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Abstract

Streaming variational Bayes (SVB) is successful in learning LDA models in an on-
line manner. However previous attempts toward developing online Monte-Carlo
methods for LDA have little success, often by having much worse perplexity than
their batch counterparts. We present a streaming Gibbs sampling (SGS) method,
an online extension of the collapsed Gibbs sampling (CGS). Our empirical study
shows that SGS can reach similar perplexity as CGS, much better than SVB. Our
distributed version of SGS, DSGS, is much more scalable thanSVB mainly be-
cause the updates’ communication complexity is small.

1 Introduction

Topic models such as Latent Dirichlet Allocation (LDA) [1] have gained increasing attention. LDA
provides interpretable low dimensional representation ofdocuments, uncovering the latent topics of
the corpus. The model has been proven to be useful in many fields, such as natural language pro-
cessing, information retrieval and recommendation systems [2, 3]. Companies such as Google [4],
Yahoo! [5], and Tencent [6] have taken advantage of the modelextensively. LDA has gradually
become a standard tool to analyze documents in a semantic perspective.

With the Internet generating a huge amount of data each day, accommodating new data requires
periodic retraining using traditional batch inference algorithms such as variational Bayes (VB) [1],
collapsed Gibbs sampling (CGS) [7] or their variants [8, 9, 10], which might be a waste of both
computational and storage resources, due to the need of recomputing and storing all historical data. It
is better to learn the modelincrementally, with online (streaming) algorithms. An online algorithm
is defined as the method that learns the model in a single pass of the data and can analyze a test
document at any time during learning.

Stochastic variational inference (SVI) is an offline stochastic learning algorithm that has enjoyed
great experimental success on LDA [11]. Although online methods often perform worse than of-
fline ones, streaming variational Bayes (SVB) [11] achievesthe same performance as the offline
SVI, which is impressive. However, these variational methods need to make unwarranted mean-
field assumptions and require model-specific derivations. In contrast, Monte Carlo methods (e.g.,
CGS) are generally applicable and asymptotically convergeto the target posterior. By exploring the
sparsity structure, CGS has been adopted in many scalable algorithms for LDA [12, 5]. However,
the attempts towards developing streaming Monte Carlo methods for LDA have little success, often
achieving worse performance than CGS. For instance, the perplexity of OLDA [13] on NIPS dataset
is much worse than CGS; and the particle filter approach [14] could only achieve 50% performance
of CGS, in terms of the normalized mutual information on labeled corpus.

In this paper, we fill up this gap by presenting a streaming Gibbs sampling (SGS) algorithm. SGS
naturally extends the collapsed Gibbs sampling to the online learning setting. We empirically verify
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that, with weight decay, SGS can reach similar inference quality as CGS. We further present a
distributed version of SGS (DSGS) in order to deal with large-scale datasets on multiple compute
nodes. Empirical results demonstrate that the distributedSGS achieves comparable inference quality
as the non-distributed one, while with dramatic scaling-up. Since DSGS can be implemented with
sparse data structures, demanding much lower communication bandwidth, it is more scalable than
SVB. Note that the SGS without weight decay is the same as OLDAwithout “topic mixing”, where
“topic mixing” is the key component of OLDA [13]. Moreover, OLDA attempts to solve a different
generative model, instead of the usual LDA model.

The rest of the paper is structured as follows. Section 2 presents the streaming Gibbs sampling (SGS)
algorithm for LDA and shows its relationship with Conditional Density Filtering (CDF) [15]. We
also propose the Distributed SGS (DSGS) which can take advantage of sparsity in sampling to handle
very large datasets. Section 3 presents experimental settings of SGS and DSGS to demonstrate their
inference quality and speed. Section 4 concludes with discussion on future work.

2 Streaming Gibbs Sampling for LDA

2.1 Basics of LDA

LDA[1] is a hierarchical Bayesian model that describes a generative process of topic proportions
for a document and topic assignments for every position in documents, words in the documents are
sampled from distributions specified by topic assignments.

Let D,K, V be the number of documents, topic and unique words respectively. ~φk is aV dimen-
sional categorical distribution over words with symmetricDirichlet priorβ, ~θd is the topic proportion
for documentd with Dirichlet priorα. The generative process of LDA is as follows

~φk ∼ Dir(β), ∀d ∈ {1, . . . , D} : ~θd ∼ Dir(α), zdi ∼ Mult(~θd), wdi ∼ Mult(~φzdi),

whereLd is the length of documentd, i ∈ {1, . . . , Ld}, zdi, wdi is the assignment and word on
positioni of documentd. Dir(·), Mult(·) is the Dirichlet distribution and Multinomial distribution.
Denoteθ = (~θ1, . . . , ~θD), the matrix formed by all topic proportions, likewise forΦ,Z,W .

Given a set of documentsW , inferring the exact posterior distributionp(θ,Φ,Z|W ) is intractable.
We must resort to either variational approximation or MonteCarlo simulation methods. Among the
various algorithms, collapsed Gibbs sampling (CGS) [7] is of particular interest due to its simplicity
and sparsity. CGS exploits the conjugacy properties of Dirichlet and Multinomial to integrate out
(θ,Φ) from the posterior:

p(zdi = k|Z−di,W ) ∝ (N−di
kd + α)

N−di
kvdi

+ β

N−di
k + V β

, (1)

whereNkd, Nkv are sufficient statistics (counts) for the Dirichlet-Multinomial distribution:Nkd =
∑Ld

i=1
I(zdi = k), Nkv =

∑

d

∑Ld

i=1
I(wdi = v, zdi = k), Nk =

∑

dNkd =
∑

v Nkv. The
superscript−di stands for excluding the token at positioni of documentd. Nkv,Nkd,Nk are the
matrices or vector formed by all corresponding counts. A pseudocode of CGS is depicted as Alg. 1.
The sparsity of sufficient statistic matricesNkw,Nkd leads to many fast sparsity aware algorithms
[16, 17, 12]. The sparsity is also an important factor that makes our algorithm more scalable than
SVB.
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Algorithm 1 Collapsed Gibbs Sampling
Input: dataW , iterationsN
InitializeZ, Nkv, Nk, Ndk

for iter = 1 to N do
for each tokenzdi in the documentsdo

Samplezdi ∼ p(zdi|Z
−di,W )

UpdateNkv, Nk, Ndk

Output posterior mean:
φkv = Nkv+β

Nk+V β
, θdk = Ndk+α

Nd+Kα

Algorithm 2 Streaming Gibbs Sampling
Input: iterationsN , decay factorλ
for t = 1 to ∞ do

Input: dataW t

InitializeZ
t and updateN t

kv, N
t
k, N

t
dk

for iter = 1 to N do
for each tokenzdi in the mini-batchdo

Samplezdi ∼ p(zdi|Z
1:t
−di,W

1:t)

UpdateN t
kv, N

t
k, N

t
dk

Decay:N t
kv = λN t

kv

Output posterior mean:
φt
kv =

Nt

kv
+β

Nt

k
+V β

, θtdk =
Nt

dk
+α

Nt

d
+Kα

2.2 Streaming Gibbs Sampling

Given a Bayesian modelP (x|Θ) with prior P (Θ), and incoming data mini-batches
X

1,X2, · · · ,Xt, · · · , let X1:t = {X1, . . . ,Xt}. Bayesian streaming learning is the process of
getting a series of posterior distributionsP (Θ|X1:t) by the recurrence relation:

P (Θ|X1:t) ∝ P (Θ|X1:t−1)P (Xt|Θ). (2)

Therefore, the posterior learnt fromX1:t−1 is used as the prior when learning fromXt. Note that
the amount of data in a stream might be infinite, so a streaminglearning algorithm can neither store
all previous data, nor update the model at timet with a time complexity even linear oft. Ideally, the
algorithm should only have constant storage and constant update complexity at each time step.

As depicted in Alg. 2, we propose a streaming Gibbs sampling (SGS) algorithm for LDA. SGS is an
online extension of CGS, which fixes the topicsZ

1:t−1 of the previous arrived document mini-batch,
and then samplesZt of the current mini-batch using the normal CGS update. This is in contrast with
CGS, which can come back and refine someZ

t after it is first sampled. ActuallyZ1:t−1 is not even
stored in CGS, we store only the sufficient statisticNkv.

One can understand SGS using the recurrence relation (2): without any data, the initial~φk have
parameters~β0

k = β, after incorporating mini-batchW 1, the parameters is updated to~β1
k = ~β0

k +
N

1

kv[k], which is used as the prior of consequent mini-batches, where N
t
kv [k] is thek-th row of

matrixN t
kv . In general, SGS updates the prior using the recurrence relation ~βt

k = ~βt−1

k +N
t
kv[k],

where~βt
k is the prior for~φk at timet.

The decay factorλ serves to forget the history. When plugging in the decay factor, the update
equation becomes~βt

k = λ(~βt−1

k + N
t
kv[k]). λ can then be understood as weakening the posterior

caused by the previous data. This decay factor would improvethe performance of SGS, especially
when the topic-word distribution is evolving along the time.

SGS only requires constant memory: it only stores the current mini-batch W
t,Zt, but not

W
1:t−1,Z1:t−1,W t+1:∞,Zt+1:∞. The total time complexity is the same as CGS, which is

O(KN |W 1:t|), where|W 1:t| is number of tokens in mini-batch1 to t. In practice, we use a smaller
number of iterations than that of CGS, because SGS iterates over a smaller number of documents
(mini-batch) and thus it converges faster.

2.3 Relation to Conditional Density Filtering

In this section, we consider a special case of SGS, where the decay factorλ is set to 1.0. We relate
this special case to Conditional Density Filtering (CDF) [15] and show that SGS can be seen as an
improved version of CDF framework when applied to the LDA model.
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2.3.1 Conditional Density Filtering

CDF is an algorithm that can sample from a sequence of gradually evolving distributions. Given
a probabilistic modelP (D1:t|Θ), whereΘ = (θ1, · · · , θk) is a k-dimensional parameter vector
andD1:t is the data until now, we define the Surrogate Conditional Sufficient Statistics (SCSS) as
follows:

Definition 1 [SCSS] Assumep(θj |θ−j , Dt) can be written asp(θj |θ−j,1, h(Dt, θ−j,2)), where
θ−j = Θ\θj , θ−j,1 and θ−j,2 are a partition ofθ−j and h is some known function. If̂θt−j,2 is

a consistent estimator ofθ−j,2 at time t, thenCt = g(Ct−1, h(Dt, θ̂
t
−j,2)) is defined as the SCSS of

θj at timet , for some known functiong. We usep(θj |θ−j,1, C
t) to approximatep(θj |θ−j , D

1:t).

SCSS is an extension of Sufficient Statistics (SS), in the sense that both of them summarize the
historical observations sampled from a class of distributions. SS is accurate and summarizes a
whole distribution, but SCSS is approximate and only summarizes conditional distributions.

If the parameter set of a probabilistic model can be partitioned into two setsI1 andI2, where each
parameter’s SCSS only depends on the parameters in the otherset, then we can use the CDF algo-
rithm (3) to infer the posterior of the parameters.

Algorithm 3 Conditional Density Filtering
for t = 1 to ∞ do

for s ∈ {1, 2} do
for j ∈ Is do
Ct

js = g(Ct−1

js , h(Dt, Θ̂−s))

Sampleθj ∼ p(θj |θ−js, C
t
js)

Algorithm 4 Distributed SGS (DSGS)
Input: iterationsN , decay factorλ
InitializeNkv = 0
for each mini-batchW t at some workerdo

Copy globalNkv to localN local
kv

∆N
local
kv = CGS(α, β +N

local
kv ,W t)

Update globalNkv = λ(Nkv +∆N
local
kv )

Algorithm 5 CDF-LDA

Initialize: Φ = Uniform(0, 1), N̂0
kv = 0

for t = 1 to ∞ do
Input: a single document~wt

Initialize ~zt
SCSS ofz: Φ̂t = Φ

for each tokeni in doct do
Samplezti ∼ p(zti|~z

−ti
t , Φ̂t)

SCSS ofΦ: N̂ t
kv = N̂ t−1

kv +
∑

i I(zti =
k ∧ wti = v)
for k = 1 to K do

Sample~φk ∼ Dir(N̂ t
kv + β)

Under a semi-collapsed representation of LDA, where~θd is collapsed, we can partition the parame-
ters into two sets:I1 = {φkv}; I2 = {zdi}. The conditional distributions are:

p(Φ|Z,W ) =

K
∏

k=1

Dir(~φk|Nkv[k] + β), p(zdi = k|~z−di
d ,Φ,W ) ∝ (N−di

kd + α)φkvdi .

By definition (1), we can verify that the SCSS ofΦ and~zd at timet areNkv andΦ respectively.
Thus we have the CDF solution of LDA as shown in Algorithm (5).

2.3.2 Relationship between SGS and CDF-LDA

Our SGS method can be viewed as an improved version of CDF-LDAin the following aspects:

• In CDF-LDA, SCSSΦt is directly sampled from a Dirichlet distribution, which unneces-
sarily introduces extra source of randomness. Replacing the sampling with the expectation

φ̂t
kv =

N̂
t−1

kv
+β

N̂
t−1

k
+V β

gives better performance in practice. This corresponds to afully collapsed

representation of LDA. It’s more statistical efficient due to the Rao-Blackwell Theorem.

• The CDF-LDA’s sampling update ofzti does not include other tokens in the current doc-
umentt, which could be improved by taking the current document intoaccount. This is
especially useful for the beginning iterations, because itenables the topics’ preference of
doct to be propagated immediately.
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• It is hard to say how a single document can be decomposed into topics without looking at
the other documents, but this is the case that occurrs at the beginning of CDF-LDA. This
would result in inaccuratezti assignments and therefore pollutingNkv, and finally result-
ing in low convergence rate on the whole. Our method avoids this problem by processing
a mini-batch of documents at a time and allows for multiple iterations over the mini-batch.
This would enable topic-assignments to be propagated locally.

To sum up, SGS without weight decay can be seen as an improvement over CDF-LDA not only
by adapting a fully collapsed representation, but also by enabling a timely and repeatedly cross-
document information flow.

2.4 Distributed SGS

Many distributed CGS samplers exist for LDA, including divide-and-conquer [18], parameter
server [5, 19] and model parallel [15] approaches. Althoughsome of them do not have theoretical
guarantees, they all perform pretty well in practice. Here,we adopt the parameter server approach
and present a distributed SGS sampler.

Same as CGS, the global parameter in SGS is the topic word count matrixNkv. SGS can be viewed
as a sequence of calls to the CGS procedure

∆N
t
kv = CGS(α, β +N

t−1

kv ,W t),

where thekth row ofβ+N
t−1

kv is the prior of~φk. Then the topic word count matrix can be updated
byN t

kv = λ(N t−1

kv +∆N
t
kv).

In the parameter server architecture, we storeNkv in a central server. Each worker fetches the
most recent parameterNkv, runsCGS(α, β + N

t−1

kv ,W t) to get the updates∆N
t
kv , and pushes

back the update to the server. Upon receiving an update, the server updates its parameters. In our
implementation, the workers run in a fully (hogwild) asynchronous fashion. Although workers may
have slightly stale parameters compared to the serial version, affecting the convergence, this hogwild
approach is shown to work well in [18, 5] as well as our experiments, based on the fact thatNkv

changes slowly. Better schemes such as stale synchronous parallel [20] might be used, but it is just
a matter of choosing parameter server implementations. A pseudo-code of is given as Alg. 4.

In experiments, we can see that this empirical parallel framework can almost linearly scale up SGS
with neglectable precision loss. Due to the sparseness ofNkv, Distributed SGS (DSGS) has much
less communication overhead between the master and workers, hence more scalable than SVB.

3 Experiments

We evaluate the inference quality and computational efficiency of SGS. We also assess how the
parameters such as mini-batch size, decay factor and the number of iterations affect the performance.
We compare with the online variational Bayes approach SVB [11], which has proven to have high
inference quality that is similar to offline stochastic methods like SVI [8].

3.1 Implementation Details

As Canini et al. [14] mentioned, initializations might havebig impacts on the solution qualities of
the inference algorithms, and hence, using randomized initialization forZ is often not good. Thus,
we use a kind of “progressive online” initialization for SGS, CGS and SVB. Specifically, taking
SGS as an example, at the first iteration for each mini-batch,for each document we sample~zd from
the posterior distribution up to currentt. Then we update the posterior distribution using the current
document and proceed to the next one. Such a “sampling from posterior” initialization technique
ensures that our initialization is reasonably good. We use asimilar initialization method for SVB
and CGS.

All the core implementations (sampling and calculating a variational approximation) are in C++.
We also use Python and MATLAB wrappers for computationally inexpensive operations, such as
measuring time. Our implementation of SVB has been made as similar as possible with SGS for fair
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speed comparison. The speed of our SVB implementation is similar to the implementation in [11].
The experiments are done on a 3 node cluster, with each node equipped with 12 cores of Intel Xeon
E5645@2.4GHz, 24GB memory and 1Gbps ethernet.

In the distributed experiments, dataW t is pre-partitioned and stored separately on each node, but in
practice it can be stored in a distributed file system such as HDFS, or a publish-subscribe pattern can
be used for handling streaming data. For the sake of simplicity, we implement our own parameter
server using pyRpc, a simple remote procedure call (RPC) module that uses ZeroMQ. We use a
pipeline on worker nodes to hide the communication overhead. Parameters on master server is
stored usingatomic, and there are model replicas on master server to ensure highavailability
while performing updates. For production usage, existing high performance parameter servers, such
as [19] might be used to achieve better performance and scalability. Again, system is orthogonal
with the algorithm in our case and is not the main focus in thispaper.

3.2 Setups

In the following experiments, hyper-parametersα andβ are all set to0.1 and 0.03, number of
topicsK is set to50. Different settings yield same conclusions. Thus we stick to this setting for
simplicity. Multiple random starts of SGS and SVB don’t result in significant difference. Without
special remarks, for each mini-batch, both SGS and SVB run the sampler until convergence. To
be specific, SGS stops the iteration when the training perplexity on the current mini-batch stops
improving for 10 consecutive iterations, or when it reachesa maximum of 400 iterations. SVB stops

the inner iteration when||
~θold

d
−~θnew

d
||1

K
< 10−5 or when it reaches a maximum of 100 iterations, and

stops the outer iteration if||φ
new−φold||1

KV
< 10−3.

The predictive performance of LDA can be measured by the probability it assigns to the held-out
documents. This metric is formalized by perplexity. First we partition the data-set and use 80%
for training and 20% for testing. LetM denote the model trained on the training data. Given a
held-out document~wd, we can infer~θd from the first half of the tokens ind, and then calculate the
exponentiated negative average of the log probability. Formally, we have:

per(~wd|M) = exp

{

−

∑

i log p(wdi|M)

|~wd|

}

,

wherelog p(wdi|M) = log
∑

k φkvdiθdk.
Table 1: Data Statistics, whereK andM stand for
thousand and million respectively.

# Docs # Token Vocab-Size
NIPS 1740 2M 13K
NYT 300K 100M 100K
PubMed 8.2M 730M 141K

To compare the performance of the algorithms
in various settings, we test them on three
datasets1. The small NIPS dataset has the arti-
cles from 1988 to 2000 published by Neural In-
formation Processing Systems (NIPS) Confer-
ences. A larger dataset is the news from New
York Times (NYT) and the largest one is the abstracts of the publications on PubMed [21]. Table 1
shows the detailed information of each dataset.

3.3 Results for various mini-batch sizes

We run SGS and SVB on NIPS and NYT datasets, varying mini-batch sizes. To simplify our com-
parison, we set the decay factor for SGS toλ = 1. Fig. 1(a) and Fig. 1(b) show that SGS consistently
performs better than SVB, especially in the cases of bigger dataset and smaller mini-batch sizes.

The difference in the performance gap between SGS and SVB on NYT and NIPS datasets could be
understood as different levels of redundancy. In order learn effectively in a streaming setting, it is
required to have a redundant dataset. There are only 1740 documents in the NIPS corpus, which
is far from being redundant and thus different streaming algorithms performs alike on this dataset.
From the trend of the dataset size, we can expect that SGS would perform even better than SVB on
larger datasets. Another interesting phenomenon is that SVB is more sensitive to mini-batch sizes

1All the three datasets can be downloaded from UCI Machine Learning Repository:
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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(a) Perplexities of SVB and SGS on NIPS.
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(b) Perplexities of SVB and SGS on NYT.

Figure 1: The perplexities of SVB, SGS and CGS on the small NIPS (a) and large NYT (b) datasets.
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(c) Learning process.

Figure 2: (a,b) The change of SGS’s perplexity w.r.t the decay factorλ on NIPS and NYT datasets;
and (c) The trend of changing perplexities as new mini-batches arrive, mini-batch size = 3200.

than SGS. The inherent ability of SGS to perform much better than SVB on smaller mini-batches
have important advantages in practice.

Note that SGS is equivalent to CGS when the mini-batch size equals to the whole training set size.
The green horizontal dashed lines in Fig. 1(a) 1(b) mark the perplexity of CGS. We can see that
on the large NYT dataset, SGS has a huge improvement over SVB when compared to the best-
achievable perplexity.

3.4 Results for different decay factor

We also investigate how the decay factorλ affects the performance of SGS on different datasets. The
results are similar as above, a bigger dataset has more obvious trends. As shown in Fig.s 2(a) and
2(b), when the mini-batch is too small, the decay factor has anegative effect. It is probably because
a small mini-batch can only learn a limited amount of knowledge in a single round and it is thus not
preferable to forget the knowledge. When the mini-batch size gets bigger, the decay factor improves
the performance, and the optimal value forλ gets smaller. This can be explained in a similar manner
as above, where bigger mini-batches will learn more and the next mini-batch would have greater
discrepancy with the current one.

Let us examine a specific setting where the batch size of NYT dataset is set to3200. SVB yields a
perplexity6511, while SGS without decay can reach5240. After applying decay factor of0.7, SGS
yields a perplexity of4640, which is pretty close to the batch perplexity of4300. We can conclude
that, if the decay factor is set properly, SGS is much better than SVB and it can almost reach the
same precision as its batch counterpart.

3.5 Learning Process

However, the mean perplexity of each mini-batch is not a fulldescription of the learning process.
We should also take the trend of the inference quality as new mini-batches arrive into account. In
Fig. 2(c), we partition each mini-batch into training and testing tests, and plot the testing perplexity
of each mini-batch of SVB and SGS. We can clearly see that the performance of the decayed SGS
is strictly better than the non-decayed version, and the latter one outperforms SVB. In other words,
SGS can consistently learn a better model every day. All three models have perplexity bursts at a
few initial mini-batches because the models over-fits the first few mini-batches.
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3.6 Computational Efficiency
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(b) Time consumption of SGS, SVB and CGS.

Figure 3: Computational Efficiency of SGS, SVB, and CGS

Since online algorithms usually run for a longer time span, months or years, online algorithms face
less computational challenges than the offline versions. However, we would still like the online
inference method to not use excessive computational resources. In this section, we compare the
computational efficiencies of SGS, SVB and CGS. Since SGS andSVB have outer loops that process
arriving mini-batches and inner loops (iterations), we investigate the time per mini-batch and on the
whole dataset separately.

In Fig. 3(a), we run SGS and SVB through some initial mini-batches and then investigate their con-
vergences on the same intermediate mini-batch. The perplexity on held-out documents are plotted
against time. SGS starts from a better point than SVB becauseits better result on previous iterations.
Furthermore, SGS also converges faster than SVB.

In Fig. 3(b), both SGS and SVB are run until convergence, where the criterion for convergence is
stated in Section 3.2. We can see that SVB and SGS converge within similar time. Also, since the
online version is searching over smaller number of configurations, we can observe that the smaller
the mini-batch size is, the faster it converges. SGS can be faster than CGS with smaller mini-batch
sizes.

3.7 Distributed Experiments

In this section we compare distributed SGS and SVB2 on the NYT dataset, and the scalability of
DSGS is examined on the larger PubMed dataset. When we compare DSGS with SVB in Fig. 4(a),
we can conclude that although the perplexity of DSGS gets worse as the number of cores increases,
it still consistently outperforms SVB. Fig. 4(b) shows the throughput of DSGS and SVB, in tokens
per second. Since the topic-word assignment update of DSGS is sparse and the corresponding
variational parameter update of SVB is dense, the speedup ofDSGS is much better than SVB.
Fig. 4(c), 4(d) show the scalability result on the larger PubMed dataset. In general we can conclude
DSGS enjoys nice speedup while retaining a similar level of perplexity.

4 Discussion

We have developed a streaming Gibbs sampling algorithm (SGS) for the LDA model. Our method
can be seen as an online extension of the collapsed Gibbs sampling approach. Our experimental
results demonstrate that SGS improves perplexity over previous online methods, while maintaining
similar computational burden. We have also shown that SGS can be well parallelized using similar
techniques as those adopted in SVB.

In the future, SGS can be further improved by making the decayfactorλ, the mini-batch size and the
number of iterations for each document self-evolving, as more data is fed into the system. Intuitively,
the algorithm learns fast at the beginning and slows down later on. Thus for example, it might be
tempting to decrease the iteration counts for each documentto some constant over time. The scheme
for the evolution deserves future research and needs strongtheoretical guidance.

2SVB refers to both distributed and single-threaded variants.
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Figure 4: Scalability results
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