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We address the propagation of light beams in longitudinally modulated  -symmetric lattices, built as arrays of cou-
plers with periodically varying separation between their channels, and show a number of possibilities for efficient 
diffraction control available in such non-conservative structures. The dynamics of light in such lattices crucially de-
pends on the ratio of the switching length for the straight segments of each coupler and the longitudinal lattice period. 
Depending on the longitudinal period, one can achieve either beam rectification, when the input light propagates at a 
fixed angle across the structure without diffractive broadening, or dynamic localization, when the initial intensity dis-
tribution is periodically restored after each longitudinal period. Importantly, the transition between these two different 
propagation regimes can be achieved by tuning only gain and losses acting in the system, provided that the  -
symmetry remains unbroken. The impact of Kerr nonlinearity is also discussed. 

 

PACS numbers: 42.65.Jx; 42.65.Tg, 42.81.Qb 

Periodic potentials can cause unidirectional motion of wave-
packets along a direction that may be independent of the initial 
conditions. Two mechanisms leading to such a phenomenon 
have been discussed. One mechanism relies on a longitudinal-
ly (or temporal) modulated gradient imposed on transversally 
periodic lattices, which causes either dynamic localization or 
directional motion of the wavepacket, [1] depending on the 
modulation frequency. In Optics, such systems have been 
implemented as curved waveguide arrays [2-5], since the cur-
vature of the array is equivalent to the presence of a gradient. 
Dynamically-varying lattices can be induced by interfering 
plane-waves [6,7]. Recently, directional beam motion, or light 
rectification, was observed in waveguide arrays with an out-of-
phase varying curvature [8,9]. Such effect, termed rectification 
because the beam propagation direction becomes independent 
of the initial angle, relies on the dynamical band suppression 
due to the modulation of the effective coupling constants. A 
second mechanism, termed ratchet, that leads to directional 
motion is based on the concept of broken space-time sym-
metry [10] caused by specific lattice modulations. Ratchet 
schemes have been explored in the context of cavity solitons in 
coupled optical resonators [11]. Nonlinear dynamical settings 
offer especially rich opportunities for generating transverse 
motion [12]. 

New opportunities for diffraction control in lattices ap-
peared with the advent of non-conservative guiding in struc-
tures obeying parity-time symmetry, which afford a stable 
balance between gain and losses [13]. Such systems support 
stationary guided modes that do not grow or decay upon 
propagation if the magnitude of the gain-losses does not ex-
ceed a critical level at which the  -symmetry is said to be 
broken [14], a phenomenon that was demonstrated experi-
mentally in [15,16]. 

In this context, the spatial modulation of  -symmetric 
structures along the direction of light propagation opens an 
important new range of possibilities. In particular, besides 
dynamic localization that is possible in modulated lattices with 
unbroken  -symmetry [17], longitudinal variations of the 
system parameters may induce transitions between states with 
broken and unbroken symmetry [18]. Other examples of the 
phenomena afforded by the spatial modulations that have 
been uncovered are Kapitza stabilization in imaginary oscillat-
ing potential [19], resonant coupling of modes in multimode 
 -symmetric waveguides [20], realization of the pseudo-
 -symmetry [21], stochastic parametric amplification in 
randomly modulated couplers [22], formation of self-sustained 
nonlinear modes [23] and their interaction with exceptional 
points (defects) [24], to name a few. However, the possibility of 
controllable, unbounded transverse motion of wavepackets in a spatial 
 -symmetric lattice has not been addressed so far. The study 
of such a phenomenon is the goal of this paper. 

We uncover rich opportunities for simultaneous control of 
both, diffraction broadening and transverse displacement of wave-
packets offered by dynamic  -symmetric lattices built as 
arrays of  -symmetric couplers with periodically varying 
separation between channels (Fig. 1). Depending on the ratio 
between the longitudinal period of the structure and the cou-
pling length for straight segments of the individual couplers, 
one observes either light rectification, i.e. displacement of the 
beam in the transverse plane without broadening, or dynamic 
localization, when the input distribution is restored after each 
longitudinal period. Most importantly, we find that the transi-
tion between these two regimes can be achieved by varying 
only the depth of the dissipative part of the lattice, a quantity 
that allows flexible experimental control. We show the reso-
nant character of the effect and illustrate higher-order localiza-
tion or rectification resonances [25]. 
 



 

Figure 1. (Color online) (a) Real and imaginary parts of the propaga-
tion constants of modes supported by a two-channel straight  -
symmetric structure versus ip . (b) Coupling constant defined as 

s a
r r( )/2b b  versus ip . The red dots show C  calculated from direct 

propagation. (c) Real part of the refractive index in a dynamic lattice 
with 24.1t  . The blue arrows indicate drift direction in one of the 
exact resonances. In all cases 0 . All quantities are plotted in di-
mensionless units. 

We consider propagation of light in a  -symmetric lattice, 
whose refractive index as well as gain-losses profile are modu-
lated both in the transverse,  , and in the longitudinal,  , 
directions. The evolution of the dimensionless field amplitude 
q  is governed by the nonlinear Schrödinger equation [2]: 
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Here the transverse and longitudinal coordinates ,   are 
scaled to the characteristic transverse scale 0x  and diffraction 
length 2

dif 0 0L k x , respectively, with 0 2 /k n   being the 
wave number and n  being the unperturbed background 
refractive index. The complex refractive index distribution 
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involves two shifted sublattices with opposite directions of 
waveguide bending in  , where 0 r ii     is the refrac-
tive index profile of a single waveguide in the array, whose 
real and imaginary parts are given by 2 2

r r exp( / )p a   
and 2 2

i i exp( / )p a   , respectively. Here the parameters 
2 2

r,i r,i 0 0p n k x  define the modulation depths of the real and 
imaginary parts of the refractive index; 3d  is the transverse 
period of the structure; and a  is the waveguide width. Notice 
that within each waveguide the refractive index is symmetric, 
while gain-losses are antisymmetric, hence each sublattice and 
the entire structure are  -symmetric: 0 0( , ) ( , )      . 
The positions of guides vary with distance   in accordance 

with the periodic differentiable function c c( ) ( 4 )l     , 
where 4t l  is the longitudinal period. Such structure in-
volves two straight segments with c /2d   for [0, ]l  and 

c d   for [2 , 3 ]l l  that are connected by two smooth transi-
tions 2

c ( /2)[1 cos ( /2 )]d l    for [ ,2 ]l l  and 
2

c ( /2)[1 sin ( /2 )]d l    for [3 , 4 ]l l . This choice of lat-
tice shape is not unique, of course, and different segments may 
have different lengths. A representative distribution of the real 
part of the refractive index is depicted in Fig. 1(c). Such a struc-
ture can be viewed as an array of couplers with a periodically 
varying separation between channels between d  and 2d . We 
set the values of the parameters to minimize the radiative loss-
es caused by the channel bending. Equation (1) accounts also 
for focusing ( 1)  or defocusing ( 1)  Kerr nonlinear-
ity. 

The gain/loss landscapes for modulated  -symmetric lat-
tices can be realized using inhomogeneous doping of a host 
material with active centers (active ions) and a proper illumi-
nation of the sample, which can also be made spatially inho-
mogeneous. Such doping is a well-developed technology in 
photorefractive crystals, where optical induction is routinely 
used to create dynamical refractive index landscapes [26]. 
Electric pumping using properly shaped surface electrodes 
also makes it possible to realize inhomogeneous gain. The 
strength of the imaginary part of the lattice can be tuned by the 
intensity of the pump beam, as shown in [16], thereby allowing 
full control of the effective coupling in structures with a fixed 
geometry, as shown below. Modern fabrication technologies 
also allow to achieve different level of losses in complex guid-
ing structures: one example of such technique not relying on 
doping was introduced recently in laser-written waveguide 
arrays [27]. The possibility to tune effective coupling by vary-
ing gain/loss level is a clear advantage in comparison with 
conservative settings, where realization of new propagation 
regimes requires manufacturing a new lattice. This makes it 
possible to demonstrate the transition from rectification to 
dynamic localization without changing the geometry of the struc-
ture. Furthermore the structure depicted in Fig. 1(c) allows 
observation of higher-order rectification and dynamic localiza-
tion resonances, which have never been demonstrated so far. 

Light propagation in a  -symmetric dynamic lattice 
strongly depends on the ratio between the coupling length 
defined for straight, closely-spaced lattice segments and the 
length l  of these segments (or total period 4t l ). This can be 
seen from the tight-binding approximation of Eq. (1) that holds 
in the linear (i.e. low-power) limit with 0 . Since the array 
is formed by two sublattices with identical waveguides, the 
field distribution can be written as 

(1) (2)
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 in terms of the eigenmodes ( , )    of the individual wave-
guides 0( , )   forming the sublattices [i.e.,   satisfies 

2 2
0(1/2) /d d b     , where b  is the propagation con-

stant]. We assume that the  -symmetry is unbroken (b  is 
real), substitute the above expression for the field into Eq. (1) 
and project (1) over the modes c( 3 )kd     , representing 
modes of the 0 ( , )   potential. Following the standard pro-
cedure, where only nearest-neighbor coupling is taken into 
account, one obtains the discrete equations for mode weights 

(1) (2),k ka a  in each sublattice: 
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with  -dependent coefficients 
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where 1 c  , 2 c 3 /2d   . The quantity Q  in (4) is real 
because of the  -symmetry of the modes ( ) ( )      
and for the same reason, the contribution to 1,2C  from the term 

c c /d d     is real too. The effective gain and losses 
stemming from the imaginary part of ( )   only weakly affect 
the local dynamics and disappear after averaging over the 
propagation distance  , since ( ) ( 2 )l     . Moreover, 
the term c /d d   contributes to the coupling constants 1,2C  
only on the lattice segments with nonzero curvature, where 
waveguides are mostly well separated and 1,2C  is relatively 
small (hence power transfer is negligible). Thus, intense power 
transfer between guides occurs mostly on straight lattice seg-
ments, where c  is constant and only one of the coefficients 

1,2C  has a non-negligible value 1,2maxC C  (due to consid-
erable difference of waveguide separation in a given coupler 
and distance to waveguides in the neighboring coupler), 
which is given by the expression 

1
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Figure 2. (Color online) Evolution dynamics in a linear  -
symmetric dynamical lattice, for different longitudinal periods at 

i 10p  , 0 . In (a)-(e) and (g)-(i) the left channel of central pair is 
excited at 0 , while in (f) the right channel is excited. The propaga-

tion distance in (a)-(f) is 100 , while in (g)-(i) it is equal to 4t . The 
intensity distributions are shown within the [ 30, 30]    window. 

This coupling constant strongly depends on the depth of the 
imaginary part of the refractive index. Fig. 1(b) shows the 

i( )C p  dependence calculated for the simplest possible struc-
ture, namely for two straight waveguides separated by the 
distance d . A pair of waveguides supports symmetric and 
antisymmetric linear guided modes when i 0p  . The evolu-
tion of their complex propagation constants a,sa,s a,s

r ib b ib   
versus ip  is shown in Fig. 1(a). Further we set r 5p  , 2d  , 

1/2a . For such parameters,  -symmetry breaking oc-
curs at i 13.5p  , when the eigenvalue of the antisymmetric 
mode becomes complex (after collision with the eigenvalue of 
a new mode whose propagation constant shifts from the con-
tinuum to the discrete spectrum with increasing ip ), even 
though the symmetric mode possesses a real propagation 
constant up to i 17.6p  . Note that at i 17.6p  , the same 
scenario is encountered for the symmetric mode. The effect 
closely resembles the collision of the propagation constants of 
pairs of modes in multimode  -symmetric waveguides 
described in [20]. The mechanism that creates this effect is that 
internal currents in a non-conservative system may act to-
wards the equilibration of the field modulus distributions of 
modes, which in conservative potentials have totally different 
symmetries. The coupling constant can be defined as half of 
the difference s a

r r( )/2C b b   of the propagation constants of 
the highest symmetric and antisymmetric modes. It grows 
rapidly when i 13.5p  , but remains finite at the symmetry 
breaking point, where the tangential line to i( )C p  dependence 
becomes vertical. This dependence is confirmed by the direct 
solution of Eq. (1) indicated by red dots in Fig. 1(b). 
 

 

Figure 3. (Color online) (a) Output form-factor as a function of the 
longitudinal period of the structure at i 10p   for excitation of the left 
(black curve) and right (red curve) waveguides in the input pair at 



0 . (b) Output form-factor versus ip  at 39t  , 0  for excita-
tion of the left waveguide. In (a), (b) dashed lines indicate parameters 
corresponding to rectification or dynamic localization. (c) Output 
power concentrated if left ls  and right rs  parts of the array and in 
central waveguide pair cs  versus   at i 5p  , 34.5t  . Red dots 
correspond to dynamics from Figs. 2 and 5. All quantities are plotted 
in dimensionless units. 

Next we address the full dynamic lattice [Fig. 1(c)]. For all 
results shown below we use as input for Eq. (1) the superposi-
tion s a   of symmetric and antisymmetric modes of the 
central waveguide pair, taken with equal weights. This reduc-
es radiative losses at the initial stage of propagation and allows 
exciting either the left or the right waveguide in the central 
pair, depending on the sign in the superposition. 

As discussed above, the dynamics of propagation even in a 
linear medium at 0  strongly depends on the ratio of the 
coupling length /C  for the straight segments and on the 
length l  of those segments (period 4t l ). If l  is small, one 
observes strong diffraction [Fig. 2(a)]. If l  is selected such that 
at the straight segments the beam completely switches to the 
neighboring waveguide, then light couples to the adjacent pair, 
where the process is repeated, leading to directional transport 
(rectification) across the lattice, almost without diffraction [Fig. 
2(b)]. The transport direction depends on which waveguide is 
initially excited in the central pair and the corresponding opti-
mal periods are slightly different due to intrinsic anisotropy 
introduced by the dissipative part of the  -symmetric lattice 
[Fig. 2(f)]. While for slightly larger periods the rectification 
effect is lost [Fig. 2(c)], when l  is approximately equal to two 
coupling lengths, one observes dynamic localization upon which 
the initial intensity distribution is restored after each period t , 
although light couples to the neighboring waveguide pairs 
[Fig. 2(d)]. A further increase of the longitudinal period reveals 
the rich structure of high-order rectification or localization 
resonances [Figs. 2(g)-2(i)], each of them being connected with 
an odd or even number of switching events on straight seg-
ments. Thus, the lattice addressed here makes it possible to 
observe two qualitatively different types of propagation dy-
namics. 

Rectification can also be observed in lattices with individual 
guides of the form 2 2

0 r i( )exp( / )p ip a    although in 
such a system the  -symmetry breaking threshold is sub-
stantially lower ( i 0.16p   at r 5p  ), and variation of the 
coupling constant is not so pronounced. Therefore, the possi-
bilities to tune drift angle are reduced. 

To illustrate the resonant character of the phenomenon de-
scribed above, it is convenient to use the integral form-factor 
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er (a larger   implies better localization of the output pattern). 
We also calculated power fractions contained in a central 
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outside the central pair. The resonant character of the effect is 
clearly visible in Fig. 3(a), which shows the dependence of the 
output form-factor at 5t  on the longitudinal period of the 
structure for excitations of the left and right waveguides in the 
central pair. The first resonance peak at ret t  corresponds to 
rectification [see Fig. 2(b) for the corresponding dynamics], 
while the second one at dlt t  corresponds to dynamic locali-

zation [Fig. 2(d)]. Here we show only two resonances, but 
there are many of them and they alternate. 

It is important to stress the obvious difference in the posi-
tions of the rectification resonances for excitations of left and 
right guides in the central pair (that disappears at i 0p  ). In 
contrast, dynamic localization resonance is not sensitive to the 
position of the initial excitation. The dependencies of resonant 
periods for the first two resonances on ip  are shown in Fig. 
4(a) (in the case of rectification resonance we provide both 
resonant periods corresponding to l r  and r l  transport 
directions). All resonant periods monotonically decrease with 

ip . In contrast, the rectification angle defined as c /d d   , 
where 21

c U q d  





   is the position of the integral 
center of the pattern, rapidly grows with ip  which agrees with 
the fact that the growing imaginary lattice part results in tun-
neling enhancement [Fig. 1(b)]. The difference between l r  
and r l   angles becomes most pronounced close to the sym-
metry breaking point indicated by the dashed line. 

 

 

Figure 4. (Color online) (a) Optimal longitudinal periods of the struc-
ture corresponding to rectification re( )t  and dynamic localization 

dl( )t  versus depth of the imaginary part of the lattice. (b) Velocity of 
transverse displacement arising upon rectification versus ip . Dashed 
lines indicate symmetry breaking point for a pair of isolated straight 
waveguides. In all cases 0 . All quantities are plotted in dimen-
sionless units. 

The key difference between conservative and  -
symmetric lattices is linked with the possibility to control the 
light evolution by varying exclusively the strength of the gain-
losses parameter ip  in the  -symmetric structures. Figure 
3(b) illustrates the variation of the output form-factor at 5t  
upon increase of ip  at a fixed longitudinal period t , while 
Figs. 5(a)-5(c) show the corresponding evolution dynamics. 
One can see that increasing ip  leads to transition from rectifica-
tion (broad resonance at i 0.4p  ) to dynamic localization (nar-
row resonance at i 11.2p  ) in the structure with fixed real 
refractive index landscape. Thus, variation of the strength of 
gain-losses not only has a quantitative impact (modification of 
propagation angles), but rather qualitatively changes the char-
acter of light propagation. 

 



 

Figure 5. (Color online) (a)-(c) Modification of propagation dynamics 
in the dynamical lattice with 39t  , 0  upon increase of ip . (d)-
(f) Modification of propagation dynamics in the lattice with i 5p  , 

34.5t   upon increase of  . In all cases the propagation distance is 
4t . Dynamics is shown within [ 30, 30]    window. Selected 
values of ip  in (a)-(c) and   in (d)-(f) correspond to red dots in Fig. 3. 

Finally, the discussed phenomena can be strongly affected 
by the presence of Kerr self-focusing or self-defocusing nonlin-
earity in the lattice. This is illustrated in Fig. 3(c) where we 
show the output power fractions l c r, ,s s s  concentrated in the 
left and right half-spaces as well as in the central waveguide 
pair as functions of the nonlinearity coefficient  . The period 
t  was selected in such a way that when 0  one obtains light 
rectification for the excitation of the left guide, so that most of 
the power at 5t  is concentrated in the right half-space [see 
Fig. 5(d)]. Increasing the nonlinearity (whether focusing or 
defocusing) results in the equilibration of intensities of the 
beams propagating in the left and right directions [Fig. 5(e)]. 
The effect is similar to the equilibration of output powers con-
centrated in the arms of a straight conservative coupler that 
occurs when the input power approaches the critical value for 
switching, which in turn decreases with a decrease of the cou-
pling constant [28]. As expected on physical grounds, at suffi-
ciently high nonlinearities (i.e., when the input power exceeds 
the critical value for switching) an abrupt transition to localiza-
tion in the excited waveguide occurs [Fig. 5(f)]. 

In summary, we have addressed light rectification and dy-
namic localization phenomena in  -symmetric modulated 
optical lattices. We have shown that tuning of the light 
transport regimes occurs by adjusting only the strength of the 
gain-losses control parameter, thus without changing the lat-
tice geometry as it would be required in conservative systems. 
The variety of propagation regimes encountered in the studied 
system emphasizes the important fundamental and technolog-
ical opportunities for light diffraction control offered by non-
conservative potentials. 
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