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Abstract We obtain the distance between the exact and approximate distributions of par-
tial maxima of a random sample under power normalization. Itis observed that the Hellinger
distance and variational distance between the exact and approximate distributions of partial
maxima under power normalization is the same as the corresponding distances under linear
normalization.
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parameterization, variational distance
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1 Introduction

LetX1, X2, . . . , Xn be independent and identically distributed (iid) random variables
with common distribution function (df)F andMn = max(X1, X2, . . . , Xn), n ≥
1. ThenF is said to belong to the max domain of attraction of a nondegenerate df
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H under power normalization (denoted byF ∈ Dp(H)) if, for n ≥ 1, there exist
constantsαn > 0, βn > 0, such that

lim
n→∞

P

(
∣

∣

∣

∣

Mn

αn

∣

∣

∣

∣

1

βn

sign(Mn) ≤ x

)

= H(x), x ∈ C(H), (1)

the set of continuity points ofH , where sign(x) = −1, 0, or 1 according asx < 0,
= 0, or> 0. The limit dfH in (1) is called ap-max stable law, and we refer to [5] for
details.

The p-max stable laws. Two dfsF andG are said to be of the samep-type ifF (x) =
G(A | x |B sign(x)), x ∈ R, for some positive constantsA,B. Thep-max stable
laws arep-types of one of the following six laws with parameterα > 0:

H1,α(x) =

{

0 if x ≤ 1,
exp{−(logx)−α} if 1 < x;

H2,α(x) =







0 if x < 0,
exp{−(− logx)α} if 0 ≤ x < 1,
1 if 1 ≤ x;

H3(x) =

{

0 if x ≤ 0,

e−
1

x if 0 < x;

H4,α(x) =







0 if x ≤ −1,
exp{−(− log(−x))−α} if −1 < x < 0,
1 if 0 ≤ x;

H5,α(x) =

{

exp{−(log(−x))α} if x < −1,
1 if −1 ≤ x;

H6(x) =

{

ex if x ≤ 0,
1 if 0 < x.

Note thatH2,1(·) is the uniform distribution over(0, 1). Necessary and sufficient
conditions for a dfF to belong toDp(H) for each of the sixp-types ofp-max stable
laws were given in [5] (see also [3]).

As in [8], we define the generalized log-Pareto distribution (glogPd) asW (x) =
1 + logH(x) for x with 1/e ≤ H(x) ≤ 1, whereH is ap-max stable law, and the
distribution functionsW are given by

W1,α(x) =

{

0 if x < e,
1− (log x)−α if e ≤ x;

W2,α(x) =







0 if x < e−1,
1− (− logx)α if e−1 ≤ x < 1,
1 if 1 < x;

W3(x) =

{

0 if x ≤ 1,
1− 1

x if 1 < x;

W4,α(x) =







0 if x < −e−1,
1− (− log(−x))−α if −e−1 ≤ x < 0,
1 if 0 < x;



Distance between exact and approximate distributions of partial maxima under power normalization393

W5,α(x) =







0 if x < −e,
1− (log(−x))α if −e ≤ x < −1,
1 if −1 < x;

W6(x) =







0 if x < −1,
1 + x if −1 ≤ x ≤ 0,
1 if 0 < x;

and the respective probability density functions (pdfs) are the following:

w1,α(x) =
α

x
(log x)−(α+1), x ≥ e;

w2,α(x) =
α

x
(− log x)(α−1), e−1 ≤ x < 1;

w3(x) =
1

x2
, x > 1;

w4,α(x) =
−α

x

(

− log(−x)
)

−(α+1)
, −e−1 ≤ x < 0;

w5,α(x) =
−α

x

(

log(−x)
)(α−1)

, −e ≤ x < −1;

w6(x) = 1, −1 ≤ x ≤ 0;

where the pdfs are equal to 0 for the remaining values ofx.
See also [1] and [9] for more details on generalized log-Pareto distributions. The

von-Mises type sufficient conditions forp-max stable laws were obtained in [6].

Von Mises-type parameterization of generalized log-Pareto distributions. The
von Mises-type parameterization for generalized log-Pareto distributions is given by

V1(x) = 1− {1 + γ log x}−1/γ ,

x > 0, (1 + γ log x) > 0, wheneverγ ≥ 0, and

V2(x) = 1−
{

1− γ log(−x)
}

−1/γ
,

x < 0,
(

1− γ log(−x)
)

> 0, wheneverγ ≤ 0,

where the caseγ = 0 is interpreted as the limit asγ → 0. Let v1 andv2 denote the
densities ofV1 andV2, respectively. The dfs of generalized log-Pareto distributions
can be regained fromV1 andV2 by the following identities:

W1,1/γ(x) =

{

0 if x < e,

V1(e
−1/γx1/γ) if e ≤ x, γ > 0;

W2,−1/γ(x) =







0 if x < e−1,

V1(e
−1/γx−1/γ) if e−1 ≤ x < 1,

1 if 1 < x, γ > 0;

W4,1/γ(x) =







0 if x < −e−1,

V2(−e1/γ(−x)1/γ) if −e−1 ≤ x < 0,
1 if 0 < x, γ < 0;

W5,−1/γ(x) =







0 if x < −e,
V2(−e1/γ(−x)1/γ) if −e ≤ x < −1,
1 if −1 < x, γ < 0.
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Fig. 1. Densities of glogPds

Note thatlimγ→0 V1(x) = W3(x), x > 1, andlimγ→0 V2(x) = W6(x), x ∈ [−1, 0].

Graphical representation of generalized log-Pareto pdfs. In Fig. 1, observe that
the pdfsv1 approach the standard Pareto pdf asγ ↓ 0, and the pdfsv2 approach the
standard uniform pdf asγ ↑ 0.

The Hellinger distance, also called the Bhattacharya distance, is used to quantify
the similarity between two probability distributions, andthis was defined in terms
of the Hellinger integral introduced by [4]. In view of statistical applications, the dis-
tance between the exact and the limiting distributions is measured using the Hellinger
distance. Inference procedures based on the Hellinger distance provide alternatives to
likelihood-based methods. The minimum Hellinger distanceestimation with inlier
modification was studied in [7]. In [10], the weak convergence of distributions of
extreme order statistics (defined later in Section 2) was examined.

In the next section, we study the variational distance between the exact and asymp-
totic distributions of power normalized partial maxima of arandom sample and the
Hellinger distance between these. The results obtained here are similar to those in
[10].

2 Hellinger and variational distances for sample maxima

We recall a few definitions for convenience.

Weak domain of attraction. If a df F satisfies (1) for some norming constants and
nondegenerate dfH , thenF is said to belong to the weak domain of attraction ofH .

Strong domain of attraction. A df F is said to belong to the strong domain of at-
traction of a nondegenerate dfH if
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lim
n→∞

sup
B

∣

∣

∣

∣

P

(∣

∣

∣

∣

Xn:n

αn

∣

∣

∣

∣

1/βn

sign(Xn:n) ∈ B

)

−H(B)

∣

∣

∣

∣

= 0,

where sup is taken over all Borel setsB onR.

Limit law for the kth largest order statistic [5]. Let X1:n ≤ · · · ≤ Xn:n denote the
order statistics from a random sampleX1, . . . , Xn, and fori = 1, . . . , 6, let

lim
n→∞

P

(
∣

∣

∣

∣

Xn:n

αn

∣

∣

∣

∣

1/βn

sign(Xn:n) ≤ x

)

= Hi,α(x).

Then it is well known that, for integerk ≥ 1,

lim
n→∞

P

(∣

∣

∣

∣

Xn−k+1:n

αn

∣

∣

∣

∣

1/βn

sign(Xn−k+1:n) ≤ x

)

= Hi,α(x)
k−1
∑

j=0

(− logHi,α(x))
j

j!

= Hi,α,k(x), say. (2)

Hellinger distance [10]. Given dfsF andG with Lebesgue densitiesf andg, the
Hellinger distance betweenF andG, denotedH∗(F,G), is defined as

H∗(F,G) =

(

∫

∞

−∞

(

f1/2(x) − g1/2(x)
)2
dx

)1/2

. (3)

The results in this section will be proved for thep-max stable lawH2,1(·), and the
other cases can be deduced by using the transformationT (x) = Ti,α(x) given by
Ti,α(x) = H−1

i,α (x)◦H2,1(x) = H−1
i,α (x), x ∈ (0, 1)with T1,α(x) = exp((− log x)−1/α),

T2,α(x) = exp(−(− log x)1/α), T3(x) = − 1
log x , T4,α(x) = − exp(− logx)−1/α),

T5,α(x) = − exp((− log x)1/α), andT6(x) = log x.
We assume that the underlying pdff is of the formf(x) = w(x)eg(x) where

g(x) → 0 as x → r(H) = sup{x : H(x) < 1}, the right extremity ofH .
Equivalently, we may use the representationf(x) = w(x)(1 + g∗(x)) by writing
f(x) = w(x)eg(x) = w(x)(1 + (eg(x) − 1)), g(x) → 0 asx → r(F ). The following
result is on Hellinger distance, and its proof is similar to that of Theorem 5.2.5 of [10]
and hence is omitted.

Theorem 1. LetH be a p-max stable law as in(1), andF be an absolutely continuous
df with pdff such thatf(x) > 0 for x0 < x < r(F ) andf(x) = 0 otherwise. Assume
thatr(F ) = r(H). Then

H∗(Fn, H) ≤

{

∫ r(H)

x0

(

nf(x)

w(x)
− 1− log

(

nf(x)

w(x)

)

dH(x)

+ 2H(x0)−H(x0) logH(x0)

)

}1/2

+
c

n
, (4)

wherec > 0 is a universal constant.

Theorem 2. Suppose thatH is a p-max stable law as in(1), andw(x), Ti,α(x) be the
corresponding auxiliary functions withw(x) = h(x)/H(x) andTi,α(x) = H−1

i,α (x),
whereh denotes the pdf ofH . Let the pdff of the dfF have the representation



396 A.S. Praveena, S. Ravi

f(x) = w(x)egi(x), T (x0) < x < r(Hi), for somei and= 0 if x > r(Hi), where
0 < x0 < 1, and letgi satisfy the condition

∣

∣gi(x)
∣

∣ ≤







































L(log x)−αδ if i = 1,

L(− log x)αδ if i = 2,

L 1
xδ if i = 3,

L(− log(−x))−αδ if i = 4,

L(log(−x))αδ if i = 5,

Lxδ if i = 6,

(5)

whereL, δ are positive constants. IfFn(x) = F (An|x|
Bnsign(x)) with

An =











1 if i = 1, 2, 3, 4,

n if i = 5,

1/n if i = 6,

and Bn =











n−1/α if i = 2, 4,

n1/α if i = 1, 3,

1 if i = 5, 6,

then

H∗
(

Fn, H
)

≤

{

Dn−δ if 0 < δ ≤ 1,

Dn−1 if δ > 1,

whereD is a constant depending only onx0, L, andδ.

Proof. Without loss of generality, we may assume thatH = H2,1. The other cases
can be deduced by using the transformationT (x) = Ti,α(x). We apply Theorem1
with x0,n = xn

0 , 1
2 < x0 < 1. Note that the term2H2,1(x

n
0 )−H2,1(x

n
0 ) logH2,1(x

n
0 ) =

xn
0 − xn

0 log xn
0 can be neglected. Puttingfn(x) = f(x1/n)/n, sinceg is bounded on

(x0, 1), we have from (4)

H∗
(

Fn, H
)

≤

{

∫ 1

xn
0

(

nfn(x)

w2,1(x)
− 1− log

(

nfn(x)

w2,1(x)

))

dH2,1(x)

}1/2

+
c

n
.

Then
∫ 1

xn
0

(

nfn(x)

w2,1(x)
− 1− log

(

nfn(x)

w2,1(x)

))

dH2,1(x)

=

∫ 1

xn
0

(

f(x1/n)

w2,1(x)
− 1− log

(

nf(x1/n)

w2,1(x)

))

dH2,1(x)

=

∫ 1

xn
0

(

eh(x
1/n) − 1− h

(

x1/n
))

dx

≤

(

1

2
+

L(− logx
1/n
0 )

3!
+ · · ·

)
∫ 1

xn
0

(

h
(

x1/n
))2

dx

≤ D∗

∫ 1

0

(

h
(

x1/n
))2

dx
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≤ D∗
L2

2

∫ 1

0

(

− log x1/n
)2δ

dx

= D∗
L2

2
n−2δ

∫

∞

0

e−yy2δdy

= D∗
L2

2
n−2δΓ (2δ + 1),

andH∗(Fn
n , H(x)) ≤ (D∗ L2

2 n−2δΓ (2δ + 1))1/2 + c
n = (D

∗

2 )1/2Ln−δ(Γ (2δ +

1))1/2 + cn−1. Hence,

H∗
(

Fn, H
)

≤

{

Dn−δ if 0 < δ ≤ 1,

Dn−1 if δ > 1,

whereD = (D
∗

2 )1/2L
√

Γ (2δ + 1) is a constant depending only onx0, L, andδ,
andΓ is the gamma function.

Theorem4 below gives the variational distance between exact and approximate
distributions of power normalized partial maxima. To provethe result, we use the
next result, the proof of which is similar to that of Theorem 5.5.4 of [10] and hence
is omitted.

Theorem 3. LetHj , j = 1, . . . , 6, denote the p-max stable laws as in(1), andH =
Hj,α,k denote the limit laws of the power normalizedkth largest order statistic as
in (2). Let F be an absolutely continuous df with pdff such thatf(x) > 0 for
x0 < x < r(F ). Let r(F ) = r(H) andw(x) = h(x)/H(x) on the support ofH ,
whereh is the pdf ofH . Then

sup
B

∣

∣P
((

Xn:n, . . . , Xn−k+1:n

)

∈ B
)

−Hk(B)
∣

∣

≤

( k
∑

j=1

∫ r(H)

x0

(

nf(x)

w(x)
− 1− log

(

nf(x)

w(x)

))

dHj(x) +Hk(x0) + kHk−1(x0)

+

k−1
∑

j=1

∫

xj>x0,xk<x0

log

(

nf(xj)

w(xj)

)

dHk(x)

)1/2

+
ck

n
.

Theorem 4. Let Hj , j = 1, . . . , 6, denote the p-max stable laws as in(1) and
w(x), Ti,α be the corresponding auxiliary functions withw(x) = h(x)/H(x) and
Ti,α(x) = H−1

i,α (x). Let the pdff of the absolutely continuous dfF satisfy the repre-

sentationf(x) = w(x)egi(x), T (x0) < x < r(H), for somei and= 0 if x > r(H),
where1/2 < x0 < 1, andgi satisfy the condition given in(5). Then

sup
B

∣

∣

∣

∣

P

{(∣

∣

∣

∣

Xn−j+1:n

An

∣

∣

∣

∣

1/Bn

sign(Xn−j+1:n)

)k

j=1

∈ B

}

−Hk(B)

∣

∣

∣

∣

≤ D
(

(k/n)δk1/2 + k/n
)

,

whereD is a constant depending onx0, L, and δ, andAn andBn are defined in
Theorem2.
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Proof. We prove the result for the particular caseH = H2,1. Applying Theorem3
with x0,n = xn

0 ,
1
2 < x0 < 1, we get

sup
B

∣

∣P
((

|Xn:n|
nsign(Xn:n), . . . , |Xn−k+1:n|

nsign(Xn−k+1:n)
)

∈ B
)

−Hk(B)
∣

∣

≤

( k
∑

j=1

∫ r(H)

xn
0

(

nfn(x)

w2,1(x)
− 1− log

nfn(x)

w2,1(x)

)

dHj(x) +Hk(x
n
0 ) + kHk−1(x

n
0 )

+

k−1
∑

j=1

∫

xj>xn
0
,xk<xn

0

log
nfn(xj)

w2,1(xj)
dHk(x)

)1/2

+
ck

n
.

Note thatHk(x) = O((k/x)m) uniformly in k and0 < x < 1 for every positive
integerm. Moreover, sinceh is bounded on(x0, 1), we have

k
∑

j=1

∫ r(H)

xn
0

(

nfn(x)

w2,1(x)
− 1− log

(

nfn(x)

w2,1(x)

))

dHj(x)

=

k
∑

j=1

∫ 1

xn
0

(

f(x1/n)

w2,1(x)
− 1− log

(

f(x1/n)

w2,1(x)

))

hj(x)dx

=

k
∑

j=1

∫ 1

xn
0

(

eh(x
1/n) − 1− log

(

eh(x
1/n)
))

hj(x)dx

=

k
∑

j=1

∫ 1

xn
0

(

1 + h
(

x1/n
)

+ · · · − 1− h
(

x1/n
))

hj(x)dx

≤

(

1

2
+

L(− logx
1/n
0 )

3!
+ · · ·

) k
∑

j=1

∫ 1

xn
0

(

h
(

x1/n
)2) (− log x)j−1

(j − 1)!
dx

≤

(

1

2
+

L(− logx
1/n
0 )

3!
+ · · ·

) k
∑

j=1

∫ 1

0

(

h
(

x1/n
)2) (− logx)j−1

(j − 1)!
dx

≤

(

1

2
+

L(− logx
1/n
0 )

3!
+ · · ·

) k
∑

j=1

∫ 1

0

L2(− log x1/n)2δ

2

(− log x)j−1

(j − 1)!
dx

=

(

1

2
+

L(− logx
1/n
0 )

3!
+ · · ·

)

L2

2

k
∑

j=1

n−2δ

Γ (j)

∫ 1

0

(− log x)2δ+j−1dx

= D∗

k
∑

j=1

n−2δ

Γ (j)

∫

∞

0

e−yy2δ+j−1dx

= D∗n−2δ
k
∑

j=1

Γ (2δ + j)

Γ (j)
,

whereΓ is the gamma function. Now, note that (see, e.g., [2], p. 47)
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k
∑

j=1

Γ (2δ + j)

Γ (j)
≤ D′

k
∑

j=1

j2δ.

Therefore,

D∗n−2δ
k
∑

j=1

Γ (2δ + j)

Γ (j)
≤ D∗D′n−2δ

k
∑

j=1

j2δ ≤ D∗∗n−2δk2δ+1,

whereD∗∗ = D∗D′. Hence,

sup
B

∣

∣P
((

Xn
n:n, . . . , X

n
n−k+1:n

)

∈ B
)

−Hk(B)
∣

∣

≤
(

D∗∗n−2δk2δ+1
)1/2

+ ck/n = D
(

(k/n)δk1/2 + k/n
)

,

proving the result.
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modification. Sankhȳa, Indian J. Stat. B (2008),70(2), 310–322 (2008).MR2563992

[8] Praveena, A.S.: A Study of subexponential distributions and some problems in extreme
value theory. Unpublished Ph.D. thesis, University of Mysore (2010).

[9] Ravi, S., Praveena, A.S.: On von Mises type conditions for p-max stable laws, rates
of convergence and generalized log Pareto distributions. J. Stat. Plan. Inference141(9),
3021–3034 (2011).MR2796008. doi:10.1016/j.jspi.2011.03.024

[10] Reiss, R.: Approximate Distributions of Order Statistics. With Applications to Non-
parametric Statistics. Springer Series in Statistics. Springer (1989). MR0988164.
doi:10.1007/978-1-4613-9620-8

http://www.ams.org/mathscinet-getitem?mr=2480725
http://dx.doi.org/10.1007/s10687-008-0070-6
http://dx.doi.org/10.1007/s10687-008-0070-6
http://www.ams.org/mathscinet-getitem?mr=2732365
http://dx.doi.org/10.1007/978-3-0348-0009-9
http://www.ams.org/mathscinet-getitem?mr=1580780
http://dx.doi.org/10.1515/crll.1909.136.210
http://www.ams.org/mathscinet-getitem?mr=1210055
http://dx.doi.org/10.1137/1137119
http://www.ams.org/mathscinet-getitem?mr=1677401
http://www.ams.org/mathscinet-getitem?mr=2563992
http://www.ams.org/mathscinet-getitem?mr=2796008
http://dx.doi.org/10.1016/j.jspi.2011.03.024
http://www.ams.org/mathscinet-getitem?mr=0988164
http://dx.doi.org/10.1007/978-1-4613-9620-8

	1 Introduction
	2 Hellinger and variational distances for sample maxima

