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Abstract

Climate models robustly imply that some significant change in precipitation patterns

will occur. Models consistently project that the intensity of individual precipitation events

increases by approximately 6-7%/K, following the increase in atmospheric water content, but

that total precipitation increases by a lesser amount (2-3%/K in the global average). Some

other aspect of precipitation events must then change to compensate for this difference. We

develop here a new methodology for identifying individual rainstorms and studying their

physical characteristics – including starting location, intensity, spatial extent, duration,

and trajectory – that allows identifying that compensating mechanism. We apply this

technique to precipitation over the contiguous U.S. from both radar-based data products

and high-resolution model runs simulating 100 years of business-as-usual warming. In model

studies, we find that the dominant compensating mechanism is a reduction of storm size. In

summer, rainstorms become more intense but smaller; in winter, rainstorm shrinkage still

dominates, but storms also become less numerous and shorter duration. These results imply

that flood impacts from climate change will be less severe than would be expected from

changes in precipitation intensity alone. We show also that projected changes are smaller

than model-observation biases, implying that the best means of incorporating them into

impact assessments is via “data-driven simulations” that apply model-projected changes to

observational data. We therefore develop a simulation algorithm that statistically describes

model changes in precipitation characteristics and adjusts data accordingly, and show that,

especially for summertime precipitation, it outperforms simulation approaches that do not

include spatial information.

1 Introduction

Some of the most impactful effects of human-induced climate change may be changes in

precipitation patterns (AR5; IPCC, 2013). Changes in future flood and drought events

and water supply may incur social costs and mandate changes in management practices
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(e.g. Rosenzweig and Parry, 1994; Vörösmarty et al., 2000; Christensen et al., 2004; Barnett

et al., 2008; Karl, 2009; Nelson et al., 2009; Piao et al., 2010). Understanding and projecting

changes in future precipitation patterns is therefore important for informed assessment of

climate change impacts and design of adaptation strategies.

Future changes in spatio-temporal precipitation patterns are not well studied, but climate

models show consistent hydrological changes in simulations under higher CO2 (e.g. Hennessy

et al., 1997; Giorgi and Bi, 2005; Tebaldi et al., 2004), which imply that some changes must

occur. Models robustly project uniform increases in precipitation intensity (amount/time

when rain occurs) of ≈ 6% per degree temperature rise, following atmospheric water content

governed by Clausius-Clapeyron (e.g. Held and Soden, 2006; Willett et al., 2007; Stephens

and Ellis, 2008; Wang and Dickinson, 2012). However, model total precipitation rates rise

differently: in the global average, by only 2-3% per degree (e.g., Knutson and Manabe, 1995;

Allen and Ingram, 2002; Held and Soden, 2006; Stephens and Ellis, 2008; Wang and Dickin-

son, 2012). (Time-averaged precipitation rise exceeds Clausius-Clapeyron only in the deep

tropics.) Nearly all latitudes then show a discrepancy between changes in rainfall inten-

sity and total amount that must be “compensated” by some other change in precipitation

characteristics. In the midlatitudes, the amount/intensity discrepancy resembles the global

average (Figure 1). Model midlatitude rain events must therefore experience changes in

frequency (fewer storms), duration (shorter storms), or size (smaller storms).

Current approaches to studying future precipitation cannot determine changes in rain-

storm characteristics, because they do not consider individual events. Studies generally

analyze precipitation at individual model grid cells (Knutson and Manabe, 1995; Semenov

and Bengtsson, 2002; Stephens and Ellis, 2008) or over broad regions (Tebaldi et al., 2004;

Giorgi and Bi, 2005). Effects from changes in rainstorm frequency, duration, and size are

all confounded in local or spatially-aggregated time series. To overcome this limitation, we

need an approach that identifies, tracks, and analyzes individual rainstorms. Currently-used

rainstorm tracking algorithms are not appropriate for climate studies: they are designed for

severe convective storms in the context of nowcasting and forecasting using weather forecast-

ing models (Davis et al., 2006b), radar (e.g. Dixon and Wiener, 1993; Johnson et al., 1998;

Wilson et al., 1998; Fox and Wikle, 2005; Xu et al., 2005; Davis et al., 2006a; Han et al., 2009;

Lakshmanan et al., 2009), or satellite images (Morel and Senesi, 2002a,b). Storm studies in

climate projections have also focused only on very large and intense events (Hodges, 1994;

Cressie et al., 2012). These algorithms cannot efficiently handle lower-intensity precipita-

tion events with more complicated morphological features and evolution patterns. Studying

future precipitation patterns requires new storm identification and tracking strategies.

Such studies also require high-resolution model output. For a model to plausibly rep-
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resent changes in real-world rain events it must at minimum resolve those events. Com-

putational constraints mean that typical General Circulation Model (GCM) runs used for

climate projections have spatial resolution of order 100 km, too coarse to represent morpho-

logical features of localized rainstorms. Fine-grained observational data can be generated

from radar datasets; studies of future precipitation require dedicated model runs at similar

resolution, at the price of more limited time series.

Finally, making practical use of insights into changes in rainstorm characteristics re-

quires methods for combining model projections with observational data. Hydrological and

agricultural impact assessments cannot use scenarios of future precipitation from even high-

resolution models, since model precipitation can differ considerably from that in observations

(e.g. Ines and Hansen, 2006; Baigorria et al., 2007; Teutschbein and Seibert, 2012; Muerth

et al., 2013). The two primary current approaches to addressing these biases are bias cor-

recting model output based on observations (of means or marginal distributions) (e.g. Ines

and Hansen, 2006; Christensen et al., 2008; Piani et al., 2010a,b; Teutschbein and Seibert,

2012) and “delta” methods that adjust observations by model-projected changes (in means

or marginal distributions) (e.g. Hay et al., 2000; Räisänen and Räty, 2013; Räty et al., 2014).

Neither approach allows representing changes in spatio-temporal dependence. Some work

has extended bias correction methods to also address biases in spatio-temporal dependence

(Vrac and Friederichs, 2015), but these methods do not allow for future changes in that

dependence. Existing delta methods capture current present-day spatio-temporal depen-

dence but do not address future changes. An important objective of this work is therefore

to extend delta methods to capture model-projected changes in rainstorm characteristics,

while still ensuring the greatest fidelity to real-world precipitation statistics.

In this work we both seek to understand the changes in rainstorm characteristics in

future model projections that compensate for the amount-intensity discrepancy, and to

develop an approach to transform observed rainstorms into future simulations to account

for those changes. The remainder of this paper is organized as follows. In Section 2, we

describe the high-resolution regional climate model runs and the radar-based observational

data products used in the study. In Section 3, we develop an algorithm for identifying and

tracking individual rainstorms, and in Section 4, we develop metrics for analyzing spatio-

temporal precipitation patterns. In Section 5, we compare precipitation in observations

and present-day and future climate projections, and in Section 6, we develop a simulation

method to generate future precipitation simulations that combines information from models

and observations. Finally, in Section 7, we discuss the implications of these results.
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2 Climate Model Output and Radar-based Observational

Data

As discussed above, model output used to study rainstorm characteristics must be at high

spatial resolution. In this study we use high-resolution dynamically downscaled model runs

over the continental U.S. region, with a constant-spacing grid of 12 × 12 km, described by

Wang and Kotamarthi (2015). These runs use the Weather Forecasting and Research (WRF)

model (Skamarock and Klemp, 2008) as the high-resolution regional climate model, nudged

by a coarser simulation from the Community Climate System Model 4 (CCSM4) (Gent et al.,

2011) of the business-as-usual (RCP 8.5) scenario. (The CCSM4 run is an ensemble member

from the CMIP5 archive; see Meinshausen et al. (2011) and WCRP (2010) for further

information.) Because high-resolution runs are computationally demanding, WRF was run

only for two 10-year segments of the scenario, which we term the “baseline” (1995-2004)

and “future” (2085-2094) time periods. In this analysis we separately analyze summertime

(June, July, August) and wintertime (December, January, February) precipitation because

of seasonal differences in precipitation characteristics. U.S. precipitation is predominantly

convective in summer and large-scale in winter (Figure 2).

Both CCSM4 and WRF are widely-used models for atmospheric and climate science.

WRF has been extensively used for mesoscale convection studies, for dynamical downscal-

ing of climate model projections (Lo et al., 2008; Bukovsky and Karoly, 2009; Wang et al.,

2015), and as a forecasting model for numerical weather prediction (e.g. Jankov et al., 2005;

Davis et al., 2006b; Clark et al., 2009; Skamarock and Klemp, 2008). Validation studies ad-

dressing these different contexts include Ma et al. (2015), who showed in a model-observation

comparison that downscaling CCSM4 output using WRF improved the fidelity of modeled

summer precipitation over China on both seasonal and sub-seasonal timescales. For fore-

casting, Davis et al. (2006b) studied intense and long-lived storms in 4-km resolution WRF

forecasts over the U.S. and found that the model captured storm initialization reasonably

well but showed some apparent biases in storm size, intensity, and duration.

We compare WRF/CCSM4 model output to an observational data product of similar

spatial and temporal resolution: the NCEP Stage IV analysis (“Stage IV data” hereafter),

which is based on combined radar and gauge data (Lin and Mitchell, 2005; Prat and Nelson,

2015). The Stage IV dataset provides hourly and 24-hourly precipitation at 4 km resolution

(constant-spacing 4 × 4 km grid cells) over the contiguous United Stages from 2002 to the

present. (To match our model output, we use ten years of data from 2002 to 2011, and

aggregate the 1-hourly data to 3-hourly.) Stage IV data are produced by ‘mosaicing’ data

from different regions into a unified gridded dataset. This mosaicing leaves artifacts in the
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spatial pattern of average precipitation: the range edges of individual radar stations are

visible by eye in Figure 3. These artifacts do not however compromise our analysis.

Comparison of the present-day WRF run with Stage IV data shows that the model cap-

tures seasonal mean precipitation amounts well (Tables 1 and 2, the first row), but with

a large bias in rainfall intensity. Rain rates in precipitating grid cells in WRF output are

∼50% lower than in observations (Figure 4). The bias is consistent across two orders of

magnitude in intensity, nearly identical in both summer and winter, and unlikely to be a

sampling artifact, since both model and observation grid cell sizes (16 and 144 km2) are

well below typical areal sizes of precipitating events. Because the model matches observed

total rainfall, the too-low intensity in individual rainstorms must be compensated by some

other bias in precipitation characteristics: model precipitation events may be more frequent,

more numerous, larger in size, or any combination of these factors. (Davis et al. (2006b)

has noted a bias in WRF toward too-large rainstorm events, though in a study of only the

most severe storms.) Understanding model-observation biases therefore becomes an an anal-

ogous problem to understanding differences in present and future model projections. Both

cases involve amount-intensity discrepancies, that imply some change in spatio-temporal

precipitation properties that can be understood only by identifying and tracking individual

rainstorms.

Intensity differences do introduce one minor complication in analysis. It is typical in

statistical analyses of precipitation to cut off all data with precipitation intensity below a

particular threshold, to remove spurious light precipitation and make analysis tractable.

In our case the intensity distributions for model and observation are different, suggest-

ing that different cutoffs might be warranted. For simplicity, we apply the same cutoff of

0.033mm/hour (black line in Figure 4) to both model and observations. This choice should

negligibly affect the overall results, since even in the worst case (model wintertime), the

cutoff excludes less than 2% of seasonal precipitation.

3 Identifying and Tracking Individual Rainstorms

As discussed previously, existing algorithms for finding rainstorm events are appropriate

only for the strongest storms. We develop here a more general approach. Finding rainstorm

events in spatio-temporal data involves two tasks:

A. Rainstorm identification: Divide the precipitation field at each time step into individual

storms

B. Rainstorm tracking: Build rainstorm events evolving over time by tracking identified

storms across consecutive time steps
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We describe each step below, and provide more detail on algorithms in Section S1 in the

Supplementary Document.

3.1 Identifying rainstorms at a single time step

We first identify rainstorms from the precipitation field at each time step t. This step

is essentially a clustering problem because it requires grouping contiguous regions of grid

cells with positive precipitation amount (i.e. > 0.1 mm/3 hour, due to the removal of

smaller values described in Section 2) into clusters based on their morphological features and

proximity. Treating each contiguous precipitation region as an individual rainstorm leads to

overly separated rainstorm events, ignoring the possibility that a single storm system can

often have multiple separate precipitation regions (see Figure 5a left panel and Figure 6

step 1). Here we group nearby regions into “rainstorm segments” using a technique termed

almost-connected component labeling (Eddins, 2010; Murthy et al., 2015). The basic idea is

to find groups of connected rainstorm regions, in each of which the regions are close enough

to form a contiguous area after some dilation of individual regions. This procedure provides

a natural way of grouping precipitation regions based on their proximity and morphological

features. Unlike other traditional clustering algorithms such as k-means clustering (Hartigan

and Wong, 1979), the approach does not require a pre-specified number of clusters and hence

enables quick and automatic clustering of contiguous regions.

However, almost-connected component labeling often suffers from a “chaining effect”

producing overly large rainstorm segments: small number of grid cells located between two

large regions can cause awkward linkage between the two regions. (Figure 5a, right panel).

We use a three stage procedure based on mathematical morphology (cf. Han et al., 2009)

that treats “large” regions and “small” regions separately to avoid the chaining effect caused

by small regions: In the first stage we form segments using only the “large” regions (Figure

6, step 2). In the second stage we assign small regions to the closest existing segments from

the previous stage if they are close to the existing segments (Figure 6 step 3). In the third

stage we form segments of the remaining small regions (Figure 6 step 4).

3.2 Tracking rainstorms over different time steps

Once the rainstorm segments for all time points are identified, we link them in different time

steps to form rainstorm events evolving over time and space. This task is complicated by

the fact that rainstorms often split into multiple segments that drift in different directions.

(See Figure 5b for illustration.) Most existing algorithms are not designed to handle this

possibility. Our new algorithm is partly inspired by the work of Hodges (1994) and Morel

and Senesi (2002a), but extends their work to more efficiently identify segments originating
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from the same rainstorm and track their movement over time.

The algorithm works sequentially in time. For each time step from t = 1 to T , we assign

each rainstorm segment to one of the existing rainstorm events based on the two criteria:

(i) the shapes of linked rainstorms in two consecutive time steps are morphologically similar

enough to be considered as the same rainstorm, and (ii) the rainstorm location and the

movement direction do not change too abruptly over time. If we cannot find any exist-

ing rainstorm events that meet these criteria for a rainstorm segment, we initialize a new

rainstorm event starting with that segment. On the other hand, if more than two events

satisfy the criteria, we assign the rainstorm segment to the most morphologically similar

event. Since the multiple rainstorm segments at the same time step can be assigned to the

same rainstorm event, our algorithm can incorporate situations where a rainstorm splits into

multiple segments. We denote the resulting rainstorm events S1, . . . , SN . Figure 7 shows

example time steps for rainstorm tracking results from our algorithm. As shown in the fig-

ure, the algorithm can simultaneously track different rainstorms with various morphological

features reasonably well.

4 Describing Rainstorm Characteristics

Once rainstorms are identified and tracked, the goal is to quantitatively describe them.

However, there is little precedent in the literature for this task; most previous rainstorm

studies focus only on analyzing storm trajectories or tracks (Hodges, 1994; Morel and Senesi,

2002b). We therefore develop a set of metrics for characterizing storms, and follow a four-

stage process for describing spatio-temporal precipitation patterns and comparing those

patterns between different climate states (or between model output and observations):

A. Compute metrics for individual rainstorms: duration, size, mean intensity and central

location.

B. Extend those metrics to apply to aggregate precipitation. That is, we decompose

the total precipitation amount into the product of: average intensity, a size factor, a

duration factor, and the number of rainstorms.

C. Estimate the geographic variation of those aggregate metrics. That is, we find spatial

patterns of rainstorm properties.

D. Compare precipitation patterns across model runs or across models and observations.

We describe the algorithms for each of these step below.
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4.1 Metrics for individual rainstorms

We characterize each individual rainstorm event Si with four metrics: duration, size, mean

intensity, and central location. For completeness, we describe below how each metric is

computed. Note that size, location, and amount metrics are not scalars but vectors or

matrices over the lifetime of each storm.

Duration. The storm identifying algorithm gives us the beginning and ending timesteps

of the lifetime of storm Si (b(Si) and e(Si), respectively). Since all analysis involves 3-hour

timesteps, the rainstorm duration is l(Si)×3 hours, where l(Si) = e(Si)− b(Si) + 1.

Size. Rainstorm size is a vector of length l(Si) timesteps. The storm identification

algorithm identifies a number s(Si, t) of grid cells as part of the storm at each timestep t.

(We do not need to estimate fractional coverage of individual grid cells when using a grid

as fine as 12 × 12 km or 4 × 4 km.) The size at each timestep is the s(Si, t)×144 km2 for

the model output and s(Si, t)×16 km2 for the observational data.

Mean intensity. Also a time series of length l(Si). At each time step t when the

rainstorm Si exists over the contiguous U.S. we compute its average precipitation amount

a(Si, t) by taking the average of the precipitation intensity over all grid cells identified

with the storm, i.e. a(Si, t) =
∑s(Si,t)

k=1 vi,t,k/s(Si, t), where vi,t,k (k = 1, . . . , s(Si, t)) is the

precipitation intensity at each grid cell location of Si at time t.

Central location. The central location of each rainstorm event Si is a l(Si)× 2 matrix,

where each row c(Si, t) is the the center of gravity weighted by the precipitation amount in

each grid cell. This location measure is invariant to rotation and translation of the rainstorm

event on the surface of the globe. (See Section S2 in the Supplementary Document.)

4.2 Factorizing total precipitation

Using the computed metrics for each rainstorm, we decompose the total precipitation amount

into the following four factors to describe different spatio-temporal aspects of precipitation

patterns:

Total Amount = Average Intensity× Size Factor×Duration Facter×Number of Rainstorms.

The definitions of these factors ensure that the same fractional change in different factors

leads to the same total amount change (see below), so that we can make a fair comparison

between the effects of changes in different rainstorm properties. We use these factors to

compare the baseline period and the future period to identify which spatio-temporal aspects

of rainstorms are the main drivers of precipitation pattern changes and how they contribute

to the total precipitation amount change in Section 4. We also use them to compare the
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baseline period and the observational data to examine the model-observation discrepancy

in terms of rainstorm characteristics. Each factor is defined as follows:

Average intensity (mm/hour). The average precipitation intensity is the size-weighted

average of all rainstorm intensities. Since the length of each time step is 3 hours, the hourly

intensity is computed as 1
3 ×

∑N
i=1

∑e(Si)
t=b(Si)

a(Si, t)× s(Si, t)/
∑N

i=1

∑e(SI)
t=b(Si)

s(Si, t).

Size factor (km2). Size factor is the average storm size per each rainstorm event at

each time step, computed as (the area of each grid cell)×
∑N

i=1

∑e(Si)
t=b(Si)

s(Si, t)/
∑N

i=1 l(Si),

where the area of each grid cell is 144 km2 for the model output and 16 km2 for the obser-

vational data.

Duration factor (hour/rainstorm). Duration factor is the mean duration per each

rainstorm event. The factor is computed as 3 hours×
∑N

i=1 l(Si)/N , because the length of

each time step is 3 hours.

Number of Rainstorms. The number of rainstorms is simply given by N .

4.3 Spatial analysis

We can also use the computed metrics to find and visualize the spatial distribution of the

rainstorm characteristics over the area of interest. Following a standard procedure in spatial

point process analysis (see, e.g. Gelfand et al., 2010, Chapter 21), we estimate the expected

number of rainstorms originate at a spatial location s as

n(s) =

N∑
i=1

k(c(Si, 1), s),

where k(s1, s2) is a kernel function that satisfies
∑

s2∈S k(s1, s2) = 1 and smoothly decays

as the distance between s1 and s2 increases, and S is a set of all grid cell locations in the

contiguous United States. See Section S3 in the Supplementary Document for more details

about the choice of the kernel function k(s1, s2). To estimate the spatial pattern of the

rainstorm metrics we apply spatial smoothing using the same kernel function k(s1, s2). See

Section S4 in the Supplementary Document for further details about how to compute the

spatial pattern.

4.4 Comparing Rainstorm Characteristics in Two Precipitation Pat-

terns

The approaches described in Section 44.1–4.3 above provide a framework to compare any

two spatio-temporal precipitation datasets and to identify similarities and differences in

rainstorm characteristics. For each dataset, we decompose the total precipitation amount

over the study area into its component factors using the method described in Section 44.2.
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To identify differences, we compute the ratios of the factors in the datasets being compared.

This analysis helps us to understand, in an average sense, which characteristics of rain-

storms drive differences in spatio-temporal precipitation. To identify geographic variations

in the various rainstorm characteristics, we also use the spatial analysis of Section 44.3 to

map individual rainstorm metrics across the study area, and compare different datasets by

taking ratios. (Note that some metrics – the annual mean and the intensity of precipitation

– are pixel-wise rather than spatially smoothed characteristics.) To quantify the statistical

uncertainty in estimating the ratios of factors, we construct 95% confidence intervals by

bootstrap sampling (shown in last column of Tables 3–6). See Section S5 in the Supplemen-

tary Document for details of uncertainty analysis.

Note that both model output and observations include large numbers of small rainstorms

with negligible precipitation. These tiny storms do not affect the average intensity and

size factors, which are weighted by amount and size, but if included in the analysis would

dominate estimates of the duration factor and number of storms, reducing the utility of

these factors at providing information about events that contribute significantly to overall

rainfall. We therefore exclude those rainstorms with the lowest individual precipitation

amounts (whose values add up to 0.1% of total precipitation).

5 Results

The methods described above allow us to compare rainstorm characteristics both between

model output and observations and between model output for present-day and future climate

states. In both cases we know a priori that there must be differences in spatio-temporal

precipitation characteristics.

We find that WRF output and Stage IV data show substantial differences in rainstorm

characteristics, but with different discrepancies in summer (Figure 8 and Table 1) and winter

(Figure 9 and Table 2). In both seasons, we find that intensity in modeled precipitation

events is considerably too low (as was evident even without rainstorm identification) even

though U.S.average total precpitation is similar in model and observations. In summer, the

compensating factor that resolves this discrepancy is predominantly size. WRF summer

rainstorms are roughly 30% too weak but also 50% too large (Table 1). The size bias is

similar to that found by Davis et al. (2006b). However, while Davis et al. (2006b) reports

that the WRF summer precipitation duration is too long, we find no bias in rainstorm

duration. In our model output, the total number of summer storms across the study area

is similar to that in observations, but with geographic patterns of bias: too many storms in

the north and too few in the south (Figure 8).
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In winter, when U.S. precipitation is predominantly large-scale rather than convective,

model biases are both qualitatively and quantitatively different than in summer. The inten-

sity and size effects seen in summer become still larger in winter, and other factors become

discrepant as well. WRF winter rainstorms are substantially weaker, larger, fewer, and

longer than those in Stage IV data. (Figure 9 and Table 2). Winter storms are half as

intense in the model as in observations and more than twice as large, biases which roughly

cancel. The number of winter storms is also half that of observations, and their duration

twice as long. Changes in storm number are nearly uniform across the study area, but

other biases do not cancel locally. They do approximately cancel across the study area,

so that while local precipitation amounts can be discrepant from observations, model and

observations again are in reasonable agreement for total U.S. average precipitation.

While the model-observation comparison is sobering, WRF model runs still offer a self-

consistent response to changed climate conditions, and can provide insight into potential

future changes in precipitation characteristics. We compare the baseline and future WRF

runs using the same approaches described above. The precipitation responses to climate

change again differ by season, and show similar distinctions between summer convective and

winter large-scale precipitation as those seen in the model-observation comparison.

In the summer, the main drivers of changing precipitation patterns are again rainstorm

intensity and size (Table 3 and Figure 10, first column). Changes in the other aspects

(duration and the number of storms) are relatively small and not statistically significant.

For convective precipitation, at least in the WRF model runs used here, the compensating

mechanism that allows a 3%/K increase in total precipitation amount that differs from the

6%/K increase in precipitation intensity is a decrease in the size of individual rainstorms

(-3%/K).

In the winter, changes in precipitation patterns in future climate conditions are more

complicated (Table 4 and Figure 10, second column). Across the whole U.S. the winter

intensity effect is about a third less than that in summer, but still significant (4.4%/K) and

larger than the change in total rainfall (2.5%/K). In contrast to summer, reduction in the

size, duration and number of storms all play a role in compensating for that discrepancy.

(Size is estimated as the most important factor, but these differences are not statistically

significant.) Interestingly, while each of these factors show different geographic patterns of

change, the change in annual mean is much more spatially uniform. This regional variation

in compensation mechanisms means that different regions show different spatio-temporal

precipitation changes that can be significant for socioeconomic impacts.

Winter patterns of total precipitation changes are also less uniform than those in sum-

mer. In both seasons, a part of the U.S. Southwest shows decreased rather than increased
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precipitation under future climate conditions, but the area of drying becomes larger in the

winter, extending to about 1/3 of the contiguous U.S. This area provides a useful test area

for examining the mechansisms driving changes in rainstorm characteristics, since it presents

an even stronger discrepancy between changes in intensity and total amount of precipitation

than does the average U.S. In the drying region, the intensity response is muted (and even

negative in places), but still on average positive (Tables 5 and 6, the first and second rows).

That is, average storm intensity increases (by +2-3%/K in summer and winter) while total

precipitation actually decreases (by -5-6%/K). We therefore repeat the analysis of changes

in precipitation characteristics on the region of drying. (The analyzed areas for each season

roughly coincide with the red regions in the maps in the first row of Figure 10; see Figure S1

for the exact areas analyzed.) We find that reduction of rainstorm size remains the dominant

compensating factor in both summer and winter, with storm shrinkage substantial enough

(more than -6%/K in both seasons) to result in decreased total precipitation even though

storms are stronger (Tables 5 and 6). The main drivers of changing precipitation patterns

in drying areas again appear to be partially compensating changes in intensity and size.

Finally, we conduct a preliminary graphical exploration of potential changes in rainstorm

trajectories in changing climate conditions. Once rainstorms are identified across time,

the trajectory of each storm is easily found by linking its central locations at each time

step. Figures S2 and S3 in the Supplementary Document show rainstorm trajectories in the

baseline and the future model runs. Although more detailed analysis would be useful, we

see no clear sign of changes. That is, regional differences in total precipitation change do

not appear to be driven by deviations on storm trajectories.

6 Simulating Future Precipitation Patterns by Chang-

ing Size and Intensity Distributions

The model runs used in this analysis suggest that rainstorm properties would change sig-

inficantly under future climate conditions. But model biases are strong enough that model

projections alone are unsuitable for impacts assessments. We therefore seek to produce

simulations of future precipitation that reflect the model-projected changes in rainstorm

characteristics, but also incorporate information from observational data.

We take a data-driven simulation approach, i.e. we transform observational data into a

future simulation using information from the climate model runs. For simulating rainstorm

changes, this approach has a clear advantage over bias correction of model output, because

the model biases in rainstorm characteristics are much larger than than the expected changes

from present to future climate states. The approach has been used in simulations of temper-
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ature (Leeds et al., 2015; Poppick et al., 2015) and in a few studies of precipitation (e.g. Hay

et al., 2000; Räisänen and Räty, 2013; Räty et al., 2014), but in no case allowing for changes

in spatio-temporal dependence. (This weakness is shared with bias correction approaches

applied to individual time series.)

In this section we propose an algorithm for precipitation simulations that includes ex-

pected changes in the two aspects of rainstorm characteristics that change most significantly

in future conditions, size and intensity. This method should be highly appropriate for sim-

ulating future summer precipitation, when factors other than size and intensity are largely

unchanged. For winter precipitation, the method may be problematic because the duration

and number of storms also show large, generally compensating changes. (Accounting for

those changes would be more complicated, however, because the number of storms increases

in future projections, requiring creation of rain events not present in observations.)

Our simulation approach consists of two steps:

A. Changing the size of individual rainstorms in the observational record

B. Changing the distribution of precipitation intensity in the transformed data from step

1

In the remainder of this section, we first describe the algorithm, and then validate it by test-

ing whether it produces improved simulation results over a simple grid-cell level simulation

that incorporates no spatial information. We describe only the basic steps here, and give

details and equations in Section S6 in the Supplementary Document.

6.1 Changing Individual Rainstorm Sizes

To change the sizes of observed rainstorms, we first determine the location-dependent re-

sizing factors by comparing the estimated size functions between the baseline and future

model runs (computed using the approach in Section 44.3). We then resize each observed

rainstorm at each time step using the resizing factor that corresponds to its central location.

To avoid changing the shape of a storm, we follow a simple resizing procedure that involves

changing the distances between the storm center and all individual grid cells in the storm

by the same factor. We regrid the rainstorm mathematically to a grid whose spacing is the

inverse of the resizing factor (Figure 11a, second panel). We then resize these new grid cells

to those of the original grid, while keeping the center of the resulting rainstorm as close as

possible to its original location (Figure 11a, third panel).

Note that in some cases a rainstorm event is split into two or more sub-storms that are far

from each other. For resizing purposes, we consider that those two parts warrant individual

treatment if the shortest distance between their edges is greater than 120 km. In this case
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we define separate central locations and separate resizing factors for each sub-storm in the

scattered rainstorm event.

6.2 Changing Intensity Distribution at Each Grid Cell Location

In the second step of the algorithm, we change the time series at individual grid cell locations

to adjust the marginal distribution of intensities. An illustrative example of the transforma-

tion described here is shown in Figure 11b. The basic idea is to change the observed time

series using a transformation that turns the marginal distribution of the baseline time series

into the future time series at the same geographical location. Since the observational data

are not on the same grid as the model output, we use the time series at the closest model grid

cell location to find the transformation. Note that we are transforming the observed time

series from the dataset given by the resizing procedure described in the previous section,

not the original observational dataset. Therefore, to find the right transformation, we need

to transform the baseline model output with the same resizing procedure and use the time

series from the changed output.

We first change the number of wet time steps (i.e. time steps with positive precipitation

amount) at each location as suggested by the model time series at the same geographical

location. If the model time series shows a decrease in the number of wet time steps, we apply

the same fractional change by turning the lowest intensities into zeros. If the number of wet

time steps increases, we promote some of dry time steps (i.e. time steps with no precipitation

amount) to wet time steps to apply the same fractional change. To choose the dry time steps

to promote, we use an idea similar to that described in Vrac et al. (2007), which creates

rainfalls that are close in space or time to existing rainfalls. We first promote as many time

steps as possible based on the precipitation amounts in their spatially adjacent grid cells.

If there are not enough grid cells with positive precipitation in their spatially adjacent grid

cells, we select the time steps based on the precipitation amounts in their adjacent time

steps.

Once the number of wet time steps is changed, we transform the marginal distribution

of positive intensities for each time series. For each value of an individual time series, we

find the rescaling factor by computing the ratio between the corresponding quantiles of the

baseline intensities and the future intensities. We multiply each value by the rescaling factor

computed in this way to obtain a simulated time series. We transform the time series at all

grid cell locations in this way to obtain a simulation for future precipitation.
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6.3 Comparing Simulation Results to Grid Cell-wise Simulation

We evaluate the performance of our simulation approach by applying it to the baseline model

run itself, whose future state is known. We then check if the resulting simulated precipitation

patterns indeed reproduce statistical characteristics of the actual future run. As a metric for

comparison, we evaluate the distribution of “dry spell” lengths (successive timesteps without

rainfall), a characteristic that is not itself explicitly adjusted in our simulation method. We

compare the performance of our simulation, that incorporates spatial information about

rainstorm events, with a simpler “grid cell-wise simulation” that uses no information from

adjacent grid cells (but instead simply changes the intensity distribution at a given location

as in Section 6.2b). Table 7 summarizes the results for five regions of the United States

(Midwest, Great Plains, Northeast, Wet South, and Dry South, see Figure S4 for how

we define those regions). In all regions, the rainstorm event-based approach produces offers

advantages over the simpler grid-cell-based approach in summer (when precipitation changes

are dominated by intensity and size, the two factors our approach addresses). In winter, when

rainstorm changes include features not captured by our approach (changes in number and

duration), the event-based approach offers comparable performance but no clear advantage.

For the summer season, the results show that our approach produces a distribution of dry

spell lengths that are closer to those from the future model run than the baseline model run.

Moreover, our approach outperforms the grid cell-wise approach in terms of reproducing

the distribution of dry spell lengths in the actual future run in all regions. The findings

here show that changing the sizes of rainstorm events in our simulation approach leads to a

better performance in simulating individual time series for the summer season. This result

might seem somewhat counterintuitive because one may think that changing properties of

rainstorm events is relevant mostly to the spatial characteristics of the precipitation patterns

and hence not important in improving the grid cell-wise performance. However, we argue

that changing rainstorm events can in fact lead to a better simulation results for each grid

cell by allowing more flexible changes. Figure 12 illustrates this point using an example time

series from the observational data at the grid cell location close to Chicago. As shown in

the figure, our rainstorm event-based approach often removes a whole precipitation event

from the grid cell location by changing the sizes of rainstorm events and therefore leads to

a more flexible adjustment to the overall precipitation pattern at the location. In contrast,

the grid-cell level approach adjusts mostly the magnitudes of the precipitation rate and

therefore other aspects of observed precipitation patterns are largely unaffected.
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7 Discussion

Climate model projections robustly imply that the spatio-temporal characteristics of pre-

cipitation events must change in future climate states. To help understand those potential

changes, we have developed a new framework for analyzing changes or differences in rain-

storm characteristics, including metrics for average intensity, size, duration, and number.

The analysis framework is applicable both for comparison of future to present-day model

simulations and for characterizing and validating the performance of models against ob-

servations. The same metrics allow us also to construct a method for simulating future

precipitation events that combines model-projected changes with observational data.

Using this framework, we compare rainstorm properties in present and future high-

resolution (12 km) dynamically downscaled model runs (WRF driven by CCSM4), and

between those runs and the Stage IV radar-based observational data product. In all cases,

the largest factors driving differences in rainstorm properties are intensity and size, and in

the summer season, when U.S. precipitation is predominantly convective, intensity and size

are virtually the only factors of importance. In the model-observation comparison, WRF

summer storms are too large but also too weak (leaving total precipitation consistent with

observations). In the present-future model run comparison, WRF summer storms become

smaller and stronger under future climate conditions (allowing total precipitation to rise

less steeply than storm intensity). The same size-intensity tradeoffs are apparent in winter,

when U.S. precipitation tends to be large-scale, but differences in the duration and frequency

of rainstorms also become important. In the model-observation comparison, WRF winter

storms are not only too large and weak, but also too few and too long-lasting. In the model

present-future comparison, WRF winter storms become smaller and stronger, as in summer,

but also more numerous and of shorter duration.

These parallels may aid in understanding the underlying causes of model bias. Note

that model-observation biases are generally larger than the projected changes under nearly

a century of business-as-usual CO2 emissions. (To compare model projections to model

bias, see Tables S1 and S2, which reproduce Tables 1 and 2, but for the Stage IV data

area only.) WRF future simulations project that rainstorms become 20-26% more intense

(in summer and winter, respectively), but those future model storms remain weaker than

observed present-day storms (by 13 and 29%). Size biases are even more persistent: for

example, future WRF winter rainstorms become 4% smaller, but remain 130% larger than

in observations (Tables S1 and S2). The scale of these biases suggests that a methodology

for identifying detailed rainstorm characteristics, such as that described here, is essential for

validating and improving the representation of precipitation in models.

Model bias in rainstorm characteristics does not invalidate the lessons of the present-

16



future model comparisons. The changes in precipitation intensity and amount are well-

understood consequences of different physical constraints on the hydrological cycle. The rise

in intensity is driven by the increased water content in warmer air and matches the fractional

rise in saturation vapor pressure (Clausius-Clapeyron). The rise in total precipitation is the

result of the radiative properties of a more infrared-opaque atmosphere, which mandate a

greater export of energy from the surface to the atmosphere as latent heat. The resulting

changes in intensity and amount are robust across models (Knutson and Manabe, 1995; Allen

and Ingram, 2002; Held and Soden, 2006; Willett et al., 2007; Stephens and Ellis, 2008;

Wang and Dickinson, 2012) and are replicated in the dynamically downscaled runs here.

That robustness suggests that the intensity/amount discrepancy shown in models will also

manifest in the real world as climate evolves, and that precipitation events in the real world

must, like those in all simulations, experience some compensating change in spatio-temporal

characteristics. The WRF simulations described here provide a self-consistent response to

these fundamental constraints and at least a potential analogue for understanding the real-

world response. In WRF, compensation largely occurs through reduction in rainstorm size,

with the size factor overwhelmingly dominant in summertime convective precipitation.

The identified changes in summer and winter precipitation characteristics have different

implications for the societal impacts of changing hydrology. The robust rise in precipitation

intensity in model projections has prompted concern about increase in severe flooding events.

The WRF model runs here suggest that risk may be lessened by a reduction in storm size.

From the viewpoint of regional hydrology, more severe but smaller storms may cause less

flooding than more severe but less frequent storms. At the scale of a drainage basin, summer

precipitation per rain event in our simulations rises not as Clausius-Clapeyron but as the

smaller rise in total rainfall amount. In winter, precipitation events show more complex and

potentially more impactful changes than those in summer. Intensity increases are somewhat

less than in summer, but storm frequency (number of initializations) plays a larger role in

compensating for the intensity/amount discrepancy. The combination means that at the

scale of a drainage basin, precipitation per event would increase by more in winter than

in summer. Furthermore, the spatial heterogeneity of changes in wintertime precipitation

characteristics would imply more geographically diverse local impacts of future precipitation

changes. Those heterogeneities also mean that observational studies of limited regions may

be an unreliable guide to average future impacts. For example, Berg et al. (2013) studied

individual rain events in Germany in radar-based data and concluded that while convective

precipitation increases in intensity at warmer temperatures, large-scale precipitation does

not. The WRF model runs analyzed here conflict with that finding, but also suggest that a

possible explanation may simply be geographic diversity in response.
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The potential flood impacts from more severe storms have motivated our development

of precipitation simulation methods for risk assessments. While our approach has a clear

advantage over other plausible simulation methods for summer precipitation, simulating

winter precipitation remains a research priority. Since our model runs project a future

increase in winter storm number, a data-driven simulation algorithm that includes such an

increase would have to create new rainstorms in the observational record, rather than simply

modifying existing storms. Creating physically plausible precipitation events would likely

require consideration of many other variables, including temperature and relative humidity.

In the summer, agricultural assessments would require joint simulation of precipitation and

temperature, another outstanding research challenge.

This analysis represents, to our knowledge, a first attempt to understand and simulate

model-projected changes in precipitation characteristics such as size, duration, and frequency

of rainstorm events. The results provide both insight and a practically useful simulation ap-

proach, and the methodology for identifying and tracking storms opens up many other

potential areas of research. One important area is understanding potential changes in storm

tracks. While our preliminary analysis shows no obvious changes in rainstorm trajectories,

further analysis would be useful. The existing studies that examine rainstorm trajectories

do so rather informally (Hodges, 1994; Morel and Senesi, 2002b; Xu et al., 2005; Cressie

et al., 2012) and formal statistical analysis of rainstorm trajectories is a largely unexplored

area. A second obvious need is for multi-model studies to determine if reduction in rain-

storm size is robustly the dominant mechanism that compensates for the intensity/amount

discrepancy in future projections. Finally, studies at other latitudes may provide additional

insight. The changes in precipitation characteristics identified here, even if robust across

models, are not a response to temperature rise alone and would not be the same in other

geographic regions. In the tropics, total precipitation rises more rather than less steeply

than Clausius-Clapeyron, requiring a different compensating response. Understanding how

precipitation characteristics change in response to geographically differing constraints on the

hydrological cycle may provide new insight into convective organization and structure. All

these studies are made possible only given a methodology for identifying and studying the

physical characterisitics of individual storms.
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Model vs. Observations, Summer (JJA),
Observation Model Difference (%)

Annual Mean (cm/season) 21 20 -4.7

Intensity (mm/hour) 3.8 2.6 -33
Size (104 km2) 3.4 5.3 51
Duration (hour) 10.9 9.7 -11
Number of Storms (storms/hour) 1.5 1.6 5.1

Table 1: Comparison of rainstorm characteristics between the WRF model output and Stage
IV data for the summer season. The number of storms in the last row show the number of
rainstorm initializations (N in Section 3). The values in the first and second columns are the
average values in the model run and observational data respectively, and the values in the
last column are their fractional differences. To remove the Western region where Stage IV
data are problematic, we exclude the model output and data from the region west of 114◦ W
from the comparison. The overall precipitation amount in the model output matches well with
observational with only about 5% underestimation (first row). However, the mean intensity is
33% smaller (second row) and the size factor is 51% larger (third row) than those from the
observations, indicating that the summer rainstorms in the model output are much larger and
weaker comparing to the rainstorms in the baseline model run. The other characteristics, the
duration and the number of rainstorms show relatively smaller differences (fourth and fifth rows
respectively).
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Model vs. Observations, Winter (DJF)
Observation Model Difference (%)

Seasonal Mean (cm/season) 13 14 14

Intensity (mm/hour) 2.4 1.4 -39
Size (104 km2) 9.9 25 150
Duration (hour) 15 24 61
Number of Storms (storms/hour) 0.35 0.17 -53

Table 2: Same as Table 1 but for the winter season. The overall precipitation and intensity
show slightly more discrepancy than the summer season, as the model produces about 14%
more overall precipitation with 39% less intensity (first and second rows respectively). Other
rainstorm properties show much larger differences, as the model rainstorms are much larger
(150%, second row) and longer (61%, third row), but much less frequent (-53%, fifth row) than
observational data.
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Baseline vs. Future, Summer (JJA), Contiguous U.S.
Baseline Future Change (%/K) 95% CI for Change

Seasonal Mean (cm/season) 21.0 24 3.0 (0.98, 5.1)

Intensity (mm/hour) 2.4 3.1 6.2 (3.9, 8.4)
Size (104 km2) 4.9 4.3 -3.2 (-5.2, -0.70)
Duration (hour) 9.8 9.9 0.17 (-0.26, 0.52))
Number of Storms (storms/hour) 1.9 2.3 0.53 (-0.35, 1.4)

Temperature (K) 295.8 300.1 4.3

Table 3: Changes in rainstorm properties from the baseline run to the future run for the summer
season. The first and second columns show the average values of each factor defined in Section
44.2 for the baseline and future runs respectively. The third and fourth columns show the
fractional changes of each factor per temperature change and their 95% confidence intervals
(See Section 44.4 for how they are computed). The last row shows the average temperatures in
the study area for each run and their difference (4.3K). The changes in each factor are computed
as the fractional change divided by the temperature difference. The annual mean increases by
about 3.0%/K (12% in total) and the intensity by about 6.2%/K (27% in total), which aligns
well with existing studies. Both of the changes are statistically significant as the lower limits
are greater than 0%/K. The size factor significantly decreases and the magnitude of change
(-3.2%/K, -13.7% in total) is much larger than other aspects, indicating that the change in size
is the main compensating mechanism for the mismatch between the annual mean and intensity.
Other aspects are projected to remain almost the same.
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Baseline vs. Future, Winter (DJF), Contiguous U.S.
Baseline Future Change (%/K) 95% CI for Change

Seasonal Mean (cm/season) 20 22 2.5 (-1.2, 6.6)

Intensity (mm/hour) 1.6 1.9 4.4 (2.5, 5.8)
Size (104 km2) 30 29 -0.76 (-3.1, 2.0)
Duration (hour) 25 25 -0.34 (-1.6, 1.5)
Number of Storms (storms/hour) 0.17 0.17 -0.73 (-2.5, 1.0)

Temperature (K) 274.9 279.5 4.6

Table 4: The same as Table 3 but for the winter season. The change in temperature is very
close to the summer season (4.6 K). The annual mean increases by about 2.5%/K (11% in total)
and the intensity by about 4.4%/K (20% in total), which are smaller than the values in the
summer season and also those reported by other studies. While the change in size factor is
larger than those in duration and number of storms as summer, the magnitudes of changes in
size and number are similar.
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Baseline vs. Future, Summer (JJA), Dry Region
Baseline Future Change (%/K) 95% CI for Change

Seasonal Mean (cm/season) 3.2 2.6 -4.6 (-9.5, 2.0)

Intensity (mm/hour) 2.8 3.1 2.4 (-1.0, 5.0)
Size (104 km2) 3.8 2.7 -6.6 (-9.9, -2.5)
Duration (hour) 8.6 8.3 -0.8 (-1.7, 0.0))
Number of Storms (storms/hour) 0.39 0.41 1.2 (-0.70, 3.4)

Temperature (K) 299.5 304.0 4.5

Table 5: The same as Table 3 but for the regions where the annual mean precipitation decreases
in the summer season. The factors are computed by treating the region illustrated in Figure
S1 in the Supplementary Document as the study area. The change in temperature is similar
to the entire study area in summer (4.5K). The increase in intensity is much smaller and the
decrease in size factor is much larger than the entire contiguous U.S. Other aspects remain
almost unchanged.
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Baseline vs. Future, Winter (DJF), Dry Region
Baseline Future Change (%/K) 95% CI for Change

Seasonal Mean (cm/season) 4.6 3.4 -6.0 (-10, -0.63)

Intensity (mm/hour) 1.7 1.9 3.1 (-0.26, 5.3)
Size (104 km2) 19 14 -5.9 (-9.3, -3.2)
Duration (hour) 22.0 20.2 -1.4 (-3.0, 0.31))
Number of Storms (storms/hour) 0.067 0.066 -0.50 (-3.3, 2.5)

Temperature (K) 278.2 K 282.6 K 4.4 K

Table 6: The same as Table 4 but for the regions where the annual mean precipitation decreases
in the winter season. The factors are computed by treating the region illustrated in Figure S1
in the Supplementary Document as the study area. The change in temperature is close to the
entire study area in winter (4.4K). Unlike the changes in the entire contiguous U.S. shown in
Table 4, the size factor clearly decreases in the future and the change is statistically significant.
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KL-divergence vs. Actual Future (Dry spell Length)
(×10−2)

Season Region i. Baseline ii. Pixel-wise iii. Storm-based i-iii ii-iii

Summer

Wet South 0.47 0.17 0.09 0.38 0.07
Dry South 0.49 0.25 0.22 0.26 0.03
East Coast 0.39 0.37 0.28 0.11 0.09
Midwest 0.44 0.18 0.12 0.32 0.07
Great Plains 0.19 0.11 0.11 0.08 0.00

Winter

Wet South 0.41 0.33 0.33 0.09 0.00
Dry South 1.32 0.46 0.49 0.83 -0.03
East Coast 0.29 0.28 0.28 0.01 0.00
Midwest 0.34 0.30 0.28 0.06 0.02
Great Plains 0.67 0.49 0.47 0.20 0.03

Table 7: Kullback-Leibler divergences from each simulation to the actual future model runs in
terms of the distributions of dry spell lengths. For each region, we find the dry spell lengths
at each grid cell and pool them into one dataset to make a histogram. We then compare these
histograms using the Kullback-Leibler (KL) divergence As a reference value, we compute the
KL divergence for the baseline model run against the actual future simulation for each state
(third column). For the histograms from the two simulation methods, we compute the KL
divergence to measure how different they are from the histogram of the dry spell lengths from
the actual future run (fourth and fifth columns). The differences in KL-divergence between the
baseline and our approach measures how our simulations are closer to the actual future run
than the baseline model run (sixth column). The difference in KL-divergence between the grid
cell-wise approach and our approach measures how our simulations performs better than those
from the grid cell-wise approach (seventh column). In summer, our approach clearly shows a
better performance in reproducing the distribution of dry spell lengths than the grid cell-wise
approach as the storm size and intensity are the main drivers of rainstorm changes in this
season. In winter, however, our approach does not yield better results compared to the grid-cell
approach because the duration and number of storms also contribute to the changes.
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Figure 1: Fractional changes in the global annual mean of water vapor content in a CCSM4 run
from the CMIP5 archive under the RCP 8.5 scenario (blue circles), the theoretical water vapor
content given by the Clausius-Clapeyron relation (sold blue line), the precipitation intensities
from our WRF runs in the summer (blue asterisk) and winter (blue square) seasons, and the total
precipitation amount in the CCSM4 run (red circles), the WRF runs in summer (red asterisk),
and winter (red square), as a function of the annual global mean temperature changes. The
water vapor content increase in the CCSM4 run and the precipitation intensity changes in the
WRF runs roughly follow the theoretical relationship given by the Clausius-Clapeyron relation,
although the WRF runs in winter show a slightly smaller change. The total precipitation
increases in all cases (CCSM4, WRF summer, and WRF winter) are much lower than this
theoretical relationship.
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Figure 2: Example precipitation patterns in a single time step form (a) WRF and (b) Stage
IV data, for the summer (left panels) and winter seasons (right panels). Both model and
observations show summer precipitation mostly from small-scale convective storms and winter
precipitation from larger-scale phenomena.
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Figure 3: Comparison of time-averaged precipitation in the baseline model run and in Stage IV
observational data. Here we use the 24 hourly Stage IV dataset, to have a better coverage in
the West Coast. The model underestimates precipitation in the East and overestimates it in
the West.
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Figure 4: Cumulative distributions of precipitation vs. intensity in the baseline model output
(solid) and in observations (dashed). Summer is shown in red and winter in blue for both cases.
Data used are 3-hourly precipitation for all individual and model grid cells (i.e. no spatial or
temporal aggregation). Units are restated as hourly precipitation for clarity. High-intensity pre-
cipitation contributes more heavily to cumulative precipitation in observations than in model
output, in both seasons. Differences here imply that intensities of rainfall in model output are
∼ 50% lower than those in observations. This difference is unlikely to be a sampling artifact of
spatial resolution since both model and observation grid cell sizes (144 and 16 km2) are consid-
erably smaller than typical storm sizes. Black line marks our cutoff threshold for the analysis.
(We exclude precipitation below intensity of 0.33 mm/hour). This cutoff negligibly affects the
analysis; even in the worst case (model winter) we exclude only 1.8% of total precipitation.
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(a)

(b)

Figure 5: Challenges posed by our rainstorm identification and tracking problem. (a) All
contiguous precipitation regions distinguished by different colors from an example time step
(left panel) and a standard clustering result in naive almost-connected-component labeling (right
panel). Due to the chaining effect, the labeling approach results in overly large segments. (b)
An example of a rainstorm split into two different rainstorms over time. Our tracking algorithm
needs to be able to track both sub-storms and label them as the same rainstorm event.
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Figure 6: Illustration of our rainstorm identification algorithm. In Step 1, we identify all
contiguous precipitation areas. In Step 2, we apply almost-connected-component labeling for
only the large areas. In Step 3, we add small areas to the existing nearby rainstorm events if
they are close enough to any existing ones. In Step 4, we form rainstorm events that consist of
only the remaining small areas. This approach prevents the chaining effect shown in Figure 5
(a).
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Figure 7: Rainstorm events constructed by our tracking algorithm in three consecutive example
time steps. The rainstorm events are distinguished by different colors. Rainstorms with the
same colors at different time steps belong to the same rainstorm objects. Our algorithm can
efficiently track multiple events simultaneously.
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Figure 8: Model-observation comparison for the summer season. The discrepancy plots (third
column) are obtained by computing the fraction of difference from the baseline model run
(first column) to observational data (second column) at each grid cell. The annual mean and
intensities are computed for individual pixels (first and second rows). Each pixel of the panels
in the third row represents the average size of rainstorms that pass by the location. Each pixel
of the panels in the fourth and fifth rows represents the average duration and frequency for
the storms that originate form the location. The observed rainstorms are much more intense
and smaller compared to the rainstorms in the baseline model run. The discrepancy in the
number of rainstorms shows clear north-south contrast, with too many observed rainstorms in
the northern half and too less in the southern half of the contiguous U.S.
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Figure 9: The same plots as those in Figure 8 but for the winter season. The observational data
have much higher total annual precipitation in the East Coast and Southeast regions and much
lower in the remaining regions. The observed rainstorms are generally much larger in number
and much smaller in size except for Florida, Maine and the southern end of Texas.
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Figure 10: Spatial patterns of fractional changes in annual mean, intensity, size, duration, and
the number of storms in the summer and winter seasons. The areas screened out by dots roughly
cover the regions with precipitation amount less than 10 cm/season. As similar to Figure 8,
each pixel of the panels in the first and the second rows represent changes at individual grid cell
location. For the size change patterns (third row), each pixel shows the changes in average size
of storms that pass by the grid cell location. In the fourth and fifth rows, each pixel shows the
changes in the duration and number of the storms that originate from the grid cell location. In
the summer seasons the total precipitation amount increases except for a part of the Southern
region. The intensity also increases in most regions except for a small part of the Southern
region. In most regions, the average rainstorm size substantially decreases but the duration and
number of storms do not show clear changes. In the winter seasons, the overall spatial patterns
of changes are more complex than in the summer seasons.
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(a)

(b)

Figure 11: Illustration of two steps of our simulation algorithm. (a) Shrinking an observed
rainstorm by regridding it into a coarser grid and resizing the new grid cell to original grid cell
size. This approach resizes a rainstorm without changing the shape of the original rainstorm. (b)
An example of intensity distribution transformation applied to a grid cell near Chicago area. The
plot shows the cumulative precipitation amounts versus the precipitation rate rescaled relative
to the maximum rate for the WRF baseline (solid red line) and future (dashed red line), and
Stage IV data before (solid blue line) and after (dashed blue line) applying the transformation.
The algorithm applies the same transformation that changes the marginal distribution of the
baseline time series into the future time series.
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Figure 12: An example of original time series in 2006 August from the Stage IV data (solid gray
line) at a grid cell location near Chicago area and the corresponding simulated time series from
the grid cell-wise approach (dashed red line) and our approach (solid blue line). The grid cell-
wise approach mostly rescales the intensity of the original time series, but our approach allows
more flexible changes such as removing rainstorm events on 8/20 and 8/28 and drastically
changing the intensity distributions for the rainstorm events on 8/19 and 8/29.
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