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Abstract

Consider the problem where a statistician in a two-node system receives rate-limited information

from a transmitter about marginal observations of a memoryless process generated from two possible

distributions. Using its own observations, this receiver is required to first identify the legitimacy of its

sender by declaring the joint distribution of the process, and then depending on such authentication it

generates the adequate reconstruction of the observations satisfying an average per-letter distortion. The

performance of this setup is investigated through the corresponding rate-error-distortion region describ-

ing the trade-off between: the communication rate, the error exponent induced by the detection and the

distortion incurred by the source reconstruction. In the special case of testing against independence,

where the alternative hypothesis implies that the sources are independent, the optimal rate-error-distortion

region is characterized. An application example to binary symmetric sources is given subsequently and

the explicit expression for the rate-error-distortion region is provided as well. The case of “general

hypotheses” is also investigated. A new achievable rate-error-distortion region is derived based on the

use of non-asymptotic binning, improving the quality of communicated descriptions. While it is shown

that the error exponent is further improved through the introduction of a new approach by which testing
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is performed on “bins of sequences” rather than decoding single sequences and then testing. Benefits

of the proposed methods were demonstrated through numerical analysis.

Index Terms

Data compression; error statistics; signal detection; asymptotic performance; central detector; dis-

crete spatially dependent observations; distributed detection; error exponent; multiterminal detection;

multiterminal source coding; side information; lossy source coding; type-I error rate; type-II error rate.

I. INTRODUCTION

The problem of Hypothesis Testing (HT) is very familiar in statistics. Presented with a list

of n independent and identically distributed (i.i.d) realizations of some random variable (RV)

X , a statistician attempts to determine the probability distribution that governs the RV, out of

a known list of possible distributions. One popular private case is Binary HT, where only two

possible hypotheses exist, usually referred to as H0 and H1. Readers interested in an overview

of HT problems can consult [3] and references therein.

The problem of Binary HT is formally defined by two types of error probabilities which are

commonly referred to as Type I and II probabilities. Denote by αn the first type error probability

given by the probability that H1 is chosen despite H0 being true, while the error probability of

the second type βn is defined to be the probability that H0 is chosen while H1 is true. Although

the trade-off between the two error events can be investigated in many ways, one common path

is to investigate the exponential rate of decay of the error probability of the second type, i.e.,

− lim
n→∞

1
n

log β?n(ε), while imposing a fixed constraint over the error probability of the first type,

i.e., αn ≤ ε (ε > 0). Stein’s Lemma [3], [4] provides a closed-form expression for the optimal

error exponent in this case,

− lim
n→∞

1

n
log β?n(ε) = D(P0‖P1) , (1)

where P0 and P1 are the probability distributions implied by hypotheses H0 and H1, respec-

tively, and D(·‖·) is the Kullbeck-Leiber divergence satisfying that the measure P0 is absolutely

continuous resp. to P1, i.e., P0 � P1. It is worth to emphasize that, the optimal exponential

rate of decay of the error probability of the second type does not depend asymptotically on the

specific constraint over the error probability ε of the first type.
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Figure 1. Communication model for joint distributed detection and source reconstruction.

The situation is substantially more complicated in the case of a distributed detection. If it

were possible to transmit all signals to some central location with negligible cost and delay,

then the previous theory is in principle applicable. However, due to practical considerations

such as energy cost, reliability, survivability, communication bandwidth, compartmentalization,

there is never total centralization of information in practice [5]. In this paper, we focus on

the problem of distributed hypothesis testing where it is assumed that realizations of different

memoryless sources are observed at different physical locations and thus, nodes are subject to

satisfy different types of communication constraints. This work attempts a modest step in the

direction of a theory for distributed testing based on lossy data compression which seems to

offer a formidable mathematical complexity (see [6] and references therein).

A. Related Work

Ahlswede & Csiszar [7] and then Han [8] investigated the two-node distributed binary HT

problem, where only one-sided communication is allowed, with rate R [bits/per sample] (see

Fig. 1 for a representation of a similar system). Both works offer similar approaches to derive

achievable rate-exponent rates for this problem, while the results are derived based on somewhat

different tools. Although optimality is proven in [7] for the special case of “testing against

independence”, an optimality result for the general case remains allusive.

While testing against independence is a particular case that assumes P1,XY = PXPY and

P0,XY = PXY , it is important in many scenarios where checking the relevance of information

being transmitted is of interest. This scenario resembles the known case of transmitting infor-

mation where side information may be absent [9], [10], but is rendered more complex by the
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fact that even the receiver is unaware of the relevance of the side information. An equivalent

setting, namely vector Gaussian source coding with decoder side information under mutual

information and distortion constraints, has been investigated in [11], and benefits of successive

refinement for testing against independence are studied in [12]. The problem of testing against

independence is approached for the scenario where reciprocal communication is allowed between

the two nodes. Benefits of a two-way communication system were demonstrated through a coding

scheme inspired by the seminal work of Kaspi [13].

Considering the general HT scenario described in Fig. 1, the problem faced in this paper shares

common roots with the seminal works in [7], [8]. Here, however, we are not interested only in

distributed testing but also in achieving source reconstruction. This also connects to the lossy

source coding problem by Heegard & Berger [14], where two decoders have to reconstruct the

same source based on different side informations and the setup investigated in [11]. Along the

line of the technical tools used in the present work, authors in [15] suggested the use of “binning”

as a possible approach to improve performance of distributed HT by reducing the coding rate.

We shall study this approach which, however, brings forth different difficulties, stemming from

the fact that the worth of the side information at the decoder is unknown before a decision

is made about the state of the system. That is because reliable decoding of the “bin index” is

required in presence of side information uncertainty (e.g. similarly to problems under channel

uncertainty [16]), which is also met and contended with in our present framework. Binning was

also shown to be useful in [17], where a multi-node system composed of several decentralized

encoders that send limited-rate messages to a decoder about their observations was investigated

for the case of testing against conditional independence.

In this work, we consider another dimension of the problem, as represented in Fig. 1. An

authentication system prevents the unauthorized injection of messages into a public channel,

on which security is inadequate for the needs of its users since may be threatened with eaves-

dropping or injection or both [18]. This threat of compromise of the receiver’s authentication

data is motivated by situations in multiuser networks –such as automatic fault diagnosis– where

the receiver is often the system itself which cannot be treated by conventional cryptography,

and which require recourse to new techniques (e.g. image authentication [19], [20] and Smart

Grids [21], [22]). Having divided the problem into that of authentication and communication,

decoding of a message at the receiver (node B) requires first a reliable identification of the
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legitimacy of its sender (node A) and then a lossy reconstruction of the underlying feature

vector X = (X1, . . . , Xn), with an average per-letter distortion depending on the decision made.

In a sense, this problem combines the general distributed HT problem studied in [7] and [8]

with the classical Heegard & Berger [14].

B. Main Contributions

The paper is divided into three parts. In the first part, we focus on the case of testing

against independence where the alternative hypothesis H1 is a disjoint “version” of H0 that

leads to Xn and Y = (Y1, . . . , Yn) to be independent from each other while sharing the same

marginal distributions as under H0. By relying on the techniques introduced in [8], we offer an

achievable (single-letter) expression for the tradeoff between the coding rate, the error exponent

and the average per-letter distortion, referred to as rate-error-distortion region. In this setting,

we simply assume that reconstruction is only attempted when H0 is decided, since no effective

side-information is available at the decoder when H1 is the true hypothesis.

Interestingly, it is shown that the optimal rate-error-distortion region is attained by using

successive refinement coding where the first layer performs HT, and the second layer uses well-

known results for source coding with side information at the decoder [23], while ignoring the

information received by node B at the HT stage. This result is quite surprising, as in general

there is no reason to believe that such a separation between the two aspects of the problem should

be optimal. We explicitly evaluate the rate-error-distortion region for uniform Binary Sources

where a Binary Symmetric Channel (BSC) is assumed between X and Y , and plot the resulting

tradeoffs between the three quantities of interest.

In the second part, we derive an achievable rate-error-distortion region for the same system,

under no specific assumptions on the two hypotheses. To this end, we allow the use of binning

not only for source reconstruction but also for testing purpose. The resulting rate-error-distortion

achievable region is in fact a quadruplet, comprised of the rate of communication, the error

exponent for an error of the second type, subject to a maximum probability of error of first type,

and the average distortion corresponding to each hypothesis. The techniques required for this

analysis are inspired by previous work on distributed HT [8] and recent work [24] on the study of

the error exponent for the problem of lossy source coding with side information at the receiver.

It should be mentioned here that although the use of binning for HT was first suggested in [15]
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as a possible approach to improve performance, the benefits of this were never demonstrated.

Along this line, Rahman and Wagner [17] show that binning is optimal for HT when under

H1 the involved variables are assumed to be conditionally independent given some additional

variable, known at the decoder side. While this work played a big part in inspiring a binning

approach for HT, it turns out that using Y as the side information available to the receiver does

not necessarily improve testing performance, as the exact value of side information is unknown.

In the third part of this paper, we concentrate on distributed HT without reconstruction

constraints. We show that for the case of two general hypotheses, unlike the case of testing against

independence, our previous two-stage coding approach leads to significant loss in performance.

We do so by suggesting a new approach for testing without requiring the decoding of the involved

descriptions. This turns out to be superior to the previous one in terms of error exponent, but

prevents the decoder of providing a lossy reconstruction of the source.

The rest of this paper is organized as follows. Section II presents the optimal rate-error-

distortion region for the case of testing against independence. Optimality is also shown for a

specific example of a binary symmetric channel (BSC) between X and Y , and numerical results

are given. The rate-error-distortion region for the general HT case is given in Section III. In

Section IV, we offer a different approach for HT only. The performance of the two previously

presented approaches are compared through numerical results. Finally, concluding remarks are

given in Section V.

Notation and Conventions

We use upper-case letters to denote random variables (RVs) and lower-case letters to denote

realizations of RVs. P(X ) denotes the set of all possible probability distributions on X , while

pX ∈ P(X ) is a member of this set. The length of a vector appears as a superscript, and may be

omitted when it is clear from the context. Qxn denotes the empirical distribution, referred to as

the type, of the vector xn = (x1, . . . , xn). Pn(X ) ⊂ P(X ) denotes the set of all possible atomic

probability distributions (or types) on the alphabet X . The set of all vectors xn ∈ X n with a

specific type Q is denoted by T nQ , while the set of all vectors that are δ-typical (in the usual

sense, as defined in Appendix A) is denoted by T nδ (Q). Using Csiszár’s notation [25], we let

H(PX) = E [− log pX(X)] denote the entropy of a RV distributed according to p, and distinguish

the binary entropy function by H2(x) = −x log2 x − (1 − x) log2(1 − x). I(PX ;PY |X) denotes
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the mutual information between X and Y while assuming that pXpY |X governs the pair, and

D(PX‖P ′X) the KL divergence between the distributions p and p′. An alternative (or simplified)

form I(X;Y ) is also used in some cases to improve readability. All exponents and logarithms

in this paper are base 2, unless stated otherwise. We denote the scalar convolution function by

a ? b , a(1 − b) + b(1 − a). Finally, known definitions and properties of typical sequences are

given in Appendix A.

II. TESTING AGAINST INDEPENDENCE

A. Definitions

In this section, we give a more rigorous formulation of the context depicted in Fig. 1 for the

case of testing again independence. Let X and Y be two finite sets. Nodes A and B observe

sequences of random variables (Xi)i∈N? and (Yi)i∈N? respectively, which take values on X and Y ,

resp. For each i ∈ N?, random samples (xi, yi) are distributed according to one of two possible

joint distributions:
H0 : p0(x, y) = PXY0(x, y) ,

H1 : p1(x, y) = PX(x)PY1(y) .
(2)

on X × Y , and further assume that PY0 = PY1 . Moreover, they are independent across time i.

Let d : X ×X̂ → [0 ; dmax] be a finite distortion measure i.e., such that 0 ≤ dmax <∞. We also

denote by d the component-wise mean distortion on X n×X̂ n, i.e., for each (xn, x̂n) ∈ X n×X̂ n,

d(xn, x̂n) , 1
n

∑n
i=1 d(xi, x̂i). We assume that node A can send information to node B over an

error-free link with rate R bits per source-symbol. Having received the information from node

A, node B is then required to make a decision (user authentication) between the two possible

hypotheses. After having decided between the two hypotheses, node B attempts to reconstruct the

sequence X , with minimum distortion, for some additive distortion measure, that may depend on

the actual probability distribution in place. While recovering the sequence seen by node A under

hypothesis H1 may still be possible, it becomes less relevant, as in this case the sequence seen

by node B is completely independent and does not constitute as side information. Furthermore,

it is very likely that in realistic cases where testing against independence arises, deciding H1

implies that the information seen by node A is irrelevant to node B. Thus, for the case of testing

against independence, we assume node B attempts to decode only if it has decided H0. In the

general hypotheses case, decoding is attempted under any of the two hypotheses.
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Definition 1 (Code). An (n,R)-code for testing against independence in this setup is defined by

• An encoding function at node A denoted by fn : X n → {1, . . . , ‖fn‖} ;

• A decision region An ⊂ {1, . . . , ‖fn‖} × Yn, such that if (fn(xn), yn) ∈ An the decoder

declares H0 and otherwise H1 ;

• A reconstruction function at node B denoted by gn : {1, . . . , ‖fn‖} × Yn → X̂ n .

Definition 2 (Rate-exponent-distortion region). A tuple (R,E,D, ε) ∈ R4
+ is said to be achievable

if, for any δ > 0 and for n large enough, there exists an (n,R+ δ)-code (fn,An, gn) such that:

n−1 log ‖fn‖ ≤ R ,

E0

[
d
(
Xn, gn(fn(Xn), Y n

0 )
)
|H0

]
≤ D + δ ,

− 1

n
log βn(An) ≥ E − δ ,

αn(An) ≤ ε ,

where βn(An) = Pr
(
An|XY1 ∼ p1(x, y)

)
and αn(An) = Pr

(
Acn|XY0 ∼ p0(x, y)

)
, and

distortion is measured under the condition that node B correctly decides H0. The set of all such

achievable tuples is denoted by R? and is referred to as the rate-exponent-distortion region.

In [7] and later on in [8], the authors show that when testing against independence, the optimal

approach at node B is to apply Stein’s Lemma over the common distribution of Y n and the

encoded descriptions fn(Xn). More specifically, by optimizing over all decision region An ⊂

{1, . . . , ‖fn‖}×Yn, the smallest probability of error of the second type βn asymptotically behaves

as: βn ≈ exp (−nE(R)) with n large enough, for a fixed constraint on the error probability of

the first type αn ≤ ε, and the exponent E(R) satisfies [7, Lemma 1.a]:

E(R) = sup
n≥1

En(R) , (3)

where

En(R) = sup
fn

{
1

n
I (fn(Xn);Y n)

∣∣∣ log ‖fn‖ ≤ nR

}
. (4)

This asymptotic equivalence implies a strong converse property that, much like in the single-

node HT setup, the optimal exponential decay of βn is not dependent upon the chosen constraint

0 < ε < 1 on the error probability of the first type αn (e.g. see [11] for a proof based on image
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sets). Exploiting this equivalence the optimal rate-error-distortion region of the system depicted

in Fig. 1 can be expressed through the following multi-letter characterization.

Lemma 1 (Multi-letter characterization [7]). The rate-error-distortion region R? when testing

against independence is described by the set of tuples (R,E,D) ∈ R3
+ satisfying:

lim sup
n→∞

1

n
log ‖fn‖ ≤ R , (5)

lim inf
n→∞

1

n
I (fn(Xn);Y n

0 ) ≥ E , (6)

lim sup
n→∞

E0

[
d
(
Xn, X̂n = gn(fn(Xn), Y n

0 )
)∣∣H0

]
≤ D , (7)

for some sequence of encoding and decoding mappings (fn, gn).

Remark 1. Region R? is closed and convex.

B. Single-Letter Rate-Error-Distortion-Region

We now state the optimal rate-error-distortion region for testing against independence, which

provides a single-letter expression for that in Lemma 5.

Proposition 1 (Rate-error-distortion region). A tuple (R,E,D) ∈ R3
+ is achievable for the two-

node detection and reconstruction problem when testing against independence, as defined in

Definition 2, if and only if two random variables U ∈ U and V ∈ V , as well as a reconstruction

mapping g : U × V × Y → X̂ , can be found, such that

I(U ;X) + I(V ;X|UY ) ≤ R , (8)

I(U ;Y ) ≥ E , (9)

E0

[
d
(
X, g(UV Y )

)]
≤ D , (10)

with (U, V ) being two random variables satisfying U −
− V −
−X −
− Y form a Markov chain

with (X, Y ) ∼ p0(x, y), and ‖U‖ ≤ ‖X‖+ 2, ‖V‖ ≤ ‖X‖‖U‖+ 1.

Proof: The proof of Proposition 1 is given in Appendix B.

Remark 2. Observe that on one hand, the expression for the rate can be evaluated as follows:

R ≥ I(U ;X) + I(V ;X|U)− I(V ;Y |U)

= I(U ;Y ) + [I(V ;X)− I(V ;Y )] ,
(11)
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where the final equality stems from the Markov chain formed by the RVs and on the other hand,

from the fact that U −
− V −
−X −
− Y form a Markov chain, it is easy to see that

E0

[
d
(
X, g′(V Y )

)]
≤ E0

[
d
(
X, g(UV Y )

)]
≤ D , (12)

for some mapping g′ and any g. Note that the rate can now be seen as comprised of two different

parts. The first part of the resulting expression in (11) is consecrated to detection since it only

affects the error exponent, and is in fact identical to the expression of the error exponent given

in (9) in agreement with previous results [7], [8]. The second part of the rate is consecrated

only to source reconstruction and therefore, the rate-error-distortion region can be seen as being

equivalent to two uncoupled problems that share a common rate. In the following sections, we

will see that this is not the case when general hypotheses are considered.

C. Binary Symmetric Source

In some cases, the region defined by Proposition 1 can be calculated analytically. We present

such an example here. Consider the following statistical model:

X ∼ Bern
(

1

2

)
,

H0 : Y = X + Z, Z ∼ Bern(p)

H1 : Y ∼ Bern
(
1
2

)
⊥ X ,

(13)

with Bern(p) being a Bernoulli RV with probability p for being 1, and ⊥ signifying that X and Y

are independent of each other. Under both hypotheses, the marginal distributions of both X and

Y are equal. Thus, a decision (or user identification) can be reached only through cooperation

between the nodes. In the next proposition, the rate-error-distortion region for this problem is

characterized by optimizing over all involved random variables in Proposition 1.

Proposition 2 (Rate-Error-Distortion region for Binary Symmetric Sources). The rate-error-

distortion region for BSS and testing against independence is given by

R ≥ 1−H2 (α ∗ β ∗ p) + θ [H2 (α ∗ p)−H2 (α)] , (14)

E ≤ 1−H2 (α ∗ β ∗ p) , (15)

D ≥ θα− (1− θ) p , (16)

for any 0 ≤ α, β ≤ 1
2
.

Proof: The proof is given in Appendix C.
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D. Numerical Results

We now present numerical results for the Binary Symmetric Source (BSS) case of testing

against independence. Fig. 2 shows six curves, each representing the trade-off between user

authentification and source reconstruction, expressed by the desired error exponent (second type)

and the resulting average distortion of the source estimation, for a fixed value of available rate and

for p = 0.25. Unsurprisingly, all curves are non-decreasing, meaning that when the probability

of error is exponentially smaller, the amount of rate left for source reconstruction is smaller,

resulting in a more crude estimation.

0 5 · 10−2 0.1 0.15
0

5 · 10−2

0.1

0.15

0.2

0.25

E

D
[B

E
R

]

R = 0.1
R = 0.2
R = 0.5
R = 0.8
R = 0.9
R = 1

Figure 2. Numerical results of the optimal average distortion as a function of the desired error exponent of the second type,

for different amounts of available rate and for p = 0.25.

Assuming that both sources Xn and Y n are available at a single location, Stein’s Lemma yields

an error exponent Emax = I(X;Y0) = 1 − H2(p) ≈ 0.1887. Obviously, this value constitutes

an upper bound –uniform over the rate– on the achievable exponent in the distributed setup

presented here. It can be seen that when R < Emax, the average distortion reaches its maximal

value Dmax = p = 0.25 for some E < Emax. Any exponent bigger than the value for which this

happens is unachievable with this rate, since the desired exponent would demand more rate than
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available. When R > Emax, further enlarging the rate allows for better distortion, for the same

values of error exponent.

Note especially the curves for the rate values: R = 0.9 and R = 1 which rates comply with

R > H2(p). According to Slepian-Wolf coding (see e.g. [4]), this rate is enough to transmit xn

to node B without distortion, when no detection is necessary. Indeed, it can be seen that for

any choice of error exponent that ensures enough available rate for estimation, zero-distortion is

achievable. The curve for R = 1 is thus almost invisible, as in this case enough rate is available

for source reconstruction, for any achievable choice of error exponent.

III. GENERAL HYPOTHESIS TESTING

We now focus on the general case, where both hypotheses can be general distributions of two

variables. Note that now, unlike the case of testing against independence, the performance of the

system is measured by four quantities, namely the rate, the error exponent and two distortions,

as source reconstruction is attempted under both hypotheses. Nevertheless, distortion is still

measured under the assumption that the detection step was completed successfully. Unlike the

case of testing against independence, optimality results for general distributed HT remain allusive.

An achievable region [8] was inspired by the approach taken for testing against independence.

We propose here an achievable region for the general hypothesis testing problem with source

reconstruction constraints that makes use of binning for both purposes. The proposed region,

while not necessarily optimal in general, aims at improving on known results for the testing part

while also adding the reconstruction of the source.

A. Definitions

As before, we suppose that the statistician observes Y n samples directly and can be in-

formed about Xn samples indirectly, via an encoding function fn : X n → {1, . . . , ‖fn‖} of

rate n−1 log ‖fn‖ ≤ R. The code definition remains the same as in Definition 1 with two

reconstructions functions gn,i : {1, . . . , ‖fn‖} × Yn → X̂ n
i . However, for each i ∈ N?, random

samples (xi, yi) are distributed according to one of two general joint distributions:

H0 : p0(x, y) = PXY0(x, y) ,

H1 : p1(x, y) = PXY1(x, y)
(17)
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on X ×Y , and further assume that PY0 = PY1 . Moreover, these samples are independent across

time i = {1, . . . , n}.

Definition 3 (Rate-exponent-distortion region). A tuple (R,E,D1, D2, ε) ∈ R5
+ is said to be

achievable if, for any δ > 0, there exists an (n,R + δ)-code (fn,An, gn,1, gn,2) such that:

n−1 log ‖fn‖ ≤ R ,

Ei
[
di
(
Xn, gn,i(fn(Xn), Y n

i )
)
|Hi

]
≤ Di + δ , i = 0, 1

− 1

n
log βn(An) ≥ E − δ ,

αn(An) ≤ ε ,

where βn(An) = Pr
(
An|XY1 ∼ p1(x, y)

)
and αn(An) = Pr

(
Acn|XY0 ∼ p0(x, y)

)
, and

distortion is measured under the condition that node B correctly decides H0. The set of all such

achievable tuples is denoted by R? and is referred to as the rate-exponent-distortion region.

B. Achievable Rate-Error-Distortion Region

We now state our main result for the general joint distributed detection and reconstruction

problem, which is a new achievable rate-error-distortion region. This region is inspired by the

one offered for the special case of testing against independence. In a similar manner to the

approach taken in Proposition 1, we derive an achievable region based on the separation of two

distinguishable steps, namely user authentication and source reconstruction. The statistician first

decodes the description needed to perform testing, and then reconstruct the samples sent by the

encoder. However, the decision step requires two phases, as summarized in the corresponding

constraints present in the error exponent of the next proposition.

Proposition 3 (Rate-error-distortion region). A tuple (R,E,D0, D1) ∈ R4
+, is achievable for the

distributed joint detection and reconstruction problem with general hypotheses, if there exists a
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positive rate R′ satisfying:

R ≥ R′ + I
(
PX|UY0 ;PV0|XUY0|PUY0

)
+ I
(
PX|UY1 ;PV1|XUY1|PUY1

)
, (18)

E ≤ inf
QX∈P(X )

sup
Q?

U|X(QX)∈P(U)
inf

QY ∈P(Y)
inf

QUXY ∈P(U×X×Y)
QU|X=Q?

U|X

{
min

[
G(QUXY , QX , QY , R

′),

min
ŨX̃Ỹ ∈L(Q?

UX ,Q
?
UY )
D
(
PŨX̃Ỹ ‖Q

?
UXPY1|X

)]}
(19)

Di ≥ Ei
[
d
(
X, X̂i(UY Vi)

)]
, i = {0, 1} . (20)

Here, U , V1 and V2 are auxiliary random variables verifying the Markov chains U−
−V0−
−X−
−Y0
and U −
− V1 −
−X −
− Y1; L(Q?

UX , Q
?
UY ) is the following set of random variables:

L(Q?
UX , Q

?
UY ) =

{
PŨX̃Ỹ ∈ P(U × X × Y)

∣∣PŨX̃(u, x) = Q?
UX(u, x),

PŨ Ỹ (u, y) = Q?
UY0

(u, y), ∀(u, x, y)
}
,

(21)

where Q?
UX , Q

?
UY0

are joint distributions implied by QX and the chosen maximizer Q?
U |X , and

G(QUXY , QX , QY , R
′) =

min
i={0,1}

D
(
QUXY ||PXYiQU |X

)
+
[
R′ − I

(
QX ;QU |X

)
+ I
(
QY ;QU |Y

)]+
I
(
QX ;QU |X

)
> R′

+∞ else .
(22)

Remark 3. The Markovian properties required in Proposition 3 can also be written as a single

Markov chain of the form U −
− (V0, V1) −
− X −
− (Y0, Y1). Both of these expressions are

equivalent in our case, as Y0 and Y1 are never seen simultaneously, and V0 and V1 never appear

simultaneously.

Proof: The proof is relegated to Appendix D.

We emphasize that when a binning approach is taken, the expression (19) for the error exponent

E encapsulates the innate tension between two error events: decoding the description and testing

based on it. Provided that a good representation un of the observed samples xn at node A

is reliably decoded at node B, the statistician is able to perform detection with a very large

probability of success. However, such a good representation would also induce a very large

size for the codebook, which for a given R would cause each bin to be very large in order to

satisfy the rate constraint, making likely errors will appear during the decoding process of the
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right sequence from the specific bin. On the other hand, when a crude description is chosen, the

codebook is smaller and thus so is each bin –if binning is at all necessary. The binning process

is therefore not likely to significantly hurt performance, whereas the retrieved representation

is much less valuable for the sake of performing the test because of the crude nature of such

description supplies about samples xn.

In order to ensure the achievability of the error exponent introduced in Proposition 3, we will

take a “worst-case” approach. The minimization and maximization operators in the expression

for E can thus be read as follows: For every possible vector xn, the encoder is allowed to choose

its strategy of transmission (this is achieved by taking the supremum over Q?
U |X). Having chosen

the distribution to generate the codebook, the proposed approach should apply for any type of

observed vector yn, as well as for any joint type (un, xn, yn), as long as Q?
U |X is respected. Much

like the case of testing against independence, achievability is proven by dividing the problem

into two distinct parts: hypothesis testing and source reconstruction. First, a common message –

designed to allow detection– is communicated from node A to node B and is then used regardless

of the probability distribution in effect which is still unknown at this stage. In order to do so, we

choose a decoder based on the empirical entropy, similar to the Empirical Mutual Information

(MMI) decoder used in compound models (e.g. see [16] and references therein). Two private

messages are then transposed upon this common message, each intended to be used (together

with the common message) under each of the possible hypotheses. It should be emphasized that

dividing the communication in two different phases may well be a suboptimal choice. However,

we will see such a choice introduces significant gains in the error exponent.

IV. FOCUSING ON HYPOTHESIS TESTING ONLY

In this section, we focus on the detection part of the problem only, while still assuming general

hypotheses. Although we will show that significant gains can be obtained by introducing binning

as suggested in Proposition 3, we next show that the performance of detection can be further

improved if source reconstruction is not required by the statistician. We start with the following

proposition that uses a different approach for testing without source reconstruction.

Proposition 4 (Improved error exponent for general hypotheses). A pair (R,E) is an achievable

rate and exponent pair for general hypothesis testing, without source reconstruction, provided
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that:

E ≤ sup
Q?

U|X∈P(U)

{
min

{
Ĝ(QUXY , R) , min

ŨX̃Ỹ ∈L(Q?
UX , Q?

UY )
D
(
PŨX̃Ỹ ‖Q

?
UXPY1|X

)}}
, (23)

where

Ĝ(QUXY , R) = R−
[
I
(
PX ;Q?

U |X
)
− I
(
PY0 ;Q

?
U |Y0

)]
(24)

and the set L(Q?
UX , Q

?
UY ) is defined by (21). It is worth emphasize that I

(
PY0 ;Q

?
U |Y0

)
in (23) is

a direct consequence of the choice Q?
U |X . Moreover, the probability distribution Q?

UY is derived

from Q?
U |X and PXY0 .

Proof: The proof of this proposition is relegated to Appendix E.

The proof is very similar to that of Proposition 3. We basically derive the probability of error

for a specific triplet of sequences (xn, yn, un), and then calculate the total probability of error by

summing over all possible types and corresponding sequences included within each type. The

main difference is that now source reconstruction is not required. Thus, instead of first selecting

a sequence from within the bin and only then performing the test, we let node B operate over

the entirety of the bin. The chosen strategy consists of going over all sequences within the bin.

For each sequence uni for {1, . . . , 2nR}, we assume it is the correct one and perform the test by

checking the typicality of the pair (uni , y
n) with relation to the hypothesis H0. If a sequence is

found in a bin such that (uni , y
n) ∈ T nδ (UY0), the decoder declares H0. Otherwise, if no such

sequence is found it declares H1.

As was the case in Proposition 3, Proposition 4 implies that the resulting error exponent is the

output of a trade-off between the exponents of the probabilities of two error events. In this case,

the trade-off that controls βn ≈ exp(−nE) is between: the probability of erroneous detection

while using the right sequence; and the probability of having a different sequence in the bin

that is jointly typical with yn and thus would make the decoder declare H0. It turns out, that

this trade-off is much preferable to the one offered by Proposition 3, as we can bound the set

of sequences that might “confuse” the decoder in a manner that is not dependent on the type of

yn. For instance, the minimizations over QX , QY and QUXY (as seen in Proposition 3) are not

longer necessary. This issue has a positive effect on behavior of the error exponent. As a matter

of fact, the fact that the original sequence sent by the encoder is not retrieved implies that this

strategy is not adapted for the joint problem of detection and source reconstruction.
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Remark 4. Another advantage of this strategy over the one given in Proposition 3 is that while

knowledge over the probability distribution implied by PXY1 is required in order to analyze

performance, such knowledge is not needed in order to perform the test. This stems from the

fact that here, the system only tests if H0 is true or not rather than testing H0 against H1.

A. Binary Symmetric Source

Having proposed two new approaches for distributed testing with general hypotheses, one that

allows source reconstruction (Proposition 3) and the other that does not (Proposition 4), it is

still not clear weather binning is strictly beneficial for such problems. As was demonstrated in

Section II, binning for testing is not necessary to achieve optimality in the case of testing against

independence. One may further argue that as binning introduces additional error events, it is not

clear weather or not it would be beneficial at all in the case of general hypotheses.

In the following, we investigate the benefits of binning through a Binary Symmetric Source

(BSS). While it is analytically clear that detection through the strategy offered by Proposition 4 is

superior to the one offered in Proposition 3, we show that for some specific cases both approaches

may result in performance gain relative to non-binning approaches. For the sake of simplicity, we

consider the following lower bound over the performance, throughout the following numerical

analysis [8]:

min
ŨX̃Ỹ ∈L(Q?

UX ,QUY )
D(PŨX̃Ỹ ‖Q

?
UXPY1|X) ≥ D(PUY0‖PUY1) . (25)

Consider the following statistical model:

X ∼ Bern
(

1

2

)
,

H0 : Y = X + Z0, Z0 ∼ Bern(p)

H1 : Y = X + Z1, Z1 ∼ Bern(q) ,
(26)

where 1 ≥ q > p ≥ 0. Note that while H1 does not imply independence between X and Y , the

marginal distribution of Y is equal for both hypotheses, making a decision without cooperation

impossible. This model was studied first in Wyner-Ziv [23] for source reconstruction. The optimal

rate-distortion region (asymptotic regime) was shown to be
R(D) = inf

θ,δ
[θ (H2(p ∗ δ)−H2(δ))] ,

D = θδ + (1− θ)p ,
(27)
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where p is the crossover probability between the source X and the side information Y , and p?δ

is the binary convolution of p and δ. The parameters satisfy 0 ≤ θ ≤ 1 and 0 ≤ δ ≤ 0.5. The

achievability of this region was shown by using time-sharing between two strategies - in the first

the auxiliary RV U is the result of passing X through a Binary Symmetry Channel (BSC) with

transition probability δ, while in the second U is degenerate.

We now apply Proposition 3 to this setup, we choose to consider only distributions in which

QX is a BSS, and U is the result of passing X through a BSC with crossover probability δ.

While this is not necessarily an optimal choice, it can be justified as an optimal approach for

the asymptotic regime, at least. To evaluate the resulting error exponent, we need to calculate

two values. The first is given by:

inf
QY

inf
QUXY

QU|X=Q?
U|X

G(QUXY , R) , (28)

as a function of Q?
U |X (which, under our assumptions, boils down to be a function of δ). This

expression encapsulates the error exponent of the event where the wrong sequence is chosen

from the bin. The second quantity to calculate is given by:

min
ŨX̃Ỹ ∈L(U)

D(PŨX̃Ỹ |PU1X1Y1) ≥ D(PUY0‖PUY1) , (29)

also as a function of Q?
U |X . This expression represents the error exponent of the event where,

while using the right sequence, an error occurs during the detection process. Having calculated

these two functions, we can pick Q?
U |X such that the “minimum” between the two is “maximized”.

The results implied by Proposition 4 can be calculated in a very similar fashion. Now, the

trade-off is between the same curve representing the error while using the correct sequence as

was mentioned in (29), and the curve implied by Ĝ, representing the event of an error caused

through the testing of a different sequence.

B. Numerical Results

A visualization of the performance achieved by each of the proposed methods for general

hypotheses is plotted in Fig. 3, for the above discussed statistical model. We choose to consider

only distributions in which QX is a BSS and Q?
U |X represents a BSC with transition probability

δ, as explained above. The “hypothesis testing” curve represents the error exponent of the

probability of the event where a mistake is made in detection, when the correct sequence is
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0 5 · 10−2 0.1 0.15
0

5 · 10−2

0.1

0.15

0.2

δ

hypothesis testing error exponent
G (Proposition 3)

hypothesis testing without binning
Ĝ (Proposition 4)

“Stein” Upper Bound

Figure 3. Error exponents for both error events in the BSC case with p = 0.1, q = 0.2, R = 0.4, under the strategies

implied by Propositions 3 and 4. The resulting error exponent for each δ is the minimum between the two. Performance with

a non-binned codebook is represented by a dashed line.

used from the bin. This curve is relevant for both methods of detection, namely Proposition 3

and Proposition 4.

The interesting tension that exists between the two error events, denoted by either G (Propo-

sition 3) or Ĝ (Proposition 4) and an error exponent corresponding to testing, is represented by

the worst case between those curves. When δ is very small, a sequence un can be found with

high probability, such that xn is very well described, and the codebook contains many sequences

un. Thus, given the right sequence un, the error event during the test is not likely, and the error

exponent of the event where the test fails is high. However, since the rate of communication is

fixed, each bin has to contain many sequences in case δ is small, increasing the error probability

in decoding the right sequence. When δ grows, the accuracy of the description of xn by un is

lower, making the probability of error of the test, while using the correct sequence, higher. The

codebook, however, is smaller, making the task of choosing the right sequence in the bin easier.

Note that the error exponent for choosing the sequence from within the bin has a threshold, under

which it is zero. This threshold in this case is roughly δ ≈ 0.08, which is the value implied
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by [23] as the minimal value for the binning approach, in the asymptotic regime.

Similarly, the trade-off between the two error events represented by Proposition 4 is apparent

through the curve of the error exponent related to the testing errors, along with the “binning

error exponent” denoted by the curve Ĝ. Now, the additional error event –other than committing

an error while using the correct sequence which turns out to be the same as before– is the event

where a different sequence in the bin “confuses” the decoder by being jointly typical with yn.

While this curve is lower bounded by the curve representing G for all cases, it can be seen that

in the present case this approach is largely superior. As under both approaches we are allowed

to select the strategy Q?
U |X (in this specific case δ) freely, the optimal approach under each

of the propositions would be to choose the corresponding intersection point between the curve

representing G or Ĝ and the curve entitled “Hypothesis Testing Error Exponent” in Fig. 3. These

two points are marked in Fig. 3 with black dots.

In addition, a lower bound can be found in Fig. 3. We emphasize that this bound is not

drawn as a function of δ but rather depicts the best possible performance under the assumptions

detailed above, when binning is not performed, as was done in [8]. Thus, δ is chosen to be

the smallest possible, such that the size of the codebook would not exceed the available rate

of communication. A trivial upper bound is also drawn by providing xn to node B and then

applying Stein’s Lemma.

V. SUMMARY AND DISCUSSION

We studied the joint problem of distributed detection and lossy compression with side infor-

mation. This scenario arises when an authentication system prevents the unauthorized injection

of messages into a public channel, assuring the receiver of a message of the legitimacy of its

sender. In this setup a user (referred to as node A) is required to communicate a lossy description

of a memoryless source to a statistician (referred to as node B) whose task is to verify that the

encoding user is the individual he claims to be and then according to its identity to reconstruct

the message based on the adequate distortion measure, much like in [9], [10]. However, in the

setup considered here the receiver is unaware of the value of its information as well, which leads

to a two-step approach where first a decision has to be made about the identity of node A before

source reconstruction can take place.

When testing against independence, this two-step approach turns out to be optimal. In this
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case, detection can be performed optimally as in [7], while source remonstration is performed

à la Wyner-Ziv [23], and the two-step approach does not induce performance degradation.

An application example to a binary symmetric source was also shown for which the optimal

region was explicitly derived, emphasizing an interesting tension between the error exponent

corresponding to the (second type) error probability and the average distortion measure.

When testing with general hypotheses, a similar, albeit more involved, approach produced a

new achievable rate-error-distortion region. Here, optimality may be hard to reach, as optimality

results stay allusive even in the case where the receiver is aware of the value of the side infor-

mation (see [26] and references therein). Nevertheless, we showed that the two-step approach,

which was optimal in the case of testing against independence, induces in the general case a

significant loss in performance. It was shown that when source reconstruction is not required,

valuable information for testing can be compressed much further than in the opposite case,

improving significantly the performance of detection.

Although there are several other threats to authentication systems which require recourse to

more sophisticated models and techniques than the ones investigated here, this work attempts a

modest step in the direction of a theory for distributed testing based on lossy data compression

which seems to offer a formidable mathematical complexity.

APPENDIX A

TYPICAL SEQUENCES AND RELATED RESULTS

In this appendix we introduce standard notions in information theory, suited for the mathemat-

ical developments and proofs needed in this work. The results presented can be easily derived

from the standard formulations provided in [25], [27], [28]. Let X and Y be finite alphabets and

(xn, yn) ∈ X n × Yn. With P(X × Y) we denote the set of all joint probability distributions on

X × Y . We define the δ-typical sets, with relation to the pmf pX ∈ P , as:

Definition 4 (Typical set). Consider p ∈ P(X ) and δ > 0. We say that xn ∈ X n is δ- typical if

xn ∈ T nδ (X) with:

T nδ (X) =
{
xn ∈ X n :

∣∣Qxn(a)− pX(a)
∣∣ ≤ δ, ∀a ∈ X such that p(a) 6= 0

}
, (30)

where Qxn(a) = n−1N(a|xn) is the type of xn and N(a|xn) denotes de number of occurrences of

a ∈ X in xn. When X ∼ pX we can denote the corresponding set of strongly typical sequences
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as T nδ (X).

Definition 5 (Joint and conditional typical sets). In a similar manner to Definition 4, given

pXY ∈ P (X × Y) we can construct the set of δ-jointly typical sequences as:

T nδ (XY ) =
{

(xn, yn) ∈ X n × Yn :
∣∣∣Qxnyn(a, b)− pXY (a, b)

∣∣∣ ≤ δ,

∀(a, b) ∈ X × Y such that pY |X(b|a)Qxn(a) 6= 0
}
. (31)

We also define the conditional typical sequences. In precise terms, given xn ∈ X n we consider

the set:

T nδ (Y |xn) =
{
yn ∈ Yn :

∣∣∣Qxnyn(a, b)− pY |X(b|a)Qxn(a)
∣∣∣ ≤ δ,

∀(a, b) ∈ X × Y such that pY |X(b|a)Qxn(a) 6= 0
}
. (32)

Note that alternatively, the same set can be expressed as follows:

T nδ (Y |xn) =
{
yn ∈ Yn : (xn, yn) ∈ T nδ (XY )

}
(33)

setting pXY = pY |XQxn .

We present the following lemmas without proof.

Lemma 1 (Properties of typical sets [28]). The following statements hold:

1) Consider (xn, yn) ∈ T nε (XY ). Then, xn ∈ T nε (X), yn ∈ Tε(Y ), xn ∈ T nε (X|yn) and

yn ∈ T nε (Y |xn) .

2) Be T nε (Y |xn) with xn /∈ T nε (X). Then T nε (Y |xn) = ∅ .

3) Be (Xn, Y n) ∼
∏n

t=1 pXY (xt, yt). If xn ∈ T nε (X) we have

exp{−n(H(X) + δ(ε))} ≤ pXn(xn) ≤ exp{−n(H(X)− δ(ε))}

with δ(ε)→ 0 when ε→ 0. Similarly, if yn ∈ T nε (Y |xn):

exp{−n(H(Y |X) + δ′(ε))} ≤ pY n|Xn(yn|xn) ≤ exp{−n(H(Y |X)− δ′(ε))}

with δ′(ε)→ 0 when ε→ 0 .

Lemma 2 (Conditional typicality lemma [28]). Consider the product measure
∏n

t=1 pXY (xt, yt).

Using that measure, we have the following

Pr {T nε (X)} ≥ 1−O
(
c
−nf(ε)
1

)
, c1 > 1
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where f(ε)→ 0 when ε→ 0. In addition, for every xn ∈ T nε′ (X) with ε′ < ε we have:

Pr {T nε (Y |xn)|xn} ≥ 1−O
(
c
−ng(ε,ε′)
2

)
, c2 > 1

where g(ε, ε′)→ 0 when ε, ε′ → 0.

Lemma 3 (Size of typical sets [25]). For any type Q ∈ Pn(X )

|Pn(X )|−1 exp
(
nH(Q)

)
≤ |T nQ | ≤ exp

(
nH(Q)

)
.

The size of the set of all empirical distributions (or types) of X and of length n can be calculated

to be

|Pn(X )| =
(
n+ |X | − 1

|X | − 1

)
≤ (n+ 1)|X | ,

yielding the following bound

(n+ 1)−|X | exp
(
nH(Q)

)
≤ |T nQ | ≤ exp

(
nH(Q)

)
.

Lemma 4 (Set of sequences with small empirical entropy [24]). For any pair of strings of length

n, denoted by (xn, yn), let

S(xn, yn) =
{

(x̃n, ỹn) ∈ X n × Yn
∣∣H(x̃n, ỹn) ≤ H(xn, yn)

}
,

with H(xn, yn) being the empirical entropy of the sequences,

H(xn, yn) = −
∑

a∈X ,b∈Y

Qxnyn(a, b) logQxnyn(a, b) .

Then

|S(xn, yn)| ≤ (n+ 1)|X ||Y| exp
[
nH(xn, yn)

]
.

Let

S(xn|yn) =
{
x̃n ∈ X n |H(x̃n|yn) ≤ H(xn|yn)

}
,

then

|S(xn|yn))| ≤ (n+ 1)|X ||Y| exp
[
H(xn|yn)

]
.

Lemma 5 (Generalized Markov Lemma [29]). Consider a pmf pUXY belonging to P (U × X × Y)

and that satisfies de following:

U −
−X −
− Y .
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Consider (xn, yn) ∈ T nε′ (XY ) and random vectors Un generated according to:

Pr
{
Un = un

∣∣∣xn, yn, Un ∈ T nε′′(U |xn)
}

=
1 {un ∈ T nε′′(U |xn)}
‖T nε′′(U |xn)‖

(34)

For sufficiently small ε, ε′, ε′′ the following holds uniformly for every (xn, yn) ∈ T nε′ (XY ):

Pr
{
Un /∈ T nε (U |xn, yn)

∣∣∣xn, yn, Un ∈ T nε′′(U |xn)
}

= O
(
c−n
)

(35)

where c > 1.

APPENDIX B

PROOF OF PROPOSITION 1

In this appendix, we prove the achievability and converse to Proposition 1.

Achievability proof

Codebook generation: Divide the available rate into two parts. First choose a RV U such

that U −
−X −
− Y form a Markov chain. We denote the rate consecrated to the transmission

of U by R̂, while the rate consecrated to the transmission of V (to be defined subsequently)

is denoted by R′. Randomly pick exp(nR̂) sequences denoted by un(s1) and indexed with

s1 ∈ [1 : exp(nR̂)] from the typical set T nδ (U), where typicality is defined as in Appendix A.

Define R′ , R− R̂. Choose a RV V such that U −
− V −
−X −
− Y . For each codeword u(s1),

randomly pick exp(nS2) sequences denoted by vn(s1, s2) and indexed with s2 ∈ [1 : exp(nS2)]

from the conditional typical set T nδ (V |u(s1)), and divide them into exp[nR′] bins, such that each

bin contains roughly exp[n(S2 −R′)] sequences.

Encoding: Assuming that the source sequence xn is produced from X , look for the first

codeword in U ’s codebook such that (un(s1), x
n) ∈ T nδ (UX). Then, look for the first codeword

vn(s1, s2) s.t. (vn(s1, s2), x
n) ∈ T nδ (V X|u(s1)). Let b be the bin of vn(s1, s2). Send the message

f(xn) = (s1, b) to node B.

Decoding: Given u(s1), b and yn, the decoder first checks if (un(s1), y
n) ∈ T nδ (UY ). If so, it

declares H0 and otherwise it declares H1. If the decoder decides H0, it then attempts to decode

the message (with average distortion D) based on v(s1, s2). This codeword is first recovered by

looking in the bin b for the unique codeword such that vn(s1, s2) ∈ T nδ (V |u(s1), y
n). Then, a
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per-letter function g(·) is applied over the entire available information (U, V and Y ) in order to

produce a reconstruction of the source.

Error events and constraints: We start with the HT part, and the relation between the expression

I(U ;X) and the achievable error exponent. Denoting by B0 the event “an error occurred during

encoding” (of the HT part U ), we expend its probability as Pr(B0) ≤ Pr(B1) + Pr(B2) with:

Pr(B1) , Pr{Xn /∈ T nδ (X)} ,

Pr(B2) , Pr{@s1 s.t. (u(s1), X
n) ∈ T nδ (UX)|Xn ∈ T nδ (X)} ,

(36)

being the probabilities that the source X produces a non-typical sequence, and that (for a typical

source sequence) the codebook doesn’t contain an appropriate codeword, respectively. From the

Asymptotic Equipartition Property (AEP), Pr(B1) ≤ η
(1)
n −→

n→∞
0. As for Pr(B2):

Pr(B2) = (Pr{(Un, Xn) /∈ T nδ (UX)|Un ∈ T nδ (U), Xn ∈ T nδ (X)})exp(nR̂)

= (1− Pr{(Un, Xn) ∈ T nδ (UX)|Un ∈ T nδ (U), Xn ∈ T nδ (X)})exp(nR̂)

(a)

≤ exp[− exp(nR̂)Pr{(Un, Xn) ∈ T nδ (UX)|Un ∈ T nδ (U), Xn ∈ T nδ (X)}]

≤ exp[− exp(nR̂) exp−n
(
I(U ;X)+η

(2)
n

)
]

= exp{− exp[−n
(
I(U ;X)− R̂ + η(2)n

)
]} .

(37)

Here, inequality (a) is due to the inequality (1−a)n ≤ exp(an) [4]. Since η(2)n −→
n→∞

0, Pr(B2)→ 0

if R̂ > I(U ;X).

Next, we look at the achievable error exponent with the proposed encoding scheme:

1

n
I (f(Xn);Y n|C) =

1

n
[H(Y n|C)−H(Y n|f(Xn), C)] (38)

= H(Y )− 1

n
H(Y n|f(Xn), C) . (39)

Here, C denotes the chosen codebook, which is known to all parties. The second term here can

be evaluated by defining the RV

Ŷ n =

Y
n if (un(s1), Y

n) ∈ T nδ (UY )

∅ else
, (40)
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and writing

1

n
H(Y n|f(Xn), C)

(b)

≤ 1

n
H(Y n|s1)

=
1

n

exp(ns1)∑
j=1

H(Y n|s1 = j)Pr(s1 = j)

=
1

n

exp(ns1)∑
j=1

H(Y nŶ n|s1 = j)Pr(s1 = j)

=
1

n

exp(ns1)∑
j=1

H(Ŷ n|s1 = j)︸ ︷︷ ︸
(∗)

+H(Y n|Ŷ n, s1 = j)︸ ︷︷ ︸
(∗∗)

Pr(s1 = j) .

(41)

Here, inequality (b) stems from the fact that f(Xn) contains (but is not limited to) the information

s1, and side information makes entropy smaller. We bound this expression further by treating

each part separately:

(∗) =
1

n

exp(nS1)∑
j=1

H(Ŷ n|s1 = j)Pr(s1 = j)

(c)

≤ 1

n

exp(ns1)∑
j=1

log (||T nδ (Y |un(j))||+ 1) Pr(s1 = j)

(d)

≤
exp(ns1)∑
j=1

(
H(Y |U) + η(3)n

)
Pr(s1 = j) = H(Y |U) + η(3)n ,

(42)

where (c) is due to the fact that uniform distribution maximizes entropy and (d) stems from

bounding the size of the typical set T nδ (Y |un(j)), as can be found in Appendix A.

(∗∗) =
1

n

exp(nR̂)∑
j=1

H(Y n|Ŷ n, s1 = j)Pr(s1 = j)

(e)

≤ 1

n

exp(nR̂)∑
j=1

(
1 + Pr{Y n 6= Ŷ n|s1 = j} log |Y|n

)
Pr(s1 = j)

≤ 1

n
+

exp(nR̂)∑
j=1

Pr{(un(s1), Y
n) /∈ T nδ (UY )|s1 = j} log |Y|Pr(s1 = j)

≤ 1

n
+ (P0 + P1) log |Y| .

(43)
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Here, (e) stems from Fano’s inequality. As was already shown, if R̂ > I(U ;X) both P0 and P1

go to 0 when n→∞. Thus

H(Y n|Ŷ n, s1 = j)Pr(s1 = j) ≤ η(4)n −→
n→∞

0 . (44)

All in all:
1

n
H(Y n|s1) ≤ H(Y |U) + η(3)n + η(4)n , (45)

and
1

n
I(f(Xn);Y n) ≥ H(Y )−H(Y |U)− η(3)n − η(4)n = I(U ;Y )− η(3)n − η(4)n . (46)

Thus, if I(U ;Y ) ≥ E so is 1
n
I(f(Xn);Y n) and the achievability of the error exponent is

complete.

Finally, we show that given a (correct) decision H0, the RV V can be used to decode Xn

with the desired distortion: Denoting by B3 the event “an error occurred during encoding or

decoding” (of V ), we expend its probability as follows Pr(B3) ≤ Pr(B4) + Pr(B5), with Pr(B4)

being the probability that no codeword v(s1, s2) could be found in the codebook for the given

sequence xn and the chosen codeword u(s1), and Pr(B5) being the probability that a different

codeword in the same bin b is compatible with yn and u(s1).

Pr(B4) , Pr{@s2 s.t. (vn(s1, s2), x
n) ∈ T nδ (V X|un(s1))}

= [Pr{(V n, Xn) /∈ T nδ (V X|u(s1))|V n ∈ T nδ (V |u(s1)), X
n ∈ T nδ (X|u(s1))}]exp(nS2)

≤ exp
{
− exp(nS2) exp[−n

(
I(V ;X|U) + η(5)n

)
]
}

= exp
{
− exp[−n

(
I(V ;X|U)− S2 + η(5)n

)
]
}
.

(47)

Thus, Pr(B4) −→
n→∞

0 if S2 > I(V ;X|U). Finally,

Pr(B5) , Pr{∃s′2 ∈ b s.t. vn(s1, s
′
2) ∈ T nδ (V |un(s1), y

n)} , (48)

with b being the bin sent to node B.

Pr(B5) ≤ exp[n (S2 −R′ + ε)]Pr{V n ∈ T nδ (V |un(s1), y
n)|V n ∈ T nδ (V |un(s1))}

≤ exp[n (S2 −R′ + ε)] exp[−n
(
I(V ;Y |U) + η(6)n

)
]

= exp
[
−n
(
I(V ;Y |U)− (S2 −R′) + η(6)n − ε

)]
.

(49)
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Thus, Pr(B5) −→
n→∞

0 if S2 −R′ < I(V ;Y |U), or equivalently

R′ > S2 − I(V ;Y |U) > I(V ;X|U)− I(V ;Y |U)

(f)
= I(V ;XY |U)− I(V ;Y |U) = I(V ;X|UY ) ,

(50)

where equality (f) stems from the Markov chain U −
− V −
− X −
− Y . Thus, since the

total rate R is composed of R̂ and R′, we conclude that our scheme is achievable if R >

I(U ;X) + I(V ;X|UY ).1 Notice that we do not need to check the case that for the true s2,

(vn(s1, s2), y
n) /∈ T nδ (V Y |un(s1)). That is because we only decode under the decision H0,

and we are interested in the distortion only when this decision is correct. This means that

(xn, yn) ∈ T nδ (XY ). Together with the coding process and the Markov chain U−
−V −
−X−
−Y ,

the typicality of (vn, yn) is assured through the Markov lemma and basic properties of typical

sequences, as summarized in Appendix A.

We now know that our scheme allows the decoding of vn with high probability when the rate

is large enough. It remains to be shown that V (together with U and Y , which are also known at

node B) is enough to recover X with average distortion D. We choose a (possibly suboptimal)

decoder, that decodes xi only from (ui, vi) and yi:

d
(
xn, x̂n(un, vn, yn)

)
=

1

n

n∑
i=1

d
(
xi, x̂(ui, vi, yi)

)
(g)
=

∑
∀(x,u,v,y)

d
(
x, x̂(u, v, y)

)
Qxnunvnyn(x, u, v, y)

(h)

≤ E
[
d(X, X̂(UV Y ))|H0

]
+

∑
∀(x,u,v,y)

|Qxnunvnyn(x, u, v, y)− p(x, u, v, y)|

(i)

≤ E0

[
d(X, X̂(UV Y ))

]
+ dmax|X ||U||V||Y|δn ,

(51)

where the summation in (g) and (h) is over all the possible letters in the respective alphabets

of the RVs (x, u, v, y) ∈ X × U × V × Y and inequality (i) holds since (xn, un, vn, yn) ∈

T nδ (XUV Y ). Since δn −→
n→∞

0, the condition D > E0

[
d
(
X, X̂(UV Y )

)]
is sufficient to achieve

distortion D + ε at node B. This concludes the proof of achievability.

1We explicitly ignored an additional error event, which is that yn is not typical. The probability of this event goes to 0 much

like P0, thanks to the AEP. In the calculation of P3 it was assumed that yn is typical.
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Converse proof

Denote by W = f(Xn) the message sent from node A to node B. The rate can be bounded

as follows:

nR ≥ I(W ;Xn) (52)

(j)
= I(W ;Xn, Y n) = I(W ;Y n) + I(W ;Xn|Y n) (53)

=
n∑
i=1

I(W,Y i−1;Yi) +
n∑
i=1

I(W ;Xi|Y n, X i−1) (54)

=
n∑
i=1

I(W,Y i−1;Yi) +
n∑
i=1

I(W ;Xi|Yi, Y n
i+1, Y

i−1, X i−1) (55)

(k)
=

n∑
i=1

[
I(W,Y i−1;Yi) + I(W,Y n

i+1, Y
i−1, X i−1;Xi|Yi)

]
(56)

=
n∑
i=1

[
I(W,Y i−1;Yi) + I(W,Y i−1;Xi|Yi) + I(Y n

i+1, X
i−1;Xi|Yi, Y i−1,W )

]
(57)

=
n∑
i=1

[
I(W,Y i−1;Yi, Xi) + I(Y n

i+1, X
i−1;Xi|Yi, Y i−1,W )

]
(58)

(l)
=

n∑
i=1

[
I(W,Y i−1;Xi) + I(Y n

i+1, X
i−1;Xi|Yi, Y i−1,W )

]
. (59)

Here, (j) and (l) are due to the Markov chains W −Xn − Y n and W −Xi − Yi, respectively.

(k) stems from the fact that both sources X and Y are assumed to be jointly i.i.d. Defining

Ui , (W,Y i−1) and Vi , (Ui, Y
n
i+1, X

i−1) the Markov chain Ui− Vi−Xi− Yi is satisfied since

the sources X and Y are assumed to be jointly i.i.d, and the bound over the rate becomes

R ≥ 1

n

n∑
i=1

[I(Ui;Xi) + I(Vi;Xi|Ui, Yi)] = I(U ;X) + I(V ;X|UY ) , (60)

with U and V defined through time-sharing as is subsequently shown in (65).

The error exponent can now be expressed as follows:

I(W ;Y n) =
n∑
i=1

I(W,Y i−1;Yi) (61)

=
n∑
i=1

I(Ui;Yi) (62)

= nI(U ;Y ) , (63)

with the same definition of Ui. Thus, the converse over the error exponent is proved with equality.
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Finally, the distortion at node B can be bounded as follows. Define the function X̂i as the

i-th coordinate of the estimate in node B:

X̂i(Ui, Vi, Yi) , gi(W,Y
i−1, Yi, Y

n
i+1) . (64)

The component-wise mean distortion thus verifies

D + ε ≥ E0

[
d
(
Xn, g(W,Y n)

)]
(65)

=
1

n

n∑
i=1

E0

[
d
(
XQ, X̂Q(UQ, VQ, YQ)

)
|Q = i

]
(66)

= E0

[
d
(
XQ, X̂Q(UQ, VQ, YQ)

)]
(67)

= E0

[
d
(
X, X̂(U, V, Y )

)]
. (68)

For the sake of this calculation, we use the fact that any Ui and Vi, as they were defined for this

converse, contain the entire message W , as well as the past and future of Y . This concludes the

converse proof in Proposition 1.

Cardinality bounds

It remains to establish that the cardinality bounds specified by the conditions in Proposition 1

do not affect the minimization. Toward that end we invoke the support lemma [28, p. 310] in

order to deduce that U must have ‖X‖− 1 letters in order to ensure preservation of p(x|u) plus

three more to preserve the constraints on D, I(U ;X) and I(U ;Y ), so ‖U‖ ≤ ‖X‖+ 2 suffices.

Similarly, V must have ‖X‖‖U‖− 1 letters in order to ensure preservation of p(x, u|v) plus two

more to preserve D, and I(X;V |UY ). Thus, it suffices to have ‖V‖ ≤ ‖X‖‖U‖+ 1.

APPENDIX C

PROOF OF PROPOSITION 2

Achievability proof

In order to achieve the region proposed in Proposition 2, choose V as the output of a Binary

Symmetric Channel (BSC) with cross-over probability α when the input is X . Choose U as the

output of another BSC, with cross-over probability β, when the input is V :

V = X +W1, W1 ∼ Bern (α) ,

U = V +W2, W2 ∼ Bern (β) .
(69)
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Calculating the expression for the error exponent, U and Y can be thought of as connected

through a BSC with cross-over probability α ? β ? p, which yields:

I(U ;Y ) = H(U) = H(U |Y ) = 1−H2(α ? β ? p) . (70)

This complies with the expression proposed in Proposition 2. The relation between the second

term in the expression for the rate and the amount of distortion expected can be calculated

through the following two steps:

a) Setting X̂ = g(Y, V ) = V , we have E
[
d(X, X̂)

]
= α. Note that all expectations henceforth

are taken over the distribution imposed by H0, and under the assumption that the decision H0

was correct. Y and V can be thought of as being connected through a BSC with cross-over

probability α ? p. Thus (11) results in

Ra = I(U ;Y ) + [I(V ;X)− I(V ;Y )]

= 1−H2(α ? β ? p) + [H2(α ? p)−H2(α)] .
(71)

b) In this part, we let V be degenerate and X̂ = g(Y, V ) = Y . We then have E
[
d
(
X, X̂

)]
=

p. Since in this case I(V ;X)− I(V ;Y ) = 0, we have

Rb = I(U ;Y )

= 1−H2(α ? β ? p) .
(72)

Now let 0 ≤ D ≤ p be given and say that θ, α are such that D = θα+ (1− θ)p. Since R(D)

is convex (for a given error exponent E),

R(E,D) = R(θα + (1− θ)p) ≤ θR(α) + (1− θ)R(p)

= θRa + (1− θ)Rb ≤ 1−H2(α ? β ? p) + θ [H2(α ? p)−H2(α)] .
(73)

Thus, any triplet (R,E,D) that complies with Proposition 2 is achievable through this scheme,

and the proof of achievability is complete.

Converse proof

Proposition 1, along with the development in (11), implies that the optimal region, for any

specific example of hypothesis testing against independence, is comprised of two RVs, such that

the Markov chain U −
−V −
−X −
−Y is respected. Moreover, it implies that with these optimal

auxiliary RVs, the required rate is comprised of two independent parts - one part dedicated to
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detection and the other to estimation. Thus, the proof of the converse to Proposition 2 can be

divided, much like the proof of achievability, into two separate parts - one defining the trade-off

between the rate and the error exponent, while the other defines the trade-off between the rate

and the distortion.

Starting with the relation between the rate and the error exponent, Proposition 1 implies that

E ≤ I(U ;Y )

= H(Y )−H(Y |U)

= 1− A ,

(74)

while

R ≥ 1− A+ θ [I(V ;X)− I(V ;Y )] , (75)

with A defined as A , H(Y |U). Ignoring the second term in the expression for the rate, the trade-

off between rate and error exponent is clear, and is given through A. Obviously, A ≤ H(Y ) = 1.

In addition,

A ≥ H2

(
H−12 (H(X|U)) ? p

)
, (76)

which stems from Ms. Gerber’s Lemma (see e.g. [27]). In order to allow the exploration of the

entire region defined by the bounds over A, we define γ , H−12 (H(X|U)). Thus, the trade-off

between rate and error exponent becomes

E ≤ 1−H2(γ ? p) ,

R ≥ 1−H2(γ ? p) + θ [I(V ;X)− I(V ;Y )] .
(77)

In the second part of the proof, it needs to be demonstrated that, once the decision H0

has been (correctly) made, the optimal estimation region, defined by the rate-distortion relation

minE[d(X,X̂)]≤D [I(V ;X)− I(Y ;X)], is in agreement with Proposition 2. This proof has already

been given in [23] and is thus omitted from this paper. Defining V as the output of a BSC

with cross-over probability α when X is in the input of the channel, as was shown to be

optimal in [23], and keeping in mind the Markov chain implied by Proposition 1, it is clear that

γ = H−1 (H(X|U)) ≥ α. Thus, γ can be expressed as γ = α ? β for some 0 ≤ β ≤ 1
2
, which

completes the proof.



33

APPENDIX D

PROOF OF PROPOSITION 3

We now prove the achievability of the region offered in Proposition 3 for the joint detection

and lossy compression problem, with general hypotheses. We start by describing the codebook,

as well as encoding and decoding strategies, and follow by an analysis of error events under the

proposed strategy.

Encoding and decoding strategy

Codebook Construction: For a given block-length n we operate on a type-by-type basis. For

each type QX ∈ Pn(X ), fix a conditional type Q?
U |X(QX) ∈ Pn(U). Randomly and uniformly

choose a set of codewords denoted by CnU(QX), from the resulting marginal type class T nQ?
U

(QX)

which is induced by QX and Q?
U |X(QX). The size of CnU(QX) is an integer satisfying:

exp
[
nI
(
QX ;Q?

U |X(QX)
)]

+(|U||X |+ 2) log(n+ 1)

≤ |CnU(QX)| ≤

exp
[
nI
(
QX ;Q?

U |X(X)
)]

+(|U||X |+ 4) log(n+ 1) ,

(78)

where CnU(QX) is the codebook of the common message for source type QX . Define fU : T nQX
→

CnU(QX), i.e., a function fU(xn) that determines the codeword sent by the encoder (node A) to

the decoder (node B), as subsequently explained. We define Un , fU(Xn). In addition, assign an

index: k(QX) : Pn(X )→ {1, . . . , (n+ 1)|X |} to each of the possible types of vectors xn ∈ X n.

As a second step, let V0 and V1 be two RVs, designed to transmit a private message to the

decoder, depending on the actual distribution in effect (i.e., if it is decided that H0 is the true

hypothesis V0 is used and otherwise V1 is used) such that U−
−V0−
−X−
−Y0 and U−
−V1−
−X−
−Y1.

For each codeword un ∈ CnU , randomly pick exp [nS0] sequences vn0 (s0), indexed with s0 =

[1 : exp (nS0)], and exp [nS1] sequences vn1 (s1), indexed with s1 = [1 : exp (nS1)], from the

conditional typical sets T nδ (V0|un) and T nδ (V1|un), respectively. Divide them into exp (nR0)

(respectively exp (nR1)) bins, such that each bin contains roughly exp [n(S0 −R0)] (respectively

exp [n(S1 −R1)]) sequences. In the remainder of this proof we only treat source reconstruction

in case hypothesis H0 was chosen, as the complementary case is completely symmetric.

Encoding: Given a sequence xn ∈ T nQX
, search for a sequence un ∈ CnU(Qxn), i.e., in the

codebook that belongs to the type Qxn , such that (un, xn) ∈ T nδ (UX). As a second step, look for
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a codeword vn0 (s0) such that (vn0 (s0), x
n) ∈ T nδ (V0X|un) with the typicality measured according

to the distribution induced by hypothesis H0. Let B0(v
n
0 (xnun)) denote the element (or “bin”)

to which vn0 is mapped. Perform the same steps for the case where H1 is the chosen hypothesis.

The encoder’s message then consists of four parts:

M1 = {1, 2, . . . ,M1 , exp (nR′)} ,

M2 =
{

1, 2, . . . ,M2 , (n+ 1)|X |
}
,

M3 = {1, 2, . . . ,M3 , exp (nR0)} ,

M4 = {1, 2, . . . ,M3 , exp (nR1)} ,

M =M1 ×M2 ×M3 ×M4 .

(79)

The encoder sends the type of xn which requires |M2| values but with zero rate, and also

F (fU(xn)), as well as the respective bins for both private messages, B0(v
n
0 (xnun)) and B1(v

n
1 (xnun)),

to be defined subsequently. There are two cases to consider:

1 log |CnU(Qxn)| < nR′, in which case we can map each member of Cn
U(Qxn) to an element

of M1 in a one-to-one manner.

2 log |CnU(Qxn)| ≥ nR′, in which case we assign each distinct member of Cn
U(Qxn) to M1

uniformly at random.

Let F (fU(xn)) denote the element to which fU(xn) is mapped. The encoder can be expressed

mathematically as

Ψ(x) =
(
F (fU(xn)), k(Qxn), B0(v

n
0 (xnun)), B1(v

n
1 (xnun))

)
, (80)

for each xn ∈ T nQxn
.

Decoding: The decoder first attempts to discover the word un, by using the information sent

from the encoder and the observation vector yn:

• If log |CnU(QX)| < nR′ the codeword can be decoded without error;

• Otherwise log |CnU(QX)| ≥ nR′ the decoder receives a bin index and uses side information

yn to pick the best un in the bin. Given the bin number, the type Qxn and the side information
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yn, the decoder uses a minimal empirical entropy decoding 2 that is:

φ(F (fU(xn)), Qxn , y
n) = ûn , (81)

if H(ũn|yn) > H(ûn|yn) for ûn ∈ F (fU(xn)) and all ũn ∈ F (fU(xn)) with ũn 6= ûn, where

H(ûn|yn) , −
∑

a∈U ,b∈Y

Qûnyn(a, b) logQûn|yn(a|b)

is the empirical entropy of the vector ûn given the vector yn.

As a second step, the decoder uses the private message –either vn0 or vn1 – destined for the

case of the current hypothesis in order to estimate xn, with distortion D0 or D1, respectively.

Assume hypothesis H0 is in effect, it searches for a single sequence v̂n0 ∈ B0(v
n
0 (xnun)) such that

v̂n0 (s0) ∈ Tδ(V0|unyn). If it finds no such sequence it declares an error during the reconstruction.

If it finds more than one, it chooses one sequence at random.

Error probability of the testing step

We now show that, for the detection part, the exponential rate of decay of the error of the

second type, under a fixed constraint over the error of the first type, is not smaller than the value

claimed by Proposition 3. We define two different error events: First, let

B6 , {un 6= F (fU(xn))} (82)

to be the event that the chosen sequence from the bin at the decoder is different from the original

sequence sent by the encoder. Then, define B7 to be the event of erroneous detection despite

using the correct sequence. We denote the probabilities of events B6 and B7 by P (n)
r and P (n)

d ,

respectively. Using the union bound, the probability of error in detection can be bounded by

P (n)
e ≤ P (n)

r + P
(n)
d . (83)

Throughout this analysis, we ignore the possibility of failure at the transmission’s side, as was

done in [15]. The reason we can do so is that when such a failure occurs (which does happen

rarely, thanks to the AEP), the transmitter can always signal the receiver to choose H1. This

2Note that since our chosen test is over empirical entropies, it does not matter at this stage which hypothesis is the true one,

for the sake of choosing the sequence from the bin. After having retrieved a single sequence from the bin, the decoder can

continue to perform HT by discarding the rest of the sequences in the bin and only using the chosen sequence.
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strategy will prevent any influence on the error exponent of the second type, while not hurting

the constraint over the probability of error of the first type, when n is large enough.

Evaluation of P (n)
r : We evaluate the probability that node B chooses the wrong sequence

from the bin under the suggested encoding and decoding schemes. Our evaluation is reliant on

the method of types [25], and is specifically inspired by the techniques used in [24, Appendix

C]. We first evaluate P (n)
r for a finite block-length n and then use a continuity argument to show

that in the limit of n→∞,

− 1

n
logP (n)

r ≤ G(QUXY , QX , QY , R
′) =

min
i={0,1}

D
(
QUXY ‖PXYiQU |X

)
+
[
R′ − I

(
QX ;QU |X

)
+ I
(
QY ;QU |Y

)]+
I
(
QX ;QU |X

)
> R′

∞ else.

.

(84)

Since choosing the wrong sequence can only happen in case binning is used, we are only

interested in the following subset of the set of all possible sequences:

An =
{

(un, xn, yn) ∈ Un ×X n × Yn
∣∣un ∈ T nQ?

U|X
(Qxn) , log |CnU(Qxn)| ≥ nR

}
. (85)

We first evaluate the probability of choosing the wrong sequence within the set An by using the

following lemma.

Lemma 6. Let (un, xn, yn) ∈ An and let B8 be the event that un 6= φ(ψ(xn), yn). If log |CnU(Qxn)| ≥

nR then

Pr (B8|Un = un, Xn = xn, Y n = yn) ≤ exp
[
− n (R− J(Qunxnyn)− δn)

]
, (86)

with

J
(
Qunxnyn

)
, I
(
Qxn ;Q?

U |X(Qxn)
)
− I
(
Qun|yn ;Qyn

)
(87)

and

δn ,
1

n
log(n+ 1)|U|(1+|X |+|Y|)+4 . (88)

The probability in (138) is taken over the choice of the codebook in use.
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Proof: Let S(un|yn) be the set that includes all sequences ũn, such that ũn has the same

type as u and H(ũn|yn) ≤ H(un|yn). Then

Pr (B8|Un = un, Xn = xn, Y n = yn)

≤
∑

ũn∈S(un|yn)
ũn 6=un

Pr
(
ũn ∈ CnU(Qxn), {F (ũn) = F (un)}|Un = un, Xn = x, Y n = y

)
(89)

(m)

≤
∑

ũn∈S(un|yn)
ũn 6=un

Pr
(
ũn ∈ CnU(Qxn)|Xn = xn, Y n = yn

)
Pr
(
{F (ũn) = F (un)}

)
(90)

(n)

≤
∑

ũn∈S(un|yn)
ũn 6=un

(n+ 1)|U|(1+|X |)+4 exp
[
n
(
I(Qxn ;Q?

U |X(Qxn))−H(Qun)
)] 1

M1

(91)

(o)

≤ (n+ 1)|U||Y| exp
[
nH(Qun|yn|Qy)

] 1

M1

(n+ 1)|U|(1+|X |)+4 exp
[
n
(
I(Qxn ;Q?

U |X(Qxn))−H(Qun)
)]

(p)
= (n+ 1)|U|(1+|X |+|Y|)+4 exp

[
−n
(
R−H(Qun|yn|Qyn) +H(Qun)− I(Qxn ;Q?

U |X(Qxn))
)]

(92)

= (n+ 1)|U|(1+|X |+|Y|)+4 exp
[
− n

(
R + I(Qun|yn ;Qyn))− I(Qxn ;Q?

U |X(Qxn))
) ]

(93)

, (n+ 1)|U|(1+|X |+|Y|)+4 exp
[
− n (R− J(Qunxnyn))

]
(94)

(q)

≤ exp
[
− n (R− J(Qunxnyn)− δn)

]
, (95)

with δn as defined above. Here, the probability Pr (ũn ∈ CnU(Qxn)) is over the choice of the

codebook. Inequality (m) stems from the codebook construction, which divides sequences into

bins randomly and independently. Inequality (n) is due to [24, Lemma 12], which applies here

without change, and to the upper bound over the size of CnU(Qxn), given in (78). Inequality (o)

is due to Lemma 4. Finally, inequality (p) is due to the definition of H1 and (q) stems from the

fact that Pr (B8|Un = un, Xn = xn, Y n = yn) ≤ 1 and the definition of δn.

We now bound the probability of error in choosing the right sequence in the bin P
(n)
r , for a

finite block-length n:

P (n)
r = Pr ({un 6= F (fU(xn))}) (96)

≤
∑

(un,xn,yn)∈An

Pr (B8|Un = u,Xn = x, Y n = y) Pr (U = un, X = xn, Y = yn) (97)

(r)

≤
∑

(un,xn,yn)∈An

exp
[
−n (R− J(Qunxnyn)− δn)

]
P n
XY (xn, yn)

1

|T nQ?
U|X

(Qxn)|
. (98)
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Here, claim (r) is derived from Lemma 6. The probability of choosing a specific sequence un

given both source sequences xn and yn stems from averaging over the code. We can now change

the expression to sum first on types and then on sequences within each type class. In order to

transform our summation over a set of sequences An into a summation over a set of types (and

only then over the sequences within each type) we define the following set of types:

D(QX , QY ) =
{
QUXY ∈ Pn(U × X × Y) : QU |X = Q?

U |X(QX) , log |CnU(QX)| ≥ nR
}
. (99)

The probability of error in selecting the sequence can thus be bound by:

P (n)
r ≤

∑
QX ,QY

 ∑
QUXY ∈D(QX ,QY )

∑
(un,xn,yn)∈Tn

QUXY

P n
XY (xn, yn)

|T nQ?
U|X

(Qxn)|
exp

[
−n
(
R− J(Qunxnyn)− δn

)] .

(100)

In the case of distributed HT, the probability of the source sequences (xn, yn) is unknown,

since the sequences can be created by one of two possible distributions. We thus bound the

probability of the observed sources by

P n
XY (xn, yn) ≤ max{PXY0(xn, yn), PXY1(x

n, yn)} (101)

= max
i={0,1}

{
exp

[
−n (D(QXY ‖PXYi) +H(QXY ))

]}
(102)

= exp

[
−n
(

min
i={0,1}

D(QXY ‖PXYi) +H(QXY )

)]
. (103)

Using the following facts detailed in Lemma 3,

|T nQUXY
| ≤ exp

[
n(H(QUXY ))

]
≤ exp

(
n log |U||X ||Y|

)
, (104a)

|T nQU|X
| ≥ (n+ 1)−|U||X | exp

[
n
(
H(QU |X |QX)

)]
, (104b)

we obtain that

P (n)
r ≤

∑
QX∈Pn(X )

∑
QY ∈Pn(Y)

 ∑
QUXY ∈D(QX ,QY )

exp

[
−n
(

min
i={0,1}

D(QXY ‖PXYi) +H(QXY )

)]
×

(n+ 1)|U||X | exp
[
nH(QU |X |QX)

]
× exp

[
nH(QUXY )

]
exp

[
−n (R− J(QUXY )− δn)

]
≤

∑
QX∈Pn(X )

∑
QY ∈Pn(Y)

∑
QUXY ∈D(QX ,QY )

exp
[
−n (Γ +R− J(QUXY )− δn)

]
(105)
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with Γ satisfying:

Γ = min
i={0,1}

D(QXY ‖PXYi) +H(QXY ) +H(QU |X |QX)−H(QUXY )

= min
i={0,1}

D(QXY ‖PXYi) +H(QU |X |QX)−H(QU |XY |QXY )

= min
i={0,1}

∑
x∈X
y∈Y

QXY (x, y) log
QXY (x, y)

PXYi(x, y)
−
∑
u∈U
x∈X

QUX(u, x) log
QUX(u, x)

QX(x)

+
∑
u∈U
x∈X
y∈Y

QUXY (u, x, y) log
QUXY (u, x, y)

QXY (x, y)

= min
i∈{0,1}

{∑
u∈U
x∈X
y∈Y

QUXY (u, x, y) log
QXY (x, y)

PXYi(x, y)

QX(x)

QUX(u, x)

QUXY (u, x, y)

QXY (x, y)

}

= min
i={0,1}

{∑
u∈U
x∈X
y∈Y

QUXY (u, x, y) log
QUXY (u, x, y)

PXYi(x, y)QU |X(u|x)

}

= min
i={0,1}

D(QUXY ‖PXYiQU |X) .

(106)

The probability of error in bin decoding can thus be concluded to satisfy

P (n)
r ≤

∑
QX∈Pn(X )

∑
QY ∈Pn(Y)

∑
QUXY ∈D(QX ,QY )

exp

[
−n
(

min
i={0,1}

D(QUXY ‖PXYiQU |X) +R− J(QUXY )− δn
)]

. (107)

We may now upper bound the summations by maximizing over the types and optimizing over

the choice of the of the test channel Q?
U |X . We optimize to then obtain:

P (n)
r ≤ |Pn(X )|max

QX

min
Q?

U|X

|Pn(Y)|max
QY

|Pn(U×X×Y)| max
QUXY

QU|X=Q?
U|X

exp
{
−nGn [QUXY , QX , QY , R]

}
.

(108)

Thus,

1

n
logP (n)

r ≤ − min
QX∈Pn(X )

max
Q?

U|X(QX)
min

QY ∈Pn(Y)
min
QUXY

QU|X=Q?
U|X

Gn [QUXY , QX , QY , R]

× log (|Pn(X )||Pn(Y)||Pn(U × X × Y)|) (109)
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with the function Gn [QUXY , QX , QY , R] defined as follows:

Gn [QUXY , QX , QY , R] =


min
i={0,1}

D(QUXY ‖PXYiQU |X)

+
[
R− I(QX ;Q?

U |X) + I(QY ;Q?
U |Y )

] I(QX ;Q?
U |X) > R

+∞ else .
(110)

The cardinalities can be absorbed inside the exponent and become insignificant as n→∞. From

continuity arguments under discrete alphabets, it is made clear that [24, Lemma 14]:

P (n)
r ≤ inf

QX∈P(X )
sup

Q?
U|X(QX)∈P(U)

inf
QY ∈P(Y)

inf
QUXY ∈P(U×X×Y)

QU|X=Q?
U|X

G [QUXY , QX , QY , R] , (111)

where all the optimization steps are now being taken over probability distributions, and G is as

defined in Proposition 3.

Evaluation of P (n)
d : We now study the second type error probability of detection, under the

assumption that the right sequence has been correctly extracted from the bin. The probability

that, given the right sequence un, node B makes a wrong decision was investigated in detail

in [8], using the method of types [25], as well as properties of types and typical sequences,

detailed in Lemma 1. That result, however, is dependent on a specific codebook, conceived to

allow detection with high probability. As we use a random codebook in our scheme, it is essential

to adapt the method of [8].

We propose here a slight modification to [8]. Intuitively, since we investigate the exponential

decay of βn while only enforcing a fixed upper bound on αn, we show that the penalty of

replacing the codebook construction in [8] with random coding can be fully absorbed into αn,

leaving the error exponent result of βn unmodified. For the given codebook, define

L(Q?
UX , Q

?
UY ) =

{
PŨX̃Ỹ ∈ P(U × X × Y) :PŨX̃(u, x) = Q?

UX(u, x),

PŨ Ỹ (u, y) = Q?
UY (u, y),∀ (u, x, y)

}
,

(112)

to be the set of all triplets of auxiliary RVs such that the marginal distribution of each pair

(U,X) and (U, Y0) is maintained. Similarly to [8], it is not difficult to show that, for the codebook

described above,

θL(R) , min
ŨX̃Ỹ ∈L(Q?

UX ,Q
?
UY )
D(ŨX̃Ỹ ‖UXY1) (113)

provides a lower bound to the error probability of the second type, after the correct sequence

has been recovered from the bin, and under a fixed error probability of the first type.
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From the construction of the codebook (specifically the size of the set CnU(Qxn)), it can

be seen that the number of sequences in the codebook per type of X complies with M =

exp
[
n(I(Qxn ;Q?

U |X(Qxn)) + η)
]
. Given a sequence xn, search for a sequence ui in the codebook

that belongs to the type of xn, such that (uni , x
n) ∈ T nδ (UX) and send its index (or bin number,

depending on the type of xn) to the receiver. As we only consider here the error event where the

wrong hypothesis is chosen despite the correct sequence is used, we ignore errors in choosing

the correct sequence from the bin, in case binning has occurred), for the sake of this analysis.

If there is more than one such sequence choose randomly. If there is no such sequence in the

codebook, send an error message. At the decoder (node B), if (uni , y
n) ∈ T nδ (UY0) (notice that

typicality here is checked only under hypothesis H0) declare H0. In any other case (including the

case an error message was received) declare H1. This choice allows us to “push” the penalty of

not using the code proposed in [8, Lemma 4] into αn (which, when n→∞ can still be bounded

by any fixed ε > 0), thus leaving the evaluation of βn unchanged, as shown subsequently.

Evaluation of αn: An error of the first type occurs if for n i.i.d. samples (xn, yn) ∼ PXY0(x, y)

(hypothesis H0 holds) the decoder declares H1. According to the proposed coding schemes, two

possible events can induce the decoder to such an error. The first is given by

(i) B9 , {@ i such that (uni , x
n) ∈ T nδ (UX)} . (114)

Assuming without loss of generality that the sequence un1 was chosen and sent from node A,

the second relevant error event is:

(ii) B10 , {H0 is true and (un1 , y
n) /∈ T nδ (UY )} . (115)

From the union bound, it is obvious that:

αn ≤ Pr(B9) + Pr(B10 ∩ Bc9) . (116)

Through the AEP it is easy to conclude that both of these probabilities approach zero when

n→∞. Thus, for n large enough one can conclude that αn ≤ ε for any fixed ε > 0.

Evaluation of βn: The error of the second type can be defined by a single event:

B11 , {H1 is true and (un1 , y
n) ∈ T nδ (UY0)} . (117)

The analysis of βn is identical to what was done in [8]. One important difference, however, is

that by defining

Ci ,
{
xn ∈ X n : (uni , x

n) ∈ T nδ (UX)
}
, (118)
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the sets Ci are not necessarily disjoint. This, however, does not change the calculations by

following same steps as in [8].

Source reconstruction

As a final step, we demonstrate the achievability of the estimation part in Proposition 3, for

the case where hypothesis H0 is chosen (the case of hypothesis H1 is symmetric). Denoting

by B12 the event “an error occurred during encoding or decoding, under the correct decision

H0”, we expend its probability as follows: Pr(B12) ≤ P ′ + P ′′, with P ′ being the probability

that no codeword vn0 (s0) could be found in the codebook for the given sequence xn and the

chosen sequence un, and P ′′ being the probability that a different codeword in the same bin is

compatible with yn and un.

Using standard i arguments, both error probabilities can be bounded as follows:

P ′ , Pr{@ s0 = [1 : exp (nS0)] s.t. (V n
0 (s0), X

n) ∈ T nδ (V0X|un)} (119)

≤ Pr{(V n
0 , X

n) /∈ T nδ (V0X|un)|V n ∈ T nδ (V |un), Xn ∈ T nδ (X|un)}exp (nS0) (120)

≤ exp
{
− exp [nS0] exp

[
− n(I(PX|U ;PV0|XU |PU) + η(1)n )

]}
(121)

= exp
{
− exp

[
− n

(
I(PX|U ;PV0|XU |PU)− S0 + η(1)n

)]}
. (122)

Thus, P ′ → 0 provided that S0 > I(PX|U ;PV0|XU |PU). Next,

P ′′ , Pr
{
∃ŝ0 ∈ [1 : exp (nS0)] s.t. V n

0 (ŝ0) ∈ T nδ (V0|unyn), B0

(
vn0 (s0)

)
= B0

(
vn0 (ŝ0)

)}
≤ exp [n(S0 −R0 + ε)]

× Pr{(V n
0 , Y

n) ∈ Tδ(V0Y n|un)|V n
0 ∈ Tδ(V0|un) , Y n ∈ Tδ(Y0|un)} (123)

≤ exp [n(S0 −R0 + ε)] exp
[
−n
(
I(PY0|U ;PV0|Y0U |PU) + η(2)n

)]
(124)

= exp
{
−n
[
I(PY0|U ;PV0|Y0U |PU)− (S0 −R0) + η(2)n − ε

]}
. (125)

Here, B0(v
n
0 (s0)) denotes the bin vn0 (s0) belongs to, as defined as part of the encoding strategy.

R0 is the rate consecrated to the estimation part, for the case that H0 was chosen as the correct

hypothesis. Defining R1 equivalently for hypothesis H1, the total available rate can be said to

be divided, under the proposed achievable scheme, to three parts, such that R = R′ +R0 +R1.
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Thus, P ′′ → 0 if S0 −R0 < I(PX|U ;PV0|XU |PU), or equivalently

R0 > S0 − I(PY0|U ;PV0|Y0U |PU) (126)

> I(PX|U ;PV0|XU |PU)− I(PY0|U ;PV0|Y0U |PU) (127)

= I(PXY0|U ;PV0|XY0U |PU)− I(PY0|U ;PV0|Y0U |PU) (128)

= I(PX|UY0 ;PV0|UXY0|PUY0) . (129)

Thus, the probability of error related to source reconstruction goes to zero provided that S0 >

I(PX|U ;PV0|XU |PU) and R0 > I(PX|UY0 ;PV0|XUY0|PUY0). Combining this result with the sym-

metric case of H1 and the result for the detection step, the required total rate of communication

reads

R > R′ + I(PX|UY0 ;PV0|XUY0|PUY0) + I(PX|UY1 ;PV1|XUY1|PUY1) . (130)

We now know that our scheme allows the decoding of either v0 and v1, depending on the

case, with high probability, when n → ∞. It remains to be shown that using the sequence vn0 ,

it is possible to recover xn with distortion D0. We choose a (possibly suboptimal) decoder, that

reconstructs xn only from (un, yn, vn0 ):

d(xn, x̂n(un, yn, vn0 )) =
1

n

n∑
i=1

d
(
xi, x̂i(u

n, yn, vn0 )
)

(131)

=
1

n

∑
∀(x,u,y,v0)

d
(
x, x̂(u, y, v0)

)
N(x, u, y, v0|xnunynvn0 ) (132)

≤ E0

[
d
(
X, X̂(UY V0)

)]
+

∑
∀(x,u,y,v0)

∣∣∣∣ 1nN(x, u, y, v0|xnunynvn0 )− p(x, u, y, v0)
∣∣∣∣ (133)

≤ E0

[
d
(
X, X̂(UY V0)

)]
+ dmax|X ||Y||U||V0|δn , (134)

where the summation is over all the possible letters in the respective alphabets of the RVs, and

the final equality holds since (xn, yn, un, vn0 ) ∈ T nδ (XY UV0). Since δn → 0 when n→∞, any

distortion D0 can be achieved, as long as D0 > E0

[
d
(
X, X̂(UY V0)

)]
.
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APPENDIX E

PROOF OF PROPOSITION 4

We now prove the achievability of the error exponent offered in Proposition 4, for the case

where source reconstruction is not required. As the proof is in many ways similar to the proof

of Proposition 3, given in Appendix D, we concentrate mainly on the main differences.

Codebook generation and encoding strategy: Both the codebook generation and the encoding

strategy in this case are very similar to what was done in the proof of Proposition 3, in the part

consecrated to detection. The only difference is that now we choose to only work with δ-typical

sequences, for some arbitrary δ. When node A sees a non-typical sequence x, it sends an error

message. In the opposite case, encoding is done as before. Note that while we only work with

δ-typical sequences, there are still different codebooks for each type within the set of δ-typical

sequences.

Decoding strategy: In case an error message is received, the decoder declares H1. This strategy

implies that any probability of the error event caused by the encoder not seeing a δ-typical

sequence is allocated to αn, rather than βn. The probability of this event, however, goes to zero

when n → ∞ thanks to the AEP, implying that αn ≤ ε for any ε > 0, for n ≥ n0(ε, δ), thus

satisfying the constraint over αn.

When the encoder does not send an error message, the decoder operates on the entire bin in

order to make a decision. Going over the sequences in the bin one by one, the decoder checks

for each uni if (uni , y
n) ∈ T nδ (UY0). If a sequence in the bin is found, which is jointly typical

with yn, the decoder declares H0. If no such sequence is found, the decoder declares H1. Note

that under this strategy, the decoder does not attempt to find the original sequence sent by the

encoder. Specifically, when the decoder declares H1 it is completely oblivious to the original

codeword.

Probability of error: The analysis of the probability of error in detection under this new strat-

egy is very similar to the analysis given in Appendix D. We separately bound the corresponding

error probabilities on the two possible error events.

Analysis of αn: When analyzing αn(An) = Pr
(
Acn|XY0 ∼ p0(x, y)

)
, we assume throughout

that the probability measure in effect is p0. Two scenarios can lead to an event where the decoder
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erroneously declares H1:

B13 ,
{
@ i ∈ CnU(Qxn)

∣∣ (xn, uni ) ∈ T nδ (UX)
}
,

B14 ,
{
@ i ∈ F (f(xn))

∣∣ (uni , yn) ∈ T nδ (UY0)
}
.

(135)

In the first event, an error message is sent, as there is no fitting codeword within the codebook

for the observed sequence xn. Whereas for the second event, there is no sequence in the bin

that prompts the decoder to decide H0, despite it being the true hypothesis. The probability that

event B13 goes to zero with n, thanks to the AEP and the size of the codebook. As for event

B14, assume without loss of generality, that the encoder intended to send the first word in the

bin un1 , i.e., un1 = f(xn). The probability that the decoder declares H1 can be upper-bounded by

Pr(B14) = Pr
(
@ i ∈ F (f(Xn))

∣∣ (Un
i , Y

n) ∈ T nδ (UY0)
)
≤ Pr{(Un

1 , Y
n) /∈ T nδ (UY0)}

)
,

(136)

where typicality is measured over the probability measure pXY0 . As was already discussed

above, this probability tends to 0 with the number of available realizations n. This result is

attributed to the AEP, by which x and y are jointly typical with high probability, and to the

generalized Markov Lemma (Lemma 5). Thus, any fixed constraint over the probability of error

of the first type α ≤ ε (ε > 0), may be satisfied when n is large enough.

Analysis of βn: As we now turn to analyzing the probability of error of the second type, we

assume throughout this part that the real hypothesis is H1. As was the case in Appendix D,

the resulting error exponent is the result of a trade-off between two error events. While the

analysis of the event where the correct sequence prompts a wrong decision (i.e. in this case

is (f(xn), yn) ∈ T nδ (UY0)) stays the same, the second error event is now different. We thus

concentrate in this appendix on calculating the probability of the event that some sequence in

the bin un 6= f(xn) prompts the decoder to declare H0. We start by presenting the following

lemma:

Lemma 7. Let An be the set of triplets, such that a binned codebook is necessary:

An =
{

(un, xn, yn) ∈ T nQ?
U|X
×X n × Yn

∣∣ log |CnU(Qxn)| ≥ nR
}
. (137)

Let (un, xn, yn) ∈ An and denote by B15 the event indicating that (un, yn) ∈ T nδ (UY0), for some

un 6= f(xn) in the bin. Then,

Pr (B15|Un = un, Xn = xn, Y n = yn) ≤ exp
[
−n
(
R− Ĵ(Qunxnyn)− δn

)]
, (138)
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with

Ĵ(Qunxnyn) , I
(
Qxn ;Q?

U |X
)
−H(Qun) +H

(
QU |Y0|PY0

)
(139)

and

δn ,
1

n
log(n+ 1)|U|(1+|X |+|Y|)+4 . (140)

Moreover, the probability in (138) is taken over the choice of the codebook in use.

Proof: The proof of Lemma 7 is very similar to the one given for Lemma 6. The difference

is that now the set of sequences that “confuses” the decoder is simply Ŝ(yn) = T nδ (U |yn).

Bounding the set of conditionally typical sequences by [27]:

|T nδ (U |yn)| ≤ (n+ 1)|U||Y| exp
[
nH(QU |Y0|PY0)

]
, (141)

for each yn ∈ T nδ (Y0).

Remark 5. Note that unlike J(Qunxnyn), the quantity Ĵ(Qunxnyn) is not dependent on the

observed yn. The quantity H(QU |Y0|PY0) can be analytically calculated when the type of xn

and the chosen strategy QU |X is known, without knowing neither the specific sent sequence un

nor the observed sequence yn.

Using Lemma 7 and summing over all involved types and sequences within each type as was

done in Appendix D, the probability of the event where an unintended sequence in the bin causes

an error can be bounded by

lim
n→∞

− 1

n
log Pr(B15) ≥

min
QX∈Pn(X )

max
Q?

U|X(QX)∈Pn(U)
min

QY ∈Pn(Y)
min

QUXY ∈Pn(U×X×Y)

{
D(QUXY ‖PXY1Q?

U |X) +R− J(QUXY )
}

= min
QX∈Pn(X )

max
Q?

U|X(QX)∈Pn(U)
min

QY ∈Pn(Y)
min

QUXY ∈Pn(U×X×Y)

{
D(QUXY ‖PXY1Q?

U |X) +R

−I(QX ;Q?
U |X) + I(Q?

U |Y0 ;PY0)
}
. (142)

As in this case we only work with δ-typical x sequences, we may choose δ to be any value, as

long as it is strictly positive. Thus, we may force QX to be arbitrarily close to PX by taking
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δ → 0+. The error exponent in question thus becomes

lim
n→∞

− 1

n
log Pr(B15)

≥ max
Q?

U|X∈P(U)

{
R− I(PX ;Q?

U |X)

+ I(PY0 ;Q
?
U |Y0) + min

QY ∈P(Y)
min

QUXY ∈P(U×X×Y)
D(QUXY ‖PXY1Q?

U |X)
}

+ ε̂ (143)

= max
Q?

U|X∈P(U)

{
R− I(PX ;Q?

U |X) + I(PY0 ;Q
?
U |Y0)

}
+ ε̂ , (144)

with ε̂→ 0 as δ → 0. This, along with an analysis of the complementary error event similar to

the one given for Proposition 3, completes the proof of Proposition 4.
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