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On spectral measures of random Jacobi matrices

Trinh Khanh Duy

Abstract

The paper studies the limiting behaviour of spectral measures of random Jacobi
matrices of Gaussian, Wishart and MANOVA beta ensembles. We show that the
spectral measures converge weakly to a limit distribution which is the semicircle dis-
tribution, Marchenko-Pastur distributions or the arcsine distribution, respectively.
Regard that convergence as the law of large number, a central limit theorem is then
derived.
Keywords: spectral measure; random Jacobi matrix; Gaussian beta ensemble; Wishart
beta ensemble; MANOVA beta ensemble.
AMS MSC 2010: Primary 60B20; Secondary 60F05, 47B36, 47B80

1 Introduction

Three classical random matrix ensembles on the real line, Gaussian beta ensembles,
Wishart beta ensembles and MANOVA beta ensembles, are now realized as eigenvalues
of certain random Jacobi matrices. For instance, the following random Jacobi matrices
whose components are independent and distributed as

Hn,β =











a1 b1
b1 a2 b2

. . .
. . .

. . .

bn−1 an











∼ 1√
nβ











N (0, 2) χ(n−1)β

χ(n−1)β N (0, 2) χ(n−2)β

. . .
. . .

. . .

χβ N (0, 2)











are matrix models of (scaled) Gaussian beta ensembles for any β > 0. Here N (µ, σ2)
denotes the normal (or Gaussian) distribution with mean µ and variance σ2, and χk

denotes the chi distribution with k degrees of freedom. Namely, the eigenvalues of Hn,β

are distributed as Gaussian beta ensembles,

(λ1, . . . , λn) ∝ |∆(λ)|β exp
(

−nβ

4

n
∑

i=1

λ2
i

)

,

where ∆(λ) =
∏

i<j(λj − λi) denotes the Vandermonde determinant.
The limiting behaviour of the empirical distributions of the three beta ensembles has

been well studied. For Gaussian beta ensembles, as n → ∞, their empirical distributions

Ln =
1

n

n
∑

i=1

δλi

converge weakly, almost surely, to the semicircle distribution, which is well known as
Wigner’s semicircle law. The limit distributions are Marchenko-Pastur distributions and
the arcsine distribution in Wishart and MANOVA cases, respectively. The convergence
means that for any bounded continuous function f on R,

〈Ln, f〉 =
1

n

n
∑

i=1

f(λi) → 〈µ∞, f〉 almost surely as n → ∞.
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Here µ∞ stands for the corresponding limit distribution. Regard it as the law of large
number, the central limit theorem has also been investigated. It turns out that for a ‘nice’
test function f , the fluctuation around the limit converges in distribution to a normal
random variable,

n(〈Ln, f〉 − 〈µ∞, f〉) =
n
∑

i=1

(f(λi)− 〈µ∞, f〉) d→N (0, a2f ).

Here ‘
d→’ denotes the convergence in distribution or the weak convergence of random

variables. See [4] for Gaussian and Wishart cases and [7] for a generalization of Gaussian
beta ensembles with general potential.

The spectral measures of random Jacobi matrices associated with those beta ensembles
have been investigated recently. The weak convergence to a limit distribution, the central
limit theorem for moments and large deviations have been established, see [2, 6, 9]. The
spectral measure of a finite Jacobi matrix, a symmetric tridiagonal matrix of the form,

J =











a1 b1
b1 a2 b2

. . .
. . .

. . .

bn−1 an











, (ai ∈ R, bi > 0),

is defined to be a unique probability measure µ on R satisfying

〈µ, xk〉 = 〈Jke1, e1〉 = Jk(1, 1), k = 0, 1, . . . ,

where e1 = (1, 0, . . . , 0)t ∈ R
n. Let {λ1, . . . , λn} be the eigenvalues of J and (v1, . . . , vn) be

the corresponding eigenvectors which are chosen to be an orthonormal basis of Rn. Then
the spectral measure µ can be written as

µ =

n
∑

i=1

q2j δλi
.

It is known that the eigenvalues {λi} are distinct, the weights {q2j} are all positive and that
a finite Jacobi matrix of size n is one-to-one correspondence with a probability measure
supported on n real points.

It is the purpose of this paper to reconsider the limiting behaviour of the spectral
measures µn related to those beta ensembles to see how nature it is. In all three cases,
it turns out very interesting that the weights {wi} = {q2i } are independent of eigenvalues
and have Diriclet distribution with parameters (β/2, . . . , β/2), that is,

(w1, . . . , wn) ∝
n
∏

i=1

w
β

2
−1

i 1{w1+···+wn−1<1,wi>0}dw1 · · · dwn−1,

where wn = 1− (w1 + · · ·+ wn−1). Thus, by a direct calculation, we obtain

E[〈µn, f〉] =
n
∑

i=1

E[q2i ]E[f(λi)] =
1

n

n
∑

i=1

E[f(λi)] = E[〈Ln, f〉] = 〈L̄n, f〉.

Here L̄n is the mean of Ln, which is defined to be a probability measure satisfying 〈L̄n, f〉 =
E[〈Ln, f〉] for all bounded continuous function f . Similarly, we can derive a formula for
the variance of 〈µn, f〉 as

Var[〈µn, f〉] =
βn

βn+ 2
Var[〈Ln, f〉] +

2

nβ + 2
(〈L̄n, f

2〉 − 〈L̄n, f〉2).
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Consequently, as n → ∞,

nβ

2
Var[〈µn, f〉] → 〈µ∞, f2〉 − 〈µ∞, f〉2, (1)

provided that nVar[〈Ln, f〉] → 0, which is obvious true for a ‘nice’ function f . It follows
that the spectral measures converge weakly to the same limit distribution µ∞. It also
suggests that the central limit theorem should hold with the scaling factor (

√
nβ/

√
2) and

the limit variance is given by (1). Now we can state the main result of this paper.

Theorem 1.1. (i) The spectral measures µn converge weakly, in probability, to the same

limit distribution µ∞ as n → ∞, that is, for any bounded continuous function f ,

〈µn, f〉 =
n
∑

i=1

q2i f(λi) → 〈µ∞, f〉 in probability as n → ∞;

(ii) For a bounded continuous function for which nVar[〈Ln, f〉] → 0,
√
nβ√
2
(〈µn, f〉 − E[〈µn, f〉]) d→N (0, σ2(f)) as n → ∞,

where σ2(f) = 〈µ∞, f2〉 − 〈µ∞, f〉2.
The paper is organized as follows. In the next section, we consider general random

Jacobi matrices and derive the weak convergence of spectral measures as well as the
central limit theorem for polynomial test functions. Applications to Gaussian, Wishart
and MANOVA beta ensembles are then investigated in turn. The last section is devoted
to extend the central limit theorem to a larger class of test functions.

2 Limiting behaviour of spectral measures of random Jacobi

matrices

Let us begin by introducing some spectral properties of non random Jacobi matrices. A
semi-infinite Jacobi matrix is a symmetric tridiagonal matrix of the form

J =







a1 b1
b1 a2 b2

. . .
. . .

. . .






, where ai ∈ R, bi > 0.

To a Jacobi matrix J , there exists a probability measure µ such that

〈µ, xk〉 =
∫

R

xkdµ = 〈Jke1, e1〉, k = 0, 1, . . . ,

where e1 = (1, 0, . . . , )t ∈ ℓ2. Then µ is unique, or µ is determined by its moments, if and
only if, J is an essentially self-adjoint operator on ℓ2. If the parameters {ai} and {bi} are
bounded, or more generally, if

∑

b−1
i = ∞, then J is essentially self-adjoint, [12, Corollary

3.8.9]. In case of uniqueness, we call µ the spectral measure of J , or of (J, e1).
As mentioned in the introduction, when J is a finite Jacobi matrix of order n, then µ

is a probability measure supported on n eigenvalues {λi} with weight {q2i } = {vi(1)2},

µ =

n
∑

i=1

q2i δλi
.

Here (v1, . . . , vn) are the corresponding eigenvectors which are chosen to be an orthogonal
basis of Rn.

The following results are useful in this paper. We will omit their proofs.
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Lemma 2.1. Assume that {µn}∞n=1 and µ are probability measures on R such that for all

k = 0, 1, . . . ,
〈µn, x

k〉 → 〈µ, xk〉 as n → ∞.

Assume further that the measure µ is determined by its moments. Then µn converges

weakly to µ as n → ∞. Moreover, if a continuous function f is bounded by some polynomial

P , that is, |f(x)| ≤ P (x) for all x ∈ R, then we also have

〈µn, f〉 → 〈µ, f〉 as n → ∞.

Lemma 2.2. Let {µn}∞n=1 be a sequence of random probability measures and µ be a non-

random probability measure which is determined by its moments. Assume that any moment

of µn converges almost surely to that of µ, that is, for any k = 0, 1, . . . ,

〈µn, x
k〉 → 〈µ, xk〉 a.s. as n → ∞.

Then as n → ∞, the sequence of measures {µn} converges weakly, almost surely, to µ,
namely, for any bounded continuous function f ,

〈µn, f〉 → 〈µ, f〉 a.s. as n → ∞.

An analogous result holds for convergence in probability.

Let us now explain the main idea of this paper. Consider the sequence of random
Jacobi matrices

Jn =













a
(n)
1 b

(n)
1

b
(n)
1 a

(n)
2 b

(n)
2

. . .
. . .

. . .

b
(n)
n−1 a

(n)
n













,

and let µn be the spectral measure of (Jn, e1). Assume that each entry of Jn converges
almost surely to a non random limit as n → ∞, that is, for any fixed i, as n → ∞,

a
(n)
i → āi; b

(n)
i → b̄i a.s. (2)

Here we require that āi and b̄i are non random and b̄i > 0. Assume further that the
spectral measure of (J∞, e1), denoted by µ∞, is unique, where J∞ is the infinite Jacobi
matrix consisting of {āi} and {b̄i},

J∞ =







ā1 b̄1
b̄1 ā2 b̄2

. . .
. . .

. . .






.

Then the measure µ∞ is determined by its moments, and hence we get the following result.

Theorem 2.3. The spectral measures µn converge weakly, almost surely, to the limit

measure µ∞ as n → ∞.

Remark 2.4. If in the assumption (2), convergence in probability is assumed instead of
almost sure convergence, then the spectral measures µn converge weakly, in probability,
to µ∞ as n → ∞.

4



Proof. Let p be a polynomial of degree m. Then when n is large enough, 〈µn, p〉 =

p(Jn)(1, 1) is a polynomial of {a(n)i , b
(n)
i }i=1,...,⌈m

2
⌉. Therefore, as n → ∞,

〈µn, p〉 → 〈µ∞, p〉 a.s.,

which implies the weak convergence of µn by Lemma 2.2.

Next, we consider the central limit theorem for polynomial test functions. It turns out
that the central limit theorem for polynomial test functions is a direct consequence of a
joint central limit theorem for entries of Jacobi matrices. Indeed, assume that there are
random variables {ηi} and {ζi} defined on the same probability space such that for some
fixed r > 0, for any i, as n → ∞,

ã
(n)
i = nr(a

(n)
i − āi)

d→ηi,

b̃
(n)
i = nr(b

(n)
i − b̄i)

d→ζi.
(3)

Moreover, we assume that the joint weak convergence holds. This means that any finite

linear combination of ã
(n)
i and b̃

(n)
i converges weakly to the corresponding linear combina-

tion of ηi and ζi as n → ∞, namely, for any real numbers ci and di,

∑

finite

(ciã
(n)
i + dib̃

(n)
i )

d→
∑

finite

(ciηi + diζi) as n → ∞.

For now on, both conditions (2) and (3) will be written in a compact form

Jn ≈







ā1 b̄1
b̄1 ā2 b̄2

. . .
. . .

. . .






+

1

nr







η1 ζ1
ζ1 η2 ζ2

. . .
. . .

. . .






.

Let f be a polynomial of 2k variables (a1, . . . , ak, b1, . . . , bk). For simplicity, we write
f(ai, bi) instead of f(a1, . . . , ak, b1, . . . , bk).

Lemma 2.5. (i) As n → ∞,

nr
(

f(a
(n)
i , b

(n)
i )− f(āi, b̄i)

)

−
k
∑

i=1

(

∂f

∂ai
(āi, b̄i)ã

(n)
i +

∂f

∂bi
(āi, b̄i)b̃

(n)
i

)

P→ 0.

Here ‘
P→’ denotes the convergence in probability.

(ii) As n → ∞,

nr
(

f(a
(n)
i , b

(n)
i )− f(āi, b̄i)

)

d→
k
∑

i=1

(

∂f

∂ai
(āi, b̄i)ηi +

∂f

∂bi
(āi, b̄i)ζi

)

.

Proof. Write

a
(n)
i = āi +

1

nr
ã
(n)
i ; b

(n)
i = b̄i +

1

nr
b̃
(n)
i .

Then use the Taylor expansion of f(a
(n)
i , b

(n)
i ) at (āi, b̄i) with noting that the Taylor ex-

pansion of a polynomial consists of finitely many terms,

f(a
(n)
i , b

(n)
i ) = f(āi, b̄i) +

1

nr

k
∑

i=1

(

∂f

∂ai
(āi, b̄i)ã

(n)
i +

∂f

∂bi
(āi, b̄i)b̃

(n)
i

)

+
∑ ∗.

5



Each term in the finite sum
∑ ∗ has the following form,

c(α, β)

k
∏

i=1

(a
(n)
i − āi)

αi(b
(n)
i − b̄i)

βi ,

where {αi} and {βi} are non negative integers and
∑k

i=1(αi + βi) ≥ 2. Therefore, when
we multiple that term by nr, it converges to zero in distribution, and hence, in probability
by Slutsky’s theorem.

By using Slutsky’s theorem again, we see that (ii) is a consequence of (i). The proof
is completed,

Let p be a polynomial of degree m > 0. Then there is a polynomial of 2⌈m2 ⌉ variables
such that for n > m/2,

〈µn, p〉 = p(Jn)(1, 1) = f(a
(n)
i , b

(n)
i ).

Therefore, by Lemma 2.5, we obtain the central limit theorem for polynomial test func-
tions.

Theorem 2.6. For any polynomial p, nr (〈µn, p〉 − 〈µ∞, p〉) converges weakly to a limit

as n → ∞.

Since we do not assume that all moments of {a(n)i } and {b(n)i } are finite, even the
expectation of 〈µn, p〉, E[〈µn, p〉] may not exist. Thus we need further assumptions to
ensure the convergence of mean and variance in the central limit theorem above. Our
assumptions are based on the following basic result in probability theory.

Lemma 2.7. Assume that the sequence {Xn} converges weakly to a random variable X.

If for some δ > 0,
sup
n

E[|Xn|2+δ] < ∞,

then E[Xn] → E[X] and Var[Xn] → Var[X] as n → ∞.

We make the following assumptions

(i) all moments of {a(n)i } and {b(n)i } are finite and the convergences in (2) hold in Lq

for all q < ∞, which is equivalent to the following conditions

sup
n

E[|a(n)i |k] < ∞, sup
n

E[|b(n)i |k] < ∞, for all k = 1, 2, . . . ; (4)

(ii) E[ηi] = 0,E[ζi] = 0, and for some δ > 0,

sup
n

E[|ã(n)i |2+δ] < ∞, sup
n

E[|b̃(n)i |2+δ] < ∞. (5)

Lemma 2.8. As n → ∞,

E

[

(

f(a
(n)
i , b

(n)
i )− f(āi, b̄i)

)2
]

→ Var

[

k
∑

i=1

(

∂f

∂ai
(āi, b̄i)ηi +

∂f

∂bi
(āi, b̄i)ζi

)

]

, (6)

nr
(

E[f(a
(n)
i , b

(n)
i )]− f(āi, b̄i)

)

→ 0, (7)

Var
[

f(a
(n)
i , b

(n)
i )
]

→ Var

[

k
∑

i=1

(

∂f

∂ai
(āi, b̄i)ηi +

∂f

∂bi
(āi, b̄i)ζi

)

]

. (8)

6



Proof. It is just a direct consequence of Lemma 2.7.

Now we state a slightly different form of the central limit theorem for polynomial test
functions.

Theorem 2.9. Under assumptions (4) and (5), for any polynomial p, as n → ∞,

nr(〈µn, p〉 − E[〈µn, p〉]) d→ξ∞(p).

Here ξ∞(p) denotes the limit distribution. Moreover, E[ξ∞(p)] = 0 and

Var[〈µn, p〉] → Var[ξ∞(p)] as n → ∞.

3 Gaussian beta ensembles or β-Hermite ensembles

Let Hn,β be a random Jacobi matrix whose elements are independent (up to the symmetric
constraint) and are distributed as

Hn,β =
1√
nβ











N (0, 2) χ(n−1)β

χ(n−1)β N (0, 2) χ(n−2)β

. . .
. . .

. . .

χβ N (0, 2)











.

Then the eigenvalues {λi} of Hn,β have Gaussian beta ensembles [3], that is,

(λ1, λ2, . . . , λn) ∝ |∆(λ)|β exp
(

−nβ

4

n
∑

i=1

λ2
j

)

.

The weights {wi} = {q2i } are independent of {λi} and have Dirichlet distribution with
parameters (β/2, . . . , β/2).

Lemma 3.1. (i) As k → ∞,

χk√
k
→ 1 in probability and in Lq for all q < ∞.

(ii) As k → ∞,
√
k

(

χk√
k
− 1

)

= (χk −
√
k)

d→N (0,
1

2
).

Since the elements of Hn(β) are independence, it follows that joint convergence in
distribution holds, namely, we can write

Hn,β ≈







0 1
1 0 1

. . .
. . .

. . .






+

1√
βn







N (0, 2) N (0, 12)
N (0, 12) N (0, 2) N (0, 12)

. . .
. . .

. . .






.

Note that the spectral measure of the non random Jacobi matrix part in the above ex-
pression is the semicircle distribution, a probability measure on [−2, 2] with density

sc(x) =
1

2π

√

4− x2, (−2 ≤ x ≤ 2).

Consequently, we get the following result.

Theorem 3.2. The spectral measure µn of Hn,β converges weakly, in probability, to the

semicircle law as n → ∞. Moreover, for any polynomial p, as n → ∞,
√
nβ√
2
(〈µn, p〉 − 〈sc, p〉) d→N (0, σ2

p).

7



4 Wishart beta ensembles or β-Laguerre ensembles

For m ∈ N and n > m− 1, let Bβ be a bidiagonal matrix whose elements are independent
and are distributed as

Bβ =
1√
nβ











χβn

χβ(m−1) χβn−β

. . .
. . .

χβ χβn−β(m−1)











.

Let Lm,n,β = BβB
t
β . Then Lm,n,β becomes a random Jacobi matrix whose eigenvalues are

distributed as Wishart beta ensembles [3], namely,

(λ1, . . . , λm) ∝ |∆(λ)|β
m
∏

i=1

λa
i exp

(

−nβ

2

m
∑

i=1

λi

)

,

where a = (β/2)(n −m + 1) − 1. The weights {wi} = {q2i } are independent of {λi} and
have Dirichlet distribution with parameters (β/2, . . . , β/2).

It is well known that as m/n → γ ∈ (0, 1), the empirical distribution of Wishart
beta ensembles converges weakly to the Marchenko-Pastur distribution with parameter
γ ∈ (0, 1), a probability measure with density

mpγ(x) =
1

2πγx

√

(λ+ − x)(x− λ−), (λ− < x < λ+),

where λ± = (1±√
γ)2.

It also know that the Jacobi matrix of the Marchenko-Pastur distribution with param-
eter γ ∈ (0, 1) is given by

MPγ =







1
√
γ√

γ 1 + γ
√
γ

. . .
. . .

. . .






=











1√
γ 1√

γ 1
. . .

. . .





















1
√
γ
1

√
γ
1

√
γ

. . .
. . .











.

Denote by {ci}mi=1 and {dj}m−1
j=1 the diagonal and the sub-diagonal of the matrix√

nβBβ. Then

Lm,n,β =
1

nβ











c21 c1d1
c1d1 c22 + d21 c2d2

. . .
. . .

. . .

cm−1dm−1 c2m + d2m−1











.

Lemma 4.1. For fixed k, as m → ∞ and m/n → γ ∈ (0, 1),

ck√
nβ

≈ χnβ√
nβ

≈ 1 +
1√
nβ

ηk, ηk ∼ N (0,
1

2
),

dk√
nβ

≈ χmβ√
nβ

≈ √
γ +

1√
nβ

ζk, ζk ∼ N (0,
1

2
),

c2k
nβ

≈ 1 +
1√
nβ

2ηk,
d2k
nβ

≈ γ +
1√
nβ

2ζk,
ckdk
nβ

≈ √
γ +

1√
nβ

(
√
γηk + ζk).

8



Consequently, as m → ∞ and m/n → γ ∈ (0, 1), we can write

Lm,n,β ≈







1
√
γ√

γ 1 + γ
√
γ

. . .
. . .

. . .






+

√
γ√
mβ







2η1
√
γη1 + ζ1√

γη1 + ζ1 2(η2 + ζ1)
√
γη2 + ζ2

. . .
. . .

. . .






.

Here {ηi} and {ζi} are two i.i.d. sequences of N (0, 12 ) random variables.

Theorem 4.2. The spectral measure µm of Lm,n,β conveges weakly, in probability, to the

the Marchenko-Pastur distribution with parameter γ as m → ∞, m/n → γ ∈ (0, 1).
Moreover for any polynomial p,

√
mβ√
2

(〈µm, p〉 − 〈mpγ , p〉) d→N (0, σ2
p).

5 MANOVA beta ensembles or β-Jacobi ensembles

Let a, b > −1. Let p1, . . . , p2n−1 be independent random variables distributed as

pk ∼
{

Beta
(

2n−k
4 β, 2n−k−2

4 β + a+ b+ 2
)

, k even,

Beta
(

2n−k−1
4 β + a+ 1, 2n−k−1

4 β + b+ 1
)

, k odd.

Here Beta(α, β) denotes the beta distribution with parameters α, β. Define

ak = p2k−2(1− p2k−3) + p2k−1(1− p2k−2),

bk =
√

p2k−1(1− p2k−2)p2k(1− p2k−1),

where p−1 = p0 = 0, and form a random Jacobi matrix Jn,β as

Jn,β =











a1 b1
b1 a2 b2

. . .
. . .

. . .

bn−1 an











.

Then the eigenvalues (λ1, . . . , λn) of Jn,β are distributed as MANOVA beta ensembles
(cf. [8]),

(λ1, . . . , λn) ∝ |∆(λ)|β
n
∏

i=1

λa
i (1− λi)

b, λi ∈ [0, 1].

The weights {wi} = {q2i } are independent of {λi} and have Dirichlet distribution with
parameters (β/2, . . . , β/2).

We need the following properties of beta distributions.

Lemma 5.1. (i) As k → ∞,

Beta(
k

2
,
k

2
) → 1

2
in probability and in Lq for all q < ∞.

(ii) As k → ∞,

2
√
k

(

Beta(
k

2
,
k

2
)− 1

2

)

d→N (0, 1).
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Proof. Let Xk and Yk be two independent random variables having χ2
k distribution. Then

it is know that

Beta(
k

2
,
k

2
)

d
=

Xk

Xk + Yk
.

For chi-squared distribution, we have

χ2
k

k
→ 1 in probability as k → ∞.

Therefore
Xk

Xk + Yk
=

Xk

k
Xk

k
+ Yk

k

→ 1

2
in probability as k → ∞.

The convergence in Lp is clear because beta distributions are bounded by 1.
Next we consider the central limit theorem for beta distributions. It also follows from

the following central limit theorem for chi-squared distribution

χ2
k − k√
k

d→N (0, 2) as k → ∞.

Indeed, if we write

2
√
k

(

Beta(
k

2
,
k

2
)− 1

2

)

d
= 2

√
k

(

Xk

Xk + Yk
− 1

2

)

=

Xk−k√
k

+ k−Yk√
k

Xk

k
+ Yk

k

,

then as k → ∞, the numerator converges in distribution to N (0, 4) because Xk and Yk are
independent while the denominator converges in probability to 2. Thus we obtain (ii).

Lemma 5.2. As n → ∞,

a
(n)
1 = p1 ≈

1

2
+

1

2
√
nβ

N (0, 1),

b
(n)
1 =

√

p1p2(1− p1) ≈
1

2
√
2
+

1

2
√
nβ

N (0,
1

8
),

a
(n)
k = p2k−2(1− p2k−3) + p2k−1(1− p2k−2) ≈

1

2
+

1

2
√
nβ

N (0,
1

2
), k ≥ 2,

b
(n)
k =

√

p2k−1(1− p2k−2)p2k(1− p2k−1) ≈
1

4
+

1

2
√
nβ

N (0,
1

8
), k ≥ 2.

The joint asymptotic also holds.

Proof. For fixed k, as n → ∞, it is clear that

pk ≈ Beta(
nβ

2
,
nβ

2
) ≈ 1

2
+

1

2
√
nβ

N (0, 1).

Then the asymptotic for a
(n)
k follows from Lemma 2.5 because it is a polynomial of

{p2k−3, p2k−2, p2k−1}.
The asymptotic for b

(n)
k is a consequence of the following fact. If Xn → c 6= 0 in

probability and
√
n(Xn − c)

d→N (0, σ2) as n → ∞, then

√
n(
√

Xn −√
c) =

√
n(Xn − c)√
X +

√
c

d→N (0, σ2)

2
√
c

= N (0,
σ2

4c
).

The joint asymptotic is clear.
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Note that the arcsine distribution, a probability measure on (0, 1) with density

arcsine(x) =
1

π
√

x(1− x)
, (0 < x < 1),

is the spectral measure of the infinite Jacobi matrix

J∞ =













1
2

1
2
√
2

1
2
√
2

1
2

1
4

1
4

1
2

1
4

. . .
. . .

. . .













.

Therefore, we obtain the limiting behaviour of the spectral measures of MANOVA beta
ensembles when the parameters a, b are fixed.

Theorem 5.3. The spectral measure µn of Jn,β converges weakly, in probability, to the

arcsine distribution. For any polynomial p,
√
nβ√
2
(〈µn, p〉 − 〈arcsine, p〉) → N (0, σ2

p).

Remark 5.4. Here we consider MANOVA beta ensembles with fixed parameters a, b. In
[10], the author considers the limiting behaviour of empirical distributions and spectral
measures when one or both parameters a, b grows with n. It turns out that in that regime,
the limit distribution is the Marchenko-Pastur distribution or the semicircle distribution.
See also [5] for the limiting behaviour of empirical distributions of β-Jacobi ensembles
when parameters a, b also vary with n.

6 Extend the central limit theorem to large class of test

function

Recall that by Theorem 2.9, for any polynomial p, as n → ∞,
√
nβ√
2
(〈µn, p〉 − E[〈µn, p〉]) d→N (0, σ2

p),

where

σ2
p = lim

n→∞
nβ

2
Var[〈µn, p〉].

For all three beta ensembles in this paper, the spectral measure µn can be written as

µn =
n
∑

i=1

wiδλi
,

where the weights {wi} are independent of the eigenvalues {λi} and have Dirichlet distri-
bution with parameters (β/2, . . . , β/2). One can easily show that

E[wi] =
1

n
,E[w2

i ] =
β + 2

n(nβ + 2)
,E[wiwj ] =

β

n(nβ + 2)
, (1 ≤ i 6= j ≤ n).

Therefore for any test function f , we can derive the following relations

E[〈µn, f〉] = E[〈Ln, f〉], (9)

Var[〈µn, f〉] =
βn

βn+ 2
Var[〈Ln, f〉] +

2

nβ + 2

(

E[〈µn, f
2〉]− E[〈µn, f〉]2

)

. (10)
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The mean of a random measure µ, denoted by µ̄, is defined to be a probability measure
satisfying

〈µ̄, f〉 = E[〈µ, f〉],
for all bounded continuous function f . However, the above relation still holds for a con-
tinuous function f with E[〈µ, |f |〉] < ∞. Denote by C(R) the set of continuous function
on R and let

D = {f ∈ C(R) : nVar[〈Ln, f〉] → 0, 〈µ̄n, f〉 → 〈µ∞, f〉, 〈µ̄n, f
2〉 → 〈µ∞, f2〉}.

Then D is a linear space containing all polynomials. It follows from the relation (10) that
for f ∈ D,

lim
n→∞

nβ

2
Var[〈µn, f〉] = 〈µ∞, f2〉 − 〈µ∞, f〉2 =: σ2(f).

Next, we use the following result to extend the central limit theorem to any test
function in D.

Lemma 6.1 ([1, Theorem 3.2]). Let {Yn}n and {Xn,k}k,n be real-valued random variables.

Assume that

(i) Xn,k
d→Xk as n → ∞;

(ii) Xk
d→X as k → ∞;

(iii) for any ε > 0, limk→∞ lim supn→∞ P(|Xn,k − Yn| ≥ ε) = 0.

Then Yn
d→X as n → ∞.

Theorem 6.2. For f ∈ D,

√
nβ√
2

(

〈µn, f〉 − E[〈µn, f〉]
) d→N (0, σ(f)2),

where σ2(f) = 〈µ∞, f2〉 − 〈µ∞, f〉2.
Proof. Let f ∈ D. Then since µ∞ has a compact support, we can find a sequence of
polynomials {pk} converging to f uniformly in the support of µ∞. Thus

σ2(pk) → σ2(f) as k → ∞.

Let

Yn =

√
nβ√
2
(〈µn, f〉 − E[〈µn, f〉]),

Xn,k =

√
nβ√
2
(〈µn, pk〉 − E[〈µn, pk〉]).

We only need to check three conditions in Lemma 6.1. Conditions (i) and (ii) are clear.
For the condition (iii), note that (f − pk) ∈ D, and thus

lim
n→∞

Var[Xn,k − Yn] = 〈µ∞, (f − pk)
2〉 − 〈µ∞, (f − pk)〉2,

which tends to zero as k → ∞. Therefore, for any ε > 0,

lim
k→∞

lim sup
n→∞

P(|Xn,k − Yn| ≥ ε) ≤ lim
k→∞

lim sup
n→∞

1

ε2
Var[Xn,k − Yn] = 0.

The theorem is proved.
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Remark 6.3. (i) The class D contains all test functions f for which the central limit
theorem holds for the linear statistics n(〈Ln, f〉− 〈µ∞, f〉). See [7] for a class of test
functions in the case of Gaussian beta ensembles.

(ii) For Gaussian orthogonal ensembles and Gaussian unitary ensembles, the above cen-
tral limit theorem was established for continuous bounded function f with bounded
derivative [11, Theorem 3.3.3].
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