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Abstract

In this paper, basic properties of monomial difference ideals are studied. We prove
the finitely generated property of well-mixed difference ideals generated by monomials.
Furthermore, a finite prime decomposition of radical well-mixed monomial difference ide-
als is given. As a consequence, we prove that every strictly ascending chain of radical
well-mixed monomial difference ideals in a difference polynomial ring is finite, which an-
swers a question raised by E. Hrushovski in the monomial case. Moreover, the Alexander
Duality for monomial ideals is generalized to the monomial case.

Keywords. Monomial difference ideal, well-mixed difference ideal, decomposition of
monomial difference ideal, Hrushovski’s question.

1 Introduction

Monomial ideals in a polynomial ring have been extendedly studied because of their connec-
tions with combinatorics since 1970s. Another reason to study monomial ideals is the fact
that they appear as initial ideals of arbitrary ideals. Stanley was the first to use squarefree
monomial ideals to study simplicial complexes ([6]). Since then, the study of squarefree
monomial ideals has become an active research area in combinatorial commutative algebra.
In this paper, we study the basic properties of monomial difference (abbr. σ-) ideals, and
hope that they will play similar role in the study of general σ-ideals in a σ-polynomial ring.

It is well-known that Hilbert’s basis theorem does not hold for σ-ideals in a σ-polynomial
ring. Instead, we have Ritt-Raudenbush basis theorem which asserts that every perfect σ-
ideal in a σ-polynomial ring has a finite basis. It is naturally to ask if the finitely generated
property holds for more σ-ideals. Let k be a σ-field and R a finitely σ-generated k-σ-algebra.
In [2, Section 4.6], Ehud Hrushovski raised the question whether a radical well-mixed σ-ideal
in R is finitely generated. The question is also equivalent to whether the ascending chain
condition holds for radical well-mixed σ-ideals in R. For the sake of convenience, let us state
it as a conjecture:

Conjecture 1.1 Every strictly ascending chain of radical well-mixed σ-ideals in R is finite.
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Also in [2, Section 4.6], Ehud Hrushovski proved that the answer is yes under some
additional assumptions on R. In [5], Alexander Levin showed that the ascending chain
condition does not hold if we drop the radical condition. The counter example given by
Levin is a well-mixed σ-ideal generated by binomials. In [8, Section 9], Michael Wibmer
showed that if R can be equipped with the structure of a k-σ-Hopf algebra, then Conjecture
1.1 is valid.

The main result of this paper is that a well-mixed σ-ideals generated by monomials in a
σ-polynomial ring is finitely generated. Furthermore, we give a finite prime decomposition
of radical well-mixed monomial difference ideals. As a consequence, Conjucture 1.1 is valid
for radical well-mixed monomial σ-ideals in a σ-polynomial ring.

The paper will be organized as follows. In section 2, we list some basic facts from
difference algebra. In section 3, we prove some basic properties about monomial σ-ideals.
In section 4, we will give a counter example which shows that the well-mixed closure of a
monomial σ-ideal may not be a monomial σ-ideal and prove the finitely generated property
of well-mixed σ-ideal generated by monomials. In section 5, we will give a finite prime
decomposition of radical well-mixed monomial σ-ideals. In section 6, we give a reflexive
prime decomposition of perfect monomial σ-ideals. At last, in section 7, we will generalize
the Alexander Duality for monomial ideals to the difference case.

2 Preliminaries

In this section, we list some basic notions and facts from difference algebra. For more details
please refer to [7]. All rings in this paper will be assumed to be commutative and unital.

A difference ring or σ-ring for short (R,σ), is a ring R together a ring endomorphism
σ : R → R. If R is a field, then we call it a difference field, or a σ-field for short. We usually
omit σ from the notation, simply refer to R as a σ-ring or a σ-field. In this paper, k is always
assumed to be a σ-field of characteristic 0.

Following [3], we use the notation of symbolic exponents. Let x be an algebraic indeter-
minate and p =

∑s
i=0 cix

i ∈ N[x]. For a in a σ-ring R, denote ap =
∏s

i=0(σ
i(a))ci . It is easy

to check that ∀p, q ∈ N[x], ap+q = apaq, apq = (ap)q.

Definition 2.1 Let R be a σ-ring. An ideal I of R is a σ-ideal if ∀a ∈ I ⇒ ax ∈ I. Suppose
I is a σ-ideal of R, then I is called

• reflexive if ax ∈ I ⇒ a ∈ I for a ∈ R;

• well-mixed if ab ∈ I ⇒ abx ∈ I for a, b ∈ R;

• perfect if ag ∈ I ⇒ a ∈ I for a ∈ R, g ∈ N[x]\{0};

• σ-prime if I is reflexive and a prime ideal as an algebraic ideal.

Lemma 2.2 (1) A σ-ideal is perfect if and only if it is reflexive, radical, and well-mixed;

(2) A σ-prime ideal is perfect;

(3) A prime σ-ideal is radical well-mixed.
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Proof: It is easy. �

Lemma 2.3 Let R be a σ-ring. A σ-ideal I of R is perfect if and only if ax+1 ∈ I ⇒ a ∈ I
for a ∈ R.

Proof: For the proof, please refer to [7, p.16]. �

Let R be a σ-ring. If F ⊆ R is a subset of R, denote the minimal ideal containing F by
(F ), the minimal σ-ideal containing F by [F ] and denote the minimal radical σ-ideal, the
minimal reflexive σ-ideal, the minimal well-mixed σ-ideal, the minimal radical well-mixed
σ-ideal, the minimal perfect σ-ideal containing F by

√
F,F ∗, 〈F 〉, 〈F 〉r, {F} respectively,

which are called the radical closure, the reflexive closure, the well-mixed closure, the radical
well-mixed closure, the perfect closure of F respectively.

It can be checked that
√
F

∗
=

√
F ∗ and {F} = 〈F 〉∗r .

Let k be a σ-field. Suppose y = {y1, . . . , yn} is a set of σ-indeterminates over k. Then
the σ-polynomial ring over k in y is the polynomial ring in the variables y, σ(y), σ2(y), . . ..
It is denoted by

k{y} = k{y1, . . . , yn}
and has a natural k-σ-algebra structure.

3 Basic Properties of Monomial Difference Ideals

In the rest of this paper, unless otherwise specified, R always refers to the σ-polynomial ring
k{y1, . . . , yn}. Denote N∗ = N\{0} and N[x]∗ = N[x]\{0}.

Definition 3.1 A monomial in R is a product Yu = yu1

1 . . . yun
n for u = (u1, . . . , un) ∈ N[x]n.

A σ-ideal I ⊆ R is called a monomial σ-ideal if it is generated by monomials.

As a vector space over k, we can write the σ-polynomial ring R as

R = k[N[x]n] = ⊕u∈N[x]nRu = ⊕u∈N[x]nkY
u,

where Ru = kYu is the vector subspace of R spanned by the monomial Yu. Since Ru ·Rv ⊆
Ru+v, we see that R is an N[x]n-graded ring. A monomial σ-ideal I defined above is just
a graded σ-ideal of R, which means there exists a subset S ⊆ N[x]n such that I = k[S] :=
⊕u∈SkYu. Such S is called the support set of I.

For a subset F ⊆ R, we denote C(F ) = {u ∈ N[x]n | Yu ∈ F}. And for a subset
S ⊆ N[x]n, we denote M(S) = {Yu | u ∈ S}.

The following lemma is clear.

Lemma 3.2 A subset S ⊆ N[x]n is the support set of some monomial σ-ideal if and only if
S satisfies

(1) ∀u ∈ S,v ∈ N[x]n, u+ v ∈ S;

(2) ∀u ∈ S, xu ∈ S.
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A subset S ⊆ N[x]n satisfying the above conditions is called a character set.
If a =

∑

auYu ∈ R, au ∈ k, then

supp(a) = {Yu | au 6= 0}

is called the support of a.

Lemma 3.3 Let I be a σ-ideal of R. Then the followings are equivalent:

(a) I is a monomial σ-ideal;

(b) ∀a ∈ R, a ∈ I if and only if supp(a) ⊂ I.

Proof: It is obvious. �

Lemma 3.4 If I1 = k[S1] and I2 = k[S1] are monomial σ-ideals. Then I1 + I2 and I1 ∩ I2
are monomial σ-ideals.

Proof: I1 + I2 = k[S1 ∪ S2], I1 ∩ I2 = k[S1 ∩ S2]. �

If I = k[S] is a monomial σ-ideal, then the conditions for I to be radical, reflexive,
perfect and prime can be described using the support set S. To show this, we first define
an order on N[x]n. Let f =

∑l
i=0 fix

i, g =
∑m

i=0 gix
i ∈ N[x]. Suppose k > max{l,m},

and set fi = 0 for l + 1 6 i 6 k, gi = 0 for m + 1 6 i 6 k. Then define f < g if there
exists r such that fi = gi for i = r + 1, . . . , k and fr < gr. Extend < to N[x]n by comparing
u = (u1, . . . , un),v = (v1, . . . , vn) ∈ N[x]n with respect to the lexicographic order. Obviously,
this is a total order on N[x]n and has the following properties.

Lemma 3.5 The order < defined above satisfies:

(1) u1 < v1,u2 6 v2 ⇒ u1 + u2 < v1 + v2;

(2) u < v ⇒ xu < xv.

Let a ∈ R. Then define deg(a) to be the maximal element in C(supp(a)).

Proposition 3.6 Let I = k[S] be a monomial σ-ideal of R. Then:

(1) I is radical if and only if ∀u ∈ N[x]n,∀m ∈ N∗, mu ∈ S ⇒ u ∈ S;

(2) I is reflexive if and only if ∀u ∈ N[x]n, xu ∈ S ⇒ u ∈ S;

(3) I is perfect if and only if ∀u ∈ N[x]n,∀g ∈ N[x]∗, gu ∈ S ⇒ u ∈ S;

(4) I is prime if and only if ∀u,v ∈ N[x]n, u+ v ∈ S ⇒ u ∈ S or v ∈ S.

Proof:
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(1) “⇒” follows from the definition of radical ideals.

“⇐”. Suppose a =
∑k

i=1 aiY
ui , ai 6= 0, u1 < . . . < uk and am ∈ I. To show a ∈ I, do

induction on the number of terms of a. When k = 1, am = (a1Yu1)m = am1 Ymu1 ∈ I.
Therefore, Ymu1 ∈ I and hence mu1 ∈ S. So u1 ∈ S or equivalently Yu1 ∈ I which
implies a ∈ I. Assume that the conclusion is already correct for the case < k. Now for
the case = k. Note am = am1 Ymu1+the other terms. Since mu1 is minimal in the set
of all possible combinations of ui1 + . . .+ uim , the monomial Ymu1 cannot be cancelled
in the expression of am and hence belongs to supp(am). Since I is a monomial σ-ideal,
supp(am) ⊆ I and hence Ymu1 ∈ I or equivalently mu1 ∈ S. So u1 ∈ S and Yu1 ∈ I.
Consider a′ = a−a1Yu1 with k−1 terms. Since (a′)m = (a−a1Yu1)m = am−Yu1 ·∗ ∈ I,
by the induction hypothesis, a′ ∈ I. Thus a = a′ + a1Yu1 ∈ I.

(2) “⇒” follows from the definition of reflexive ideals.

“⇐”. Suppose a =
∑k

i=1 aiY
ui , ai 6= 0 and ax ∈ I. Since ax =

∑k
i=1 a

x
i Y

xui and I is a
monomial σ-ideal, it follows Yxui ∈ I for every i. Therefore, xui ∈ S and hence ui ∈ S
for every i which implies Yu

i ∈ S for every i. Thus a ∈ I.

(3) “⇒” follows from the definition of perfect ideals.

“⇐”. Suppose a =
∑k

i=1 aiY
ui , ai 6= 0, u1 < . . . < uk and ax+1 ∈ I. To show a ∈

I, do induction on the number of terms of a. When k = 1, ax+1 = (a1Yu1)x+1 =
ax+1
1 Y(x+1)u1 ∈ I. Therefore, Y(x+1)u1 ∈ I and hence (x + 1)u1 ∈ S. So u1 ∈ S

or equivalently Yu1 ∈ I which implies a ∈ I. Assume that the conclusion is already
correct for the case < k. Now for the case = k. Note ax+1 = ax+1

1 Y(x+1)u1+the other
terms. Since u1 < . . . < uk and xu1 < . . . < xuk, (x + 1)u1 is minimal in the set of
all possible combinations of ui + xuj . So the monomial Y(x+1)u1 cannot be cancelled
in the expression of ax+1 and hence belongs to supp(ax+1). Since I is a monomial
σ-ideal, supp(ax+1) ⊆ I and hence Y(x+1)u1 ∈ I or equivalently (x + 1)u1 ∈ S. So
u1 ∈ S and Yu1 ∈ I. Consider a′ = a − a1Yu1 with k − 1 terms. Since (a′)x+1 =
ax+1−a1a

xYu1 −aax1Y
xu1+ax+1

1 Y(x+1)u1 ∈ I, by the induction hypothesis, a′ ∈ I. Thus
a = a′ + a1Yu1 ∈ I.

(4) “⇒” follows from the definition of prime ideals.

“⇐”. Suppose it’s not true, so there exists a and b in R such that a · b ∈ I but a /∈ I
and b /∈ I. Let a and b are such a pair such that deg(a) + deg(b) is minimal. Since
I is a monomial σ-ideal, supp(ab) ⊂ I. In particular, the highest degree term is in I.
The highest degree term is just the product of the leading terms of a and b, which we’ll
call ld(a) and ld(b). So ld(a) · ld(b) ∈ I, and since they are monomials, we see that
either ld(a) or ld(b) in I. Without loss of generality, assume it’s ld(a). In that case
(a− ld(a)) · b ∈ I, but neither a− ld(a) nor b is in I, and this violates the minimality of
the pair a and b.

�

Suppose I = k[S] is a monomial σ-ideal. If I is radical, reflexive, well-mixed, perfect, or
prime, then we call the corresponding support set S radical, reflexive, well-mixed, perfect,
prime respectively.
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Let S be a subset of N[x]n. Denote

[S] = {xiu+ t | u ∈ S, i ∈ N, t ∈ N[x]n}
= {gu + t | u ∈ S, g ∈ N[x]∗, t ∈ N[x]n}

and

√
S = {u ∈ N[x]n | mu ∈ [S],m ∈ N∗},
S∗ = {u ∈ N[x]n | xmu ∈ [S],m ∈ N},

{S} = {u ∈ N[x]n | gu ∈ [S], g ∈ N[x]∗}.

One can check that [Yu : u ∈ S] = k[
[

S
]

] and if I = k[S] is a monomial σ-ideal, then
[S] = S.

Proposition 3.7 Let I = k[S] be a monomial σ-ideal of R. Then
√
I = k[

√
S], I∗ = k[S∗],

and {I} = k[{S}].

Proof: Clearly, k[
√
S] ⊆

√
I, k[S∗] ⊆ I∗, and k[{S}] ⊆ {I}. Just need to show k[

√
S], k[S∗],

k[{S}] are a radical σ-ideal, a reflexive σ-ideal, a perfect σ-ideal respectively.
Suppose u ∈

√
S and v ∈ N[x]n, then there exists m ∈ N∗ such that mu ∈ S. So

m(u + v) = mu + mv ∈ S,m(xu) = x(mu) ∈ S and hence u + v, xu ∈
√
S. Therefore,

k[
√
S] is a σ-ideal. Suppose m ∈ N∗ and mu ∈

√
S, then ∃m′ ∈ N∗ such that m′mu ∈ S, it

follows u ∈
√
S and thus

√
S is radical.

Suppose u ∈ S∗ and v ∈ N[x]n, then there exists m ∈ N such that xmu ∈ S. So
xm(u + v) = xmu+ xmv ∈ S, xm(xu) = xm+1u ∈ S and hence u + v, xu ∈ S∗. Therefore,
k[S∗] is a σ-ideal. Suppose m ∈ N and xmu ∈ S∗, then ∃m′ ∈ N such that xm

′+mu ∈ S, it
follows u ∈ S∗ and thus S∗ is reflexive.

Suppose u ∈ {S} and v ∈ N[x]n, then there exists g ∈ N[x]∗ such that gu ∈ S. So
g(u+v) = gu+ gv ∈ S, g(xu) = x(gu) ∈ S and hence u+v, xu ∈ {S}. Therefore, k[{S}] is
a σ-ideal. Suppose g ∈ N[x]∗ and gu ∈ {S}, then ∃g′ ∈ N[x]∗ such that g′gu ∈ S, it follows
u ∈ {S} and thus {S} is perfect. �

4 Properties of Well-Mixed σ-Ideals Generated by Monomials

Unlike the radical closure, the reflexive closure, or the perfect closure of a monomial σ-
ideal is still a monomial σ-ideal, the well-mixed closure of a monomial σ-ideal may not be a
monomial σ-ideal. More precisely, it relies on the action of the difference operator. We will
give a counter example. First let us give a concrete description of the well-mixed closure of
a σ-ideal. Suppose F is a subset of any σ-ring R. Let F ′ = {aσ(b) | ab ∈ F}. Note that
F ⊂ F ′. Let F [0] = F and recursively define F [k] = (F [k−1])′(k = 1, 2, . . .). One can check
that the well-mixed closure of F is

〈F 〉 = ∪∞
k=0F

[k].
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Example 4.1 Let k = C and R = C{y1, y2}. Consider the σ-ideal I = 〈y21 , y22〉 of R. If the
difference operator on C is the identity map, we will show that I is not a monomial σ-ideal.
Owing to the above process of obtaining the well-mixed closure, we see that y1, y2, y1y2 cannot
appear in supp(a) for any a ∈ I. Suppose a = a1y1+a2y2+ ∗ and b = b1y1+ b2y2+ ∗, where
a1, a2, b1, b2 ∈ C, ∗ represents terms of order larger than zero or of degree larger than one,
such that ab ∈ I and y1y

x
2 ∈ supp(abx). Since y1y2 /∈ supp(ab), we have a1b2 + a2b1 = 0. So

abx = a1b2y1y
x
2 + a2b1y

x
1y2 + ∗ = a1b2(y1y

x
2 − yx1y2) + ∗. It follows that y1y

x
2 − yx1y2 always

appears in c ∈ I as a whole and hence y1y
x
2 cannot solely appear in supp(c) for c ∈ I. Thus

I is not a monomial σ-ideal.
On the other hand, if the difference operator on C is the conjugation map, that is σ(i) =

−i, the situation is totally changed. Since y21−y22 = (y1+y2)(y1−y2) ∈ I, (y1+y2)(y1−y2)
x =

yx+1
1 +yx1y2−y1y

x
2−yx+1

2 ∈ I and hence yx1y2−y1y
x
2 ∈ I. Since y21+y22 = (y1+iy2)(y1−iy2) ∈ I,

(y1 + iy2)(y1 − iy2)
x = yx+1

1 + iyx1y2 + iy1y
x
2 − yx+1

2 ∈ I and hence yx1y2 + y1y
x
2 ∈ I. So

yx1y2, y1y
x
2 ∈ I. Thus I = [yu1 , y

w1

1 yw2

2 , yv2 : 2 � u, v, x + 1 � w1 + w2](� is defined below). In
this case, I = 〈y21 , y22〉 is indeed a monomial σ-ideal.

In the rest of this section, we will prove that a well-mixed σ-ideal generated by monomials
could be generated by finitely many monomials as a well-mixed σ-ideal. For the proof, we
need a new order on N[x]n and some lemmas.

Definition 4.2 Let f =
∑l

i=0 fix
i, g =

∑m
i=0 gix

i ∈ N[x]. Suppose k > max{l,m}, and set

fi = 0 for l + 1 6 i 6 k, gi = 0 for m+ 1 6 i 6 k. Then define f � g if
∑k

j=i fj 6
∑k

j=i gj
for i = 0, . . . , k. Note that � is a partial order on N[x]. Extend � to N[x]n by defining
u = (u1, . . . , un) � v = (v1, . . . , vn) if and only if ui � vi for i = 1, . . . , n.

Let u,v ∈ N[x]n. It is easy to see that if u � v, then Yv ∈ 〈Yu〉. Moreover, the partial
order � has the following properties.

Lemma 4.3 If u1 � v1,u2 � v2 ,then xu1 � xv1,u1 + u2 � v1 + v2.

Proof: It is obvious. �

For f =
∑l

i=0 fix
i ∈ N[x], denote |f | = ∑l

i=0 fi.

Lemma 4.4 Let S ⊆ N[x] such that |f | = a is a constant for all f ∈ S. Then the set of
minimal elements of S under the partial order � is finite.

Proof: Do induction on a. The case a = 1 is clear. Assume the conclusion is correct for the
case < a. Choose an f =

∑l
i=0 fix

i ∈ S. The set G = {g =
∑l

i=0 gix
i | |g| 6 a} is finite.

For each g =
∑l

i=0 gix
i ∈ G, define

Sg = {
m
∑

i=0

hix
i ∈ S | m > l,

l
∑

i=0

hix
i = g}

and

S′
g = {

m
∑

i=l+1

hix
i |

m
∑

i=0

hix
i ∈ Sg}.
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It follows S = ∪g∈GSg. For each g ∈ G, if g 6= 0, then ∀h ∈ S′
g, |h| is a constant which is

lower than a. So by the induction hypothesis, the set of minimal elements of S′
g under the

partial order � is finite and hence so is Sg. Note that ∀h ∈ S0, f � h. Therefore, the set of
minimal elements of S is contained in the union of the set of minimal elements of Sg, where
g ∈ G. Since the latter is a finite set, the former must be finite. �

Lemma 4.5 Let S ⊆ N[x] such that ∀f ∈ S, |f | 6 a for some a ∈ N. Then the set of
minimal elements of S under the partial order � is finite.

Proof: It is an immediate corollary from the above lemma. �

Lemma 4.6 Let S ⊆ N[x] such that ∀f ∈ S,deg(f) 6 k for some k ∈ N. Then the set of
minimal elements of S under the partial order � is finite.

Proof: Do induction on k. The case k = 0 is clear. Assume the conclusion is correct for the
case < k. Choose an f =

∑k
i=0 fix

i ∈ S and denote c =
∑k

i=0 fi. For any j < c, j ∈ N,
suppose s, 0 6 s 6 k, such that

∑k
i=s+1 fi 6 j <

∑k
i=s fi, and define

Uj = {
k

∑

i=s

gix
i |

k
∑

i=s

gi = j}

which is obviously a finite set. For each g ∈ Uj , define

Sg = {
k

∑

i=0

gix
i ∈ S |

k
∑

i=s

gix
i = g}

and

S′
g = {

s−1
∑

i=0

gix
i |

k
∑

i=0

gix
i ∈ Sg}.

In addition, we define
Sf = {g ∈ S | f � g}.

Then we have
S = (∪c−1

j=0 ∪g∈Uj
Sg) ∪ Sf . (4.1)

Note for each g ∈ Uj , ∀h ∈ S′
g, deg(h) < k, so by the induction hypothesis, the set of minimal

elements of S′
g under the partial order � is finite and hence so is Sg. Because of (4.1), we

have the set of minimal elements of S is contained in the union of the set of minimal elements
of Sg and {f}, where g ∈ Uj and 0 6 j < c. Since the latter is a finite set, the former must
be finite. �

Lemma 4.7 Let S ⊆ N[x]. Then the set of minimal elements of S under the partial order
� is finite.
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Proof: Choose an f =
∑k

i=0 fix
i ∈ S and denote c =

∑k
i=0 fi. For any j < c − f0, j ∈ N,

suppose s, 1 6 s 6 k, such that
∑k

i=s+1 fi 6 j <
∑k

i=s fi, and define

Uj = {
l

∑

i=s

gix
i |

l
∑

i=0

gix
i ∈ S,

l
∑

i=s

gi = j},

Sj = {
l

∑

i=0

gix
i ∈ S |

l
∑

i=s

gi = j}

and

S′
j = {

s−1
∑

i=0

gix
i |

l
∑

i=0

gix
i ∈ Sj}.

By Lemma 4.4, for each j, the set of minimal elements of Uj is finite, which is denoted by
Vj. By Lemma 4.6, for each j, the set of minimal elements of S′

j is finite, which is denoted
by Wj .

In addition, we define

Sc = {
l

∑

i=0

gix
i ∈ S |

l
∑

i=0

gi < c},

Sf = {g ∈ S | f � g}.

Then we have
S = (∪c−f0−1

j=0 Sj) ∪ Sc ∪ Sf . (4.2)

By Lemma 4.5, the set of minimal elements of Sc is finite, which is denoted by C. Claim
that the set of minimal elements of S is contained in (∪c−f0−1

j=0 (Vj +Wj)) ∪ C ∪ {f}, where
Vj + Wj means {g + h | g ∈ Vj, h ∈ Wj}. To prove this, ∀g =

∑l
i=0 gix

i ∈ S. By (4.2), if

g /∈ Sc and g /∈ Sf , then there exists j such that g ∈ Sj. By definition,
∑l

i=s gix
i ∈ Uj and

∑s−1
i=0 gix

i ∈ S′
j . So ∃h ∈ Vj and ∃h′ ∈ Wj such that h � ∑l

i=s gix
i and h′ � ∑s−1

i=0 gix
i.

Therefore, ∃h + h′ ∈ Vj +Wj such that h + h′ � ∑l
i=s gix

i +
∑s−1

i=0 gix
i = g, which proves

the claim.
Since (∪c−f0−1

j=0 (Vj +Wj)) ∪C ∪ {f} is a finite set, it follows the set of minimal elements
of S is finite. �

Lemma 4.8 Let S ⊆ N[x]n. Then the set of minimal elements of S under the partial order
� is finite.

Proof: Do induction on n. The case n = 1 is proved by Lemma 4.7. Assume the conclusion
is correct for the case = n− 1. Define

S1 = {u1 | (u1, . . . , un) ∈ S}.

By Lemma 4.7, the set of minimal elements of S1 is finite, which is denoted by U . For each
u ∈ U , define

Su = {(u1, u2, . . . , un) ∈ S | u � u1}

9



and
S′
u = {(u2, . . . , un) | (u1, u2, . . . , un) ∈ Su}.

Obviously, S = ∪u∈USu.
By the induction hypothesis, for each u ∈ U , the set of minimal elements of S′

u under
the partial order � is finite, which is denoted by Vu. Let u × Vu = {(u,v) | v ∈ Vu}.
Claim that the set of minimal elements of S is contained in ∪u∈Uu × Vu. To prove this,
∀u = (u1, u2, . . . , un) ∈ S, there exists u ∈ U such that u ∈ Su. By definition, (u2, . . . , un) ∈
S′
u. So ∃v ∈ Vu such that v � (u2, . . . , un). Therefore, (u,v) � (u1, u2, . . . , un) = u and

(u,v) ∈ u× Vu which proves the claim.
Since ∪u∈Uu× Vu is a finite set, the set of minimal elements of S is finite. �

Theorem 4.9 Let I = 〈Yu : u ∈ U〉 for some U ⊆ N[x]n. Then I is generated by a finite
set of monomials as a well-mixed σ-ideal.

Proof: If u � v, since Yv ∈ 〈Yu〉, we can delete v from the generating set U to get the same
well-mixed σ-ideal. So we just need to show that the set of minimal elements of U under the
partial order � is finite, which follows from Lemma 4.8. �

Corollary 4.10 Any strictly ascending chain of well-mixed σ-ideals generated by monomials
in R is finite.

Proof: Assume that I1 ⊆ I2 ⊆ . . . ⊆ Ik . . . is an ascending chain of well-mixed σ-ideals
generated by monomials. Then ∪∞

i=1Ii is still a well-mixed σ-ideal generated by monomials.
By Theorem 4.9, ∪∞

i=1Ii is finitely generated, say by {a1, . . . , am}. Then there exists k ∈ N
large enough such that {a1, . . . , am} ⊂ Ik. So Ik = Ik+1 = . . . = ∪∞

i=1Ii. �

Remark 4.11 It should be pointed out that a counter example due to Levin in [5] shows
Corollary 4.10 does not hold even for well-mixed σ-ideals generated by binomials in R.

5 Prime Decomposition of Radical Well-Mixed Monomial σ-

Ideals

In this section, we will give a finite prime decomposition of radical well-mixed monomial
σ-ideals. First prove some lemmas. Notations follow as Section 4.

Lemma 5.1 Let F and G be subsets of any σ-ring R. Then

(1) F [1]G[1] ⊂ (FG)[1];

(2) F [i]G[i] ⊂ (FG)[i] for i = 1, 2, . . .;

(3) F [i] ∪G[i] ⊂
√

(FG)[i] for i = 1, 2, . . ..

Proof:

10



(1) ∀aσ(b) ∈ F [1],∀cσ(d) ∈ G[1] such that ab ∈ (F ) and cd ∈ (G). Then abcd ∈ (FG) and it
follows acσ(bd) = aσ(b)cσ(d) ∈ (FG)[1]. So F [1]G[1] ⊂ (FG)[1].

(2) Do induction on i.

F [i]G[i] = (F [i−1])[1](G[i−1])[1] ⊂ (F [i−1]G[i−1])[1]

⊆ ((FG)[i−1])[1] = (FG)[i].

(3) ∀a ∈ F [i] ∪G[i], then a2 ∈ F [i]G[i]. It follows a ∈
√
F [i]G[i] ⊂

√

(FG)[i].

�

Proposition 5.2 Let F and G be subsets of any σ-ring R. Then

〈F 〉r ∩ 〈G〉r = 〈FG〉r.

As a corollary, if I and J are two σ-ideals of R, then

〈I〉r ∩ 〈J〉r = 〈I ∩ J〉r = 〈IJ〉r.

Proof: 〈F 〉r ∩ 〈G〉r ⊇ 〈FG〉r is clear. It is enough to show the converse.

〈F 〉r ∩ 〈G〉r =
√

〈F 〉 ∩
√

〈G〉 =
√

∪∞
i=0F

[i]) ∩
√

∪∞
i=0G

[i])

=
√

∪∞
i=0(F

[i] ∩G[i]) ⊆
√

∪∞
i=0

√

(FG)[i] = 〈FG〉r,

where the inclusion follows from Lemma 5.1(3). �

Lemma 5.3 Let I be a radical well-mixed σ-ideal of R. Suppose Yu1 ,Yu2 are two monomials
in R such that Yu1+u2 ∈ I. Then

I = 〈I,Yu1〉r ∩ 〈I,Yu2〉r.

Proof: By Proposition 5.2,

〈I,Yu1〉r ∩ 〈I,Yu2〉r = 〈I,Yu1+u2〉r = I.

�

For b = (b1, . . . , bn) ∈ (N ∪ {−1})n, define

m
b := [yx

bi

i | bi 6= −1]

which is a prime monomial σ-ideal.
For m ∈ N∗, denote [m] = {1, . . . ,m}.
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Theorem 5.4 Let I = 〈Yu : u ∈ U〉r where U ⊂ N[x]n. Then I can be written as a finite
intersection of prime monomial σ-ideals of forms mb. That is, ∃b1, . . . ,bs ∈ (N ∪ {−1})n
such that

I = m
b1 ∩ . . . ∩m

bs .

Moreover, if the decomposition is irredundant, then it is unique.

Proof: By Lemma 5.3, if a monomial Yu ∈ I and u = u1+u2, then I = 〈I,Yu1〉r ∩〈I,Yu2〉r.
Iterating this process eventually write I as follows:

I = ∩〈yx
bi1

i1
, . . . , yx

bik

ik
〉r.

Note [yx
bi1

i1
, . . . , yx

bik

ik
] is a prime σ-ideal, therefore

〈yx
bi1

i1
, . . . , yx

bik

ik
〉r = [yx

bi1

i1
, . . . , yx

bik

ik
]

and
I = ∩[yx

bi1

i1
, . . . , yx

bik

ik
].

After deleting unnecessary intersectands, we can assume that the intersection is irredun-
dant. Using an argument similar to the proof of Dickson’s lemma, we see this irredundant
intersection must be finite. So ∃b1, . . . ,bs ∈ (N ∪ {−1})n such that

I = m
b1 ∩ . . . ∩m

bs .

Let mb1 ∩ . . . ∩ mbs = ma1 ∩ . . . ∩ mat be two irredundant decompositions of I. We will
show that for each i ∈ [s], there exists a j ∈ [t] such that maj ⊆ mbi . By symmetry, we then
also have that for each k ∈ [t], there exists an l ∈ [s] such that mbl ⊆ mak . This implies that
s = t and {mb1 , . . . ,mbs} = {ma1 , . . . ,mat}.

In fact, let i ∈ [s]. We may assume that mbi = [yx
bi1

1 , . . . , yx
bir

r ]. Suppose that maj * mbi

for all j ∈ [t]. Then for each j there exists yx
cj

lj
∈ maj\mbi . It follows that either lj /∈ [r] or

cj < bilj . Let

a =
t
∏

j=1

yx
cj

lj
.

We have a ∈ ∩t
j=1m

aj ⊆ mbi . Therefore, there exists h ∈ [r] such that bih 6 deg(C(a)h).
This is impossible. �

Corollary 5.5 The radical well-mixed closure of a monomial σ-ideal is still a monomial
σ-ideal.

Proof: Suppose I is a monomial σ-ideal. By Theorem 5.4, 〈I〉r = ∩s
i=1m

bi . Since mbi are
monomial σ-ideals and the intersection of monomial σ-ideals is a monomial σ-ideal, it follows
〈I〉r is a monomial σ-ideal. �

If I is a radical well-mixed monomial σ-ideal, then the irredundant prime decomposition
of I obtained in Theorem 5.4 is called the standard prime decomposition of I and each mbi

is called an irreducible component of I.
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Corollary 5.6 Every radical well-mixed monomial σ-ideal in R could be generated by finitely
many monomials as a radical well-mixed σ-ideal.

Proof: Suppose I is a radical well-mixed monomial σ-ideal. Let I = ∩s
i=1m

bi be the standard
prime decomposition of I. By Proposition 5.2, ∩s

i=1m
bi equals to a radical well-mixed σ-

ideal which is generated by finitely many monomials, so I is finitely generated as a radical
well-mixed σ-ideal. �

From the above corollary, for any radical well-mixed monomial σ-ideal I, there exist
a1, . . . ,am ∈ (N ∩ {−1})n with aj = (aji)

n
i=1, j = 1, . . . ,m such that

I = 〈
n
∏

i=1

yx
a1i

i , . . . ,

n
∏

i=1

yx
ami

i 〉r,

where we set that x−1 = 0. We call {a1, . . . ,am} the character vectors of I and call
{∏n

i=1 y
xa1i

i , . . . ,
∏n

i=1 y
xami

i } the set of minimal generators of I, denoted by G(I).

Corollary 5.7 Any strictly ascending chain of radical well-mixed monomial σ-ideals in R
is finite.

Proof: Assume that I1 ⊆ I2 ⊆ . . . ⊆ Ik . . . is an ascending chain of radical well-mixed
monomial σ-ideals. Then ∪∞

i=1Ii is still a radical well-mixed monomial σ-ideal. By Corollary
5.6, ∪∞

i=1Ii is finitely generated, say by {a1, . . . , am}. Then there exists k ∈ N large enough
such that {a1, . . . , am} ⊂ Ik. So Ik = Ik+1 = . . . = ∪∞

i=1Ii. �

Remark 5.8 By Corollary 5.7, Conjecture 1.1 is valid for radical well-mixed monomial σ-
ideals.

In the following, we give a criterion to check if a monomial σ-ideal is radical well-mixed
using its support set.

Lemma 5.9 An intersection of prime σ-ideals is radical well-mixed.

Proof: A prime σ-ideal is radical well-mixed and an intersection of radical well-mixed σ-ideals
is radical well-mixed. �

Corollary 5.10 Let I = k[S] be a monomial σ-ideal of R. Then I is radical well-mixed if
and only if the following conditions are satisfied:

(a) ∀u ∈ N[x]n,∀m ∈ N∗, mu ∈ S ⇒ u ∈ S;

(b) ∀u,v ∈ N[x]n, u+ v ∈ S ⇒ u+ xv ∈ S.

Proof: “⇒” is clear.
“⇐”. For u = (u1, . . . , un) ∈ N[x]n, define deg(u) = (deg(u1), . . . ,deg(un)) and set that

deg(0) = −1. If b = (b1, . . . , bn) ∈ (N∪{−1})n, then let xb = (xb1 , . . . , xbn) and set x−1 = 0.
So from (a) and (b), we obtain

∀u ∈ S ⇒ xdeg(u) ∈ S.
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Let U be the subset of S which is the set of minimal elements in {xdeg(u) | u ∈ S}
under the order 6(u = (ui)

n
i=1 6 v = (vi)

n
i=1 ⇔ deg(ui) 6 deg(vi) for all i). Then using an

argument similar to the proof of Dickson’s lemma, we see that U is a finite set. Moreover,

S = {v ∈ N[x]n | u 6 v for some u ∈ U}.

Or equivalently,
S = ∪u∈U ∩n

i=1 {v ∈ N[x]n | deg(ui) 6 deg(vi)}.
Exchange ∪ and ∩, we get ∃b1, . . . ,bs ∈ (N ∪ {−1})n such that

S = ∩s
i=1 ∪n

j=1,bij 6=−1 {v ∈ N[x]n | bij 6 deg(vi)}.

It follows
I = k[S] = ∩s

i=1m
bi .

Since mbi are prime σ-ideals, I is radical well-mixed. �

Suppose S is a subset of N[x]n. Let

S′ = {u+ xv | u+ v ∈ S,u,v ∈ N[x]n}.

Let S[0] = S and recursively define S[k] = [S[k−1]]′(k = 1, 2, . . .). Denote

〈S〉 = ∪∞
k=0S

[k].

Corollary 5.11 Let I = k[S] be a monomial σ-ideal of R. Then 〈I〉r = k[
√

〈S〉].

Proof: Clearly, 〈I〉r ⊃ k[
√

〈S〉]. We just need to show k[
√

〈S〉] is already a radical well-
mixed σ-ideal. It is easy to see that k[

√

〈S〉] is a σ-ideal. To show it is radical well-mixed,
we need to check

√

〈S〉 satisfies conditions (a) and (b) of Corollary 5.10. (a) is obvious. For
(b), ∀u+v ∈

√

〈S〉, then ∃m ∈ N∗ such that m(u+v) ∈
√

〈S〉 = ∪∞
k=0S

[k]. So ∃k ∈ N such
that m(u+ v) ∈ S[k]. Hence m(u+ xv) ∈ S[k+1] ⊆ 〈S〉. Therefore, u+ xv ∈

√

〈S〉. �

Corollary 5.12 Suppose U1, U2 ⊆ N[x]n. Then
√

〈U1 ∪ U2〉 =
√

〈U1〉 ∪
√

〈U2〉.

Proof: Clearly
√

〈U1 ∪ U2〉 ⊇
√

〈U1〉 ∪
√

〈U2〉, we only need to show that k[
√

〈U1〉 ∪
√

〈U2〉]
is already a radical well-mixed σ-ideal.

Obviously,
√

〈U1〉 ∪
√

〈U2〉 is a character set. Let u+v ∈
√

〈U1〉 ∪
√

〈U2〉, then u+v ∈
√

〈U1〉 or
√

〈U2〉 and hence u+ xv ∈
√

〈U1〉 or
√

〈U2〉. So u+ xv ∈
√

〈U1〉 ∪
√

〈U2〉 which
proves conditions (b) of Corollary 5.10. Similarly for conditions (a) of Corollary 5.10. �

Corollary 5.13 Let I, J be two monomial σ-ideals. Then 〈I + J〉r = 〈I〉r + 〈J〉r.

Proof: Suppose I = k[S1], J = k[S2]. Then 〈I + J〉r = k[
√

〈S1 ∪ S2〉] and 〈I〉r + 〈J〉r =
k[
√

〈S1〉 ∪
√

〈S2〉]. So the equality follows from Corollary 5.12. �
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6 σ-Prime Decomposition of Perfect Monomial σ-Ideals

Similarly to Proposition 5.2 and Lemma 5.3, we have

Proposition 6.1 Let F and G be subsets of any σ-ring R. Then

{F} ∩ {G} = {FG}.

Lemma 6.2 Let I be a perfect σ-ideal of R. Suppose Yu1 ,Yu2 are two monomials in R such
that Yu1+u2 ∈ I. Then

I = {I,Yu1} ∩ {I,Yu2}.

For b = (b1, . . . , bn) ∈ {0, 1}n, define

p
b := [yi | bi 6= 0]

which is a σ-prime ideal.

Theorem 6.3 Let I = {Yu : u ∈ U} where U ⊂ N[x]n. Then I can be written as a finite
intersection of σ-prime ideals of forms pb. That is, ∃b1, . . . ,bs ∈ {0, 1}n such that

I = p
b1 ∩ . . . ∩ p

bs .

Moreover, if the decomposition is irredundant, then it is unique.

Proof: Without loss of generality, we can assume that U ⊂ {0, 1}n. By Lemma 6.2, if a
monomial Yu ∈ I and u = u1 + u2, then I = {I,Yu1} ∩ {I,Yu2}. Iterating this process
eventually write I as follows:

I = ∩{yi1 , . . . , yik} = ∩[yi1 , . . . , yik ].

After deleting unnecessary intersectands, we can assume that the intersection is irredun-
dant. It is easy to see this irredundant intersection is finite. Thus ∃b1, . . . ,bs ∈ {0, 1}n such
that

I = p
b1 ∩ . . . ∩ p

bs .

The uniqueness is similar to Theorem 5.4. �

Remark 6.4 In fact, it is more straightforward to get the σ-prime decomposition of perfect
monomial σ-ideals by using Theorem 5.4. Assume that U ⊂ {0, 1}n. Then by Theorem 5.4,
〈Yu : u ∈ U〉r = ∩〈yi1 , . . . , yik〉r = ∩[yi1 , . . . , yik ]. Since [yi1 , . . . , yik ] are σ-prime ideals, it
follows 〈Yu : u ∈ U〉r is a perfect σ-ideal. Thus

I = {Yu : u ∈ U} = 〈Yu : u ∈ U〉r = ∩[yi1 , . . . , yik ].
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7 Alexander Duality of Monomial σ-Ideals

Definition 7.1 Given two vectors a,b ∈ (N ∪ {−1})n with b 6 a(that is, bi 6 ai for
i = 1, . . . , n), let a\b denote the vector whose ith coordinate is

ai\bi =
{

ai + 1− bi, if bi > 0;

−1, if bi = −1.

Suppose I is a radical well-mixed monomial σ-ideal. If a is a vector in (N∪{−1})n satisfying
a > b for any character vector b of I, then the Alexander dual of I with respect to a is

I [a] = ∩{ma\b | b is a character vector of I}.

Note that for vectors b 6 a in (N ∪ {−1})n, a\(a\b) = b.
As in Corollary 5.10, for b = (b1, . . . , bn) ∈ (N ∪ {−1})n, let xb = (xb1 , . . . , xbn) and set

x−1 = 0.

Proposition 7.2 Suppose I is a radical well-mixed monomial σ-ideal and a is a vector in
(N∪{−1})n satisfying a > c for any character vector c of I. If b 6 a, then Yxb

lies outside

I if and only if Yxa−b

lies inside I [a].

Proof: Suppose {c1, . . . , cm}is the set of character vectors of I. Then Yxb

/∈ I if and only if
b � ci, or equivalently, a−b 
 a− ci for all i. This means that for each i, some coordinate

of a−b equals at least the corresponding coordinate of a+1− ci. That is Yxa−b ∈ ma+1−ci

for all i, i.e. Yxa−b ∈ ∩m
i=1m

a+1−ci . Next, let us show that

∩m
i=1 m

a+1−ci = ∩m
i=1m

a\ci +m
a+2 = I [a] +m

a+2. (7.1)

It is obvious that ∩m
i=1(m

a\ci +ma+2) ⊇ ∩m
i=1m

a\ci +ma+2. For the converse, choose f ∈
∩m
i=1(m

a\ci +ma+2), then for each i, we could write f = fi + gi, where fi ∈ ma\ci , gi ∈ ma+2.
Thus fm = (f1+ g1) . . . (fm+ gm) ∈ ∩m

i=1m
a\ci +ma+2. By Corollary 5.13, ∩m

i=1m
a\ci +ma+2

is radical, so f ∈ ∩m
i=1m

a\ci +ma+2. Hence we have

∩m
i=1(m

a\ci +m
a+2) = ∩m

i=1m
a\ci +m

a+2.

By Corollary 5.13 again,

m
a\ci +m

a+2 = 〈yx
aj+1−cij

j : cij 6= −1, j = 1, . . . , n〉r + 〈yx
aj+2

j : j = 1, . . . , n〉r
= 〈yx

aj+1−cij

j , yx
aj+2

j : cij 6= −1, j = 1, . . . , n〉r
= 〈yx

aj+1−cij

j , j = 1, . . . , n〉r = m
a+1−ci .

Thus (7.1) holds. Since a−b 6 a+1, Yxa−b ∈ ∩m
i=1m

a+1−ci = ∩m
i=1m

a\ci+ma+2 = I [a]+ma+2

exactly when Yxa−b ∈ I [a]. �

Theorem 7.3 Suppose I is a radical well-mixed monomial σ-ideal and a is a vector in
(N∪ {−1})n satisfying a > b for any character vector b of I. Then a > c for any character
vector c of I [a], and (I [a])[a] = I.
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Proof: The proof is similar to the proof of Theorem 5.24 in p.90 in [1]. �

Theorem 7.4 Suppose I is a radical well-mixed monomial σ-ideal and a is a vector in
(N ∪ {−1})n satisfying a > b for any character vector b of I. Then

I = ∩{ma\b | b is a character vector of I [a]},

and
I [a] = 〈Yxa\b | mb is an irreducilbe component of I〉r.

Proof: The proof is similar to the proof of Theorem 5.27 in p.90 in [1]. �
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