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DISSIPATIVE WEAK SOLUTIONS TO

COMPRESSIBLE NAVIER–STOKES–FOKKER–PLANCK SYSTEMS

WITH VARIABLE VISCOSITY COEFFICIENTS

EDUARD FEIREISL, YONG LU, AND ENDRE SÜLI

Abstract. Motivated by a recent paper by Barrett and Süli [J.W. Barrett & E. Süli: Existence of global weak
solutions to compressible isentropic finitely extensible bead-spring chain models for dilute polymers, Math. Models
Methods Appl. Sci., 26 (2016)], we consider the compressible Navier–Stokes system coupled with a Fokker–Planck
type equation describing the motion of polymer molecules in a viscous compressible fluid occupying a bounded spatial
domain, with polymer-number-density-dependent viscosity coefficients. The model arises in the kinetic theory of dilute

solutions of nonhomogeneous polymeric liquids, where the polymer molecules are idealized as bead-spring chains with
finitely extensible nonlinear elastic (FENE) type spring potentials. The motion of the solvent is governed by the
unsteady, compressible, barotropic Navier–Stokes system, where the viscosity coefficients in the Newtonian stress
tensor depend on the polymer number density. Our goal is to show that the existence theory developed in the case of
constant viscosity coefficients can be extended to the case of polymer-number-density-dependent viscosities, provided
that certain technical restrictions are imposed, relating the behavior of the viscosity coefficients and the pressure for
large values of the solvent density. As a first step in this direction, we prove here the weak sequential stability of the
family of dissipative (finite-energy) weak solutions to the system.

1. Introduction

In [6], the authors established the existence of global-in-time weak solutions to the Navier–Stokes–Fokker–Planck
equations arising in the kinetic theory of dilute polymer solutions and describing a large class of bead-spring chain
models with finitely extensible nonlinear elastic (FENE) type spring potentials. For Ω ⊂ R3 a bounded domain, the
solvent density ̺ and the solvent velocity field u satisfy the following equations in the space-time cylinder (0, T ]×Ω,
T > 0:

(1.1) ∂t̺+ divx(̺u) = 0,

(1.2) ∂t(̺u) + divx(̺u⊗ u) +∇xp(̺)− divxS = divxT+ ̺ f ,

which we assume here to be supplemented with the no-slip boundary condition

(1.3) u = 0 on (0, T ]× ∂Ω.

Ignoring the effect of temperature changes, we consider a barotropic pressure law

(1.4) p = p(̺), p(̺) ≈ ̺γ for large values of ̺.

The Newtonian stress tensor S is defined by

(1.5) S = µS
(∇xu+∇T

xu

2
− 1

3
(divxu)I

)
+ µB(divxu)I,

with the shear and bulk viscosity coefficients µS and µB defined below (see (1.28)). In contrast with [6], where the
shear and bulk viscosity coefficients are taken to be constant, µS > 0 and µB ≥ 0, we consider here the case when
they are functions of the polymer number density. Such an extension requires nontrivial modifications of the method
used in [6], and represents the main contribution of the present paper.

In a bead-spring chain model consisting ofK+1 beads coupled with K elastic springs representing a polymer chain,
the non-Newtonian elastic extra stress tensor T is defined by a version of the Kramers expression (cf. (1.6) below),
depending on the probability density function ψ, which, in addition to t and x, also depends on the conformation
vector (qT1 , . . . q

T
K)T ∈ R

3K , with qi representing the 3-component conformation/orientation vector of the ith spring
in the chain. Let D := D1 × · · · ×DK ⊂ R

3K be the domain of admissible conformation vectors. Typically Di is
the whole space R3 or a bounded open ball centered at the origin 0 in R3, for each i = 1, . . . ,K. When K = 1, the
model is referred to as the dumbbell model. Here we focus on finitely extensible nonlinear (or, briefly, FENE-type)

Key words and phrases. Weak solutions; kinetic polymer models; FENE chain; compressible Navier–Stokes–Fokker–Planck system;
nonhomogeneous dilute polymer; variable viscosity.
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bead-spring-chain models where Di = B(0, b
1
2

i ), a ball centered at the origin 0 in R3 and of radius b
1
2

i , with bi > 0
for each i ∈ {1, . . . ,K}. The extra-stress tensor T is defined by the formula:

(1.6) T(ψ)(t, x) := T1(ψ)(t, x) −
(∫

D×D

γ(q, q′)ψ(t, x, q)ψ(t, x, q′) dq dq′
)
I,

where, similarly to [6], the interaction kernel γ is assumed to be a positive constant γ(q, q′) ≡ δ > 0. Consequently,

(1.7) T(ψ) := T1(ψ)− δ

(∫

D

ψ dq

)2

I.

The first part, T1(ψ), of T(ψ) is given by the Kramers expression

(1.8) T1(ψ) := k

[(
K∑

i=1

Ci(ψ)

)
− (K + 1)

(∫

D

ψ dq

)
I

]
,

where k > 0 is the product of the Boltzmann constant and the absolute temperature and

(1.9) Ci(ψ)(t, x) :=

∫

D

ψ(t, x, q)U ′
i

( |qi|2
2

)
qiq

T
i dq, i = 1, . . . ,K.

In the expression (1.9), the smooth functions Ui : [0,
bi
2 ) → [0,∞), i = 1, . . . ,K, are the spring potentials satisfying

Ui(0) = 0, lim
s→

bi
2 −

Ui(s) = +∞. We introduce the partial Maxwellian Mi : Di → [0,∞) by

(1.10) Mi(qi) :=
1

Zi
e−Ui

(
|qi|

2

2

)
, where Zi :=

∫

Di

e−Ui

(
|pi|

2

2

)
dpi.

The Maxwellian M : D → [0,∞) is then defined as the product of the K partial Maxwellians: i.e., for any q =
(qT1 , . . . , q

T
K)T in D = D1 × · · · ×DK , we have that

M(q) :=

K∏

i=1

Mi(qi).

Clearly,
∫
D
M(q) dq = 1. By direct calculations one verifies that, for any i ∈ {1, . . . ,K},

(1.11) M(q)∇qi (M(q))−1 = −M(q)−1 ∇qiM(q) = ∇qi

(
Ui

( |qi|2
2

))
= U ′

i

( |qi|2
2

)
qi ∀ q = (qT1 , . . . , q

T
K)T ∈ D.

As in [6], we shall suppose that, for any i ∈ {1, . . . ,K}, there exist positive constants cij , j = 1, . . . , 4, and θi > 1
such that

(1.12) ci1 (dist (qi, ∂Di))
θi ≤Mi(qi) ≤ ci2 (dist (qi, ∂Di))

θi , ci3 ≤ (dist (qi, ∂Di))U
′
i

( |qi|2
2

)
≤ ci4 ∀ qi ∈ Di.

It is then straightforward to deduce that

(1.13)

∫

Di

(
1 +

(
Ui

( |qi|2
2

))2

+

(
U ′
i

( |qi|2
2

))2
)
Mi(qi) dqi <∞, i = 1, . . . ,K.

The probability density function ψ satisfies the following Fokker–Planck equation in (0, T ]× Ω×D:

(1.14) ∂tψ + divx(uψ) +
K∑

i=1

divqi ((∇xu) qi ψ) = ε∆xψ +
1

4λ

K∑

i=1

K∑

j=1

Aij divqi

(
M∇qj

(
ψ

M

))
.

The centre-of-mass diffusion term ε∆xψ is generally of the form ε∆x

(
ψ
ζ(̺)

)
, which involves the drag coefficient

ζ(·) depending on the fluid density ̺. Here we assume that ζ is a constant function, which is, for simplicity, taken
to be identically 1. The constant parameter ε is the centre-of-mass diffusion coefficient, which is strictly positive.
The positive parameter λ is called the Deborah number ; it characterizes the elastic relaxation property of the fluid.
The constant matrix A = (Aij)1≤i,j≤K , called the Rouse matrix, is symmetric and positive definite. We denote by
A0 the smallest eigenvalue of A; clearly, A0 > 0. We refer to Section 1 of Barrett and Süli [5] for a derivation of the
Fokker–Planck equation (1.14).
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The Fokker–Planck equation needs to be supplemented by suitable boundary conditions. For any i = 1, . . . ,K,
let ∂Di := D1 × · · · ×Di−1 × ∂Di ×Di+1 · · · ×DK and suppose that

(1.15)



 1

4λ

K∑

j=1

Aij divqi

(
M∇qj

(
ψ

M

))
− (∇xu) qi ψ



 · qi|qi|
= 0 on (0, T ]× Ω× ∂Di,

∇xψ · n = 0 on (0, T ]× ∂Ω×D.

Finally, we introduce the polymer number density η defined by

(1.16) η(t, x) :=

∫

D

ψ(t, x, q) dq, (t, x) ∈ [0, T ]× Ω.

By (formally) integrating the partial differential equation (1.14) over D and using the boundary condition in (1.15)1,
and by integrating the boundary condition (1.15)2 over D, we deduce the following partial differential equation and
boundary condition for the function η:

(1.17) ∂tη + divx(u η) = ε∆xη in (0, T ]× Ω; ∇xη · n = 0 on (0, T ]× ∂Ω.

By noting (1.16) we see that the expression for the extra-stress tensor in (1.7) and (1.8) can also be expressed as
follows:

(1.18) T(ψ) := k

(
K∑

i=1

Ci(ψ)

)
−
(
k(K + 1)η + δ η2

)
I.

As has already been pointed out above, our main objective is to consider a class of models of this form where the
viscosity coefficients µS = µS(η) and µB = µB(η) depend on η.

1.1. Dissipative (finite-energy) weak solutions. We adopt the following hypotheses on the initial data:

(1.19)

̺(0, ·) = ̺0(·) with ̺0 ≥ 0 a.e. in Ω, ̺0 ∈ Lγ(Ω) with γ > 3
2 ;

u(0, ·) = u0(·) ∈ Lr(Ω;R3) for some r > 1 such that ̺0|u0|2 ∈ L1(Ω);

ψ(0, ·) = ψ0(·) with ψ0 ≥ 0 a.e. in Ω×D, ψ0

(
log

ψ0

M

)
∈ L1(Ω×D);

η(0, ·) =
∫

D

ψ0 dq =: η0 ∈ L2(Ω).

We deduce from (1.19)1 and (1.19)2 by using Hölder’s inequality that (̺u)(0, ·) = ̺0u0 =
√
̺0
√
̺0u0 ∈ L

2γ
γ+1 (Ω;R3).

Definition 1.1. We say that (̺,u, ψ, η) is a dissipative (finite-energy) weak solution in (0, T ]×Ω×D to the system
of equations (1.1)–(1.5), (1.14)–(1.18), supplemented by the initial data (1.19), if:

• ̺ ≥ 0 a.e. in (0, T ]× Ω, ̺ ∈ Cw([0, T ];L
γ(Ω)), u ∈ Lr(0, T ;W 1,r

0 (Ω;R3)) for some r > 1,

(1.20)

̺u ∈ Cw([0, T ];L
2γ

γ+1 (Ω;R3)), ̺|u|2 ∈ L∞(0, T ;L1(Ω));

ψ ≥ 0 a.e. in (0, T ]× Ω×D, ψ ∈ Cw([0, T ];L
1(Ω×D)),

∇xψ ∈ L1((0, T )× Ω×D;R3), M∇q

(
ψ

M

)
∈ L1((0, T )× Ω×D;R3K),

η =

∫

D

ψ dq a.e. in (0, T ]× Ω, η ∈ Cw([0, T ];L
2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

T(ψ) := k

(
K∑

i=1

Ci(ψ)

)
−
(
k(K + 1)η + δ η2

)
I a.e. in (0, T ]× Ω, T ∈ L1((0, T )× Ω;R3×3).

• For any t ∈ (0, T ] and any test function φ ∈ C∞([0, T ]× Ω), one has

(1.21)

∫ t

0

∫

Ω

[
̺∂tφ+ ̺u · ∇xφ

]
dxdt′ =

∫

Ω

̺(t, ·)φ(t, ·) dx −
∫

Ω

̺0φ(0, ·) dx,

(1.22)

∫ t

0

∫

Ω

[
η∂tφ+ ηu · ∇xφ− ε∇xη · ∇xφ

]
dxdt′ =

∫

Ω

η(t, ·)φ(t, ·) dx −
∫

Ω

η0φ(0, ·) dx.
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• For any t ∈ (0, T ] and any test function ϕ ∈ C∞
c ([0, T ]× Ω;R3), one has

(1.23)

∫ t

0

∫

Ω

[
̺u · ∂tϕ+ (̺u⊗ u) : ∇xϕ+ p(̺) divxϕ− S : ∇xϕ

]
dxdt′

=

∫ t

0

∫

Ω

T : ∇xϕ− ̺ f ·ϕ dxdt′ +

∫

Ω

̺u(t, ·) ·ϕ(t, ·) dx −
∫

Ω

̺0u0 ·ϕ(0, ·) dx,

where S is defined by (1.5).
• For any t ∈ (0, T ] and any test function φ ∈ C∞

c ([0, T ]× Ω×D), one has

(1.24)

∫ t

0

∫

Ω

∫

D

[
ψ∂tφ+ ψu · ∇xφ+

K∑

i=1

(∇xu) qi ψ · ∇qiφ− ε∇xψ · ∇xφ

]
dq dxdt′

=
1

4λ

K∑

i=1

K∑

j=1

Aij

∫ t

0

∫

Ω

∫

D

M∇qj

(
ψ

M

)
· ∇qiφ dq dxdt′ +

∫

Ω

∫

D

ψφ(t, ·)− ψ0φ(0, ·) dq dx.

• The continuity equation holds in the sense of renormalized solutions:

(1.25) ∂tb(̺) + divx(b(̺)u) + (b′(̺)̺− b(̺)) divxu = 0 in D′((0, T ]× Ω),

for any

(1.26) b ∈ C1([0,∞)), |b′(s)s|+ |b(s)| ≤ c <∞ ∀ s ∈ [0,∞).

• Let F(s) := s(log s− 1)+1 for s > 0 and define F(0) := lims→0+ F(s) = 1. For a.e. t ∈ (0, T ], the following
energy inequality holds:

(1.27)

∫

Ω

[
1

2
̺|u|2 + P (̺) + δ η2 + k

∫

D

MF(ψ̃) dq

]
(t, ·) dx

+

∫ t

0

∫

Ω

µS
∣∣∣∣
∇u+∇Tu

2
− 1

3
(divxu) I

∣∣∣∣
2

+ µB|divxu|2 dxdt′ + 2 ε δ

∫ t

0

∫

Ω

|∇xη|2 dxdt′

+ ε k

∫ t

0

∫

Ω

∫

D

M

∣∣∣∣∇x

√
ψ̃

∣∣∣∣
2

dq dxdt′ +
k A0

4λ

∫ t

0

∫

Ω

∫

D

M

∣∣∣∣∇q

√
ψ̃

∣∣∣∣
2

dq dxdt′

≤
∫

Ω

[
1

2
̺0|u0|2 + P (̺0) + δ η20 + k

∫

D

MF
(
ψ0

M

)
dq

]
dx+

∫ t

0

∫

Ω

̺ f · u dxdt′,

where we have set P (̺) := ̺
∫ ̺
1 p(z)/z

2 dz and ψ̃ := ψ
M
.

Remark 1.2. Definition 1.1 is fairly standard. The energy inequality (1.27) identifies an important class of weak
solutions, usually termed dissipative (finite-energy). We note that, given a smooth solution, by tedious but rather
straightforward calculations one can obtain the following a priori bound (see (1.22) in [6]):

∫

Ω

[
1

2
̺|u|2 + P (̺) + δ η2 + k

∫

D

MF(ψ̃) dq

]
(t, ·) dx+

∫ t

0

∫

Ω

S : ∇xu dxdt′ + 2 ε δ

∫ t

0

∫

Ω

|∇xη|2 dxdt′

+ ε k

∫ t

0

∫

Ω

∫

D

M

∣∣∣∣∇x

√
ψ̃

∣∣∣∣
2

dq dxdt′ +
k

4λ

K∑

i=1

K∑

j=1

Aij

∫ t

0

∫

Ω

∫

D

M∇qj

√
ψ̃ · ∇qi

√
ψ̃ dq dxdt′

≤
∫

Ω

[
1

2
̺0|u0|2 + P (̺0) + δ η20 + k

∫

D

MF
(
ψ0

M

)
dq

]
dx+

∫ t

0

∫

Ω

̺ f · u dxdt′,

which then implies (1.27). Indeed, thanks to the form of the Newtonian stress tensor in (1.5), direct calculations
yield that

S : ∇xu = µS
∣∣∣∣
∇u+∇Tu

2
− 1

3
(divxu)I

∣∣∣∣
2

+ µB|divxu|2.

Hence, by the positive definiteness of the Rouse matrix A = (Aij)1≤i,j≤K , and recalling that the smallest eigenvalue
of A is A0 > 0, we deduce (1.27).
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1.2. Assumptions and main results. We shall suppose that both µS and µB are C1 functions of the polymer
number density η, and we adopt the following assumptions: there exist positive constants cj , j = 1, . . . , 5, and an
ω ∈ R such that

(1.28) c1(1 + η)ω ≤ µS(η) ≤ c2(1 + η)ω, |(µS)′(η)| ≤ c3 + c4(1 + η)ω−1, 0 ≤ µB(η) ≤ c5(1 + η)ω ∀ η ≥ 0.

In addition, for the sake of simplicity, we shall assume that

(1.29) p(̺) = a̺γ , a > 0, γ >
3

2
.

As the complete proof of the existence of dissipative weak solutions in the special case of constant viscosity
coefficients is already very long and technical (cf. [6]), in the more general setting of polymer-number-dependent
viscosity coefficients considered here we shall confine ourselves to establishing weak sequential stability of the family
of dissipative weak solutions, whose existence we shall assume; we shall however indicate in Section 5 the main steps
of a possible complete existence proof in the case of polymer-number-density-dependent viscosity coefficients.

Accordingly, the main result of the paper reads as follows.

Theorem 1.3 (Weak Sequential Stability). Let {(̺n,un, ψn, ηn)}n∈N be a sequence of dissipative (finite-energy)
weak solutions in the sense of Definition 1.1 associated with the initial data {(̺0,n,u0,n, ψ0,n, η0,n)}n∈N satisfying:

(1.30)

̺0,n ≥ 0 a.e. in Ω, ̺0,n → ̺0 strongly in Lγ(Ω);

u0,n → u0 in Lr(Ω;R3) for some r > 1 such that ̺0,n|u0,n|2 → ̺0|u0|2 strongly in L1(Ω);

ψ0,n ≥ 0 a.e. in Ω×D, ψ0,n → ψ0, ψ0,n

(
log

ψ0,n

M

)
→ ψ0

(
log

ψ0

M

)
strongly in L1(Ω×D);

η0,n =

∫

D

ψ0,n dq → η0 strongly in L2(Ω).

Let f ∈ L∞((0, T )× Ω;R3). Suppose that the exponent γ in (1.29) and the parameter ω in (1.28) satisfy

(1.31) 0 ≤ ω <
5

3
, γ >

3

2
or

(1.32) −4

3
< ω ≤ 0, γ >

6

4 + 3ω
.

Then, there exists a subsequence (not indicated) such that

(̺n,un, ψn, ηn) → (̺,u, ψ, η) as n→ ∞, in the sense of distributions (at least weakly in L1),

where the limit (̺,u, ψ, η) is a dissipative (finite-energy) weak solution in the sense of Definition 1.1 associated with
the initial data (̺0,u0, ψ0, η0).

Before embarking on the proof of Theorem 1.3 two remarks are in order.

Remark 1.4. The strong convergence assumptions in (1.30) imply that

(1.33) ̺0,nu0,n → ̺0u0 strongly in L
2γ

1+γ (Ω;R3), η0 =

∫

D

ψ0 dq a.e. in Ω.

Remark 1.5. It is important to note that we allow the viscosity coefficients µB and µS to decay to zero as the
polymer number density tends to infinity; this is achieved at the expense of assuming a larger adiabatic exponent γ;
cf. (1.32).

The bulk of the rest of the paper is devoted to the proof of Theorem 1.3. Comments on the possibility of carrying
out a complete proof of the existence of dissipative (finite-energy) weak solutions are given in Section 5. Throughout
the rest of the paper, if there is no specification, c will denote a positive constant depending only on the length T of
the time interval and the following quantity associated with the initial data:

sup
n∈N

∫

Ω

[
1

2
̺0,n|u0,n|2 + P (̺0,n) + δ η20,n + k

∫

D

MF
(
ψ0,n

M

)
dq

]
dx.

We emphasize, however, that the value of c may vary from line to line.

2. Preliminaries

In this section, we recall some concepts that will be used systematically throughout the rest of the paper, including
Maxwellian-weighted Lebesgue and Sobolev spaces, embeddings of spaces of Banach-space-valued weakly-continuous
functions, the Div-Curl lemma, and Riesz operators.
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2.1. Maxwellian-weighted spaces. For any r ∈ [1,∞), LrM (D) denotes the Maxwellian-weighted Lebesgue space
over D with norm

(2.1) ‖u‖Lr
M

(D) :=

(∫

D

M |u(x)|r dq
) 1

r

.

Similarly, we define LrM (Ω×D) := Lr(Ω;LrM (D)) and the Maxwellian-weighted Sobolev spaces

H1
M (D) :=

{
u ∈ L1

loc(D) : ‖u‖2H1
M

(D) :=

∫

D

M
(
|u|2 + |∇qu|2

)
dq <∞

}
.

H1
M (Ω×D) :=

{
u ∈ L1

loc(Ω×D) : ‖u‖2H1
M(Ω×D) :=

∫

Ω×D

M
(
|u|2 + |∇xu|2 + |∇qu|2

)
dq dx <∞

}
.

The proof of the following lemma can be found in Appendix C and Appendix D in [2].

Lemma 2.1. The normed spaces LrM (D), LrM (Ω×D), H1
M (D) and H1

M (Ω×D) are Banach spaces. The embedding
H1(Ω;L2

M (D)) →֒ L6(Ω;L2
M (D)) is continuous, and the embeddings H1

M (D) →֒ L2
M (D), H1

M (Ω×D) →֒ L2
M (Ω×D)

are compact.

2.2. On Cw([0, T ];X) type spaces. Let X be a Banach space. We denote by Cw([0, T ];X) the set of all functions
u ∈ L∞(0, T ;X) such that the mapping t ∈ [0, T ] 7→ 〈φ, u(t)〉X ∈ R is continuous on [0, T ] for all φ ∈ X ′. Here and
throughout the paper, we use X ′ to denote the dual space of X , and 〈·, ·〉X to denote the duality pairing between X ′

and X .
Whenever X has a predual E, in the sense that E′ = X , we denote by Cw∗([0, T ];X) the set of all functions

u ∈ L∞(0, T ;X) such that the mapping t ∈ [0, T ] 7→ 〈u(t), φ〉E ∈ R is continuous on [0, T ] for all φ ∈ E. We
reproduce Lemma 3.1 from [6].

Lemma 2.2. Suppose that X and Y are Banach spaces.

(i) Assume that the space X is reflexive and is continuously embedded in the space Y ; then,

L∞(0, T ;X)∩ Cw([0, T ];Y ) = Cw([0, T ];X).

(ii) Assume that X has a separable predual E and Y has a predual F such that F is continuously embedded in
E; then,

L∞(0, T ;X)∩ Cw∗([0, T ];Y ) = Cw∗([0, T ];X).

We recall an Arzelà–Ascoli type result in Cw([0, T ];L
s(Ω)). We refer to Lemma 6.2 in [19] for the proof.

Lemma 2.3. Let r, s ∈ (1,∞) and let Ω be a bounded Lipschitz domain in Rd, d ≥ 2. Suppose {gn}n∈N is a sequence
of functions in Cw([0, T ];L

s(Ω)) such that {gn}n∈N is bounded in C([0, T ];W−1,r(Ω))∩ L∞(0, T ;Ls(Ω)). Then, there
exists a subsequence (not indicated) such that the following hold:

(i) gn → g in Cw([0, T ];L
s(Ω));

(ii) If, in addition, r ≤ d
d−1 , or r >

d
d−1 and s > d r

d+r , then gn → g strongly in C([0, T ];W−1,r(Ω)).

2.3. Div-Curl lemma. We recall the celebrated Div-Curl lemma due to L. Tartar [22].

Lemma 2.4. Let Q ⊂ R
d be a domain and let {(Un,Vn)}n∈N be a sequence of functions such that

Un → U weakly in Lp(Q;Rd), Vn → V weakly in Lq(Q;Rd), as n→ ∞,

where 1
p
+ 1

q
= 1

r
< 1. Suppose in addition that, for some s > 0,

{divUn}n∈N is precompact in W−1,s(Q), {curlVn}n∈N is precompact in W−1,s(Q;Rd×d).

Then, Un ·Vn → U ·V weakly in Lr(Q).

2.4. On Riesz type operators. The Riesz operator Rj , 1 ≤ j ≤ d, in R
d is defined as a Fourier integral operator

with symbol
ξj
|ξ| . That is, for any u ∈ S ′(Rd), where S ′(Rd) denotes the space of tempered distributions on Rd, Rj

is defined by

Rj [u] := F−1

[
ξj
|ξ|F[u]

]
,

where F is the Fourier transform and F−1 is the inverse Fourier transform. We then define, for any u ∈ S ′(Rd),

Rij [u] := Ri ◦ Rju = F
−1

[
ξiξj
|ξ|2 F[u]

]
, 1 ≤ i, j ≤ d.
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We define Aj by Aj [u] := −F−1
[
iξj
|ξ|2F[u]

]
. Since the derivative ∂j and the Laplacian ∆ can be seen as Fourier

integral operators with symbols iξj and −|ξ|−2, respectively, we can write

Rij = ∂i∂j∆
−1, Aj = −∂j∆−1.

Let the matrix-valued operator R and the vector-valued operator A be defined by

(2.2) R = (Rij)
d
i,j=1 = (∇⊗∇)∆−1, A := (Aj)

d
j=1 = −∇∆−1.

We have Rij = −∂iAj ,
∑d

j=1 Rjj = −∑j ∂jAj = I. By Theorem 1.55 and Theorem 1.57 in [19] the following result
holds.

Lemma 2.5. For any p ∈ (1,∞) the operators Rj and Rij , 1 ≤ i, j ≤ d, are bounded from Lp(Rd) to Lp(Rd). That
is, there exists a positive constant c = c(p, d) such that

‖Rj [u]‖Lp(Rd) + ‖Rij [u]‖Lp(Rd) ≤ c(p, d)‖u‖Lp(Rd) ∀u ∈ Lp(Rd).

Moreover, for any u ∈ Lp(Rd), v ∈ Lp
′

(Rd), 1 < p <∞, we have
∫

Rd

Rij [u] v dx =

∫

Rd

uRij [v] dx.

Further, for any p ∈ (1, d), Aj is bounded from Lp(Rd) to L
dp

d−p (Rd); that is, there exists a positive constant c = c(p, d)
such that

‖Aj [u]‖
L

dp
d−p (Rd)

≤ c(p, d)‖u‖Lp(Rd) ∀u ∈ Lp(Rd).

The following commutator estimate is taken from Theorem 10.28 in [15], which is in the spirit of Coifman and
Meyer [8]:

Lemma 2.6. Let w ∈ W 1,r(Rd) and v ∈ Lp(Rd) with 1 < r < d, 1 < p < ∞, 1
r
+ 1

p
− 1

d
< 1. Then, for any s > 1

satisfying 1
r
+ 1

p
− 1

d
< 1

s
< min{1, 1

r
+ 1

p
}, there exists a constant c = c(r, p, s, d) such that:

‖Rij [w v]− wRij [v]‖Wβ,s(Rd) ≤ c ‖w‖W 1,r(Rd)‖v‖Lp(Rd),

for any i, j ∈ {1, . . . , d}, where β ∈ (0, 1) satisfies β
d
= 1

d
+ 1

s
− 1

r
− 1

p
.

In Lemma 2.6, we used the fractional-order Sobolev space W β,s(Rd). Let Ω be the whole space Rd or a bounded
Lipschitz domain in Rd. For any β ∈ (0, 1) and s ∈ [1,∞), we define

(2.3) W β,s(Ω) :=

{
u ∈ Ls(Ω) : ‖u‖Wβ,s(Ω) := ‖u‖Ls(Ω) +

(∫

Ω

∫

Ω

|u(x)− u(y)|s
|x− y|d+βs dx dy

) 1
s

<∞
}
.

We recall the following classical compact embedding theorem (see Theorem 7.1 in [10]).

Lemma 2.7. Let Ω ⊂ Rd be a bounded Lipschitz domain and suppose that β ∈ (0, 1) and s ∈ [1,∞); then, the
embedding of W β,s(Ω) into Ls(Ω) is compact, i.e. W β,s(Ω) →֒→֒ Ls(Ω).

3. Uniform bounds

Let (̺,u, ψ, η) be a dissipative (finite-energy) weak solution in the sense of Definition 1.1 with initial data
(̺0,u0, ψ0, η0) satisfying (1.19). This section is devoted to establishing bounds on (̺,u, ψ, η) under the hypotheses
(1.28)–(1.32).

3.1. Gronwall’s inequality and uniform bounds. We begin by noting that

(3.1)

∫

Ω

∫

D

MF
(
ψ0

M

)
dq dx =

∫

Ω

∫

D

(
ψ0 log

(
ψ0

M

)
− ψ0 +M

)
dq dx.

As s log s ≥ s− 1 for all s ≥ 0, it follows that ψ0 log
(
ψ0

M

)
≥ ψ0 −M , which then implies that

∣∣∣∣ψ0 log

(
ψ0

M

)
− ψ0 +M

∣∣∣∣ ≤ 2

∣∣∣∣ψ0 log

(
ψ0

M

)∣∣∣∣ .

Thus, by (1.19), we have that

(3.2)

∫

Ω

[
1

2
̺0|u0|2 + P (̺0) + δ η20 + k

∫

D

MF
(
ψ0

M

)
dq

]
dx ≤ c.



8 EDUARD FEIREISL, YONG LU, AND ENDRE SÜLI

Since f ∈ L∞((0, T )× Ω;R3) and

|̺ f · u| ≤ |f | |√̺| |√̺u| ≤ |f |
(
̺+ ̺|u|2

)
≤ |f |

(
1 + ̺γ + ̺|u|2

)
,

by using Gronwall’s inequality we deduce from (1.27) and (3.2) that, for a.e. t ∈ (0, T ),

(3.3)

∫

Ω

[
1

2
̺|u|2 + P (̺) + δ η2 + k

∫

D

MF(ψ̃) dq

]
(t, ·) dx

+

∫ t

0

∫

Ω

µS(η)

∣∣∣∣
∇u+∇Tu

2
− 1

3
(divxu)I

∣∣∣∣
2

+ µB(η)|divxu|2 dxdt′ + 2 ε δ

∫ t

0

∫

Ω

|∇xη|2 dxdt′

+ ε k

∫ t

0

∫

Ω

∫

D

M

∣∣∣∣∇x

√
ψ̃

∣∣∣∣
2

dq dxdt+
k A0

4λ

∫ t

0

∫

Ω

∫

D

M

∣∣∣∣∇q

√
ψ̃

∣∣∣∣
2

dq dxdt′

≤ c(1 + T ) ect.

In the rest of this section, we shall establish additional bounds on the unknowns, one by one, by using (3.3).

3.2. Bounds on the fluid density and the polymer number density. From (3.3), we have

(3.4) ̺ ∈ L∞(0, T ;Lγ(Ω)), η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)), ̺|u|2 ∈ L∞(0, T ;L1(Ω)).

By Sobolev embedding and interpolation it follows that

(3.5) η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;L6(Ω)) →֒ La(0, T ;L
6a

3a−4 (Ω)), 2 ≤ a ≤ ∞.

The bounds in (3.4) then imply that

(3.6) ̺u =
√
̺
√
̺u ∈ L∞(0, T ;L

2γ
γ+1 (Ω;R3)).

3.3. Bounds on the fluid velocity field. By (3.3) we deduce that

(3.7) g :=
√
µS(η)

∣∣∣∣
∇u+∇Tu

2
− 1

3
(divxu)I

∣∣∣∣ ∈ L2(0, T ;L2(Ω)).

We recall that µS(η) fulfills the hypotheses stated in (1.28) with ω satisfying (1.31) or (1.32). We begin by considering
the case when ω ≥ 0; (1.28) then implies that µ−1 is uniformly bounded. Thus,

(3.8)

∣∣∣∣
∇u+∇Tu

2
− 1

3
(divxu)I

∣∣∣∣ ∈ L2(0, T ;L2(Ω));

whence Korn’s inequality (see [9]) with the no-slip boundary condition on u implies that

(3.9) |∇xu| ∈ L2(0, T ;L2(Ω)), and hence u ∈ L2(0, T ;W 1,2
0 (Ω;R3)).

On the other hand, when ω ≤ 0 satisfies the constraint (1.32), that is −4/3 < ω ≤ 0, then, by (1.28) and (3.5), we
have that

(3.10) µ(η)−1 ∈ L∞(0, T ;L
2

|ω| (Ω)) ∩ L 2
|ω| (0, T ;L

6
|ω| (Ω)) ∩ L 10

3|ω| ((0, T )× Ω).

Thus, from (3.7), we deduce that

(3.11)

∣∣∣∣
∇u+∇Tu

2
− 1

3
(divxu)I

∣∣∣∣ ∈ L2(0, T ;L
4

2+|ω| (Ω)) ∩ L
4

2+|ω| (0, T ;L
12

6+|ω| (Ω)) ∩ L
20

10+3|ω| ((0, T )× Ω).

Hence, taking advantage of the no-slip boundary condition, we may use Korn’s inequality to obtain

(3.12) u ∈ L2(0, T ;W
1, 4

2+|ω|

0 (Ω;R3)) ∩ L
4

2+|ω| (0, T ;W
1, 12

6+|ω|

0 (Ω;R3)) ∩ L
20

10+3|ω| (0, T ;W
1, 20

10+3|ω|

0 (Ω;R3)).

3.4. Bounds on the Newtonian stress tensor. Consider first the case when (1.31) holds with ω ≥ 0. Let us
write

µS(η)

∣∣∣∣
∇u+∇Tu

2
− 1

3
(divxu)I

∣∣∣∣ = g
√
µS(η),

where g ∈ L2((0, T ) × Ω) is defined by (3.7). Thanks to (1.28), (3.5), (3.9), and by a similar argument as in the
derivation of (3.12), we obtain

(3.13) S ∈ L2(0, T ;L
4

2+|ω| (Ω;R3×3)) ∩ L
4

2+|ω| (0, T ;L
12

6+|ω| (Ω;R3×3)) ∩ L
20

10+3|ω| ((0, T )× Ω;R3×3).

On the other hand, when ω ≤ 0, by observing that
√
µS +

√
µB ≤ c <∞ we deduce that

(3.14) S ∈ L2((0, T )× Ω;R3×3).
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3.5. Bounds on the probability density function. It follows from (3.3) that

(3.15) F(ψ̃) ∈ L∞(0, T ;L1
M(Ω×D)),

√
ψ̃ ∈ L2(0, T ;H1

M(Ω×D)),

where we recall that ψ̃ := ψ/M . Consequently, by Sobolev embedding and thanks to Lemma 2.1 we then have that√
ψ̃ ∈ L2(0, T ;L6(Ω;L2

M (D))).

If s > e2, then s log s > 2s > 2(s− 1), which then implies that F(s) = s log s− (s− 1) > 1
2s log s for s > e2. Thus,

(3.16)

‖ψ̃ log ψ̃‖L1
M

(Ω×D)) =

∫

Ω×D

|ψ̃ log ψ̃|M dq dx =

∫

0≤ψ̃≤e2
|ψ̃ log ψ̃|M dq dx+

∫

ψ̃>e2
|ψ̃ log ψ̃|M dq dx

≤ 2e2
∫

Ω×D

M dq dx+ 2

∫

ψ̃>e2
|F(ψ̃)|M dq dx ≤ c,

where we have used (1.12) and (3.15). This implies that

(3.17) ψ̃ log ψ̃ ∈ L∞(0, T ;L1
M(Ω×D)), ψ logψ ∈ L∞(0, T ;L1(Ω×D)).

Clearly,

(3.18) ∇xψ̃ = 2

√
ψ̃ ∇x

√
ψ̃, ∇qψ̃ = 2

√
ψ̃ ∇q

√
ψ̃.

By (3.18) and Hölder’s inequality we therefore have that

(3.19)

‖∇q,xψ̃‖L1
M

(D;R3(K+1)) =

∫

D

|M ∇q,xψ̃| dq = 2

∫

D

M

√
ψ̃

∣∣∣∣∇q,x

√
ψ̃

∣∣∣∣ dq

≤ 2

(∫

D

M

∣∣∣∣∇q,x

√
ψ̃

∣∣∣∣
2

dq

) 1
2 (∫

D

Mψ̃ dq

) 1
2

= 2

∥∥∥∥∇q,x

√
ψ̃

∥∥∥∥
L2

M
(D;R3(K+1))

η
1
2 .

Thus, we benefit from the estimates in (3.5) for η and deduce that

(3.20) ∇q,xψ̃ ∈ L2(0, T ;L
4
3 (Ω;L1

M (D;R3(K+1)))) ∩ L 4
3 (0, T ;L

12
7 (Ω;L1

M (D;R3(K+1)))).

By observing that ‖∇xψ̃‖L1
M

(D;R3) = ‖∇xψ‖L1(D;R3) we obtain

(3.21) ∇xψ ∈ L2(0, T ;L
4
3 (Ω;L1(D;R3))) ∩ L 4

3 (0, T ;L
12
7 (Ω;L1(D;R3))).

3.6. Bounds on the extra-stress tensor. We recall that the extra-stress tensor can be expressed as (see (1.20))

T := k

(
K∑

i=1

Ci(ψ)

)
−
(
k(K + 1)η + δ η2

)
I.

Thanks to the bounds on η stated in (3.4) and (3.5), we have that

(3.22) η2 ∈ L∞(0, T ;L1(Ω)) ∩ L1(0, T ;L3(Ω)).

According to (1.12), we have M = 0 on ∂D. We then deduce by using (1.9) and (1.11) that

(3.23)

Ci(ψ) = Ci(Mψ̃) =

∫

D

Mψ̃ U ′
i

(
q2i
2

)
qiq

T
i dq = −

∫

D

ψ̃ (∇qiM)qTi dq

=

∫

D

M (∇qi ψ̃)q
T
i dq +

(∫

D

Mψ̃ dq

)
I =

∫

D

M(∇qi ψ̃)q
T
i dq + ηI.

Thus, by (3.18), Hölder’s inequality implies that

∣∣∣∣
∫

D

M(∇qi ψ̃)q
T
i dq

∣∣∣∣ ≤ c

(∫

D

M

(
∇qi

√
ψ̃

)2

dq

) 1
2 (∫

D

Mψ̃ dq

) 1
2

= c

(∫

D

M

(
∇qi

√
ψ̃

)2

dq

) 1
2

η
1
2 .

By (3.15) we have
(∫

D

M

(
∇qi

√
ψ̃

)2

dq

) 1
2

∈ L2(0, T ;L2(Ω)).

Thus, by (3.5) and (3.22), we obtain

(3.24) T ∈ L2(0, T ;L
4
3 (Ω;R3×3)) ∩ L 4

3 (0, T ;L
12
7 (Ω;R3×3)).
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3.7. Higher integrability of the fluid density and the pressure. From the energy inequality (1.27) we deduce
that ̺ ∈ L∞(0, T ;Lγ(Ω)), which implies that p(̺) ∈ L∞(0, T ;L1(Ω)); unfortunately, p(̺) is only in L1 with respect
to the spatial variable, x. In order to improve the integrability of the pressure with respect to the spatial variable,
one may use the so-called Bogovskĭı operator (see [7]), exactly as in [14, 13, 19]. We recall the following lemma whose
proof can be found in Chapter III of Galdi’s book [16].

Lemma 3.1. Let p ∈ (1,∞) and suppose that Ω ⊂ Rd is a bounded Lipschitz domain. Let Lp0(Ω) be the space of

Lp(Ω) functions with zero mean-value. Then, there exists a linear operator BΩ from Lp0(Ω) to W
1,p
0 (Ω;Rd) such that

divx BΩ(f) = f in Ω; ‖BΩ(f)‖W 1,p
0 (Ω;Rd) ≤ c(d, p,Ω) ‖f‖Lp(Ω) ∀ f ∈ Lp0(Ω),

where the constant c depends only on p, d and the Lipschitz character of Ω. If, in addition, f = divxg for some
g ∈ Lq, 1 < q <∞, g · n = 0 on ∂Ω, then

‖BΩ(f)‖Lq(Ω;Rd) ≤ c(d, q,Ω) ‖g‖Lq(Ω;Rd).

The key idea in establishing higher integrability of ̺ and p(̺) is to choose the following test function in (1.23):

(3.25) ϕ(t, x) := φ(t)BΩ

(
Sε
[
bn(̺)

]
− 1

|Ω|

∫

Ω

Sε
[
bn(̺)

]
dx

)
,

where φ ∈ C∞
c ((0, T )) is a nonnegative test function, Sε is the classical (Friedrichs) mollifier with respect to the

spatial variable, and {bn(̺)}n∈N is an increasing sequence of C1 functions satisfying (1.26), which approximates the
function ̺θ. As in Lemma 2.1 in [12] we have, for any b satisfying (1.26),

(3.26) ∂tb(̺) + divx(b(̺)u) + (b′(̺)̺− b(̺)) divxu = 0 in D′((0, T )× R
3),

where the functions ̺ and u are extended by zero outside Ω. For any n, bn(̺) satisfies (3.26). After tedious but
rather straightforward calculations (see [12, 14] for details), one obtains, for θ > 0 sufficiently small, that

(3.27)

∫ t

0

∫

Ω

φ(t) ̺γ bn(̺) dxdt ≤ c ∀n ≥ 0.

Letting n→ ∞ in (3.27) and approximating 1 by C∞
c ((0, T )) functions finally gives

(3.28) ̺ ∈ Lγ+θ((0, T )× Ω), p(̺) ∈ L1+ θ
γ ((0, T )× Ω) for some θ > 0.

Remark 3.2. In order to obtain (3.28) for some positive θ, the conditions imposed in (1.31) and (1.32) can be
relaxed. By careful analysis the following constraints are found to be sufficient:

(3.29) γ >
3

2
, 0 ≤ ω <

10

3
or − 2 < ω ≤ 0, γ >

6

4 + 3ω
.

The more restrictive conditions featuring in (1.31) and (1.32) are needed later on, in Section 4.53, in order to prove
the so-called effective viscous flux equality (see Remark 4.2).

3.8. Bounds on the time derivative and continuity. This section is devoted to establishing bounds on the time
derivatives (∂t̺, ∂tη, ∂t(̺u), ∂tψ).

As ∂t̺ = −divx(̺u), the bound in (3.6) implies that ∂t̺ ∈ L∞(0, T ;W−1, 2γ
γ+1 (Ω)). Then, by (3.4) and Lemma

2.2, we have that
̺ ∈ Cw([0, T ];L

γ(Ω)).

Recall that ∂tη = −divx(ηu) + ε∆xη. For ω ≥ 0 satisfying (1.31), we have u ∈ L2(0, T ;W 1,2
0 (Ω;R3)), which

is embedded in L2(0, T ;L6(Ω;R3)). Thanks to (3.4), we then obtain ∂tη ∈ L2(0, T ;W−1,32 (Ω)). If on the other

hand ω ≤ 0 satisfies (1.32), then we have u ∈ L2(0, T ;W
1, 4

2+|ω|

0 (Ω;R3)) →֒ L2(0, T ;L
12

3|ω|+2 (Ω;R3)). Consequently,

∂tη ∈ L2(0, T ;W−1, 12
3|ω|+8 (Ω)). Thus, in both cases, by (3.4) and Lemma 2.2, we have

η ∈ Cw([0, T ];L
2(Ω)).

Next, we recall that ∂t(̺u) = −divx(̺u ⊗ u) − ∇xp(̺) + divxS + divxT + ̺ f . We first consider the case with
ω ≥ 0 satisfying (1.31). By the estimates in Section 3.3 we have u ∈ L2(0, T ;L6(Ω;R3)). Since ̺ ∈ L∞(0, T ;Lγ(Ω))
with γ > 3

2 , together with (3.4), we obtain

(3.30) ̺u⊗ u ∈ L1(0, T ;L
3γ

γ+3 (Ω;R3×3)) ∩ L∞(0, T ;L1(Ω;R3×3)) →֒ Lr(0, T ;Lr(Ω;R3×3)) for some r > 1.

By (3.13), (3.28), (3.24), together with (3.30), we deduce that

(3.31) ∂t(̺u) ∈ Lr(0, T ;W−1,r(Ω;R3)) for some r > 1.
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For the case with ω ≤ 0 satisfying (1.32), a similar argument gives the same result as in (3.31). Then, by (3.6),
(3.31) and Lemma 2.2, we have in both cases that

̺u ∈ Cw([0, T ];L
2γ

γ+1 (Ω;R3)).

By the Fokker–Planck equation (1.14) for ψ, the estimates in (3.20) and (3.21), direct calculations yield that

(3.32) ∂tψ ∈ L2(0, T ;W s,2(Ω×D)′) with s > 1 + 3
2 (K + 1),

where we have used that W s,2(Ω ×D) →֒ W 1,∞(Ω ×D) for s > 1 + 3
2 (K + 1). Moreover, by the estimates (3.17)

and (3.32), using Lemma 2.2 and the same argument as in Section 4.5 in [6], we deduce that

ψ ∈ Cw([0, T ];L
1(Ω×D)).

3.9. Summary. We summarize the results obtained in this section. Let (̺,u, ψ, η) be a dissipative weak solution
in the sense of Definition 1.1 associated with initial data (̺0,u0, ψ0, η0) satisfying (1.19). Then,
(3.33)
̺ ∈ Cw([0, T );L

γ(Ω)) ∩ Lγ+θ((0, T )× Ω); η ∈ Cw([0, T ];L
2(Ω)) ∩ L2(0, T ;W 1,2(Ω));

̺|u|2 ∈ L∞(0, T ;L1(Ω)), ̺u ∈ Cw([0, T ];L
2γ

γ+1 (Ω;R3)); T ∈ L2(0, T ;L
4
3 (Ω;R3×3)) ∩ L 4

3 (0, T ;L
12
7 (Ω;R3×3));

u ∈ L2(0, T ;W 1,2
0 (Ω;R3)) if ω ≥ 0 satisfies (1.31);

u ∈ L2(0, T ;W
1, 4

2+|ω|

0 (Ω;R3)) ∩ L 4
2+|ω| (0, T ;W

1, 12
6+|ω|

0 (Ω;R3)) ∩ L 20
10+3|ω| (0, T ;W

1, 20
10+3|ω|

0 (Ω;R3))

if ω ≤ 0 satisfies (1.32);

F(ψ̃), ψ̃ log ψ̃, ψ̃ ∈ L∞(0, T ;L1
M(Ω×D)),

√
ψ̃ ∈ L2(0, T ;H1

M(Ω×D)),

∇q,xψ̃ ∈ L2(0, T ;L
4
3 (Ω;L1

M (D;R3(K+1)))) ∩ L 4
3 (0, T ;L

12
7 (Ω;L1

M (D;R3(K+1))));

F(ψ), ψ logψ ∈ L∞(0, T ;L1(Ω×D)), ψ ∈ Cw([0, T ];L
1(Ω×D)),

∇xψ ∈ L2(0, T ;L
4
3 (Ω;L1(D;R3))) ∩ L 4

3 (0, T ;L
12
7 (Ω;L1(D;R3)));

and

(3.34)

∂t̺ ∈ L∞(0, T ;W−1, 2γ
γ+1 (Ω)), ∂t(̺u) ∈ Lr(0, T ;W−1,r(Ω;R3)) for some r > 1;

∂tη ∈ L2(0, T ;W−1, 32 (Ω)) if ω ≥ 0 satisfies (1.31);

∂tη ∈ L2(0, T ;W−1, 12
3|ω|+8 (Ω)) if ω ≤ 0 satisfies (1.32);

∂tψ ∈ L2(0, T ;W s,2(Ω×D)′) with s > 1 + 3
2 (K + 1).

It is important to note that all of the above inclusions are consequences of bounds that depend only on the initial
energy, the final time T , and the structural constants in the hypotheses imposed on the constitutive relations.

4. Passing to the limit

Let (̺n,un, ψn, ηn)n∈N be a sequence of the dissipative (finite-energy) weak solutions satisfying the assumptions
in Theorem 1.3. Then, the energy inequality (1.27) and (3.3) give, respectively,

(4.1)

∫

Ω

[
1

2
̺n|un|2 + P (̺n) + δ η2n + k

∫

D

MF(ψn) dq

]
(t, ·) dx+ 2 ε δ

∫ t

0

∫

Ω

|∇xηn|2 dxdt′

+

∫ t

0

∫

Ω

µS(ηn)

∣∣∣∣
∇un +∇Tun

2
− 1

3
(divxun)I

∣∣∣∣
2

+ µB(ηn)|divxun|2 dxdt′

+ ε k

∫ t

0

∫

Ω

∫

D

M

∣∣∣∣∇x

√
ψ̃n

∣∣∣∣
2

dq dxdt+
k A0

4λ

∫ t

0

∫

Ω

∫

D

M

∣∣∣∣∇q

√
ψ̃n

∣∣∣∣
2

dq dxdt′

≤
∫

Ω

[
1

2
̺0,n|u0,n|2 + P (̺0,n) + δ η20,n + k

∫

D

MF
(
ψ0,n

M

)
dq

]
dx+

∫ t

0

∫

Ω

̺n f · un dxdt′
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and, therefore,

(4.2)

∫

Ω

[
1

2
̺n|un|2 + P (̺n) + δ η2n + k

∫

D

MF(ψ̃n) dq

]
(t, ·) dx+ 2 ε δ

∫ t

0

∫

Ω

|∇xηn|2 dxdt′

+

∫ t

0

∫

Ω

µS(ηn)

∣∣∣∣
∇un +∇Tun

2
− 1

3
(divxun)I

∣∣∣∣
2

+ µB(ηn)|divxun|2 dx dt′

+ ε k

∫ t

0

∫

Ω

∫

D

M

∣∣∣∣∇x

√
ψ̃n

∣∣∣∣
2

dq dx dt′ +
k A0

4λ

∫ t

0

∫

Ω

∫

D

M

∣∣∣∣∇q

√
ψ̃n

∣∣∣∣
2

dq dxdt′

≤ c(1 + T ) et.

Thus, from the results in Section 3, this solution sequence (̺n,un, ψn, ηn)n∈N satisfies the uniform bounds (3.33) and
(3.34).

The present section is devoted to studying the limit of this solution sequence. We remark that, throughout this
section, the limits are taken up to subtractions of subsequences without identification.

4.1. Convergence of the fluid density. We have that {̺n}n∈N is a sequence in Cw([0, T ];L
γ(Ω)) satisfying

(4.3) sup
n∈N

(
‖̺n‖L∞(0,T ;Lγ(Ω)) + ‖∂t̺n‖

L∞(0,T ;W
−1,

2γ
γ+1 (Ω))

)
≤ c.

By Sobolev embedding one has

Lγ(Ω) →֒W−1, 3γ
3−γ (Ω) if γ < 3; Lγ(Ω) →֒W−1,s(Ω) for any s ∈ (1,∞), if γ ≥ 3.

Thus, by applying Lemma 2.3, we deduce that

(4.4)
̺n → ̺ in Cw([0, T ];L

γ(Ω));

̺n → ̺ strongly in C([0, T ];W−1,r(Ω)) for any r ≥ 3
2 such that 3r

3+r < γ.

4.2. Convergence of the fluid velocity field. By Sobolev embedding, for the case ω ≥ 0, we have

(4.5) un → u weakly in L2(0, T ;W 1,2
0 (Ω;R3)) and in L2(0, T ;L6(Ω;R3)),

while for the case ω ≤ 0, we have

(4.6)

un → u weakly in L2(0, T ;W
1, 4

2+|ω|

0 (Ω;R3)) and weakly in L2(0, T ;L
12

2+3|ω| (Ω;R3)),

un → u weakly in L
4

2+|ω| (0, T ;W
1, 12

6+|ω|

0 (Ω;R3)) and weakly in L
4

2+|ω| (0, T ;L
12

2+|ω| (Ω;R3)),

un → u weakly in L
20

10+3|ω| (0, T ;W
1, 20

10+3|ω|

0 (Ω;R3)) and weakly in L
20

10+3|ω| (0, T ;L
60

10+9|ω| (Ω;R3)).

4.3. Convergence of the nonlinear terms ̺nun and ̺nun⊗un. We first consider the case with ω ≥ 0 satisfying
(1.31). Since γ > 3

2 >
6
5 , we have, because of (4.4), that

(4.7) ̺n → ̺ strongly in C([0, T ];W−1,2(Ω)).

Together with (4.5), we have

(4.8) ̺nun → ̺u in D′((0, T )× Ω;R3).

By observing the uniform estimate

sup
n∈N

(
‖̺nun‖

L∞(0,T ;L
2γ

1+γ (Ω;R3))
+ ‖̺nun‖

L2(0,T ;L
6γ

6+γ (Ω;R3))

)
≤ c

we have

(4.9) ̺nun → ̺u weakly* in L∞(0, T ;L
2γ

1+γ (Ω;R3)) and weakly in L2(0, T ;L
6γ

6+γ (Ω;R3)).

Moreover, by (3.33) and (3.34), we have ̺nun ∈ Cw([0, T ];L
2γ

γ+1 (Ω;Rd)) and {∂t(̺nun)}n∈N is uniformly bounded
in Lr(0, T ;W−1,r(Ω;R3)) for some r > 1. By Lemma 2.3 and the interpolation argument in Section 4.1 we have

(4.10)
̺nun → ̺u in Cw([0, T ];L

2γ
1+γ (Ω;R3));

̺nun → ̺u strongly in C([0, T ];W−1,r(Ω;R3)) for any r ≥ 3
2 such that 3r

3+r <
2γ
1+γ .

The fact that γ > 3
2 implies 2γ

1+γ >
6
5 . This gives ̺nun → ̺u strongly in C([0, T ];W−1,2(Ω;R3)). Together with

(4.5), we have for the sequence of convective terms:

(4.11) ̺nun ⊗ un → ̺u⊗ u in D′((0, T )× Ω;R3×3).
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The case ω ≤ 0 is dealt with similarly to the case ω ≥ 0, and we obtain the results stated in (4.8) and (4.11), so
we omit the details. We merely remark that when ω ≤ 0, then we have weaker integrability for u; this is, however,
compensated by supposing stronger integrability for ̺ through hypothesis (1.32).

We also remark that the hypotheses stated in (1.31) and (1.32) can be relaxed in this part of the analysis: the
constraints stated in (3.29) in Remark 3.2 are sufficient.

4.4. Convergence of the polymer number density. We begin by noting that the sequence {ηn}n∈N is contained
in Cw([0, T ];L

2(Ω)) and satisfies the bound

(4.12) sup
n∈N

(
‖ηn‖L∞(0,T ;L2(Ω))∩L2(0,T ;W 1,2(Ω)) + ‖∂tηn‖

L2(0,T ;W
−1, 12

3|ω|+8 (Ω))

)
≤ c.

Thus, by Lemma 2.3,

(4.13) ηn → η strongly in Cw([0, T ];L
2(Ω)) and weakly in L2(0, T ;W 1,2(Ω)).

Thanks to the compact Sobolev embedding W 1,2(Ω) →֒→֒ Lq(Ω), q < 6, the Aubin–Lions–Simon compactness
theorem (see [17] or [21]) implies that

(4.14) ηn → η strongly in L2(0, T ;Lq(Ω)) for any q < 6.

By interpolation we also have

(4.15) ηn → η strongly in Lq((0, T )× Ω) for any q < 10
3 .

We still need to show that η =
∫
D
ψ dq, where ψ is the limit of ψn. This will be done later on, in Section 4.6.

4.5. Convergence of the Newtonian stress tensor. When 0 ≤ ω < 5
3 as in (1.31), by (1.28) and (4.15), we have

that

(4.16) (µS(ηn), µ
B(ηn)) → (µS(η), µB(η)) strongly in L

10
3ω ((0, T )× Ω).

Together with (4.5), we deduce that

(4.17) Sn → S := µS(η)

(∇u+∇Tu

2
− 1

3
(divxu)I

)
+ µB(η)(divxu)I weakly in L

10
3ω+5 ((0, T )× Ω;R3×3).

On the other hand, when − 4
3 < ω ≤ 0 as in (1.31), then we have

(4.18) (µS(ηn), µ
B(ηn)) → (µS(η), µB(η)) strongly in Lq(0, T ;Lq(Ω)) for any q <∞.

Thus, by (4.6), we have, for any r < 20
3ω+10 ,

(4.19) Sn → S := µS(η)

(∇u+∇Tu

2
− 1

3
(divxu)I

)
+ µB(η)(divxu)I weakly in Lr((0, T )× Ω;R3×3).

We remark that, by rewriting

(4.20) Sn =
√
µS(ηn)

√
µS(ηn)

(∇un +∇Tun
2

− 1

3
(divxun)I

)
+
√
µB(ηn)

√
µB(ηn)(divxun)I,

we can relax the constraints in (1.31) and (1.32) as in (3.29) in Remark 3.2.

4.6. Convergence of the probability density function. First of all, by the energy inequality (4.2) we have

(4.21) sup
n∈N

(∥∥∥F(ψ̃n)
∥∥∥
L∞(0,T ;L1

M
(Ω×D))

+

∥∥∥∥
√
ψ̃n

∥∥∥∥
L2(0,T ;H1

M
(Ω×D))

)
≤ c.

As in Section 4 in [6] and Section 5 in [3], we use Dubinskĭı’s compactness theorem (cf. [11]; see also [4], Theorem
3.1 or [6]) by setting

(4.22)
X := L1

M (Ω×D), X0 := {ϕ ∈ X : ϕ ≥ 0,
√
ϕ ∈ H1

M (Ω×D)},
X1 :=M−1W s,2(Ω×D)′ := {M−1ϕ : ϕ ∈ W s,2(Ω×D)′} with s > 1 + 3

2 (K + 1),

where X0 is a seminomed space (in the sense of Dubinskĭı) with seminorm defined by

[ϕ]X0 := ‖ϕ‖X +

∫

Ω×D

M

(
|∇x

√
ϕ |2 + |∇q

√
ϕ |2

)
dq dx.

By (3.33) and (3.34) we have that

(4.23) {ψ̃n}n∈N is uniformly bounded in L1(0, T ;X0) and {∂tψ̃n}n∈N is uniformly bounded in L2(0, T ;X1).



14 EDUARD FEIREISL, YONG LU, AND ENDRE SÜLI

The continuity of the embedding X →֒ X1 and the compactness of the embedding X0 →֒ X are shown in Section 5
in [3]. Then, by virtue of Dubinskĭı’s compact embedding theorem, we have that

(4.24) ψ̃n → ψ̃ strongly in L1(0, T ;L1
M(Ω×D)),

which is equivalent to

(4.25) ψn → ψ strongly in L1(0, T ;L1(Ω×D)).

This implies that

(4.26) ηn =

∫

D

ψn dq →
∫

D

ψ dq strongly in L1((0, T )× Ω);

in addition, by the uniqueness of the limit, the function η obtained in Section 4.4 satisfies η =
∫
D
ψ dq.

Since F(ψ̃) is nonnegative on (0, T )× Ω×D, by applying Fatou’s lemma we have that

(4.27)
∥∥∥F(ψ̃)

∥∥∥
L∞(0,T ;L1

M(Ω×D))
≤ lim inf

n→∞

∥∥∥F(ψ̃n)
∥∥∥
L∞(0,T ;L1

M(Ω×D))
≤ c.

By the same technique as in Section 3.5 we deduce from (4.27) that

(4.28) ψ̃ log ψ̃, ψ̃ ∈ L∞(0, T ;L1
M(Ω×D)), ψ logψ, ψ ∈ L∞(0, T ;L1(Ω×D)).

By (4.23) we have

(4.29) ∂tψ ∈ L2(0, T ;W s,2(Ω×D)′) for any s > 1 + 3
2 (K + 1).

From the estimates in (4.28) and (4.29), by using the second part of Lemma 2.2 and the same argument as in
Section 4.5 in [6], we deduce that ψ ∈ Cw([0, T ];L

1(Ω×D)).

Again, we write ∇qi ψ̃n = 2

√
ψ̃n∇qi

√
ψ̃n. By (4.24) we have

√
ψ̃n →

√
ψ̃ strongly in L2(0, T ;L2

M(Ω×D)).

Further, by (4.21), we have that

∇q

√
ψ̃n → ∇q

√
ψ̃ weakly in L2(0, T ;L2

M(Ω×D;R3K)).

Thus,

(4.30) ∇qψ̃n → ∇qψ̃ weakly in L1(0, T ;L1
M(Ω×D;R3K)).

Similarly, we also have that

(4.31) ∇xψ̃n → ∇xψ̃ weakly in L1(0, T ;L1
M(Ω×D;R3)), ∇xψn → ∇xψ weakly in L1(0, T ;L1(Ω×D;R3)).

4.7. Convergence of the extra-stress tensor. We recall the formula for the extra-stress tensor. By (1.20) and
(3.23) we have that

(4.32) Tn := k

(
K∑

i=1

∫

D

M(∇qi ψ̃n)q
T
i dq

)
−
(
k ηn + δ η2n

)
I,

which, because of (3.24), satisfies

(4.33) sup
n∈N

(
‖Tn‖

L2(0,T ;L
4
3 (Ω;R3×3))

+ ‖Tn‖
L

4
3 (0,T ;L

12
7 (Ω;R3×3))

)
< c.

Thus,

(4.34) Tn → T̄ weakly in L2(0, T ;L
4
3 (Ω;R3×3)) ∩ L 4

3 (0, T ;L
12
7 (Ω;R3×3)).

We still need to show

(4.35) T̄ = T := k

(
K∑

i=1

∫

D

M(∇qi ψ̃)q
T
i dq

)
−
(
k η + δ η2

)
I.

Indeed, using the same argument as in Section 4.5 in [6], it follows that

(4.36) Tn → T strongly in L1((0, T )× Ω;R3×3).

By the uniform estimates (4.33) and interpolation we also have that

(4.37) Tn → T strongly in Lr((0, T )× Ω;R3×3) for any r < 20
13 .
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4.8. Convergence of the nonlinear terms in the Fokker–Panck equation. In this section, we study the
limits associated with the nonlinear terms in the Fokker–Planck equation (1.14), which are divx(unψn) and
divqi((∇xun) qi ψn). We would like to show that

(4.38) unψn → uψ in D′((0, T )× Ω×D;R3) and (∇xun) qiψn → (∇xu) qiψ in D′((0, T )× Ω×D;R3×3).

To this end, let ϕ ∈ C∞
c ((0, T )× Ω×D;R3) be a test function. We then have that

(4.39)

∫ T

0

∫

Ω×D

(unψn − uψ) ·ϕ dq dxdt

=

∫ T

0

∫

Ω×D

(un − u)ψ · ϕ dq dxdt+

∫ T

0

∫

Ω×D

un(ψn − ψ) · ϕ dq dxdt =: In1 + In2 .

For In1 , we have

(4.40) In1 :=

∫ T

0

∫

Ω×D

(un − u)ψ ·ϕ dq dxdt =

∫ T

0

∫

Ω

(un − u) ·
(∫

D

ψϕ dq

)
dxdt.

We observe that

(4.41)

∣∣∣∣
∫

D

ψϕdq

∣∣∣∣ ≤ c

∫

D

ψ dq = c η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;L6(Ω)).

We recall the weak convergence results for un stated in (4.5) and (4.6); in particular we have that un → u weakly in

L2(0, T ;L
12

2+3|ω| (Ω;R3)), with

2 + 3|ω|
12

+
1

6
=

1

3
+

|ω|
4
< 1,

under hypothesis (1.31) or hypothesis (1.32). Therefore, limn→∞ In1 = 0.

For In2 , we have

(4.42) In2 :=

∫ T

0

∫

Ω×D

un(ψn − ψ) ·ϕ dq dxdt =

∫ T

0

∫

Ω

un ·
(∫

D

(ψn − ψ)ϕ dq

)
dxdt.

By the strong convergence of ψn stated in (4.25) we have that

(4.43)

∫

D

(ψn − ψ)ϕ dq → 0 a.e. in (0, T )× Ω.

Similarly to (4.42), we have that

(4.44)

∣∣∣∣
∫

D

(ψn − ψ)ϕ dq

∣∣∣∣ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;L6(Ω)) →֒ L
10
3 ((0, T )× Ω).

Thanks to (4.43) and (4.44), Vitali’s theorem implies that

(4.45)

∫

D

(ψn − ψ)ϕ dq → 0 in Lq((0, T )× Ω;R3) for any q < 10
3 .

It follows from (4.5) (for ω ≥ 0) and from (4.6) (for ω ≤ 0) that limn→∞ In2 = 0. Therefore,

(4.46) unψn → uψ in D′((0, T )× Ω×D;R3).

To prove the convergence of (∇xun) qiψn to (∇xu) qiψ in D′((0, T ) × Ω ×D;R3) one can proceed similarly. We
point out that, when ω ≤ 0, the requirement that ω > − 4

3 , appearing in (1.32), is really needed. Indeed, for any test
function ϕ, just as in (4.45), we have that

(4.47)

∫

D

(ψn − ψ)ϕ qi dq → 0 in Lq(0, T ;Lq(Ω;R3)) for any q < 10
3 .

According to the bounds established in Section 4.2 for the case ω ≤ 0, the sequence {∇xun}n∈N
is uniformly bounded

in L
20

10+3|ω| ((0, T )× Ω;R3×3). To deduce the desired convergence result, we therefore need that

(4.48)
10 + 3|ω|

20
+

3

10
< 1 ⇐⇒ |ω| < 4

3
.
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4.9. Convergence of the fluid pressure. As was shown in Section 3.7 concerning higher integrability of the fluid
density and pressure, we have that

(4.49) p(̺n) → p(̺) weakly in L1+ θ
γ ((0, T )× Ω).

By applying this, together with the convergence results from the previous sections, in particular the convergence
results for the nonlinear terms stated in Section 4.3, Section 4.5 and Section 4.7, we deduce that

(4.50) ∂t̺+ divx(̺u) = 0 in D′((0, T )× Ω),

(4.51) ∂t(̺u) + divx(̺u⊗ u) +∇xp(̺)− divxS = divxT+ ̺ f in D′((0, T )× Ω;R3),

where the Newtonian stress tensor S and the extra-stress tensor T are defined by (4.17) and (4.35), respectively.
Concerning the convergence of the nonlinear terms in the Navier–Stokes–Fokker–Planck system with variable

viscosity coefficients considered here, it remains to show that p(̺) = p(̺), which, because of the strict convexity of
p(·), is equivalent to the strong convergence of ̺n:

(4.52) ̺n → ̺ a.e. in (0, T )× Ω.

This is also one of the main difficulties in the study of global existence of weak solutions to the compressible
Navier–Stokes equations (see [18, 14, 13, 19]), where the so called effective viscous flux introduced by P. L. Lions [18]
plays a crucial role. It turns out that the effective viscous flux as a whole is more regular than its components. We
will prove the following lemma, which is in the spirit of Proposition 5.1 in [12].

Lemma 4.1. For any φ ∈ D(0, T ), ϕ ∈ D(Ω), we have that

(4.53)

lim
n→∞

∫ T

0

∫

Ω

φ(t)ϕ(x)

[
p(̺n)−

(
2µS(ηn)

3
− µB(ηn)

)
divxun

]
Tk(̺n) dxdt

=

∫ T

0

∫

Ω

φ(t)ϕ(x)

[
p(̺)−

(
2µS(η)

3
− µB(η)

)
divxu

]
Tk(̺) dxdt,

where Tk is a cut-off function defined by Tk(·) := k T ( ·
k
) for some concave function T ∈ C∞([0,∞)) such that

T (s) = s for 0 ≤ s ≤ 1 and T (s) = 2 for s ≥ 3. Here Tk(̺) is the weak* limit of the sequence {Tk(̺n)}n∈N in
L∞((0, T )× Ω) as n goes to infinity.

The viscosity coefficients µB and µS in our case are not constant, which gives rise to additional complications in
the proof of this lemma. We shall employ the commutator estimates stated in Lemma 2.6 and the techniques used
in Section 3.6.5 in [15] to overcome the resulting difficulties.

Proof of Lemma 4.1. As in the proof of the effective viscous flux lemma for the compressible Navier–Stokes equations
with constant viscosity coefficients (see Proposition 5.1 in [12] or Proposition 7.36 in [19]), we introduce the following
test functions:

(4.54) vn(t, x) = φ(t)ϕ(x)A [Tk(̺n)] , v(t, x) = φ(t)ϕ(x)A
[
Tk(̺)

]
,

where φ ∈ C∞
c (0, T ), ϕ ∈ C∞

c (Ω), and A is the Fourier integral operator introduced in (2.2). We remark that ̺n
and ̺ are extended by zero outside of Ω in (4.54).

Taking these vn and v as test functions in the weak formulation (1.23) and the weak formulation of (4.51),
respectively, results in

∫ T

0

∫

Ω

[
̺nun · ∂tvn + (̺nun ⊗ un) : ∇xvn + p(̺n) divxvn − Sn : ∇xvn

]
dxdt

=

∫ T

0

∫

Ω

Tn : ∇xvn − ̺n f · vn dxdt,(4.55)

∫ T

0

∫

Ω

[
̺u · ∂tv + (̺u⊗ u) : ∇xv + p(̺) divxv − S : ∇xv

]
dxdt

=

∫ T

0

∫

Ω

T : ∇xv − ̺ f · v dxdt.(4.56)

The main idea is to pass to the limit n → ∞ in (4.55), and compare the resulting limit with (4.56), which will
ultimately imply our desired result (4.53). Since, following the contributions of Lions [18] and Feireisl [13], this type
of argument is by now well understood, instead of including all of the details here we shall focus on the terms that
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do not appear in the case of the compressible Navier–Stokes equations with constant viscosity coefficients. These
‘new’ terms are the following:

∫ T

0

∫

Ω

Tn : ∇xvn dxdt,

∫ T

0

∫

Ω

T : ∇xv dxdt,

∫ T

0

∫

Ω

Sn : ∇xvn dxdt,

∫ T

0

∫

Ω

S : ∇xv dxdt,

and the goal is to prove that

(4.57) lim
n∞

∫ T

0

∫

Ω

Tn : ∇xvn dxdt =

∫ T

0

∫

Ω

T : ∇xv dxdt,

and

(4.58)

lim
n→∞

∫ T

0

∫

Ω

Sn : ∇xvn dxdt−
∫ T

0

∫

Ω

S : ∇xv dxdt

= lim
n→∞

∫ T

0

∫

Ω

φ(t)ϕ(x)

[(
2µS(ηn)

3
− µB(ηn)

)
divxun

]
Tk(̺n) dxdt

−
∫ T

0

∫

Ω

φ(t)ϕ(x)

[(
2µS(η)

3
− µB(η)

)
divxu

]
Tk(̺) dxdt.

By the strong convergence of Tn stated in (4.37) in Section 4.7 it is straightforward to show the convergence result
(4.57), so we only focus on proving (4.58). We begin by noting that

∫ T

0

∫

Ω

Sn : ∇xvn dxdt =

∫ T

0

φ(t)

∫

Ω

Sn : (∇xϕ⊗A[Tk(̺n)]) dxdt+

∫ T

0

φ(t)

∫

Ω

ϕSn : R[Tk(̺n)] dxdt,

where R is the Riesz operator defined in (2.2) in Section 2.4.
For any fixed k ∈ N, the sequence {Tk(̺n)}n∈N is uniformly bounded in L∞(0, T ;Lr(R3)) for all r ∈ [1,∞]. Thus,

by Lemma 2.5, we have that

(4.59) sup
n∈N

‖A[Tk(̺n)]‖L∞(0,T ;W 1,r(Ω;R3)) ≤ c for any r ∈ (1,∞).

Observing that Tk(·) fulfills the properties in (1.26), it follows from (3.26) that

(4.60) ∂tTk(̺n) + divx (Tk(̺n)un) + (T ′
k(̺n)̺n − Tk(̺n)) divxun = 0 in D′((0, T )× R3).

This implies that

(4.61) ∂tA[Tk(̺n)] = A[∂tTk(̺n)] = −A [divx (Tk(̺n)un)]−A [(T ′
k(̺n)̺n − Tk(̺n)) divxun] .

Since Ajdivx = −∑3
i=1 ∂j∂i∆

−1 = −∑3
i=1 Rij are Riesz type operators, by Lemma 2.5 we have that

‖Aj [divxϕ] ‖Lr(R3:R3) ≤ c ‖ϕ‖Lr(R3;R3) for any ϕ ∈ Lr(R3;R3) and any r ∈ (1,∞).

By using (4.5) and (4.6) we deduce that

(4.62)
‖A [divx (Tk(̺n)un)]‖L2(0,T ;L6(Ω;R3)) ≤ c when ω ≥ 0;

‖A [divx (Tk(̺n)un)]‖
L2(0,T ;L

12
2+6|ω| (Ω;R3))

≤ c when ω ≤ 0.

Furthermore, by Lemma 2.5 in conjunction with (4.5) and (4.6) we deduce that

(4.63)
‖A [(T ′

k(̺n)̺n − Tk(̺n)) divxu]‖L2(0,T ;L6(Ω;R3)) ≤ c when ω ≥ 0;

‖A [(T ′
k(̺n)̺n − Tk(̺n)) divxu]‖

L2(0,T ;L
12

2+6|ω| (Ω;R3))
≤ c when ω ≤ 0.

Thus,

(4.64)
‖∂tA[Tk(̺n)]‖L2(0,T ;L6(Ω;R3)) ≤ c when ω ≥ 0;

‖∂tA[Tk(̺n)]‖
L2(0,T ;L

12
2+6|ω| (Ω;R3))

≤ c when ω ≤ 0.

It follows from the uniform estimates in (4.59) and (4.64) and the Aubin–Lions–Simon compactness theorem that

(4.65) A[Tk(̺n)] → A[Tk(̺)] = A[Tk(̺)] strongly in L∞(0, T ;Lr(Ω;R3)) for any r ∈ (1,∞).

Together with the weak convergence of Sn stated in (4.17) and (4.19), we deduce that

(4.66) lim
n→∞

∫ T

0

φ(t)

∫

Ω

Sn : (∇xϕ⊗A[Tk(̺n)]) dxdt =

∫ T

0

φ(t)

∫

Ω

S : (∇xϕ⊗A[Tk(̺)]) dxdt.
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Therefore, to show (4.58), it suffices to prove that

(4.67)

lim
n→∞

∫ T

0

φ(t)

∫

Ω

ϕSn : R[Tk(̺n)] dxdt−
∫ T

0

φ(t)

∫

Ω

ϕS : R[Tk(̺)] dxdt

= lim
n→∞

∫ T

0

∫

Ω

φ(t)ϕ(x)

[(
2µS(ηn)

3
− µB(ηn)

)
divxun

]
Tk(̺n) dxdt

−
∫ T

0

∫

Ω

φ(t)ϕ(x)

[(
2µS(η)

3
− µB(η)

)
divxu

]
Tk(̺) dxdt.

By (1.5) we have that

(4.68)

∫ T

0

φ(t)

∫

Ω

ϕSn : R[Tk(̺n)] dx dt =

∫ T

0

φ(t)

∫

Ω

ϕµS(ηn)

(∇un +∇Tun
2

)
: R[Tk(̺n)] dxdt

+

∫ T

0

φ(t)

∫

Ω

ϕ

(
µB(ηn)−

µS(ηn)

3

)
(divxun)I : R[Tk(̺n)] dxdt

=

∫ T

0

φ(t)

∫

Ω

ϕµS(ηn)∇un : R[Tk(̺n)] dxdt+

∫ T

0

φ(t)

∫

Ω

ϕ

(
µB(ηn)−

µS(ηn)

3

)
(divxun) [Tk(̺n)] dxdt,

where have we used the fact that R is symmetric (see Lemma 2.5) and that I : R =
∑3
i=1 Rii = I. Further, by

Lemma 2.5, and noting that
∑3
i,j=1 Rij∂ju

i
n = divxun, we have that

(4.69)

∫ T

0

φ(t)

∫

Ω

ϕµS(ηn)∇un : R[Tk(̺n)] dxdt =

∫ T

0

φ(t)

∫

Ω

3∑

i,j=1

Rij

[
ϕµS(ηn) ∂ju

i
n

]
Tk(̺n) dxdt

=

∫ T

0

φ(t)

∫

Ω

3∑

i,j=1

(
ϕµS(ηn)Rij

[
∂ju

i
n

]
Tk(̺n) +Rijn Tk(̺n)

)
dxdt

=

∫ T

0

φ(t)

∫

Ω



ϕµS(ηn) (divxun)Tk(̺n) +
3∑

i,j=1

Rijn Tk(̺n)



 dxdt,

where Rijn is the commutator defined by Rijn := Rij

[
ϕµS(ηn)∂ju

i
n

]
− ϕµS(ηn)Rij

[
∂ju

i
n

]
. We will use Lemma

2.6 to derive uniform bounds on Rijn . We first consider the case 0 ≤ ω < 5
3 . Then, by (1.28) and (4.12), the

sequence {∇xµ
S(ηn)}n∈N = {(µS)′(ηn)∇xηn}n∈N is uniformly bounded in L2(0, T ;L2(Ω;R3)) when 0 ≤ ω ≤ 1, and

in L2(0, T ;L
2
ω (Ω;R3)) when 1 ≤ ω < 5

3 . Thus,

sup
n∈N

‖µS(ηn)‖L2(0,T ;W 1,2(Ω)) ≤ c when 0 ≤ ω ≤ 1; sup
n∈N

‖µS(ηn)‖
L2(0,T ;W 1, 2

ω (Ω))
≤ c when 1 ≤ ω <

5

3
.

By (4.5) the sequence {∇xun}n∈N is uniformly bounded in L2(0, T ;L2(Ω;R3×3)). Furthermore, we note that

(4.70)
1

2
+

1

2
− 1

3
=

2

3
< 1;

1

2
+
ω

2
− 1

3
=

1 + 3ω

6
< 1, as long as 0 ≤ ω <

5

3
.

Hence, by Lemma 2.6, for any s > 1 such that

(4.71)
1

s
>

1

2
+

1

2
− 1

3
=

2

3
when 0 ≤ ω ≤ 1;

1

s
>

1

2
+
ω

2
− 1

3
=

1 + 3ω

6
when 1 ≤ ω <

5

3
,

we have, for rω = 2 when 0 ≤ ω ≤ 1 and for rω = 2
ω
when 1 ≤ ω < 5

3 , that

(4.72)
∥∥Rijn

∥∥
Wβ,s(R3)

≤ c ‖ϕµS(ηn)‖W 1,rω (Ω)‖∂juin‖L2(Ω),

where β ∈ (0, 1) is such that

(4.73)
β

3
=

1

3
+

1

s
− 1 when 0 ≤ ω ≤ 1;

β

3
=

1

3
+

1

s
− 1 + ω

2
when 1 ≤ ω <

5

3
.

Therefore, for some s > 1 and some 0 < β < 1, we have the uniform estimate

(4.74) sup
n∈N

∥∥Rijn
∥∥
L1(0,T ;Wβ,s(R3))

≤ c sup
n∈N

‖ϕµS(ηn)‖L2(0,T ;W 1,rω (Ω)) sup
n∈N

‖∂juin‖L2(0,T ;L2(Ω)) ≤ c.

Hence, by the strong convergence of ηn shown in Section 4.4 we have that

(4.75) Rijn → Rij := Rij

[
ϕµS(η)∂ju

i
]
− ϕµS(η)Rij

[
∂ju

i
]

weakly in L
10

3ω+5 ((0, T )× Ω).
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By the boundedness of Tk we have

(4.76) Tk(̺n) → Tk(̺) weakly in Lr((0, T )× Ω) for any 1 < r <∞.

Next, we want to prove the convergence of the product

(4.77) Rijn Tk(̺n) → RijTk(̺) weakly in Lr(0, T ;Lr(Ω)) for any r < 10
3ω+5 .

We shall use the Div-Curl lemma to this end in the time-space variables by setting

(4.78) Un := (Tk(̺n), Tk(̺n)un), Vn := (Rijn , 0, 0, 0).

By (4.60) we then have that

(4.79) divt,xUn = ∂tTk(̺n) + divx(Tk(̺n)un) = − (T ′
k(̺n)̺n − Tk(̺n)) divxun,

which is uniformly bounded in L2((0, T )× Ω) and, therefore,

{divt,xUn}n∈N is precompact in W−1,2((0, T )× Ω).

Next, on observing that curlt,xVn does not include the time-derivative of Rijn , by (4.74) and Lemma 2.7 we have
that

{curlt,xVn}n∈N is precompact in W−1,s((0, T )× Ω;R3×3).

Thus, the Div-Curl lemma (Lemma 2.4) implies (4.77). This gives

(4.80) lim
n→∞

∫ T

0

φ(t)

∫

Ω

3∑

i,j=1

Rijn Tk(̺n) dx dt =

∫ T

0

φ(t)

∫

Ω

3∑

i,j=1

Rij Tk(̺) dx dt.

We shall now briefly summarize the proof of (4.80) when − 4
3 < ω ≤ 0. By (1.28) and (4.12) the sequence

{µS(ηn)}n∈N is uniformly bounded in L2(0, T ;W 1,2(Ω)) when ω ≤ 0. By (4.6) the sequence {∇xun}n∈N is uniformly

bounded in L2(0, T ;L
4

2+|ω| (Ω);R3×3). We have that

(4.81)
1

2
+

2 + |ω|
4

− 1

3
< 1, as long as − 4

3
< ω ≤ 0.

Then, by Lemma 2.6, for any s > 1 such that

(4.82)
1

s
>

1

2
+

2 + |ω|
4

− 1

3
,

we have that

(4.83)
∥∥Rijn

∥∥
Wβ,s(R3)

≤ c ‖ϕµS(ηn)‖W 1,2(Ω)‖∂juin‖
L

4
2+|ω| (Ω)

,

where β ∈ (0, 1) is such that

(4.84)
β

3
=

1

3
+

1

s
− 1

2
− 2 + |ω|

4
.

Therefore, for some s > 1 and some β > 0, the following uniform estimate holds:

(4.85) sup
n∈N

∥∥Rijn
∥∥
L1(0,T ;Wβ,s(R3))

≤ c sup
n∈N

‖ϕµS(ηn)‖L2(0,T ;W 1,2(Ω)) sup
n∈N

‖∂juin‖
L2(0,T ;L

4
2+|ω| (Ω))

≤ c.

Thanks to the strong convergence of ηn shown in Section 4.4, we have that

(4.86)
Rijn → Rij := Rij

[
ϕµS(η)∂ju

i
]
− ϕµS(η)Rij

[
∂ju

i
]
,

weakly in Lr((0, T )× Ω), for any r < 20
10+3|ω| .

Thus, the Div-Curl lemma implies that

(4.87) Rijn Tk(̺n) → RijTk(̺n) weakly in Lr(0, T ;Lr(Ω)) for any r < 20
10+3|ω| ,

which, once again, implies (4.80).

Finally, from (4.68), (4.69) and (4.80), we deduce the desired result (4.67). This implies (4.58) by using (4.66).
At the same time, by tedious but, by now, standard calculations, as in the proof of the effective viscous flux lemma
in [18, 13, 19], we have that

(4.88) lim
n→∞

∫ T

0

∫

Ω

Sn : ∇xvn dx dt−
∫ T

0

∫

Ω

S : ∇xv dx dt = 0.

Combining (4.88) with (4.58), we obtain (4.53) and complete the proof of Lemma 4.1. �



With Lemma 4.1 in hand, the proof of the strong convergence result (4.52) then proceeds along a well-understood
route (see for example [12], from Section 6 to Section 8), so we shall not dwell on the details here. In particular, as
in Proposition 7.1 in [12], the limit (̺,u) satisfies (3.26) in the sense of renormalized weak solutions.

It remains to show that the limit (̺,u, ψ, η) satisfies the energy inequality (1.27). This is easily seen by noting the
strong convergence assumption on the initial data in (1.30) and passage to the limit n→ ∞ in (4.1), which directly
imply the energy inequality (1.27) by the application of Tonelli’s sequential weak (weak*) lower semicontinuity
theorem (cf. Theorem 10.16 in [20], for example,) to the terms appearing on the left-hand side of (4.1); in particular,
the sequential weak lower semicontinuity of the Lp norm, 1 < p <∞, the sequential weak* lower semicontinuty of the
L∞ norm and inequality (4.27) are used. Thus we have shown that the limit (̺,u, ψ, η) is a dissipative (finite-energy)
weak solution in the sense of Definition 1.1. That completes the proof of Theorem 1.3.

Remark 4.2. The constraint ω < 5
3 for the case ω ≥ 0 is crucially determined by (4.70) and the condition 10

3ω+5 > 1,

which appears in (4.75), while the constraint ω > − 4
3 for the case ω ≤ 0 is crucially determined by (4.81). It is

unclear whether, with our present techniques at least, these restrictions on ω can be relaxed.

5. Conclusion: existence of dissipative weak solutions

The conclusions of Theorem 1.3 do not, of course, imply the existence of dissipative (finite-energy) weak solutions to
the Navier–Stokes–Fokker–Planck system with polymer-number-density-dependent viscosity coefficients. A rigorous
proof of the existence of dissipative weak solutions would require the following:

• a suitable approximation scheme, compatible with the energy inequality and the compactness arguments
presented in this paper;

• a rigorous proof of the existence of a solution to the approximation scheme;
• proof of the convergence of the sequence of approximate solutions to a dissipative weak solution, mimicking
the arguments presented in this paper.

Given the formal similarity of the present model to the one studied in [6], a natural approach would be to adjust
the approximation scheme used in [6], based on time-discretization, in the case of the Navier–Stokes–Fokker–Planck
system with constant viscosity coefficients (or, alternatively, to use a Galerkin approximation scheme in the spatial
variables, similar to the one in [14]). The added technical difficulties, caused by the presence of the variable viscosity
coefficients, can be handled exactly as in [1], where a similar scheme, based on time-discretization, was applied to a
diffuse interface model with viscosity coefficients that depended on the concentration.
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136 (2012) 521–573.
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