arXiv:1601.01142v1 [cs.LG] 6 Jan 2016

Streaming Gibbs Sampling for LDA Model

Yang Gao Jianfei Chen, Jun Zhu
Electrical Engineering and Computer Science Dept. of Comp. Sci & Tech; TNList Lab,
University of California Berkeley State Key Lab of Intell. Tech & Sys.
Berkeley, CA 94710 Tsinghua University, Beijing, 100084, China
yg@ecs. ber kel ey. edu chenj f 10@mi | s. t si nghua. edu. cn

dcszj @mai | . t si nghua. edu. cn

Abstract

Streaming variational Bayes (SVB) is successful in leaghiDA models in an on-
line manner. However previous attempts toward developime Monte-Carlo
methods for LDA have little success, often by having muchseqgrerplexity than
their batch counterparts. We present a streaming Gibbslsa{GS) method,
an online extension of the collapsed Gibbs sampling (CG8j.empirical study
shows that SGS can reach similar perplexity as CGS, mucérlibtin SVB. Our
distributed version of SGS, DSGS, is much more scalable 8\48 mainly be-
cause the updates’ communication complexity is small.

1 Introduction

Topic models such as Latent Dirichlet Allocation (LDA) [1dVe gained increasing attention. LDA
provides interpretable low dimensional representatiocthioafuments, uncovering the latent topics of
the corpus. The model has been proven to be useful in mang figltth as natural language pro-
cessing, information retrieval and recommendation systgm3]. Companies such as Google [4],
Yahoo! [5], and Tencent_[6] have taken advantage of the mext&nsively. LDA has gradually
become a standard tool to analyze documents in a semarsigqutive.

With the Internet generating a huge amount of data each dagnamodating new data requires
periodic retraining using traditional batch inferenceagithms such as variational Bayes (VE) [1],
collapsed Gibbs sampling (CGS)! [7] or their variants | [&, @], Which might be a waste of both
computational and storage resources, due to the need ofipetimg and storing all historical data. It
is better to learn the modeicrementally with online (streaming) algorithms. An online algorithm
is defined as the method that learns the model in a single fake data and can analyze a test
document at any time during learning.

Stochastic variational inference (SVI) is an offline stati@alearning algorithm that has enjoyed
great experimental success on LDA|[11]. Although onlinehnds often perform worse than of-
fline ones, streaming variational Bayes (SVB)I[11] achiebessame performance as the offline
SVI, which is impressive. However, these variational mdthoeed to make unwarranted mean-
field assumptions and require model-specific derivationscohtrast, Monte Carlo methods (e.g.,
CGS) are generally applicable and asymptotically convirgiee target posterior. By exploring the
sparsity structure, CGS has been adopted in many scalgaddthins for LDA [12,[5]. However,
the attempts towards developing streaming Monte Carlo oastfor LDA have little success, often
achieving worse performance than CGS. For instance, thiepéty of OLDA [13] on NIPS dataset
is much worse than CGS; and the patrticle filter approach [@dlcconly achieve 50% performance
of CGS, in terms of the normalized mutual information on ladesorpus.

In this paper, we fill up this gap by presenting a streamingo&sampling (SGS) algorithm. SGS
naturally extends the collapsed Gibbs sampling to the enéiarning setting. We empirically verify

http://arxiv.org/abs/1601.01142v1

that, with weight decay, SGS can reach similar inferencdityuas CGS. We further present a
distributed version of SGS (DSGS) in order to deal with lasgale datasets on multiple compute
nodes. Empirical results demonstrate that the distribB@8 achieves comparable inference quality
as the non-distributed one, while with dramatic scaling-Bimce DSGS can be implemented with
sparse data structures, demanding much lower commumidagiodwidth, it is more scalable than
SVB. Note that the SGS without weight decay is the same as Olilfout “topic mixing”, where
“topic mixing” is the key component of OLDA [13]. Moreover DA attempts to solve a different
generative model, instead of the usual LDA model.

The rest of the paper is structured as follows. Section Zmteshe streaming Gibbs sampling (SGS)
algorithm for LDA and shows its relationship with ConditedrDensity Filtering (CDF)L[15]. We
also propose the Distributed SGS (DSGS) which can take aagaof sparsity in sampling to handle
very large datasets. Section 3 presents experimentaigetif SGS and DSGS to demonstrate their
inference quality and speed. Section 4 concludes with d&on on future work.

2 Streaming Gibbs Sampling for LDA

2.1 Basics of LDA

LDAJL] is a hierarchical Bayesian model that describes aegative process of topic proportions
for a document and topic assignments for every position gudeents, words in the documents are
sampled from distributions specified by topic assignments.

Let D, K,V be the number of documents, topic and unique words resp@cti{r}C is aV dimen-

sional categorical distribution over words with symmebBidchlet prior 3, G, isthe topic proportion
for document! with Dirichlet prior a. The generative process of LDA is as follows

o ~ Dir(B),Yd € {1,...,D} : 64 ~ Dir(«), za; ~ Mult(8y), wg; ~ Mult(¢.,),

where L, is the length of document, i € {1,..., L4}, zai, wq; is the assignment and word on
positioni of documentl. Dir(-), Mult(-) is the Dirichlet distribution and Multinomial distributio

Denotef = (64, ...,0p), the matrix formed by all topic proportions, likewise fér, Z, W'.

Given a set of documen¥’, inferring the exact posterior distributigii@, ®, Z|W) is intractable.
We must resort to either variational approximation or Madé&lo simulation methods. Among the
various algorithms, collapsed Gibbs sampling (CGS) [7Figanticular interest due to its simplicity
and sparsity. CGS exploits the conjugacy properties ofcbiet and Multinomial to integrate out
(6, @) from the posterior:

_ , NZ-% 4
e = HZ, W) ox (Vi + o) 0

N VB Y

where N4, Ny, are sufficient statistics (counts) for the Dirichlet-Mattiimial distribution: Ny, =
Y Wza = k), New = g2 Wwai = v,2a8 = k), Ny = 3y Nea = 3, N The
superscript-# stands for excluding the token at positibof documentd. Ny, N4, IN;, are the
matrices or vector formed by all corresponding counts. Aigdseode of CGS is depicted as Alg. 1.
The sparsity of sufficient statistic matric@é,,,, N4 leads to many fast sparsity aware algorithms
[16,117,[12]. The sparsity is also an important factor thakesaour algorithm more scalable than
SVB.

Algorithm 1 Collapsed Gibbs Sampling Algorithm 2 Streaming Gibbs Sampling

Input: dataW, iterationsV Input: iterationsV, decay facton
Initialize Z, Ny, Nk, Ngi, for t =1to oo do
for iter = 1to N do Input: dataW?
for each tokeny,; in the documentdo Initialize Z* and updateéV;, , Ni, Nt
Samplezg; ~ p(zai| Z~%, W) for iter = 1to N do
UpdateNy,, Nk, Ngk for each tokerr,; in the mini-batchdo
Output posterior mean: Samplezq; ~ p(zai| Z1E,, W)
Pro = 25, Oa = HATE UpdateN,ﬁU,Néﬁ,Ngk

SNt —
Decay: Ny, = ANy,
Output posterior mean:
t _ NtB gt _ Nyto
kv — N,erVﬁ' dk — N;+Koc

2.2 Streaming Gibbs Sampling

Given a Bayesian modelP(z|®) with prior P(®), and incoming data mini-batches
XL x2... Xt .. let X = {X! ..., X'} Bayesian streaming learning is the process of
getting a series of posterior distributioR$®| X *:*) by the recurrence relation:

PO|X') x P(O| X") P(X!©). 2)

Therefore, the posterior learnt froXi'*~! is used as the prior when learning frak¥. Note that
the amount of data in a stream might be infinite, so a streataarging algorithm can neither store
all previous data, nor update the model at tinwgth a time complexity even linear of Ideally, the
algorithm should only have constant storage and constatatagomplexity at each time step.

As depicted in AlglR2, we propose a streaming Gibbs samp#@S) algorithm for LDA. SGS is an
online extension of CGS, which fixes the top&$*—! of the previous arrived document mini-batch,
and then sampleZ? of the current mini-batch using the normal CGS update. Ehiis contrast with
CGS, which can come back and refine saffeafter it is first sampled. ActuallZ '*~! is not even
stored in CGS, we store only the sufficient statig¥ig, .

One can understand SGS using the recurrence reldfion (Hpwtiany data, the initiad_ﬁ}C have
parametersé? = B, after incorporating mini-batch’!, the parameters is updated&b = E,S +
N [k], which is used as the prior of consequent mini-batches, N, [k] is the k-th row of
matrix N} . In general, SGS updates the prior using the recurrencioreld, = 5.~ + N} [k],
Whereﬁ}tC is the prior forggk at timet.

The decay facton serves to forget the history. When plugging in the decayofathe update
equation becomaé}tc = X ﬂ}i_l + NE_[k]). X can then be understood as weakening the posterior
caused by the previous data. This decay factor would imptew@erformance of SGS, especially
when the topic-word distribution is evolving along the time

SGS only requires constant memory: it only stores the ctimeini-batch W, Z¢, but not
Wwlt—1 zlit=1 yitloo Zit+lico The total time complexity is the same as CGS, which is
O(K N|W), where|W | is number of tokens in mini-batchto ¢. In practice, we use a smaller
number of iterations than that of CGS, because SGS iterasrsaosmaller number of documents
(mini-batch) and thus it converges faster.

2.3 Relation to Conditional Density Filtering

In this section, we consider a special case of SGS, whereeiteydactor) is set to 1.0. We relate
this special case to Conditional Density Filtering (CDHJ][&and show that SGS can be seen as an
improved version of CDF framework when applied to the LDA rabd

2.3.1 Conditional Density Filtering

CDF is an algorithm that can sample from a sequence of grigdexadlving distributions. Given
a probabilistic modeP(D?*t|®), where® = (64,--- ,0y) is ak-dimensional parameter vector
and D' is the data until now, we define the Surrogate Conditionafi@ent Statistics (SCSS) as
follows:

Definition 1 [SCSS] Assume(6,|6—;, D;) can be written asp(6;]0_;1,h(Ds,6—,2)), where
6_; = ©\0;, 6_;, andbd_; » are a partition ofd_; and i is some known function. ﬁiﬂ is

a consistent estimator ¢f_; » at time t, therC* = g(C*~1, h(Dx, éij_g)) is defined as the SCSS of
6; attimet , for some known functiop We usen(0;]6_,.1,C*) to approximaten(d;|6_;, D**).

SCSS is an extension of Sufficient Statistics (SS), in theesé¢imat both of them summarize the
historical observations sampled from a class of distrdngi SS is accurate and summarizes a
whole distribution, but SCSS is approximate and only sunmearconditional distributions.

If the parameter set of a probabilistic model can be panitinto two setd; andl,, where each
parameter’s SCSS only depends on the parameters in thesetth¢ihen we can use the CDF algo-
rithm (3) to infer the posterior of the parameters.

Algorithm 3 Conditional Density Filtering Algorithm 5 CDF-LDA
for ¢ =1to oo do Initialize: ® = Uniform(0,1), N2 =0
for s € {1,2} do for t = 1to oo do
for j € I, do) Input: a single document
Cl, = 9(Cj " (D, ©y)) Initialize 7,
Sampled; ~ (6,65, Ct,) SCSSofz: &' = @

for each tokeri in doct do
Samplezy; ~ p(zu:]7, ", @)
SCSS of®: N}, = Ni'+ 3, I(z =

Algorithm 4 Distributed SGS (DSGS)

Input: iterationsV, decay facton kAwy =)
Initialize Ny, = 0 for k =1to K do
for each mini-batci* at some workedo Sampleg, ~ Dir(NL, + B)

Copy globalNy, to local N /o
AN]i%Cal = CGS(CY’ ﬁ + N]lg(;)Clll’ Wt)
Update glObaNkv = /\(Nkv + ANIle)cal)

Under a semi-collapsed representation of LDA, whieres collapsed, we can partition the parame-
ters into two setsl; = {¢x, }; I2 = {z4:}. The conditional distributions are:

K
p(@|Z,W) = [[Dir(@x|Nilk] +8), plzai = k|2, %, W) o (N + @) bra,
k=1

By definition (1), we can verify that the SCSS ®fand z; at timet are N, and ® respectively.
Thus we have the CDF solution of LDA as shown in Algoritih (5).

2.3.2 Relationship between SGS and CDF-LDA

Our SGS method can be viewed as an improved version of CDF-h#e following aspects:

e In CDF-LDA, SCSS®! is directly sampled from a Dirichlet distribution, which neces-
sarily introduces extra source of randomness. Replacegampling with the expectation
dst o N,:;]Jrﬁ

kv =™ Ni-Tyvp
representation of LDA. It's more statistical efficient doetie Rao-Blackwell Theorem.

e The CDF-LDA's sampling update of;; does not include other tokens in the current doc-
umentt, which could be improved by taking the current document atoount. This is
especially useful for the beginning iterations, becausmibles the topics’ preference of
doct to be propagated immediately.

gives better performance in practice. This correspondéuthyecollapsed

e Itis hard to say how a single document can be decomposedapiostwithout looking at
the other documents, but this is the case that occurrs ateieting of CDF-LDA. This
would result in inaccurate,; assignments and therefore polluting,,,, and finally result-
ing in low convergence rate on the whole. Our method avoigspitoblem by processing
a mini-batch of documents at a time and allows for multipdeations over the mini-batch.
This would enable topic-assignments to be propagatedyocal

To sum up, SGS without weight decay can be seen as an improvewer CDF-LDA not only
by adapting a fully collapsed representation, but also gbkng a timely and repeatedly cross-
document information flow.

2.4 Distributed SGS

Many distributed CGS samplers exist for LDA, including digtand-conquer _[18], parameter
server|[5/ 19] and model parallel [15] approaches. Althosigime of them do not have theoretical
guarantees, they all perform pretty well in practice. Here,adopt the parameter server approach
and present a distributed SGS sampler.

Same as CGS, the global parameter in SGS is the topic word pitrix N,. SGS can be viewed
as a sequence of calls to the CGS procedure

AN, = CGS(a, B+ N Y W,

where thekth row of 5 + N,ﬁ;l is the prior of&k. Then the topic word count matrix can be updated
by Nf, = A(Ni, '+ ANY,).

In the parameter server architecture, we stdfg, in a central server. Each worker fetches the
most recent parameté¥y,,, runsCGS(a, 8 + N,ﬁ;l, W) to get the updateA N}, and pushes
back the update to the server. Upon receiving an updategtiversupdates its parameters. In our
implementation, the workers run in a fully (hogwild) asynmmous fashion. Although workers may
have slightly stale parameters compared to the serialagraffecting the convergence, this hogwild
approach is shown to work well in_[18, 5] as well as our experits, based on the fact thAf,
changes slowly. Better schemes such as stale synchron@liepl20] might be used, but it is just
a matter of choosing parameter server implementations efigis-code of is given as Algl 4.

In experiments, we can see that this empirical parallel é&ork can almost linearly scale up SGS
with neglectable precision loss. Due to the sparsene®é.of Distributed SGS (DSGS) has much
less communication overhead between the master and wohlearse more scalable than SVB.

3 Experiments

We evaluate the inference quality and computational effiyjeof SGS. We also assess how the
parameters such as mini-batch size, decay factor and theenohiterations affect the performance.
We compare with the online variational Bayes approach SM3, fizhich has proven to have high
inference quality that is similar to offline stochastic noath like SVI [8].

3.1 Implementation Details

As Canini et al.|[14] mentioned, initializations might havig impacts on the solution qualities of
the inference algorithms, and hence, using randomizedliadtion for Z is often not good. Thus,
we use a kind of “progressive online” initialization for SGSGS and SVB. Specifically, taking
SGS as an example, at the first iteration for each mini-bédcleach document we sampig from

the posterior distribution up to currentThen we update the posterior distribution using the carren
document and proceed to the next one. Such a “sampling fratepor” initialization technique
ensures that our initialization is reasonably good. We usindar initialization method for SVB
and CGS.

All the core implementations (sampling and calculating gatenal approximation) are in C++.
We also use Python and MATLAB wrappers for computationallgxpensive operations, such as
measuring time. Our implementation of SVB has been madevdkasias possible with SGS for fair

speed comparison. The speed of our SVB implementation idasito the implementation in [11].
The experiments are done on a 3 node cluster, with each nodigoegl with 12 cores of Intel Xeon
E5645@2.4GHz, 24GB memory and 1Gbps ethernet.

In the distributed experiments, daf#* is pre-partitioned and stored separately on each nodey but i
practice it can be stored in a distributed file system such2i83] or a publish-subscribe pattern can
be used for handling streaming data. For the sake of simylige implement our own parameter
server using pyRpc, a simple remote procedure call (RPC)uteatiat uses ZeroMQ. We use a
pipeline on worker nodes to hide the communication overheR@arameters on master server is
stored usingat omi ¢, and there are model replicas on master server to ensureak@jlability
while performing updates. For production usage, existigh performance parameter servers, such
as [19] might be used to achieve better performance andbslitgla Again, system is orthogonal
with the algorithm in our case and is not the main focus in plaiger.

3.2 Setups

In the following experiments, hyper-parametersand 5 are all set to0.1 and 0.03, number of
topics K is set to50. Different settings yield same conclusions. Thus we sticthts setting for
simplicity. Multiple random starts of SGS and SVB don't riksn significant difference. Without
special remarks, for each mini-batch, both SGS and SVB rarséfimpler until convergence. To
be specific, SGS stops the iteration when the training peitplen the current mini-batch stops
improving for 10 consecutive iterations, or when it reachesaximum of 400 iterations. SVB stops

. . . ﬂold_ﬁnew =
the inner iteration wheH?%=%""lli 195 or when it reaches a maximum of 100 iterations, and

. . ¢new7¢old|| _3
stops the outer iteration Him, L <1077,

The predictive performance of LDA can be measured by theahility it assigns to the held-out
documents. This metric is formalized by perplexity. Firg partition the data-set and use 80%
for training and 20% for testing. Le#t denote the model trained on the training data. Given a
held-out documenti,;, we can infeﬁd from the first half of the tokens id, and then calculate the
exponentiated negative average of the log probabilitynfadiy, we have:

B logp<wdi|M>}

|

per(Wq|M) = exp {

Wherelogp(wdi|./\/l) = 10g Zk ¢kvdi 04
... _Table 1: Data Statistics, whefé andM stand for
To compare the performance of the algorlthn}ﬁousand and million respectively

in various settings, we test them on three .
datasetB. The small NIPS dataset has the arti NIPS 4]#-&73%05 Z\'/Il'oken 1?; ab-Size
cles from 1988 to 2000 published by Neural In- NYT 300K 100M 100K
formation Processing Systems (NIPS) Confer- ubMed| 8.2M 730M 141K
ences. A larger dataset is the news from Ne\.l\.F -

York Times (NYT) and the largest one is the abstracts of tHdipations on PubMed [21]. Tablé 1

shows the detailed information of each dataset.

3.3 Results for various mini-batch sizes

We run SGS and SVB on NIPS and NYT datasets, varying miniFbsittes. To simplify our com-
parison, we set the decay factor for SGSte 1. Fig.[d(a) and Fig.]1(b) show that SGS consistently
performs better than SVB, especially in the cases of biggersét and smaller mini-batch sizes.

The difference in the performance gap between SGS and SVBYdnadd NIPS datasets could be
understood as different levels of redundancy. In ordenledfiectively in a streaming setting, it is
required to have a redundant dataset. There are only 1740rdwts in the NIPS corpus, which
is far from being redundant and thus different streamingritigms performs alike on this dataset.
From the trend of the dataset size, we can expect that SGSlyweulorm even better than SVB on
larger datasets. Another interesting phenomenon is th8tiSvhore sensitive to mini-batch sizes

Al the three datasets can be downloaded from UCI Machine rriieg Repository:
https://archive.ics. uci.edu/ ni/datasets/ Bag+of +\Wr ds

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

2500 9000

1 —F7
- —-—- CGS
2000 7000
6000
21500 > n
= < 5000
K] K J o] 0
s S 4000
& 1000 - &
3000
500 - 2000
1000
0 0
50 100 200 400 800 1600 50 100 200 400 800 1.6k3.2k6.4k 13k 27k 51k102k
Batch Sizes Batch Sizes

(a) Perplexities of SVB and SGS on NIPS. (b) Perplexities of SVB and SGS on NYT.
Figure 1: The nernlexities of SVB, SGS and CGS on the smalB\i) and large NYT (b) datasets.

2500
batch=50
batch=100
batch=200

batch=400

6500

SGS07
—-—-5GS10
6500 svB

6000

ity

5500

Perplexity
Perplex

@

8

8

£

4500,

2000 l
4000 4000
05 06 07 08 0.9 1 05 06 07 08 0.9 1 0 20 40 60 80 100
Decay Factor Decay Factor batch sequence number

(a) Effect of decay factors (NIP@) Effect of decay factors (NYT). (c) Learning process.

Figure 2: (a,b) The change of SGS's perplexity w.r.t the giéaator A on NIPS and NYT datasets;
and (c) The trend of changing perplexities as new mini-tegatrrive, mini-batch size = 3200.

than SGS. The inherent ability of SGS to perform much beltentSVB on smaller mini-batches
have important advantages in practice.

Note that SGS is equivalent to CGS when the mini-batch sizaledo the whole training set size.
The green horizontal dashed lines in Hg. [[(@) [1(b) mark #plpxity of CGS. We can see that
on the large NYT dataset, SGS has a huge improvement over Shé wompared to the best-
achievable perplexity.

3.4 Results for different decay factor

We also investigate how the decay faciaffects the performance of SGS on different datasets. The
results are similar as above, a bigger dataset has moreusbirends. As shown in Fid.s 2[a) and
[2(B), when the mini-batch is too small, the decay factor hasgative effect. It is probably because

a small mini-batch can only learn a limited amount of knowgleth a single round and it is thus not
preferable to forget the knowledge. When the mini-batc gizts bigger, the decay factor improves
the performance, and the optimal value fagets smaller. This can be explained in a similar manner
as above, where bigger mini-batches will learn more and #x¢ mini-batch would have greater
discrepancy with the current one.

Let us examine a specific setting where the batch size of NXdseéais set t3200. SVB yields a
perplexity6511, while SGS without decay can rea&P40. After applying decay factor df.7, SGS
yields a perplexity ofi640, which is pretty close to the batch perplexity4%00. We can conclude
that, if the decay factor is set properly, SGS is much belten ISVB and it can almost reach the
same precision as its batch counterpart.

3.5 Learning Process

However, the mean perplexity of each mini-batch is not adekcription of the learning process.
We should also take the trend of the inference quality as navirlmatches arrive into account. In

Fig.[2(c), we partition each mini-batch into training anstieg tests, and plot the testing perplexity
of each mini-batch of SVB and SGS. We can clearly see thatéhf@pnance of the decayed SGS
is strictly better than the non-decayed version, and therlane outperforms SVB. In other words,
SGS can consistently learn a better model every day. Alketimedels have perplexity bursts at a
few initial mini-batches because the models over-fits tre faw mini-batches.

3.6 Computational Efficiency

2450

x10*

©

SGS

2400 | SvB I SGS
j@ | |—svB

—==—=CGS

2250 WWMMWMWWW

2200
0

N
w
a
o
<)

Perplexity
N
w
o
o

Time (seconds)
IN

N

o

2 4 6 8 200 400 1600 6400 25.6k 102k 299k
Wallclock time (second) Batch Sizes

(a) Convergence of SGS and SVB on a mini-batéh) Time consumption of SGS, SVB and CGS.
Figure 3: Computational Efficiency of SGS, SVB, and CGS

Since online algorithms usually run for a longer time spaanths or years, online algorithms face
less computational challenges than the offline versionswenter, we would still like the online
inference method to not use excessive computational ressuirn this section, we compare the
computational efficiencies of SGS, SVB and CGS. Since SGS¥ithave outer loops that process
arriving mini-batches and inner loops (iterations), weeistigate the time per mini-batch and on the
whole dataset separately.

In Fig.[3(a), we run SGS and SVB through some initial miniebats and then investigate their con-
vergences on the same intermediate mini-batch. The pédplax held-out documents are plotted
againsttime. SGS starts from a better point than SVB bedtaigetter result on previous iterations.
Furthermore, SGS also converges faster than SVB.

In Fig.[3(b), both SGS and SVB are run until convergence, @/itlee criterion for convergence is
stated in Sectioh 3l2. We can see that SVB and SGS converigi@ wimilar time. Also, since the
online version is searching over smaller number of configma, we can observe that the smaller
the mini-batch size is, the faster it converges. SGS candierfthan CGS with smaller mini-batch
sizes.

3.7 Distributed Experiments

In this section we compare distributed SGS and B\¥B the NYT dataset, and the scalability of
DSGS is examined on the larger PubMed dataset. When we cerd&®S with SVB in Fig. 4(3),
we can conclude that although the perplexity of DSGS getsevas the number of cores increases,
it still consistently outperforms SVB. Fify. 4{b) shows theaughput of DSGS and SVB, in tokens
per second. Since the topic-word assignment update of DSGParse and the corresponding
variational parameter update of SVB is dense, the speedlI5@&S is much better than SVB.
Fig.[4(c),[4(d) show the scalability result on the larger Mel dataset. In general we can conclude
DSGS enjoys nice speedup while retaining a similar levelespfexity.

4 Discussion

We have developed a streaming Gibbs sampling algorithm Y% $he LDA model. Our method

can be seen as an online extension of the collapsed Gibbdisgrapproach. Our experimental
results demonstrate that SGS improves perplexity oveiliguewnline methods, while maintaining
similar computational burden. We have also shown that S@®eavell parallelized using similar
techniques as those adopted in SVB.

In the future, SGS can be further improved by making the déaztgr \, the mini-batch size and the
number of iterations for each document self-evolving, asedata is fed into the system. Intuitively,
the algorithm learns fast at the beginning and slows dover kan. Thus for example, it might be
tempting to decrease the iteration counts for each docurmenime constant over time. The scheme
for the evolution deserves future research and needs dinengetical guidance.

23VB refers to both distributed and single-threaded vasiant

Perplexi

ity

x10°
—+—SGS

6000 E — — SGS-ideal
r| —e—svB A
5000 + 1 — — SVB-ideal /
ap
4000 - E r
7/
3000 g L 27 ,
K
2000 | : ==
I SGS L z =]

7000

o

IS

w
N
N\

tokens per second
N

[N

o

1 2 4 9 18 36
num of threads num of threads
(a) Perplexity of DSGS and SVB on NYT. (b) Tokens per second of DSGS and SVB.
6000 T T T T T T 40 T T
[batch=200k

=

305 | [batch=3k
4000 I baich=1k

Perplexities
©
8
8
8

Running time(in hour)
N
5

2000 E|
I batch=200k
[batch=50k
1000 [Ibatch=10k
[batch=3k 5
I batch=1k
0 36 18 9 4 2 1 0 36 18 9 4
Number of threads Number of threads

(c) Perplexity of DSGS on PubMed dataset. (d) Time consumption of DSGS on PubMed.

2 1

Figure 4: Scalability results

References

[1]
(2]
(3]

[4]

[5]

[6]

[7]
(8]
(9]

[10]
[11]

[12]

D. M. Blei, A. Y. Ng, and M. |. Jordan. “Latent Dirichlet Adcation”. In: Journal of Machine
Learning ResearcB (2003), pp. 993-1022.

J. Mitchell and M. Lapata. “Vector-based Models of Set@aComposition.” In: Annual
Meeting of the Association for Computational Linguistia€(). 2008.

N. Naveed, T. Gottron, J. Kunegis, and A. C. Alhadi. “Baéws Travel Fast: A Content-
Based Analysis of Interestingness on Twitter”. froceedings of International Web Science
Conference2011.

Z. Liu, Y. Zhang, E. Y. Chang, and M. Sun. “Plda+: Paralkknt Dirichlet allocation with
data placement and pipeline processing”. Transactions on Intelligent Systems and Tech-
nology (TIST)2011).

A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and ASthola. “Scalable Inference
in Latent Variable Models”. Ininternational Conference on Web Search and Data Mining
(WSDM) ACM. 2012.

Y. Wang, X. Zhao, Z. Sun, H. Yan, L. Wang, Z. Jin, L. Wang, @ao, C. Law, and
J. Zeng. “Peacock: Learning Long-Tail Topic Features fadultrial Applications”. In:
arXiv:1405.44022014).

T. L. Griffiths and M. Steyvers. “Finding Scientific To@t In: Proceedings of the National
academy of Sciences of the United States of Amé&fdaSuppl 1 (2004), pp. 5228-5235.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. “Stostia Variational Inference”. In:
Journal of Machine Learning Researt¥.1 (2013), pp. 1303—-1347.

J. Foulds, L. Boyles, C. DuBois, P. Smyth, and M. Wellit§tochastic collapsed variational
Bayesian inference for latent Dirichlet allocation”. Imternational Conference on Knowl-
edge Discovery and Data mining (SIGKD2013.

S. Patterson and Y. W. Teh. “Stochastic gradient RiemsanLangevin dynamics on the prob-
ability simplex”. In: Advances in Neural Information Processing Systems (NIER)3.

T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and MorHan. “Streaming Variational
Bayes”. In:Advances in Neural Information Processing Systems (NIFH)3.

J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng, E. P. Xifg,Y. Liu, and W.-Y. Ma.
“LightLDA: Big Topic Models on Modest Compute Clusters”.: larXiv:1412.157§2014).

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

L. AlSumait, D. Barbara, and C. Domeniconi. “On-lindA: Adaptive topic models for
mining text streams with applications to topic detectiod tracking”. In:International Con-
ference on Data Mining (ICDMY008.

K. R. Canini, L. Shi, and T. L. Griffiths. “Online inferee of topics with latent Dirichlet
allocation”. In:International Conference on Artificial Intelligence andafdtics (AISTATS)
2009.

R. Guhaniyogi, S. Qamar, and D. B. Dunson. “Bayesiandt@nal Density Filtering for
Big Data”. In:arXiv:1401.36372014).

L. Yao, D. Mimno, and A. McCallum. “Efficient methods faopic model inference on
streaming document collections”. Imternational Conference on Knowledge Discovery and
Data mining (SIGKDD)2009.

A. Q. Li, A. Ahmed, S. Ravi, and A. J. Smola. “Reducing gempling complexity of topic
models”. In:International Conference on Knowledge Discovery and Datdmg (SIGKDD)
2014.

D. Newman, A. U. Asuncion, P. Smyth, and M. Welling. “Dibuted inference for latent
Dirichlet allocation.” In:Advances in Neural Information Processing Systems (NF3g)7.
M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, Xsifovski, J. Long, E. J.
Shekita, and B.-Y. Su. “Scaling distributed machine leagniith the parameter server”. In:
Operating Systems Design and Implementation (OSID) 4.

Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons AGGibson, G. Ganger, and E. P.
Xing. “More effective distributed ml via a stale synchrosqarallel parameter server”. In:
Advances in neural information processing systems (NIE®)3.

K. Bache and M. LichmanJCI Machine Learning Repository - Bag of Words Data. 261.3.
URL:https://archive.Ics.ucl.edu/ n/datasets/Bag+ot +\Wor ds.

10

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

	1 Introduction
	2 Streaming Gibbs Sampling for LDA
	2.1 Basics of LDA
	2.2 Streaming Gibbs Sampling
	2.3 Relation to Conditional Density Filtering
	2.3.1 Conditional Density Filtering
	2.3.2 Relationship between SGS and CDF-LDA

	2.4 Distributed SGS

	3 Experiments
	3.1 Implementation Details
	3.2 Setups
	3.3 Results for various mini-batch sizes
	3.4 Results for different decay factor
	3.5 Learning Process
	3.6 Computational Efficiency
	3.7 Distributed Experiments

	4 Discussion

