw)zk−1
(z̃k))

1/2
]

which together with (19), (21) and the fact that ηk−1 ≥ 0 imply (20).

The next result derives convergence rate bounds for the sequences {rk} and {εk} generated by
an instance of Framework 1 under the assumption that the sequence of stepsizes {λk} is bounded
away from zero.

Proposition 2.7. Assume that λk ≥ λ > 0 for all k ≥ 1 and let τ be as defined in (18). Then, for
every k ≥ 1, rk ∈ (S(z̃k) + T [εk](z̃k)) and the convergence rate bounds

‖rk‖∗ ≤
2
√
2L

λ
√
α
(1− τ)(k−1)/2

√
d0 + η0, εk ≤

1

λ(1− σ)
(1− τ)k−1 [d0 + η0] (22)

hold where d0 := inf{(dw)z0(z) : z ∈ (S + T )−1(0)}.
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Proof. The first statement of the proposition follows from (15). Let z∗ ∈ (S + T )−1(0) be given.
Using (5), (15), λk ≥ λ > 0, the triangle inequality and inequality (10), we have

‖rk‖∗ =
1

λk
‖∇(dw)zk (zk−1)‖∗ ≤

1

λ

[
‖∇(dw)zk (z∗)‖∗ + ‖∇(dw)zk−1

(z∗)‖∗
]

≤
√
2L

λ
√
α

[
((dw)zk (z

∗))1/2 + ((dw)zk−1
(z∗))1/2

]

which combined with (19) yields

‖rk‖∗ ≤
√
2L

λ
√
α

[
1 + (1− τ)1/2

]
(1− τ)(k−1)/2 [(dw)z0(z

∗) + η0]
1/2 .

As τ ∈ (0, 1] (see (18)) and z∗ is arbitrary point in (S + T )−1(0), the bound on rk follows from the
definition of d0.

Now, since λk ≥ λ > 0, it follows from (16) that

λεk ≤ λkεk ≤ σ(dw)zk−1
(z̃k) + (1− τ)ηk−1.

On the other hand, Lemma 2.5(c) implies that

(1− σ)(dw)zk−1
(z̃k) ≤ (dw)zk−1

(z∗) + (1− τ)ηk−1.

Combining the last two inequaties and the fact that σ ∈ [0, 1), we obtain

λεk ≤
σ

1− σ
(dw)zk−1

(z∗) +
1− τ

1− σ
ηk−1 ≤

1

1− σ

[
(dw)zk−1

(z∗) + (1− τ)ηk−1

]
,

which together with (19) and the fact that τ > 0 imply that

εk ≤
(1− τ )k−1

λ(1− σ)
[(dw)z0(z

∗) + η0].

Since z∗ is arbitrary point in (S + T )−1(0), the bound on εk follows from the definition of d0.

3 A regularized NE-HPE framework for solving MIPs

This section describes and establishes the pointwise iteration-complexity of a regularized NE-HPE
framework for solving MIPs which, specialized to the case of the Euclidean Bregman distance and
error sequence {ηk} identically zero, reduces to the regularized HPE framework of [22]. The latter
framework has been shown in [22] to have better iteration-complexity than the one for the usual HPE
framework derived in [23]. Moreover, the derived pointwise iteration-complexity bound for the case of
a general Bregman distance is, up to a logarithm factor, the same as the ergodic iteration-complexity
bound for the standard NE-HPE method obtained in [20].

Our problem of interest in this section is the MIP

0 ∈ T (z) (23)

where T : Z ⇒ Z is a monotone operator such that the solution set T−1(0) of (23) is nonempty.
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We assume in this section that, for given positive constants α and L, a closed convex set Z ⊂
int(W ) such that Dom(T ) ⊂ Z, and seminorm ‖ · ‖ in Z, w : W → R is an (α,L)-regular distance
generating function with respect to (Z, ‖ · ‖). The regularized NE-HPE framework solves (23) based
on the idea of solving the regularized MIP

0 ∈ T (z) + µ∇(dw)z0(z) (24)

for a fixed z0 ∈ Z and a sufficiently small µ > 0. Hence, we also assume that the solution set of (24)

Z∗
µ := {z ∈ Z : 0 ∈ T (z) + µ∇(dw)z0(z)} (25)

is nonempty for every µ > 0. It can be shown that if T is maximal monotone and dw is strongly convex
on Z, then the latter assumption always hold (see for example Corollary 12.44 and Proposition 12.54
of [29]).

Note that (24) is a special case of (13) with S(·) = µ∇(dw)z0(·), and from the above assumptions
the operators S and T satisfy A0 and A2. Moreover, this operator S together with w and Z satisfies
A1. Indeed, using the definition of S and (5), we conclude that for every z, z′ ∈ Z,

〈S(z)− S(z′), z − z′〉 = µ〈∇(dw)z0(z)−∇(dw)z0(z′), z − z′〉
= µ〈∇(dw)z′(z), z − z′〉 = µ[(dw)z(z

′) + (dw)z′(z)]

where the last equality is due to (6) with v = z′. Hence, we can use any instance of Framework 1
with S(·) = µ∇(dw)z0(·) to approximately solve the regularized inclusion (24), and hence (23) when
µ > 0 is sufficiently small.

For every µ > 0, define

d0 := inf
z∈T−1(0)

(dw)z0(z), dµ := inf
z∈Z∗

µ

(dw)z0(z). (26)

The following simple result establishes a crucial relationship between d0 and dµ.

Lemma 3.1. For any µ > 0 and z∗µ ∈ Z∗
µ, there holds (dw)z0(z

∗
µ) ≤ d0. As a consequence, dµ ≤ d0.

Proof. Let µ > 0 and z∗µ ∈ Z∗
µ be given. Clearly, −µ∇(dw)z0(z∗u) ∈ T (z∗µ). Hence, monotonicity

of T implies that any z∗ ∈ T−1(0) satisfies 〈∇(dw)z0(z∗u)), z∗ − z∗µ〉 ≥ 0. The latter conclusion and
relation (6) with v = z0, z

′ = z∗ and z = z∗µ then imply that

(dw)z0(z
∗)− (dw)z0(z

∗
µ) = 〈∇(dw)z0(z∗µ), z∗ − z∗µ〉+ (dw)z∗µ(z

∗) ≥ 0.

As z∗ ∈ T−1(0) is arbitrary, the first part of the lemma follows from the definition of d0. The second
part of the lemma follows from the first one and the definition of dµ.

Note that, in view of Proposition 2.7, any instance of Framework 1 applied to (24) generates a
triple (z̃k, rk, εk) satisfying

r̃k := rk − µ∇(dw)z0(z̃k) ∈ T [εk](z̃k)

where the residual pair (rk, εk) satisfies the bounds in (22) with d0 = dµ, and hence converges to 0.
Even though the sequence r̃k does not necessarily converge to 0, it can be made sufficiently small,
i.e., ‖r̃k‖∗ ≤ ρ for some tolerance ρ > 0, by choosing µ = ρ/O(d0). Indeed, we will show later that
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there exists a constant D0 = O(d0) such that ‖∇(dw)z0(z̃k)‖∗ ≤ D0 for every k. Hence, choosing
µ = ρ/D for some D ≥ 2D0 and computing a residual rk such that ‖rk‖∗ ≤ ρ/2 guarantees that

‖r̃k‖∗ ≤ ‖rk‖∗ + µ‖∇(dw)z0(z̃k)‖∗ ≤
ρ

2
+ µD0 = ρ

(
1

2
+
D0

D

)
≤ ρ,

and hence that r̃k is a sufficiently small residual for (23).
A technical difficulty of the above scheme is that the bound D0 depends on d0, which is generally

not known. Our first framework below is essentially Framework 1 applied to (24) with an arbitrary
guess of D, and hence of µ = ρ/D. In view of the above discussion, it is guaranteed to work only
for large values of D, i.e., D ≥ 2D0 (see Theorem 3.2). Subsequently, we present a dynamic scheme
(see Framework 3) which successively calls Framework 2 for a sequence of increasing values of D. It
is shown in Theorem 3.3 that the latter scheme has the same iteration-complexity as Framework 2
under the hypothetical assumption that D0 is known.

Framework 2 (A static regularized NE-HPE framework for solving (23)).

Input: (z0, η0,D) ∈ Z × R+ × R++ and (σ, τ, ρ, ε) ∈ [0, 1) × R++ × R++ × R++;

(0) Set µ = ρ/D and k = 1;

(1) choose λk > 0 and find (zk, z̃k, εk, ηk) ∈ Z × Z × R+ × R+ such that

rk :=
1

λk
∇(dw)zk(zk−1) ∈

(
µ∇(dw)z0(z̃k) + T [εk](z̃k)

)
, (27)

(dw)zk (z̃k) + λkεk + ηk ≤ σ(dw)zk−1
(z̃k) + (1− τ)ηk−1; (28)

(2) if ‖rk‖∗ ≤ ρ/2 and εk ≤ ε, then stop and output (z̃k, rk, εk); otherwise,
set k ← k + 1 and go to step 1.

end

We now make two remarks about Framework 2. First, as mentioned above, it is the special case of
Framework 1 in which S(·) = µ∇(dw)z0(·), and hence solves MIP (24). Second, since Section 2 only
deals with convergence rate bounds, a stopping criterion was not added to Framework 1. In contrast,
Framework 2 incorporates a stopping criterion (see step 2 above) based on which its iteration-
complexity bound is obtained. Clearly, (27) together with the termination criteria ‖rk‖∗ ≤ ρ/2 and
εk ≤ ε provides a certificate of the quality of z̃k as an approximate solution of (24).

The next result establishes the pointwise iteration-complexity of Framework 2 and shows that
any instance of Framework 2 also solves (23) when D is sufficiently large.

Theorem 3.2. Assume that λk ≥ λ > 0 for all k ≥ 1. Then, the following statements hold:

(a) Framework 2 terminates in at most

max

{
L

α

( D
λρ

+
1

1− σ

)
,
1

τ

}[
2 + 2max

{
log+

(
4
√
2L(d0 + η0)

1/2

λρ
√
α

)
, log+

(
d0 + η0

λ(1− σ)ε

)1/2
}]

(29)
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iterations with a triple (z̃k, rk, εk) satisfying the following conditions

rk − µ∇(dw)z0(z̃k) ∈ T [εk](z̃k), ‖rk‖∗ ≤ ρ/2, εk ≤ ε;

(b) for every k ≥ 1,

‖∇(dw)z0(z̃k)‖∗ ≤ D0 :=

√
2L√
α

[
2 +

1√
1− σ

]
(d0 + η0)

1/2 ;

(c) if D ≥ 2D0, then ‖rk − µ∇(dw)z0(z̃k)‖∗ ≤ ρ.

Proof. (a) Assume that Framework 2 has not terminated at the k-th iteration. Then, either ‖rk‖∗ >
ρ/2 or εk > ε. Assume first that ‖rk‖∗ > ρ/2. Since Framework 2 is a special case of Framework 1
applied to MIP (24) with S(z) = µ∇(dw)z0(z), the latter assumption and Proposition 2.7 imply that

ρ

2
< ‖rk‖∗ ≤

2
√
2L

λ
√
α
(1− τ)(k−1)/2(dµ + η0)

1/2 ≤ 2
√
2L

λ
√
α
(1− τ)(k−1)/2(d0 + η0)

1/2,

where the last inequality is due to Lemma 3.1. Rearranging the last inequality, taking logarithms
of both sides of the resulting inequality and using the fact that log(1− τ ) ≤ −τ , we conclude that

k < 1 + τ−1 log

(
32L2(d0 + η0)

(λρ)2α

)
.

If, on the other hand, εk > ε, we conclude by using a similar reasoning that

k < 1 + τ−1 log

(
d0 + η0

(1− σ)λε

)
.

The complexity bound in (a) now follows from the above observations, the definition of τ in (18),
and the fact that µ = ρ/D.

(b) It follows from Proposition 2.6 that

‖∇(dw)z∗µ (z̃k)‖∗ ≤
√
2L√
α

(
1 +

1√
1− σ

)
((dw)z0(z

∗
µ) + η0)

1/2

for an arbitrary point z∗µ ∈ Z∗
µ. Using (5), the triangle inequality, inequality (10), and the above

inequality, we obtain

‖∇(dw)z0(z̃k)‖∗ ≤ ‖∇dwz0(z
∗
µ)‖∗ + ‖∇(dw)z∗µ (z̃k)‖∗

≤
√
2L√
α

[
((dw)z0(z

∗
µ))

1/2 +

(
1 +

1√
1− σ

)
((dw)z0(z

∗
µ) + η0)

1/2

]

≤
√
2L√
α

[
2 +

1√
1− σ

] (
(dw)z0(z

∗
µ) + η0

)1/2

which implies the conclusion of (b), in view of Lemma 3.1 and the definition of D0.
(c) This statement follows immediately from (a) and (b) (see the paragraph following Lemma 3.1).
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We now make some remarks about Theorem 3.2. First, if (1 − σ)−1 and τ−1 are O(1), and an
input D for Framework 2 satisfying 2D0 ≤ D = O(L(d0 + η0)

1/2/
√
α) is known, then the complexity

bound (29) becomes

O
(
L

α

(
L(d0 + η0)

1/2

λρ
√
α

+ 1

)[
1 + max

{
log+

(
L(d0 + η0)

1/2

λρ
√
α

)
, log+

(
d0 + η0

λε

)1/2
}])

. (30)

Second, in general an upper bound D as in the first remark is not known and, in such a case,
bound (29) can be much worse than the one above, e.g., when D >> 2D0.

We now consider the case where an upper bound D ≥ 2D0 such that D = O(L(d0 + η0)
1/2/
√
α)

is not known and describe a scheme based on Framework 2 whose iteration-complexity order is equal
to (30).

Framework 3 (A dynamic regularized NE-HPE framework for solving (23)).

(0) Let z0 ∈ Z, η0 ≥ 0, τ > 0, σ ∈ [0, 1) and a tolerance pair (ρ, ε) ∈ R++ × R++ be given and
set D = ρ;

(1) call Framework 2 with input (z0, η0,D) and (σ, τ, ρ, ε) to obtain (z̃, r, ε̃) as output;

(2) compute r̃ = r − (ρ/D)∇(dw)z0(z̃); if ‖r̃‖∗ ≤ ρ then stop and output (z̃, r̃, ε̃); else, set
D ← 2D and go to step 1.

end

Each iteration of Framework 3 (referred to as an outer iteration) invokes Framework 2, which
performs a certain number of iterations (called inner iterations) which in turn is bounded by (29).
The following result gives the overall inner iteration-complexity of Framework 3.

Theorem 3.3. Assume that λk ≥ λ > 0 for all k ≥ 1. Then, Framework 3 with input (z0, η0) ∈
Z × R+ and (τ, σ, ρ, ε) ∈ (0, 1] × [0, 1) × R++ × R++ such that (1 − σ)−1 and 1/τ are O(1) finds a
triple (z̃, r̃, ε̃) satisfying

r̃ ∈ T [ε̃](z̃), ‖r̃‖∗ ≤ ρ, ε̃ ≤ ε

in at most

O
(
L

α

(
1

λ
+ 1

)(
1 +

L(d0 + η0)
1/2

ρ
√
α

)[
1 + max

{
log+

(
L(d0 + η0)

1/2

λρ
√
α

)
, log+

(
d0 + η0

λε

)1/2
}])

(31)

inner iterations.

Proof. Note that at the k-th outer iteration of Framework 3, we have D = 2k−1ρ. Moreover, in view
of Theorem 3.2(c), Framework 3 terminates in at most K outer iterations where K is the smallest
integer k ≥ 1 satisfying 2k−1ρ ≥ 2D0. Thus,

K = 1 +
⌈
log+ (2D0/ρ)

⌉
.
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In order to simplify the calculations, let us denote

β1 := 2 + 2max

{
log+

(
4
√
2L(d0 + η0)

1/2

λρ
√
α

)
, log+

(
d0 + η0

λ(1− σ)ε

)1/2
}
. (32)

In view of Theorem 3.2(a) and (32), we see that the overall number of inner iterations is bounded by

K̃ := β1

K∑

k=1

max

{
L

α

(
2k−1

λ
+

1

1− σ

)
,
1

τ

}
≤ β1

[
L

α

(
2K − 1

λ
+

K

1− σ

)
+

K

τ

]
,

and hence

K̃ ≤ Lβ1
α

[
1

λ
+

1

1− σ
+

1

τ

]
2K . (33)

To end the proof, it suffices to show that K̃ is bounded by (31). If K = 1, then (32) combined with
(33) and the fact that (1− σ)−1 and 1/τ are O(1) shows that (31) trivially holds. Assume now that
K > 1 and note that k := K − 1 violates the inequality 2k−1ρ ≥ 2D0, and hence that 2K < 8D0/ρ.
The latter estimate combined with inequality (33) implies that

K̃ <
4Lβ1
α

[
1

λ
+

1

1− σ
+

1

τ

] D0

ρ

which together with (32), and the fact that (1−σ)−1 and 1/τ areO(1) andD0 = O(L(d0+η0)
1/2/
√
α),

imply that K̃ is bounded by (31).

Note that if εk = 0 for every k, then the complexity bound (31) becomes independent of the
tolerance ε, namely, it reduces to

O
(
L

α

(
1

λ
+ 1

)(
1 +

L(d0 + η0)
1/2

ρ
√
α

)[
1 + log+

(
L(d0 + η0)

1/2

λρ
√
α

)])
. (34)

4 A regularized ADMM

The goal of this section is to present a regularized ADMM for solving linearly constrained convex
programming problems which has a better pointwise iteration-complexity than the usual ADMM.
It contains two subsections. The first one describes our setting, our assumptions, the regularized
ADMM and its improved pointwise iteration-complexity bound. The second one is dedicated to the
proof of the main result stated in the first subsection.

4.1 A regularized ADMM and its pointwise iteration-complexity

In this subsection, we let X , Y and S be inner product spaces whose inner products are denoted by

〈·, ·〉X , 〈·, ·〉Y , 〈·, ·〉S , respectively. Let us also consider the norm in X given by ‖ · ‖X := 〈·, ·〉1/2X . Our
problem of interest is

inf{f(y) + g(s) : Cy +Ds = c} (35)

where c ∈ X , C : Y → X and D : S → X are linear operators, and f : Y → (−∞,∞] and
g : S → (−∞,∞] are proper closed convex functions.

The following assumptions are made throughout this section:
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B1) problem (35) has an optimal solution (s∗, y∗) and an associated Lagrange multiplier x∗, or
equivalently, there exists a triple (s∗, y∗, x∗) satisfying

0 ∈ ∂g(s∗)−D∗x∗, 0 ∈ ∂f(y∗)− C∗x∗, Cy∗ +Ds∗ = c; (36)

B2) there exists x ∈ X such that (C∗x,D∗x) ∈ ri (dom f∗)× ri (dom g∗).

We now make a few remarks about the above assumptions. First, it follows from the last conclu-
sion of Proposition A.2 in Appendix A that, if the solution set of (35) is nonempty and bounded, then
B2 holds. Second, by Proposition A.2(a), if the infimum in (35) is <∞ and B2 holds, then (35) has
an optimal solution. Hence, B2 together with the Slater condition that there exists a feasible pair
(s, y) for (35) such that (s, y) ∈ ri (dom g)× ri (dom f) imply that B1 holds (see Proposition A.2(c)).
Third, B2 implies that Im (D∗) ∩ ri (dom g∗) 6= ∅, and hence that ∂(g∗ ◦ D∗)(x) = D(∂g∗(D∗x))
for every x ∈ X (see Theorem 3.2.1 in Chap. XI of [19]). The latter observation and the fact that
(∂g)−1 = ∂g∗ then easily imply that a pair (y∗, x∗) is a solution of the inclusion problem

0 ∈ T (x, y) :=

[
Cy − c+ ∂(g∗ ◦D∗)(x)
−C∗x+ ∂f(y)

]
(37)

if and only if there exists s∗ ∈ S such that (s∗, y∗, x∗) satisfies (36).
We are ready to state the regularized ADMM for solving (35).

Dynamic regularized alternating direction method of multipliers (DR-ADMM):

(0) Let (x0, y0) ∈ X × Y, positive scalars β, θ and a tolerance ρ > 0 be given, and set D = ρ.

(1) set µ = ρ/D, β1 = βθ/(θ + µ), β2 = β(1 + µ) and k = 1, and go to (a);

(a) set x̂k−1 = (θxk−1 + µx0)/(θ + µ) and compute an optimal solution sk ∈ S of the sub-
problem

min
s∈S

{
g(s)− 〈D∗x̂k−1, s〉S +

β1
2
‖Cyk−1 +Ds− c‖2X

}
; (38)

(b) set x̃k, ŷk−1 and uk as

x̃k = x̂k−1 − β1(Cyk−1 +Dsk − c) (39)

ŷk−1 = (yk−1 + µy0)/(1 + µ) (40)

uk = x̃k + β2(Cŷk−1 +Dsk − c) (41)

and compute an optimal solution yk ∈ Y of the subproblem

min
y∈Y

{
f(y)− 〈C∗uk, y〉Y +

β2
2
‖Cy +Dsk − c‖2X

}
; (42)

(c) update xk as

xk = xk−1 − θβ

[
Cyk +Dsk − c+

µ

θβ
(x̃k − x0)

]
; (43)
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(d) if (
βθ‖pk‖2X +

1

β
‖qk‖2X

)1/2

≤ ρ/2 (44)

where

pk :=
1

βθ
(xk−1 − xk), qk := βC(yk−1 − yk), (45)

then set (s, y, x̃, p, q) = (sk, yk, x̃k, pk, qk) and go to (2); else set k ← k + 1 and go to (a);

(2) compute

p̃ := p− µ

βθ
(x̃− x0), q̃ := q − µβC(y − y0); (46)

if (
βθ‖p̃‖2X +

1

β
‖q̃‖2X

)1/2

≤ ρ,

then stop and output (s, y, x̃, p̃, q̃); otherwise, set D ← 2D and go to step 1.

end

We now make some remarks about the DR-ADMM. First, it can be shown that assumption B.2
implies that both subproblems (38) and (42) have optimal solutions (see for example [25, Proposi-
tion 7.2]). Second, loop (a)-(d) with µ = 0 is exactly the ADMM method with penalty parameter
β and relaxation stepsize θ (see for example [9]) since in this situation we have β1 = β2 = β,
x̂k−1 = uk = xk−1 and ŷk−1 = yk−1. DR-ADMM should then be viewed as a regularized ADMM
method which dynamically adjusts the regularization parameter µ > 0, or equivalently, the param-
eter D > 0. Third, as will be shown later on in this section, DR-ADMM is a special instance of
Framework 3 in which εk = 0 for all k ≥ 1. Indeed, steps 0, 1 and 2 of DR-ADMM correspond exactly
to steps 0, 1 and 2 of Framework 3, respectively. A single execution of steps 1 and 2 is referred to as
an outer iteration of DR-ADMM. A single execution of steps (a)-(d) is referred to as an inner itera-
tion of DR-ADMM which, in the context of Framework 3, corresponds to an iteration of Framework
2 (see step 1 of Framework 3). The cycle of inner iterations consisting of (a)-(d) corresponds to the
implementation of a special instance of Framework 2 in which εk = 0 for all k ≥ 1. Moreover, the
two residuals r and r̃ computed at the end of steps 1 and 2 of Framework 3, respectively, correspond
in the context of the DR-ADMM to the pairs (p,C∗q) and (p̃, C∗q̃), respectively (see Lemma 4.4).

The following result, which is the main one of this section, shows that the regularized ADMM
has a better pointwise iteration-complexity than the usual ADMM. Its complexity bound depends
on the quantity

d0 := inf

{
1

2βθ
‖x0 − x∗‖2X +

β

2
‖C(y0 − y∗)‖2X : (x∗, y∗) is solution of (37)

}
. (47)

Theorem 4.1. DR-ADMM with stepsize θ ∈ (0, (1 +
√
5)/2) terminates in at most

O
((

1 +

√
d0
ρ

)[
1 + log+

(√
d0
ρ

)])
(48)
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iterations with (s, y, x̃, p̃, q̃) satisfying

p̃ = Cy +Ds− c,

(
0

0

)
∈
[

∂g(s)−D∗x̃

∂f(y)− C∗(x̃+ q̃)

]
(49)

and (
βθ‖p̃‖2X +

1

β
‖q̃‖2X

)1/2

≤ ρ. (50)

Before ending this subsection, we compare the iteration-complexity bound of Theorem 4.1 with
the ones obtained in [16, 25]. A pointwise convergence rate for the standard ADMM when θ = 1
is established in [16]. More specifically, it is implicitly shown that the latter method generates a
sequence {(sk, yk, x̃k, p̃k, q̃k)} (which is the same as the one generated by a cycle of inner iterations
of the DR-ADMM with µ = 0) satisfying (49) and

β‖p̃k‖2X +
1

β
‖q̃k‖2X ≤

2d0
k + 1

∀k ≥ 1,

which, as a consequence, implies an O(d0/ρ2) pointwise iteration-complexity bound for finding a
(s, y, x̃, p̃, q̃) satisfying (49) and (50) with θ = 1. Hence, our bound (48) is better than the latter one
by an O(ρ log(ρ−1)) factor.

We now discuss the relationship of bound (48) with the ergodic iteration-complexity bound that
immediately follows from [25, Theorem 7.5]). Given ρ > 0 and ε > 0, this result implies that the
ADMM with θ = 1 obtains, by averaging the first j elements of the sequence {(sk, yk, x̃k, p̃k, q̃k)} for
some j = O(max{d0/ρ, d20/ε}), a quintuple {(sa, ya, x̃a, p̃a, q̃a)} satisfying

p̃a = Cya +Dsa − c,

(
0

0

)
∈
[

∂gε(s
a)−D∗x̃a

∂fε(y
a)− C∗(x̃a + q̃a)

]

and (
β‖p̃a‖2X +

1

β
‖q̃a‖2X

)1/2

≤ ρ.

Hence, the dependence of the above ergodic bound on ρ is O(d0/ρ), which is better than the pointwise
bound (48) by only a logarithmic factor. On the other hand, with respect to ε, bound (48) is better
than the above ergodic bound since it does not depend on ε.

Finally, we end this subsection by mentioning that other iteration-complexity bounds have been
established for the ADMM for any θ ∈ (0, (

√
5+1)/2) based on different but related stopping criteria

(see for example [12, 14]) and to which the above comments apply in a similar manner.

4.2 Proof of Theorem 4.1

In this subsection, we establish Theorem 4.1 by first showing that DR-ADMM is an instance of
Framework 3, and then translating Theorem 3.3 to the context of the DR-ADMM to obtain the
complexity bound (48).

The first result below establishes, as a consequence of some useful relations, that (49) is essentially
an invariance of the inner iterations of the DR-ADMM.
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Lemma 4.2. The k-th iterate (sk, xk, yk, x̃k) obtained during a cycle of inner iterations satisfies

0 ∈ ∂g(sk)−D∗x̃k, (51)

0 ∈ 1

θβ
(xk − xk−1) +

[
∂(g∗ ◦D∗)(x̃k) + Cyk − c+

µ

θβ
(x̃k − x0)

]
, (52)

0 ∈ βC∗C(yk − yk−1) + [∂f(yk)− C∗x̃k + µβC∗C(yk − y0)] , (53)

x̃k − xk−1 =
xk − xk−1

θ
+ βC(yk − yk−1) (54)

where µ is the constant value of the smoothing parameter during this cycle. As a consequence,
(s, y, x̃, p̃, q̃) obtained at the end of each cycle of inner iterations (see (46)) satisfies (49).

Proof. From the optimality condition for sk in (38) and definition of x̃k in (39), we have

D∗x̃k = D∗[x̂k−1 − β1(Cyk−1 +Dsk − c)] ∈ ∂g(sk) (55)

and then (51) holds. It also follows from (55) that sk ∈ ∂g∗(D∗x̃k) which in turn yields Dsk ∈
D∂g∗(D∗x̃k) ⊂ ∂(g∗ ◦ D∗)(x̃k). Therefore, the inclusion (52) follows from (43). Now, from the
optimality condition for yk in (42) and definition of uk in (41), we obtain

0 ∈ ∂f(yk)− C∗uk + β2C
∗(Cyk +Dsk − c)

= ∂f(yk)− C∗[x̃k + β2(Cŷk−1 +Dsk − c)] + β2C
∗(Cyk +Dsk − c)

which is equivalent to
0 ∈ ∂f(yk)− C∗x̃k + β2C

∗C(yk − ŷk−1). (56)

On the other hand, the definitions of β2 and ŷk−1 give

β2(yk − ŷk−1) = β(1 + µ)(yk − ŷk−1) = β(1 + µ)yk − β(yk−1 + µy0)

= β(yk − yk−1) + µβ(yk − y0).

Hence, (56) yields
0 ∈ ∂f(yk)− C∗x̃k + C∗C[β(yk − yk−1) + µβ(yk − y0)]

which proves (53).
Let us now prove the relation (54). Using the definitions of x̂k−1, x̃k and β1, we obtain

x̃k − xk−1 +
µ

θ
(x̃k − x0) =

1

θ
[(θ + µ)x̃k − (θxk−1 + µx0)] =

θ + µ

θ
(x̃k − x̂k−1)

= −(θ + µ)β1
θ

(Cyk−1 +Dsk − c) = −β(Cyk−1 +Dsk − c).

The previous identities yield

x̃k − xk−1 = −β
(
Cyk−1 +Dsk − c+

µ

θβ
(x̃k − x0)

)

which combined with (43) proves (54). Now, the equality in (49) follows from (43), (45) and (46).
The inclusion in (49) follows from (51), (53) and the definition of q̃ in (46).
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Since our approach towards proving Theorem 4.1 is via showing that DR-ADMM is a special
instance of Framework 3, we need to introduce the elements required by the setting of Section 3,
namely, the set Z, the seminorm ‖ · ‖ and the distance generating function w : Z → R. Towards this
goal, endow the space Z = X × Y with the inner product 〈·, ·〉X + 〈·, ·〉Y , and define the set Z as
Z := Z, and the seminorm ‖ · ‖ and the function w : Z → R as

‖(x, y)‖ :=
(

1

βθ
‖x‖2X + β‖Cy‖2X

)1/2

, w(x, y) :=
1

2
‖(x, y)‖2, ∀z = (x, y) ∈ Z. (57)

Clearly, the Bregman distance associated with w is given by

(dw)z(z
′) =

1

2βθ
‖x′ − x‖2X +

β

2
‖C(y′ − y)‖2X ∀z = (x, y) ∈ Z, z′ = (x′, y′) ∈ Z. (58)

The following result shows that Z, w and ‖·‖ defined above, as well as the operator T defined in (37),
fulfill the assumptions of Section 3.

Lemma 4.3. Let the set Z, function w and seminorm ‖ · ‖ be as defined above. Then, the following
statements hold:

(a) the function w is a (1, 1)-regular distance generating function with respect to (Z, ‖ · ‖);

(b) the set Z∗
µ as in (25) where z0 = (x0, y0) and T is as in (37) is nonempty for every µ > 0.

Proof. (a) This statement follows directly from Example 2.3(b) with A(x, y) = (x/(βθ), βC∗Cy) for
every (x, y) ∈ Z.

(b) The proof of this statement is given in Apendix B.

The next result gives a sufficient condition for the sequence generated by a cycle of inner iterations
of the DR-ADMM to be an implementation of Framework 2.

Lemma 4.4. Let σ ∈ [0, 1) and τ ∈ (0, 1] be given and consider the operator T and Bregman distance
dw as in (37) and (58), respectively. Let {(xk, x̃k, yk, pk, qk)} be the sequence generated during a cycle
of inner iterations of DR-ADMM with parameter D > 0 and define

zk−1 = (xk−1, yk−1), z̃k = (x̃k, yk), λk = 1, ǫk = 0 ∀k ≥ 1. (59)

Then, the following statements hold:

(a) the sequence {(zk, z̃k, λk, εk)} satisfies inclusion (27) and the left hand side rk of this inclusion
in terms of pk and qk is given by rk = (pk, C

∗qk);

(b) if there exists a sequence {ηk} such that {(pk, qk, ηk)} satisfies

[
σ − (θ − 1)2

] β‖pk‖2X
2θ

+ [σ(1 + θ)− 1]
‖qk‖2X
2βθ

+
(σ + θ − 1)

θ
〈pk, qk〉X ≥ ηk − (1− τ)ηk−1,

then the sequence {(zk, z̃k, λk, εk, ηk)} satisfies the error condition (28);

(c) condition (44) is equivalent to ‖rk‖∗ ≤ ρ/2 where rk is as in (27) and ‖ · ‖ is the seminorm
defined in (57).
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As a consequence, if the assumption of (b) is satisfied then the sequence {(zk, z̃k, λk, εk, ηk)} is an
implementation of Framework 2 with input z0 = (x0, y0) and (η0,D).

Moreover, if every cycle of inner iterations of DR-ADMM satisfies the assumption of (b), then
DR-ADMM is an instance of Framework 3.

Proof. (a) These statements follows from definitions of T and dw in (37) and (58), respectively, and
relations (45), (52) and (53).

(b) Using (45) and (54), we obtain

xk−1 − x̃k = qk + βpk, xk − x̃k = qk + (1− θ)βpk. (60)

Hence, it follows from (58) and (59) that

(dw)zk (z̃k) + λkεk =
1

2βθ
‖x̃k − xk‖2X

=
1

2βθ

[
‖qk‖2X + β2(θ − 1)2‖pk‖2X + 2(1− θ)β〈qk, pk〉X

]
.

On the other hand, using (58), (59), (60) and definition of qk in (45), we obtain

(dw)zk−1
(z̃k) = 1

2βθ‖xk−1 − x̃k‖2X + β
2 ‖C(yk−1 − yk)‖2X

= 1
2βθ‖qk + βpk‖2X + 1

2β‖qk‖2X
= (θ+1)

2βθ ‖qk‖2X + β
2θ‖pk‖2X + 1

θ 〈qk, pk〉X .

Statement (b) now follows immediately from the above two identities.
(c) First of all, note that ‖ · ‖ = 〈A(·), ·〉 where A(x, y) = (x/(βθ), βC∗Cy) for every (x, y) ∈ Z

and define δxk := xk−1 − xk and δyk := yk−1 − yk. Hence, it follows from the identity in (a), (45), the
definition of A, Proposition A.1(a) and (57) that

‖rk‖∗ = ‖(pk, C∗qk)‖∗ = ‖A(δxk , δyk)‖∗ = ‖(δxk , δyk)‖ =
(
βθ‖pk‖2X +

1

β
‖qk‖2X

)1/2

from which statement (c) follows.
To show the last statement of the lemma, first note that (37), (45), (46) and (58) imply that r̃ =

(p̃, C∗q̃). Now, a similar argument as above using (45), (46), the definition of A, Proposition A.1(a)
and (57) imply that ‖r̃‖∗ = (βθ‖p̃‖2X + 1

β‖q̃‖2X )1/2, from which the last statement of the lemma
follows.

In view of Lemma 4.4, it suffices to show that DR-ADMM satisfies the assumption of Lemma 4.4(b)
in order to show that it is an instance of Framework 3. We will prove the latter fact by considering
two cases, namely, whether the stepsize θ is in (0, 1) or in [1, (

√
5 + 1)/2). The next result consider

the case in which θ ∈ (0, 1) and Lemma 4.7 below considers the other case.

Lemma 4.5. Assume that the DR-ADMM stepsize θ ∈ (0, 1). Let {(xk, x̃k, yk, pk, qk)} be the se-
quence generated during a cycle of inner iterations of DR-ADMM with parameter D > 0 and define
ηk = 0 for every k ≥ 1. Then, the sequence {(pk, qk, ηk)} satisfies the assumption of Lemma 4.4(b)
with σ = θ + (θ − 1)2 ∈ (0, 1) and any τ ∈ (0, 1].
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Proof. Using the definition of σ, we have

[
σ − (θ − 1)2

] β‖pk‖2X
2θ

+ [σ(1 + θ)− 1]
‖qk‖2X
2βθ

+
(σ + θ − 1)

θ
〈pk, qk〉X

=
β‖pk‖2X

2
+

θ2

2β
‖qk‖2X + θ〈pk, qk〉X =

1

2β
‖βpk + θqk‖2X ≥ 0.

Hence the lemma follows due to the definition of {ηk}.

Before handling the other case in which θ ∈ [1, (
√
5 + 1)/2), we first establish the following

technical result.

Lemma 4.6. Consider the sequence {(xk, x̃k, yk, pk, qk)} generated during a cycle of inner iterations
of DR-ADMM with parameter D > 0. Then, the following statements hold:

(a) if θ ∈ [1, 2), then

‖p1‖X ‖q1‖X ≤
4θmax{β, β−1}

2− θ
d0

where d0 is as in (47);

(b) for any k ≥ 2, we have
〈pk, qk〉X ≥ (1− θ)〈pk−1, qk〉X . (61)

Proof. The proof of this lemma is given in Appendix C.

In contrast to the case in which θ ∈ (0, 1), the following result shows that the case in which
θ ∈ [1, (

√
5 + 1)/2) requires a non-trivial choice of sequence {ηk}, and hence uses the full generality

of the approach of Section 3.

Lemma 4.7. Assume that the DR-ADMM stepsize θ ∈ [1, (
√
5 + 1)/2) and consider the sequence

{(pk, qk)} generated during a cycle of inner iterations of DR-ADMM with parameter D > 0. Then,
there exist σ, τ ∈ (0, 1) such that the sequence {(pk, qk, ηk)} where {ηk} is defined as

η0 =
4(σ + θ − 1)max{β, β−1}

(2− θ)(1− τ)
d0, ηk =

[σ − (θ − 1)2]β

2θ
‖pk‖2X ∀k ≥ 1

satisfies the assumption of Lemma 4.4(b).

Proof. Using the Cauchy-Schwarz inequality, definitions of η0 and η1 and Lemma 4.6(a), it is easy to
see that the inequality in Lemma 4.4(b) with k = 1 holds for any θ ∈ [1, (

√
5+1)/2) and σ, τ ∈ (0, 1).

Note that for every θ ∈ [1, (
√
5 + 1)/2), there exists σ, τ ∈ (0, 1) such that the matrix

M(θ, σ, τ) =

[
(1− τ)[σ − (θ − 1)2] (σ + θ − 1)(1 − θ)

(σ + θ − 1)(1 − θ) σ(1 + θ)− 1

]

is positive definite. Indeed, M(θ, 1, 0) can be easily seen to be positive definite and hence for σ close
to 1 and τ close to 0 the matrix M(θ, σ, τ) is still positive definite. Now, Lemma 4.6(b) and definition
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of {ηk} imply that a sufficient condition for the inequality in Lemma 4.4(b) with k ≥ 2 to hold is
that

(1− τ)[σ − (θ − 1)2]
β‖pk−1‖2X

2θ
+ (σ(1 + θ)− 1)

‖qk‖2X
2βθ

+
(σ + θ − 1)(1 − θ)

θ
〈pk−1, qk〉X ≥ 0,

which trivially holds in view of the Cauchy-Schwarz inequality and the fact that the matrix M(θ, σ, τ)
is positive definite.

Now we are ready to proof Theorem 4.1.

Proof of Theorem 4.1: First note that (49) follows from the last statement in Lemma 4.2. Now,
it follows by combining Lemmas 4.4, 4.5 and 4.7 that DR-ADMM with θ ∈ (0, (1 +

√
5)/2) is an

instance of Framework 3 applied to problem (37) in which {(zk, z̃k, λk, εk)} is as in (59) and {ηk}
is as defined in Lemma 4.5 if θ ∈ (0, 1) or as in Lemma 4.7 if θ ∈ [1, (1 +

√
5)/2). This conclusion

together with Lemma 4.3(a) then imply that Theorem 3.3, as well as the observation following it,
holds with λ = α = L = 1. The remaining conclusion of the theorem now follows from the latter
observation, definition of η0 and Lemma 4.4(c).

Appendix

A Some basic technical results

The following result gives some properties of the dual seminorm whose simple proof is omitted.

Proposition A.1. Let A : Z → Z be a self-adjoint positive semidefinite linear operator and consider
the seminorm ‖ · ‖ in Z given by ‖z‖ = 〈Az, z〉1/2 for every z ∈ Z. Then, the following statements
hold:

(a) Dom‖ · ‖∗ = Im (A) and ‖Az‖∗ = ‖z‖ for every z ∈ Z;

(b) if A is invertible then ‖z‖∗ = 〈A−1z, z〉1/2 for every z ∈ Z.

Next proposition discuss the existence of solutions of a problem related to (37).

Proposition A.2. Let a linear operator E : Z → Z̃, a vector e ∈ ImE and a proper closed convex
function h : Z → R ∪ {+∞} be such that

inf
z∈Z
{h(z) : Ez = e} <∞. (62)

Then, the following statements hold:

(a) if ri (domh∗) ∩ Im (E∗) 6= ∅, then (62) has an optimal solution z∗;

(b) the optimal solution set of (62) is nonempty and bounded if and only if 0 ∈ int(domh∗ +
Im (E∗));

(c) if the assumption of (a) holds and (62) has a Slater point, i.e., a point z̄ ∈ ri (domh) such that
Ez̄ = e, then there exists a Lagrange pair (z, x) = (z∗, x∗) satisfying

0 ∈ ∂h(z) − E∗x, Ez = e.
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As a consequence, if the set of optimal solutions of (62) is nonempty and bounded, then ri (domh∗)∩
Im (E∗) 6= ∅.

Proof. Since h is a proper closed convex function, we have (h∗)∗ = h. Hence, the proof of (a) and
(b) follows from Lemma 2.2.2 in Chap. X of [19] with A0 = E∗, g = h∗ and s = e, and the discussion
following Theorem 2.2.3. The proof of (c) follows easily from [27, Corollary 28.2.2].

B Proof of Lemma 4.3(b)

Let a scalar µ > 0 and note that (x, y) ∈ Z∗
µ if and only if (x, y) satisfies

0 ∈
[
∂(g∗ ◦D∗)(x) + Cy − c+

µ

θβ
(x− x0)

]
, 0 ∈ [∂f(y)− C∗x+ µβC∗C(y − y0)] . (63)

Hence, the proof of Lemma 4.3(b) will follow if we show that (63) has a solution. Towards this goal,
let us consider the problem

inf
(s,y,u,v)

{
g(s) + f(y) +

βθ

2µ
‖u+ [µ/(βθ)]x0‖2X +

βµ

2
‖v‖2X : Ds+ Cy + u = c, Cy − v = Cy0

}
. (64)

It is easy to see that (s, y, c − Ds − Cy,C(y − y0)) is a Slater point of the above problem for any
(s, y) ∈ ri (dom f)× ri (dom g) 6= ∅. Hence, since condition B2 easily implies that the assumption of
Proposition A.2(a) holds, it follows from Proposition A.2(c) that there exist (s̄, ȳ, ū, v̄) ∈ S×Y×X×X
and (x̄1, x̄2) ∈ X × X such that

0 ∈ [∂g(s̄)−D∗x̄1] , 0 ∈ [∂f(ȳ)− C∗x̄1 − C∗x̄2] , 0 =
βθ

µ
(ū+[µ/(βθ)]x0)−x̄1, 0 = βµv̄+x̄2, (65)

Ds̄+ Cȳ + ū = c, Cȳ − v̄ = Cy0. (66)

Hence, from the first inclusion in (65), we have s̄ ∈ ∂g∗(D∗x̄1) which yields Ds̄ ∈ ∂(g∗ ◦ D∗)(x̄1).
The latter inclusion together with the first equality in (65) and the first one in (66) imply that the
pair (x̄1, ȳ) satisfies the first inclusion in (63). Similarly, combining the second inclusion and the last
equality in (65) with the last equality in (66), we conclude that the pair (x̄1, ȳ) satisfies the second
inclusion in (63). We have then shown that (x̄1, ȳ) solves (63).

�

C Proof of Lemma 4.6

(a) Let a point z∗µ := (x∗µ, y
∗
µ) ∈ Z∗

µ (see Lemma 4.3(b)) and consider (z0, z1, z̃1, λ1, ǫ1) as in (59). It
follows from the definitions of ∆x

1 and ∆y
1, 2ab ≤ a2 + b2 for all a, b ≥ 0 and θ ≥ 1 that

‖p1‖X ‖q1‖X ≤ 1
2θ

(
‖x1 − x0‖2X + ‖C(y1 − y0)‖2X

)

≤ 1
θ

(
‖x1 − x∗µ‖2X + ‖C(y1 − y∗µ)‖2X + ‖x0 − x∗µ‖2X + ‖C(y0 − y∗µ)‖2X

)

≤ 2max{β, β−1}
(
(dw)z1(z

∗
µ) + (dw)z0(z

∗
µ)
)

(67)

where the last inequality is due to definitions of z0, z1 and dw (see (58)).

24



On the other hand, Lemma 4.4(a) implies that inclusion (27) is satisfied for (z0, z1, z̃1, λ1, ǫ1) and
hence it follows from Lemma 2.5(a) with z = z∗µ, λ1 = 1 and the fact that 〈r1, z̃1 − z∗µ〉 ≥ 0 (see (17)
with k = 1, z∗ = z∗µ and ε1 = 0) that

(dw)z1(z
∗
µ) ≤ (dw)z0(z

∗
µ) + (dw)z1(z̃1)− (dw)z0(z̃1). (68)

Using the definitions in (58), (59) and (60), we obtain

(dw)z1(z̃1)− (dw)z0(z̃1) =
1

2βθ
‖q1 + (1− θ)βp1‖2X −

1

2βθ
‖q1 + βp1‖2X −

1

2β
‖q1‖2X

=
(θ − 1)β

2
‖p1‖2X −

1

2

(√
βp1 −

q1√
β

)2

≤ (θ − 1)β

2
‖p1‖2X

≤ (θ − 1)

θ

(
‖x1 − x∗µ‖2X

βθ
+
‖x0 − x∗µ‖2X

βθ

)

≤ 2(θ − 1)

θ

[
(dw)z1(z

∗
µ) + (dw)z0(z

∗
µ)
]

where the the second inequality is due to the definition of p1 and the fact that 2ab ≤ a2 + b2 for all
a, b ≥ 0, and the last inequality is due to (58) and definitions of z0, z1 and z∗µ. Hence, combining the
last estimative with (68), we obtain

(dw)z1(z
∗
µ) ≤

θ

2− θ

(
1 +

2(θ − 1)

θ

)
(dw)z0(z

∗
µ) =

3θ − 2

2− θ
(dw)z0(z

∗
µ).

Therefore, statement (a) follows from (67), the last inequality and Lemma 3.1.
(b) From the inclusion (53) we see that

C∗(x̃j − βC(yj − yj−1)) ∈ ∂fµ,β(yj) ∀j ≥ 1

where fµ,β(y) := f(y) + (βµ/2)‖C(y − y0)‖2X for every y ∈ Y. Hence, using relation (54), we have

1

θ
C∗(xj − (1− θ)xj−1) ∈ ∂fµ,β(yj) ∀j ≥ 1. (69)

For every k ≥ 2, using the previous inclusion for j = k−1 and j = k, it follows from the monotonicity
of the subdifferential of fµ,β and the definitions of pk and qk that

0 ≤ 1

θ
〈C∗(xk − (1− θ)xk−1)− C∗(xk−1 − (1− θ)xk−2), yk − yk−1〉Y

= 〈βC∗(pk − (1− θ)pk−1), yk−1 − yk〉Y = 〈pk − (1− θ)pk−1, qk〉Y ,

from which (b) follows, and then the proof is concluded.

�
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