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ALGEBRAIC RELATIONS, TAYLOR COEFFICIENTS OF

HYPERLOGARITHMS AND IMAGES BY FROBENIUS - II

DAVID JAROSSAY

Abstract. In part I, we defined and studied the algebraic properties of a "prime
multiple harmonic sum motive" (Li T )M

O,prime
and its periods.

Here, we study their relationships with the usual hyperlogarithm motives and peri-
ods, and their "finite" variant.
One of the results provides a p-adic lift of the congruence

∑
0<n<p

ns ≡ 0 mod p

if p − 1 ∤ s. Another one concerns a question of Deligne and Goncharov on how to
read explicitly the series shuffle relation on p-adic multiple zeta values.
On the other hand, we interpret some of the information on the valuation on mul-
tiple harmonic sums in terms of these objects.
The last generic subject of this paper is the definition of the "Taylor period map",
which we have delayed in part I. We state it and we see that it englobes questions
on lifts of congruences and of the question to find a motivic analogue to some of the
information on the valuation of multiple harmonic sums.
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1. Introduction

We give a short introduction to this paper in §1.1 ; we explain the heuristical situation

in §1.2 ; we recall some notations in §1.3 ; we give an outline in §1.4.

1.1. Context.

1.1.1. General framework. Let Z be a finite subset of P1(Q), containing {0, 1,∞} ;

we denote the elements of Z − {0, 1,∞} by z1, . . . , zr, where r ∈ N, and z0 = 0,

zr+1 = 1. Our framework is mostly the pro-unipotent fundamental group of the va-

riety P1 − Z over the number field Q(z1, . . . , zr). We are interested in its periods.

The most usual ones are hyperlogarithms, and, in the case of P1 − {0, 1,∞}, multiple

zeta values. Hyperlogarithms are iterated integrals of the form Li
( zid

, . . . , zi1

sd, . . . , s1

)
(z) =

∫ z

0 ωyn
(tn)

∫ tn

0 . . .
∫ t3

0 ωy2(t2)
∫ t2

0 ωy1(t1) where ωyi
= dz

z−yi
and (yn, . . . , y1) =

(

sd−1︷ ︸︸ ︷
0, . . . , 0, zid

, . . .

s1−1︷ ︸︸ ︷
0, . . . , 0, zi1), with i1, . . . , id ∈ {1, . . . , r}. We will consider their values

at points z ∈ Z − {0,∞} - but note that we have, for compatible choices of paths,

Li
( zid

, . . . , zi1

sd, . . . , s1

)
(z) = Li

( zid
/z, . . . , zi1/z

sd, . . . , s1

)
(1). In the complex case, we choose the

straight path from 0 to 1. When zi1 = . . . = zid
= z = 1, the numbers obtained are

multiple zeta values ζ(sd, . . . , s1) ∈ R.

The common way to formulate their algebraic theory is via :

i) the existence of motives called "motivic hyperlogarithms", "motivic multiple zeta val-

ues", forming Q-algebras equipped with period morphisms onto the corresponding Q-

algebras of periods, which are conjecturally isomorphisms. This is a powerful tool having

striking arithmetic applications, given the rich structure that motives have.

ii) some standard families of algebraic relations, between both the periods and their

motivic lifts, which conjecturally generate all the existing algebraic relations among

them.

1.1.2. Review of part I. In part I, we built a variant of this setting. Let multiple harmonic

sums be the following numbers :

Hn

( zid+1
, . . . , zi1

sd, . . . , s1

)
=

∑

0<n1<...<nr<n

(
zi2 /zi1

)n1
. . .

(
zid+1

/zid

)nd
(
1/zid+1

)n

ns1
1 . . . nsd

d

∈ Q

where d ∈ N∗, i1, . . . , id+1 ∈ {1, . . . , r}, sd, . . . , s1 ∈ N∗, and n ∈ N∗.

We call "prime" multiple harmonic sums those whose upper bound n is a power of a

prime number.

In part I, we defined, and studied as a main topic a "prime multiple harmonic sum

motive". For each index w̃ =

(
zid+1

, . . . , zi1

sd, . . . , s1

)
, it is an element

(Li T )M
O,prime[w̃]

of the weight-adic completion of the Hopf algebra of motivic hyperlogarithms.

It has, as what we call a "Taylor period" (we will study intrinsically this notion later),
2



the sequence :

(Li T )O,prime[w̃] =

(
(pk)weightHpk(w̃)

)

p

∈

( ∏

p prime

Qp

)

where k is any element of N∗, arising as the power of Frobenius. This motive also

has "formal complex" and "formal p-adic" periods (Li T )
(Z/ζ(2)Z)[[Λ]]
O,prime [w̃], respectively

(Li T )
Zp[[Λ]]
O,prime[w̃] in formal power series rings

(Z/ζ(2)Z)[[Λ]] , resp. Zp[[Λ]]

where the formal variable Λ is the dual of the weight, and Z, resp. Zp is the Q-algebra

of complex, resp. p-adic hyperlogarithms. The Taylor period is equal to the sequence,

indexed by primes p, of values at Λ = 1 of the formal p-adic periods. In more concrete

words, prime multiple harmonic sums can be expressed as infinite sums of p-adic hyper-

logarithms. We proved this in an earlier work by a p-adic analytic method.

We established families of algebraic relations for this motive and its periods, which

are variants of the standard families of algebraic relations between multiple zeta val-

ues, and conjecturally generate all their relations. A particularity of the context of the

weight-adic completion of motivic hyperlogarithms, is that it makes sense define period

maps and state period conjectures in the context of complete topological algebras, and

not just algebras. Such maps and conjecture contain more information, can be some-

times more subtle to define ; for this reason, we have delayed to part II the definition of

the Taylor period map, the existence of such a map being suggested by part I.

1.2. Heuristics for part II. Let us now discuss how to define a priori a "Taylor period

map" given the amount of information provided by part I. The only way to obtain a

well-defined map is to use the post-composition of the sequence of formal p-adic period

maps for all p, evoked above, by the quotient of
∏

pZp[[Λ]] by (Λ− 1) ; by our theorem

expressing prime multiple harmonic sums as infinite sums of p-adic hyperlogarithms, we

obtain at first sight a well-defined map that sends each prime multiple harmonic sum

motive (Li T )M
O,prime[w̃] to the corresponding sequence of prime multiple harmonic sums

(Li T )O,prime[w̃]. However, this simple idea is not sufficient to obtain a good candidate

for the desired map.

First, we have to take into account the issues of convergence of p-adic series. This conver-

gence is saved and we have a well-defined map if, for example, we restrict to Z-algebras ;

but the composed map evoked above is not well defined as, for example, a map between

Q-algebras. It is not clear a priori which rings of coefficients we can choose.

According to our principle of placing ourselves in the context of topologically complete

algebras, we also have to choose a topology at the target. If we follow moreover the

principle of considering prime multiple harmonic sums as a period by themselves, and

not just a byproduct of the p-adic period, the complete topological algebra at the target

has to be defined purely in terms of the ring
∏

p Qp and multiple harmonic sums.

The continuity of the map is also put into question ; it should be related to the fact that

the valuation of a prime multiple harmonic sum (pk)weight(w̃)Hpk [w̃] is lower bounded

by its weight.
3



A primary guess for the topology on the target would be, for example, to consider

the uniform topology on
∏

p Qp relative to the p-adic topologies. Actually, with this

choice, the conjecture of periods for the given map would be an extremely strong state-

ment ; and there would be no reason - nor conceptual, nor experimental - to believe

in it. It would imply, essentially, that the filtration on the target defined through the

p-adic valuation of multiple harmonic sums is very close to the weight filtration on the

completed algebra of motivic hyperlogarithms. It would also imply a statement on lift

of congruences between finite multiple zeta values, and on the rational coefficients of the

lifts.

Finally, note that given the relationship between prime multiple harmonic sums and

p-adic hyperlogarithms, any definition of a Taylor period map as above would implicitly

relate conjecturally, more than only comparing, the slopes of Frobenius and the Hodge

filtration on the log-crystalline cohomology groups associated to the pro-unipotent fun-

damental groupoid.

For all these reasons, it seems that to attain a reasonable definition of this period map

requires some additional experimentation. Most results of this paper - which also can be

thought of independently of the question of the Taylor period - can be viewed as some

evidence for the existence of a Taylor period map, of a nature different from the one of

part I, and also as indication on what precise form the map should have. We tackle the

following two themes :

A) The interplay between the algebraic properties of the prime multiple harmonic sum

motive and periods, and the algebraic properties of the following motives and periods :

1) the usual hyperlogarithm motive LiM, and its periods. We will discuss especially

p-adic hyperlogarithms.

2) the "finite multiple zeta motive" ζM
A , and its generalization from P1 − {0, 1,∞} to

P1 − Z. It has, as a period, the finite multiple zeta values of Kaneko-Zagier :

ζA(sd, . . . , s1) =

(
Hp(sd, . . . , s1) mod p

)
∈ A =

( ∏

p

Fp

)
/
(
⊕p Fp

)

(here zid+1
= . . . = zi1 = 1) which could be referred to as a "finite period".

There are several aspects to the theme A : reduction modulo primes, or modulo Λ

of prime multiple harmonic sums ; in the converse way, lift of congruences ; and the

question to derive an explicit algebraic theory of p-adic multiple zeta values, and more

generally, of p-adic hyperlogarithms. This last issue has been first raised by Deligne and

Goncharov in [DG], §5.28.

B) Arguments for the existence of a "motivic origin" of a significant part of the valuation

of multiple harmonic sums. Let us give here the first example of such a phenomenon

; it is implicitly provided by Kaneko-Zagier’s conjecture on finite multiple zeta values.

Indeed, this conjecture, combined to the usual period conjecture for multiple zeta values,

4



implies, for all indices w = (sd, . . . , s1), the following equivalence :

ζM
A (w) 6= 0⇔ vp(Hp(w)) = 0 for infinitely many p

1.3. Notations for the fundamental groupoid. Here, let us take again a curve

P1 − Z with the same notations : Z ⊂ P1(Q) contains {0, 1,∞} and Z − {0, 1,∞} =

{z1, . . . , zr}, where r ∈ N, and z0 = 0, zr+1 = 1. We reviewed definitions and facts on

the pro-unipotent fundamental group of P1 − Z in part I, §2. Let us recall here a few

notations. A few other definitions will be recalled throughout the paper when necessary.

1.3.1. Notation for πun,dR
1 (P1−Z, can). Let eZ be the alphabet {e0, ez1 . . . , ezr

, e1}. Let

the non-commutative algebra of formal power series with variables in eZ and coefficients

in an algebra R be denoted by

R〈〈eZ〉〉 = R〈〈e0, ez1 . . . , ezr
, e1〉〉

An element of it can be written uniquely as

f = f [∅] +
∑

sd,...,s0∈N∗

id,...,i1∈Z−{0,∞}

f [esd−1
0 ezid

. . . es1−1
0 ezi1

es0−1
0 ]esd−1

0 ezid
. . . es1−1

0 ezi1
es0−1

0

1.3.2. Generating series of hyperlogarithms and multiple zeta values. Generating series

of (complex, p-adic, motivic) hyperlogarithms, resp. multiple zeta values are elements

Φ0z ∈ C〈〈e0, e1〉〉, (Φ0z)p,−k ∈ Cp〈〈e0, e1〉〉, ΦM
0z ∈ ZM〈〈e0, e1〉〉

resp.

Φ ∈ R〈〈e0, e1〉〉, Φp,−k ∈ Qp〈〈e0, e1〉〉, ΦM ∈ Qp〈〈e0, e1〉〉,

where k ∈ N∗ is the number of iterations of Frobenius, and z is the extremity of the

path of integration appearing in the definition of §1.1.

Take the following correspondence between words on eZ and indices that appeared in

§1.1 :
( zid

, . . . , zi1

sd, . . . , s1

)
↔ (−1)desd−1

0 ezid
. . . es1−1

0 ezi1

Then, we have, for all indices :

ζ(sd, . . . , s1) = (−1)dΦ[esd−1
0 e1 . . . es1−1

0 e1] etc.

The factor (−1)d comes from that the series expansion at 0 with respect to z of a dif-

ferential form dz
z−zi

, which occurs in the iterated integral representation of multiple zeta

values, has a negative sign.

Finally, the p-adic, resp. motivic analogues of multiple zeta values are denoted by

ζp,−k, resp. ζM. The p-adic, resp. motivic analogues of hyperlogarithms are denoted by

Lip,−k, LiM.

We denote by ζp,−∞, resp. Lip,−∞ the numbers obtained from ζp,−k, Lip,−k by taking

limits k → ∞. These are the inverse for the Ihara action of the numbers reflecting the

Frobenius-invariant path in the fundamental group.

We will denote Kaneko-Zagier’s finite multiple zeta values by ζA ; their motivic versions
5



by ζM
A . They have complex and p-adic analogues, which we will denote by ζA,Z/ζ(2)Z ,

and ζA,Zp
.

1.3.3. The prime multiple harmonic sum motive. For each index w̃ =

(
zid+1

, . . . , zi1

sd, . . . , s1

)
,

the associated prime multiple harmonic sum motive is :

(1) (Li T )M
O,prime[w̃] =

z−pk

id+1
(−1)d

∑

0≤d′≤d | zi
d′

=zid+1

ld′+1,...,ld≥0

d∏

i=d′

(
−si

li

)
(−1)si (Φ0z)M

(
zid′+1

. . . . . . zid+1

sd′+1 + ld′+1, . . . , sd + ld

)

× (Φ0z)M

(
zid′

, . . . , zi1

sd′ , . . . , s1

)

1.4. Outline. The §2 is devoted to the simplest transfer of algebraic properties :





prime multiple harmonic sums

(Li T )M
O,prime

(Li T )O,prime



→

red. mod. Λ

red. mod. p





finite multiple zetas

ζM
A

ζA





Proposition 1. The relations of theorem 1 and 3 of part I imply, by taking reduction

modulo Λ, resp. modulo primes, relations between the finite multiple zeta motive and

its periods, and similarly for their generalizations to curves P1 − Z.

We conjecture that they generate all their possible relations.

The §3 is devoted to the question of going backwards from finite multiple zeta and

usual multiple zeta motives, to the prime multiple harmonic sums motive :
{

(Li T )M
O,prime, (Li T )O,prime

}
←lifts

{
ζM, ζ, and ζM

A , ζA

}

We address this question in the case of P1 − {0, 1,∞}, considering both the lift of con-

gruences and the lift of the motives themselves.

In §3.1, we show that there exists a lift to a well-known family of congruences between

harmonic sums of P1 − {0, 1,∞} : for all s ∈ Z and p prime, we have :

(2)
∑

0<n<p

ns ≡

{
0 mod p if p− 1|s

−1 mod p otherwise

Several people, in particular Rosen [Ro], have proved the existence of some lifts to higher

powers of p of certain cases of this congruence, involving prime multiple harmonic sums

pweightHp.

Theorem 2. There is an relation in ẐM written as the vanishing of an infinite sum

of elements (Li T )M
O,prime[w̃]’s, which implies the vanishing of an absolutely convergent

p-adic sum of prime multiple harmonic sums, lifting p-adically the congruence (2).
6



In §3.2, using a result of Yasuda [Y1] on ζM
A , we prove that ζM and ζM

A admit expansions

in terms of of (Li T )M
O,prime. Precisely, given the natural map Σ(Li T )M

O,prime
: ZM → ẐM

satisfying (Li T )M
O,prime = Σ(Li T )M

O,prime
ζM, we have :

Proposition 3. There is a converse expansion :

ζM = Σ−1
(Li T )M

O,prime

(Li T )M
O,prime

In particular, ζM
A can also be expanded in terms of (Li T )M

O,prime.

This can also be formulated by saying that the motives (Li T )M
O,prime[w̃] generate topo-

logically the weight-adic completion of the Q-algebra of motivic multiple zeta values.

It implies also a kind of abstract general lift of congruences between finite multiple

zeta values, related to Rosen’s conjecture of the existence of lift of congruences between

finite multiple zeta values into equalities involving infinite sums of prime multiple har-

monic sums pweightHp in the ring lim←−

( ∏
p Z/pnZ

)
/
(
⊕p Z/pnZ

)
.

In §4, we discuss how to obtain relations between p-adic hyperlogarithms starting with

relations between prime multiple harmonic sums. This question is close to a problem

raised by Deligne and Goncharov ([DG] §5.28) who asked how to obtain, for p-adic mul-

tiple zeta values, explicit formulas on which the series shuffle relation can be visualized

explicitly.

The method that we describe combines the relations between prime multiple harmonic

sums of part I with some of our work p-adic analytic work, where we have proved that

prime multiple harmonic sums admit a p-adic analytic expansion in terms of the upper

bound pk, with coefficients equal to certain infinite sums of products of p-adic hyperlog-

arithms, and that this characterizes p-adic hyperlogarithms entirely.

Theorem 4. There is a general implication
{

relations between prime

multiple harmonic sums

}
→

coeff w.r.t number of

iterations of Frobenius

{
relations between p-adic

hyperlogarithms

}

In part I, by our proofs of theorems 1 and 3 we had constructed implicitly a passage

in the opposite direction. Note also that, in §2, a variant of the operation of reduction

modulo Λ was to take the coefficients of Λn, for all values of n ∈ N. The process of §4

could be seen as an analogue with pk instead of Λ ; in some sense, we have made p into

a variable.

Since the expansion of multiple harmonic sums entirely characterizes p-adic multiple

zeta values, we have an answer to a sort of indirect version of Deligne-Goncharov’s

question ; separately, since the method yields a variant of the series shuffle relation on

p-adic multiple zeta values, we can also say that we have a partial answer to this question.

7



In §5, we make a remark on the arithmetic nature of the sequences of prime multi-

ple harmonic sums, (Li T )O,prime[w̃] ∈
∏

p Qp : we explain that, in certain cases, the

question of their transcendence can be settled. This will be used in the next part.

In §6, we explain that certain parts of the information on the valuation of multiple

harmonic sums should have a particular algebraic meaning : these are, respectively,

some information on the complex valuation of Hn(w̃) when n → ∞, and some infor-

mation on the p-adic valuation vp(Hpk (w̃)) when p → ∞. The main results of this

paragraph are implications relating such type of information with algebraic properties.

In §7, we address finally the question of the Taylor period map, explaining how it is

connected to the previous topics. Then, the main result of this part is the statement of

a version of this conjecture.

Acknowledgments. I thank Benjamin Enriquez and Pierre Cartier for their sup-

port. This work has been achieved at Institut de Recherche Mathématique Avancée,

Strasbourg, supported by Labex IRMIA.

2. Reductions of (Li T )M
O,prime

modulo Λ

2.1. Kaneko-Zagier’s finite multiple zeta values and their generalization.

2.1.1. Definition. In the 2000’s, several people, in particular Hoffman and Zhao, have

shown in several papers that the quantities

Hp(sd, . . . , s1) mod p, especially for p large

admit significative analogies with multiple zeta values - where Hp(w) mod p is well

defined because the denominators of Hp(w) are products of integers in {1, . . . , p− 1}.

More recently, Zagier and Kaneko have given the following notion and a more explicit,

striking conjecture making this analogy precise :

Definition 2.1. (Zagier, 2011) Let finite multiple zeta values be

(3) ζA(w) =

(
Hp(w) mod p

)
∈ A :=

( ∏

p

Fp

)
/
(
⊕p Fp

)

The ring A =
( ∏

p Fp

)
/
(
⊕p Fp

)
is the ring of "integers modulo infinitely large primes".

It is the canonical Q-algebra attached to the Z-module
∏

p Fp, i.e. we have

A =
( ∏

p

Fp

)
⊗Z Q =

( ∏

p

Fp

)
/
( ∏

p

Fp

)
tors

The terminology "finite multiple zeta values" is explained by the following precise con-

jecture, which means that the Q-vector spaces generated by finite multiple zeta values

of a given weight, has some identical conjectural properties with the analogous Q-vector

spaces of, respectively, multiple zeta values modulo ζ(2) and p-adic multiple zeta values.

Conjecture 2.2. (Zagier, 2011) For s ∈ N let Vs be the Q-vector space of finite multiple

zeta values of weight s. (By convention V0 = Q and ζA(∅) = 1). Then
8



i) The sum of the Vs’s is direct

ii) Let, for all s ∈ N, ds = dim Vs. Then we have :

∑

s≥0

dsxs =
1− x2

1− x2 − x3

Later, Kaneko and Zagier made a more precise conjecture :

Conjecture 2.3. (Kaneko-Zagier, 2013) There is a well-defined map from the Q-algebra

of finite multiple zeta values to the Q-algebra of multiple zeta values modulo (ζ(2)) :

ζA(sd, . . . , s1) 7→
d∑

k=0

(−1)sk+1+...+sd ζ(sk+1, . . . , sd)ζ(sk, . . . , s1)

which is an isomorphism.

A good way to formulate such conjectural isomorphisms is via motives and periods. An

essential message of Kaneko-Zagier’s conjecture can be stated as :

Message. The motive

d∑

k=0

(−1)sk+1+...+sdζM(sk+1, . . . , sd)ζM(sk, . . . , s1) mod ζM(2)

has a "finite period", namely a "period" in the ring A.

This is the first occurence of such a phenomenon in the theory of multiple zeta val-

ues.

Although most of Kaneko-Zagier’s conjecture is an inacessible transcendence conjecture,

an interesting part of it is accessible : recall our theorem expressing prime multiple har-

monic sums as infinite sums of p-adic multiple zeta values - in the case of P1−{0, 1,∞},

and of the first power of Frobenius :

psd+...+s1 Hp(sd, . . . , s1) =

d∑

d′=0

∑

lk+1,...,ld∈N

(−1)sd′+1+...+sd

d∏

i=d′+1

(
−si

li

)
ζp,−1(sd′+1+ld′+1, . . . , sd+ld)ζp,−1(sd′ , . . . , s1)

By work of Yasuda, we have, for all indices w, and all primes p such that p > weight(w),

that ζp(w) ∈ pweight(w)Zp, whence, for p > sd + . . . + s1,

(4) Hp(sd, . . . , s1)

≡ p−(sd+...+s1)
d∑

d′=0

(−1)sd′+1+...+sdζp,−1(sd′+1, . . . , sd)ζp,−1(sd′ , . . . , s1) mod p

For each (sd, . . . , s1), this equality being true for all p large enough, it descends to an

expression of ζA(sd, . . . , s1) in terms of p-adic multiple zeta values, which explains the

formula in the conjecture 2.3.

As Yasuda pointed out, this also enables to prove that the dimension of the Q-vector
9



spaces Vs in conjecture 2.2 are upper bounded by those appearing in the conjecture ;

this relies the same upper bound for the dimension of Q-vector spaces of p-adic multiple

zeta values, via unpublished work of Yamashita on the crystalline realization of mixed

Tate motives.

2.1.2. Generalization to P1 − Z. We take the same notation as in the introduction : Z

a finite subset of P1(Q), containing {0, 1,∞} ; Z −{0, 1,∞} as z1, . . . , zr, where r ∈ N,

and z0 = 0, zr+1 = 1. We generalize Kaneko-Zagier’s finite multiple zeta values to this

case. For each prime number p, Q is embedded into Qp ; given a z ∈ Q − {0}, we

have, for all p large enough |z|p = 1 ; in particular, z is in OCp
and we can consider its

reduction modulo mCp
which (is non zero and) lies in Fp.

Definition 2.4. For all indices
( zid+1

, . . . , zi1

sd, . . . , s1

)
, let finite hyperlogarithms be :

LiA(w̃) =
(
Hp(w̃) mod p

)
∈

( ∏

p

Fp

)
/
(
⊕p Fp

)

This contains in particular a definition of cyclotomic analogues of finite multiple zeta

values, corresponding to the case where Z − {0,∞} = µN with N ∈ N∗.

Relying on our expression of prime multiple harmonic sums in terms of p-adic hyper-

logarithms, we extend the philosophy of Kaneko-Zagier to this case, in the following

language.

Definition 2.5. Let the motivic finite hyperlogarithms be :

(5) LiMA [w̃] = (−1)d
(
Φ−1

0zid+1
ezid+1

Φ0zid+1

)M[
ezid+1

esd−1
0 ezid

. . . es1−1
0 ezi1

]

(−1)d
∑

0≤d′≤d | zi
d′

=zid+1

(−1)sd′+1+...+sdΦM
0z

( zid′+1
. . . . . . zid+1

sd′+1, . . . , sd

)
ΦM

0z

( zid′
, . . . , zi1

sd′ , . . . , s1

)

2.2. The reduction modulo Λ and reduction modulo primes of prime multiple

harmonic sums. Recall that the prime multiple harmonic sum motive is given by the

formulas :

(6)

(Li T )M
O,prime[w̃] = (−1)d

(
Φ−1

0zid+1
ezid+1

Φ0zid+1

)M[ 1

1− e0
ezid+1

esd−1
0 ezid

. . . es1−1
0 ezi1

]

=
∑

0≤d′≤d | zi
d′

=zid+1

ld′+1,...,ld≥0

d∏

i=d′

(
−si

li

)
(−1)siΦM

0zid+1

( zid′+1
. . . . . . zid+1

sd′+1 + ld′+1, . . . , sd + ld

)

× ΦM
0zid+1

( zid′
, . . . , zi1

sd′ , . . . , s1

)
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We view it as an element of ZM[[Λ]], where Λ is a formal variable, via the weight

homogeneity ; namely

(7) (Li T )M
O,prime[w̃] =

(
Φ−1

0zid+1
ezid+1

Φ0zid+1

)M
[

Λ
∑

d

i=1
si

1− Λe0
ezid+1

esd−1
0 ezid

. . . es1−1
0 ezi1

]

=
∑

0≤d′≤d | zi
d′

=zid+1

ld′+1,...,ld≥0

Λ
∑

d

i=1
si+li

d∏

i=d′

(
−si

li

)
(−1)siΦM

0zid+1

( zid′+1
. . . . . . zid+1

sd′+1 + ld′+1, . . . , sd + ld

)

× ΦM
0zid+1

( zid′
, . . . , zi1

sd′ , . . . , s1

)

Proposition 2.6. Let w̃ =
( zid+1

, . . . , zi1

sd, . . . , s1

)
be an index of prime multiple harmonic

sums.

i) We have

LiMA [w̃] ≡ Λ− weight(w̃)(Li T )M
O,prime[w̃] mod Λ

Thus, we also have the same congruence on the level of the complex and p-adic periods.

ii) Let k ∈ N∗ be the chosen power of Frobenius. Let w̃k =
( zpk−1

id+1
, . . . , zpk−1

i1

sd, . . . , s1

)
(note

that w̃1 = w̃. The right-hand side below is well-defined and we have :

LiA[w̃k] ≡
(
p− weight w̃(Li T )O,prime[w̃] mod mOCp

)
p large enough

∈
( ∏

p

Fp

)
/
(
⊕p Fp

)

Proof. i) is clear. To prove ii), let p a prime number such that |zi1 |p = . . . = |zid
|p = 1

(this assumption is satisfied if p is large enough). We have :

vp

(
(pk)sd+...+s1 Hpk

( zid+1
. . . zi1

sd . . . s1

)
− psd+...+s1 Hp

( zpk−1

id+1
. . . zpk−1

i1

sd . . . s1

)
≥ sd + . . . + s1 + 1

Indeed, the subsum of (pk)sd+...+s1
∑

0<n1<...<nd<pk made of indices (n1, . . . , nd) ∈

pk−1N∗ × . . . × pk−1N∗ is equal to psd+...+s1 Hp

( zpk−1

id+1
. . . zpk−1

i1

sd . . . s1

)
, as we can see by

making a change of variable ni = pk−1n′
i. The complementary subsum has higher p-adic

valuation. �

Remark 2.7. Assume that zid+1
, . . . , zi1 ∈ Q. Then the reduction modulo large primes

of (Li T )O,prime[w̃] defines an element of
( ∏

p Fp

)
/
(
⊕p Fp

)
, which is independent of the

chosen power of Frobenius, since we have, for all primes p and all elements x ∈ Fp, that

xp = x.

We can now state the application of our results of part I to the finite setting.

Application 2.8. The reduction modulo primes and modulo Λ of theorems 1 and

theorem 3 of I give analogues of double shuffle and Kashiwara-Vergne equations for

finite hyperlogarithms and their motivic, complex, p-adic analogues.

Conjecture 2.9. Those relations generate all the algebraic relations among motivic

finite hyperlogarithms and their periods.
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Remark 2.10. We can write not only the reduction modulo Λ of each relation between

(Li T )O,prime[w̃]’s, but also the coefficient of each Λn, n ∈ N, of such relations : we

will study this aspect separately in part III. On the other hand, in §4 we will consider

"coefficients with respects to powers of pk".

2.3. Related work. What follows is, to our knowledge, the work related to the reduc-

tions of our theorems 1 and 3 of part I.

We start by the known work on finite multiple zeta values.

The theorem 1 of part I concerns double shuffle relations. Its reduction modulo Λ and

modulo primes has been proved by Kaneko and Zagier. To our knowledge, the method

of proof of the shuffle relation is different from ours ; it does not involve the generating

series Φ−1e1Φ.

A particular consequence of the integral shuffle is a "reversal" relation on prime multiple

harmonic sums stated in I, §4. Its reduction modulo primes, in the case of P1−{0, 1,∞},

is the formula Hp(s1, . . . , sd) = (−1)s1+...+sdHp(s1, . . . , sd) mod p. This result had been

proved by Zhao ([Z], lemma 3.3) and Hoffman ([H], theorem 4.5).

The theorem 3 of part I concerns Kashiwara-Vergne relations. The reduction mod-

ulo primes of the one-dimensional part of the equations has been proved by Hoffman,

using Newton series [H], and named the "duality theorem".

There are also notions of finite multiple polylogarithms.

Sakugawa and Seki have defined and studied the following notion [SaSe] :

Definition 2.11. (Sakugawa, Seki) Let finite multiple polylogarithms be :

LA,(sd,...,s1)(t) =
∑

0<n1<...<nd<p

tnd

ns1
1 . . . nsd

d

∈

( ∏

p

(Z/pZ)[t]

)
/

(
⊕p (Z/pZ)[t]

)

They show in [SaSe] several functional equations among those finite multiple polyloga-

rithms.

Remark 2.12. Note that our results imply more generally algebraic relations among

the following more general object :

LA,(sd,...,s1)(t1, . . . , td) =
∑

0<n1<...<nd<p

tn1
1 . . . tnd

d

ns1
1 . . . nsd

d

∈

( ∏

p

(Z/pZ)[t1, . . . , td]

)
/

(
⊕p (Z/pZ)[t1, . . . , td]

)

Ono and Yamamoto have defined another notion of finite multiple polylogarithms and

proved that it satisfies an integral shuffle relation [OY] :

Definition 2.13. (Ono-Yamamoto) Let finite multiple polylogarithms be :

li(sd,...,s1)(t) =
∑

0<l1,...,ld<p
p∤l1,...,p∤l1+...+ld

tl1+...+ld

ls1
1 . . . (l1 + . . . + ld)sd

∈

( ∏

p

(Z/pZ)[t]

)
/

(
⊕p(Z/pZ)[t]

)

12



The relationship between the notions of Sakugawa-Seki and Ono-Yamamoto is estab-

lished in [SaSe], §4.2. Again, we can consider the variant with several variables.

Remark 2.14. Again, we can consider the generalization to P1 − {0, 1,∞} to P1 − Z

: replace Zp by OQp
, and replace Hp(sd, . . . , s1) by Hp

( zid+1
, . . . , zi1

sd, . . . , s1

)
.

Last related work : we stated as a remark the existence of notions of cyclotomic fi-

nite multiple zeta values, their variants defined through the series Φ−1
0z ezΦ0z, and their

algebraic properties, in the first version of part I.

3. Lifts of ζM and ζM
A and their congruences in the case of P1 − {0, 1,∞}

3.1. The problem of lift of congruences and related questions. The finding of

congruences between prime multiple harmonic sums Hp modulo p in the 2000’s have

raised the question to find lifts of them modulo higher powers of p.

Let us give an example : for all primes p and all all s ∈ Z such that p − 1 does

not divide s, we have

Hp(s) ≡ 0 mod p

Here is a lift of this congruence to a congruence modulo p2 [Z], [?] : assume that p > s+1

; we have

(8) Hp(s) ≡ p
s

s + 1
Hp(1, s) mod p2

Indeed, we have first of all Hp(s) ≡
∑p−1

n=1 np(p−1)−s mod p2. This reduces us to positive

powers of n ; the sums of positive powers of integers from 1 to p − 1 are given by, a

standard fact, by a polynomial of p : precisely,

Hp(s) ≡

p(p−1)−s+1∑

l=1

1

p(p− 1)− s + 1

(
p(p− 1)− s + 1

l

)
B(p−1)p−s+1−lp

l

Because of the hypothesis on p and s, only the l = 1 term is non zero; finally, by Kummer

congruences, we have Bp(p−1)−s ≡
(p−1)p−s

p−1−s Bp−1−s ≡
s

s+1 Bp−1−s mod p.

The problem of lift of congruences has been made systematic by Rosen in [Ro], who

defined a lift of Zagier’s finite multiple zeta values involving p-adic numbers for "p infin-

itely large"

Definition 3.1. (Rosen) Let the weighted finite multiple zeta values be :

ζÂ(sd, . . . , s1) = (Hp(sd, . . . , s1))p prime ∈ Â = lim
←−

( ∏

p

Z/pnZ

)
/

(
⊕Z/pnZ

)

The ring Â defined in [Ro] is the quotient of
∏

p Zp by the closure of ⊕pZp relatively

to the uniform topology on
∏

p Zp (where the uniform topology is relative to the p-adic

topologies on each Zp). It is a complete topological ring.

We have reviewed in I, §8, how the two algebraic relations proved in [Ro] are particular

cases of the theorems 1 and 3 of part I. Another aspect of Rosen’s work is a philosophy

of lift of congruences between finite multiple zeta values. Rosen conjectures that all
13



equalities between finite multiple zeta values admit lift to equalities between weighted

finite multiple zeta values in the ring Â. For s ∈ {1, 2}, the result of existence of such

a lift is stated in (the first version only of) [Ro], §5, and proven up to mod p7, with a

reference to algorithms for higher congruences.

We are going to see that we can find p-adic lifts of certain congruences, using our

theorems 1 and 3 of part I. Another issue is at stake : our theorems of part I give equal-

ities on prime multiple harmonic sums valid for all primes p and having coefficients in

Z ; on the other hand, Kaneko-Zagier’s finite multiple zeta values are defined "modulo

large primes", and their structure comes from congruences valid only for p large. The

proof of theorem 2 shows how, by rearranging equalities with coefficients in Z, we arrive

indeed at certain non trivial rational coefficients.

On the other hand, we are going to see that we can lift Λ-adically the finite multiple

zeta motives themselves, by expressing them as formal infinite sums of prime multiple

harmonic sum motives. This implies a general lift of congruences between prime multiple

harmonic sums, up to the determination of the convergence of certain p-adic series.

3.2. A lift of congruences between the harmonic sums of P1 − {0, 1,∞}.

3.2.1. Introduction. We take the case of P1 − {0, 1,∞}. Let us recall the expression

of certain parts of the theorem 1 and 3 of part I in this case. Some avatars of these

equations appear in [Ro].

i) the series shuffle equation (particular case of theorem 1) : for all words w, w′ :

(9) (Li T )M
O,prime(w ∗ w′) = (Li T )M

O,prime(w)(Li T )M
O,prime(w

′)

ii) a particular case of a "symmetry equation" that is a particular case of the shuffle

equation (particular case of theorem 1)

(10) (Li T )M
O,prime(w) = (Li T )M

O,prime((Σω)∗ inv(w))

ii) the one-dimensional part of Kashiwara-Vergne equations (particular case of theorem

3) :

(11) (Li T )M
O,prime(w(e0 + e1,−e1)) = −

∑

z∈ker ∂̃e0

(−1)depth(z)(Li T )M
O,prime(zw)

For the simplicity of the notation we will rename h(w) = (Li T )M
O,prime(w). For R a

ring, and s ∈ N∗, denote by R.h(weight≥s) the weight-adic completion of the R-module

generated by polynomials, with constant coefficient 0, of numbers h(wn) with for all n,

weight(wn) ≥ s.

Theorem. We have, for all s ∈ N∗ :

h(s) ≡ 0 mod Z[
1

2
, . . . ,

1

s + 1
].h(weight≥s+1)

and this can be lifted adically as follows.

By induction on N , let us assume that, for N ∈ N∗, n ∈ {1, . . . , N − 1} and s ∈ N∗,
14



there exists wN
n (s) ∈ H∗ of weight s + n such that

h(s) ≡
N−1∑

n=1

h(wN
n (s)) mod Z[

1

2
, . . . ,

1

s + 1
]h(weight≥s+N )

Then, for N ∈ N∗, n ∈ {1, . . . , N}, and s ∈ N∗, denoting by

(12) wN+1
n (s) = −

s

s + 1

∑

z,word of weight n

(−1)depth(z)h(z.ys)

−
s

s + 1

∑

2≤l≤s

{(k1,...,kl)∈(N∗)l|
k1+...+kl=s}/Sl

∑

n1,...,nl∈N∗

n1+...+nl=n

1
∏l

i=1 ki

wN
n1

(k1) ∗ . . . ∗ wN
n1

(kl)

we have

h(s) ≡
N∑

n=1

h(wN+1
n (s)) mod Z[

1

2
, . . . ,

1

s′ + 1
]h(weight≥s+N+1)

3.2.2. Proof.

Remark 3.2. The formulas of [J6], §3.4, which are true in the motivic case, imply that

:

(Φ−1e1Φ)M[
1

1− Λe0
e1es−1

0 e1] = Λ
s

s + 1
(Φ−1e1Φ)M[

1

1− Λe0
e2

1es−1
0 e1)] mod Λ2

This is the motivic analogue of the lift (8)

Lemma 3.3. It follows from the series shuffle equation that

∑

w of weight s

h(w) =

s∑

l=1

∑

{(k1,...,kl)∈(N∗)l|
k1+...+kl=s}/Sl

l∏

i=1

h(ki)

ki

Proof. In [H], theorem 2.2, Hoffman proves that the series shuffle equation implies, for

all sd, . . . , s1 ∈ N∗,

(13)
∑

φ permutation
of {1,...,d}

h(sφ(d), . . . , sφ(1)) =
∑

{B1,...,Bl} partitions
of {1,...,d}

(−1)d−l
l∏

i=1

(
(♯Bi − 1)!h

( ∑

u∈Bi

su

))

This implies that
∑

w of weight s h(w) is equal to

s∑

l=1

∑

(k1,...,kl)∈(N∗)l|
k1+...+kl=s}/Sl

l∏

i=1

h(ki)

∑

d≥l

(−1)d−l
∑

n1,...,nl≥1
n1+...+nl=d

l∏

i=1

(ni − 1)!

ni!
|{(m1, . . . , mni

) ∈ (N∗)ni |
∑

mj = ki}

=

s∑

l=1

∑

(k1,...,kl)∈(N∗)l|
k1+...+kl=s}/Sl

l∏

i=1

h(ki)(−1)l
∑

d≥l

∑

n1,...,nl≥1
n1+...+nl=d

1

ki

(
ki

ni

)
(−1)ni
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hence the result. �

Corollary 3.4. With the assumption of theorem 4, denoting by Sl is the group of

permutations of {1, . . . , l} we have :

(14) −
∑

2≤l≤s

{(k1,...,kl)∈(N∗)l|
k1+...+kl=s}/Sl

l∏

i=1

h(ki)

ki
=

s + 1

s
h(s) +

∑

z∈W ′\{∗}

(−1)depth(z)h(z.ys)

Proof. This combines the equation (11) in depth one with the previous lemma. �

Lemma 3.5. We have, for all s ∈ N∗,

h(s) ≡ 0 mod Z[
1

2
, . . . ,

1

s + 1
].h(weight≥s+1)

Proof. Let us take s = 1 in the symmetry relation (10). This gives

2h(1) ≡ 0 mod Z[hweight≥2]

i.e. the result for s = 1. On the other hand, the previous corollary implies

−1

s
h(s)+

(
Z-linear combinations of products of

h(s′)

s′
with s′ < s

)
= h(s) mod Z.h(weight≥s+1)

Hence the result by induction on s, by regrouping the two terms involving h(s) and

obtaining a term s+1
s h(s). �

Lemma 3.6. Let us assume that, for a given N ∈ N∗, for all s′ ∈ N∗, we have :

h(s′) ≡
N−1∑

n=1

h(wN
n (s′)) mod Z[

1

2
, . . . ,

1

s′ + 1
]h(weight≥s′+N )

with, for all n = 1, . . . , N − 1, weight(wN
n (s′)) = s′ + n.

Let us take s ∈ N∗, (k1, . . . , kl) ∈ (N∗)l with l ≥ 2 and k1 + . . . + kl = s. Then :

l∏

i=1

h(ki)

ki
=

l∏

i=1

N−1∑

ni=1

h(wN
n (ki)) mod Z[

1

2
, . . . ,

1

s′ + 1
]h(weight≥s+N+1)

Proof. We apply the hypothesis to s′ = k1, . . . , s = kl. First of all, for all i, we have

Z[ 1
2 , . . . , 1

ki+1 ] ⊂ Z[ 1
2 , . . . , 1

s+1 ]. The numbers 1
ki

h(wN
n (ki)) are of weight ≥ ki + 1, and

the elements of

Z[ 1
2 , . . . , 1

s′+1 ]h(weight≥ki+N ) are of weight ≥ ki + N . Since we have

l∏

i=1

h(ki)

ki
∈

l∏

i=1

( N−1∑

n=1

h(wN
n (s′)) + Z[

1

2
, . . . ,

1

s′ + 1
]h(weight≥s′+N )

)

then, the difference
l∏

i=1

h(ki)

ki
−

l∏

i=1

N−1∑

ni=1

h(wN
n (s′))

is made of terms whose weight is superior or equal to
∑

1≤i≤l
i6=i0

(ki + 1) + ki0 + N =

(
∑l

i=1 ki)+N + l−1 for all i0 ∈ {1, . . . , l}, which is itself superior or equal to
∑l

i=1 ki +

N + 1 since l ≥ 2. �
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Finally, the theorem follows from this last lemma and the corollary 3.4.

3.2.3. Remarks and corollaries. We derive four particular consequences of the theorem.

Remark 3.7. Variant for the multiple harmonic sums with large inequalities

One has also in [H], theorem 2.2, a variant of equation (13). It applies to the variant of

multiple harmonic sums defined by large inequalities
∑

0<n1≤...≤nd<N

1

ns1

1 . . . nsd

d

It is the same equation with (13) without the sign (−1)d. It enables to show an analogue

of the theorem for the associated variant of prime multiple harmonic sums. In the proof,

the sums of the type
∑u

v=1(−1)v
(

u
v

)
= −1, that appear in the rational coefficients, are

replaced by sums of the form
∑u

v=1

(
u
v

)
= 2u−1. This changes slightly the computation.

The variants of multiple zeta values involving sums with large inequalities are usually

refered to as "multiple zeta star values".

Let s1, s2 ∈ N∗ such that s1 + s2 is even. The series shuffle relation (9) h(s1)h(s2) =

h(s1 + s2) + h(s1, s2) + h(s2, s1) combined to the symmetry equation (10) which gives,

by the parity assumption, that h(s1, s2) ≡ h(s2, s1) mod h(weight≥s1+s2+1), implies an

expression of the lowest weight term of h(s2, s1) in depth one :

h(s2, s1) =
1

2

(
h(s2)h(s1)− h(s1 + s2)

)
mod h(weight≥s1+s2+1)

Combining the theorem and this equality gives :

Corollary 3.8. h(s2, s1) admits a weight-adic expression in h(weight≥s1+s2+1). It gives a

p-adic absolutely convergent equality on prime multiple harmonic sums for p > s1+s2+1.

This is a lift of the vanishing of ζA(s2, s1) when the weight s1 + s2 is even. Recall that

this vanishing is the finite counterpart of the vanishing of even p-adic zeta values, or,

equivalently, of the fact that we have ζ(2n) ∈ Qπ2n for all n ∈ N∗.

Remark 3.9. By considering the coefficient of each Λl in the theorem, we obtain an

infinite family of relations among multiple zeta values, which is a consequence of the

double shuffle and Kashiwara-Vergne equations.

The p-adic multiple zeta values of depth one admit the following expression as sums of

series in terms of prime multiple harmonic sums : for all s ∈ N∗, for all primes p, and

for all k ∈ N∗ :

(15) ζp,−k(s) =
ps

s− 1

∑

n≥−1

Bn+1(−1)s

(
n + s

s− 1

)
(pk)nHpk (s + n)

Recall that those numbers are also values of the Kubota-Leopoldt p-adic zeta function

: ζp,−k(s) = psLp(s, ω1−s).

Let us apply the previous theorem to the term n = −1 of the series, i.e. to the factor

(pk)s−1Hpk (s− 1).
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Corollary 3.10. For p > s, there is another series expansion of the p-adic zeta value

ζp,−k(s) in terms of multiple harmonic sums, that reflect the integrality property coming

from cohomology

ζp,−k(s) ∈
∑

s′≥s

ps′

s′!
Zp

3.3. Lift of ζM and ζM
A in terms of (Li T )M

O,prime for P1 − {0, 1,∞}.

3.3.1. Introduction. Among all the information implied by the conjecture of Kaneko and

Zagier, combined to the usual conjecture of periods for multiple zeta values, one has the

following assertion : the numbers

d∑

n=0

(−1)sn+1+...+sdζM(sn+1, . . . , sd)ζM(sn, . . . , s1) mod ζ(2)

generate the Q-vector space of motivic multiple zeta values modulo ζ(2) ; and thus

similarly for all versions of multiple zeta values. (It is indeed implied by the conjectural

equality of dimensions of the Q-vector spaces generated by, respectively, these numbers

and the usual motivic multiple zeta values modulo ζ(2)).

This assertion has been proven true by Yasuda, as a consequence of the double shuffle

relations [Y1].

Remark 3.11. The main technical step of Yasuda’s proof is the corollary 3.3 of [Y1] :

it is an expression of
∑d

n=0(−1)sn+1+...+sdζM(sn+1, . . . , sd)ζM(sn, . . . , s1) in as a poly-

nomial expression over Q of motivic multiple zeta values of depth ≤ d− 1 and 2iπ. We

have given a different proof of it via associator relations in [J6], where we study more

generally the phenomena of depth reduction via associator relations.

3.3.2. Statement and proof. Using Yasuda’s result, we can obtain :

Theorem 3.12. Each coefficient ΦM[w] of the motivic Drinfeld associator ΦM admits

the following expression, for a formal variable Λ :

Φ[w] =
∑

n≥0

(Φ−1e1Φ)M[
1

1 − Λe0
e1wn]Λn

where wn ∈ Hx(e0, e1) is of weight equal to weight(w) + n.

In other words, each motivic multiple zeta value can be written as an infinite sum of the

prime multiple harmonic sum motives (Li T )M
O,prime[w̃]

This has the following consequences :

Corollary 3.13. The weight-adic completion of the algebra of motivic multiple zeta val-

ues is topologically generated by the prime multiple harmonic sum motives (Li T )M
O,prime[w̃].

Corollary 3.14. Every algebraic relation between motivic multiple zeta values implies

a relation between prime multiple harmonic sum motives.

Now let us give the proof of the statement.

Proof. By Yasuda’s theorem, the Q-vector spaces generated by the coefficients of Φ of a

given weight are generated by the numbers of the form (Φ−1e1Φ)[e1 . . . e1]. Thus, given
18



a word w, there exists z0 ∈ Hx(e0, e1) such that

Φ[w] = (Φ−1e1Φ)[e1z0e1]

By induction on l ∈ N, let zl ∈ Hx(e0, e1) such that

(Φ−1e1Φ)[e1zle1] =

l−1∑

m=0

(Φ−1e1Φ)[el−m
0 e1zme1]

By the definition of the sequence (zl) we have, for all l,

ΦM[w] =

l∑

m=0

(Φ−1e1Φ)M[
Λm

1− Λe0
e1zme1]−

l∑

m=0

∑

u≥l−m

(Φ−1e1Φ)[eu
0 e1zme1]Λu+m

The assertion is obtained by taking the limit l→∞. �

4. Transfer of algebraic relations from (Li T )O,prime to p-adic

hyperlogarithms

4.1. The problem of a theory of series of p-adic multiple zeta values. The p-

adic multiple zeta values have been first defined in [DG], §5.28. There, it is conjectured

that they satisfy the same relations with complex multiple zeta values, plus the analogue

of ”2iπ = 0”. Later, it has been proved that they satisfy double shuffle relations [BF],

[FJ], and associator relations with parameter zero [U2]. The analogue of the relation

”2iπ = 0” is reflected, among others, on the fact that the parameter of associator re-

lations is zero, and on the fact that p-adic multiple zeta values of depth one and even

weight vanish : this recasts a classical statement on values of the Kubota-Leopoldt zeta

function.

In [DG] §5.28, Deligne and Goncharov also ask the following question : "il serait intéres-

sant aussi de disposer pour ces coefficients [p-adic multiple zeta values] d’expressions

p-adiques qui rendent clair qu’ils vérifient des identités du type [series shuffle relation]".

Separately, the question to compute p-adic multiple zeta values in depth two, or to make

an "educated guess", has also been raised by Deligne (Arizona Winter School, 2002, un-

published). This last question has been solved by Unver in [U1].

Our formula expressing prime multiple harmonic sums in terms of p-adic multiple zeta

values is the first close formula, valid for every value of the depth and relating p-adic

multiple zeta values and explicit functions :

(pk)sd+...+s1Hpk (sd, . . . , s1) =

(−1)d
∑d

d′=0

∑
ld′+1,...,ld≥0

∏d
i=d′

(
−si

li

)
ζp,−k(sd′+1 + ld′+1, . . . , sd + ld)ζp,−k(sd′ , . . . , s1)

On the level of prime multiple harmonic sums, the series shuffle relation is clear. More

generally, as we will explain in III, all the algebraic relations of prime multiple harmonic

sums can be read explicitly via elementary operations on series.

This formula suggests that the present work could be seen as an indirect algbraic theory

of series for p-adic multiple zeta values, related to Deligne-Goncharov’s question, and

more generally of p-adic hyperlogarithms. Here, we sketch how, combining part I and
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some of our p-adic analytic results, to make this idea more precise and explain how to

turn it into a less indirect theory. This is only one point of view among other possible

points of view : we will provide a different one in part III.

4.2. Sketch of the statements. For simplicity, we restrict to the case of P1−{0, 1,∞}.

We showed in [J2] the following result, which shows the importance of considering all

powers of Frobenius at the same time :

Proposition 4.1. The expression of prime multiple harmonic sums in terms of p-adic

multiple zeta values and the integral shuffle relation of p-adic multiple zeta values char-

acterize entirely p-adic multiple zeta values.

Precisely, we have showed that p-adic iterated integrals expressing the action of the

Frobenius map F∗ (of [D] §11) on the canonical paths y1x of the fundamental groupoid

can be expanded analytically in terms of the power of Frobenius, and that the coefficients

of the expansion have a natural expression in terms of the iterated integrals associated

with the Frobenius-invariant path.

Theorem 4.2. Each algebraic property among prime multiple harmonic sums, valid for

all possible powers of p, is equivalent with a family of relations involving infinite sums

of polynomials over Q of p-adic multiple zeta values.

Corollary 4.3. The explicit double shuffle and Kashiwara-Vergne relations of part I,

theorems 1 and 3, for prime multiple harmonic sums are equivalent to variants of the

double shuffle and Kashiwara-Vergne relations for p-adic multiple zeta values.

This gives an answer to a variant of the question of Deligne-Goncharov. It would remain

to characterize more precisely these variants.

5. Interlude on the transcendence of (Li T )O,prime

We are going to see that the question of the transcendence of the sequences of algebraic

numbers (Li T )O,prime[w] is sometimes accessible. This means, heuristically, that their

nature may be closer to the one of hyperlogarithms, analytic functions on P1−Z, rather

than their special values at tangential base-points such as multiple zeta values. We will

use several times the following fact.

Fact 5.1. Let an infinite countable product
∏

n∈N An of Q-algebras, such that either

for all n ∈ N, An ⊂ C, or for all n ∈ N, An ∈ Cp. An element a ∈
∏

n∈N An is

transcendental as soon as it has infinitely many components that are pairwise distinct.

Indeed, a polynomial P ∈ Q[T ] such that P (a) = 0 has then infinitely many roots, and

is thus equal to 0.

5.1. The case of P1 − {0, 1,∞}.

Proposition 5.2. Assume that Z = {0, 1,∞}. Then, all the sequences (Li T )O,prime[w],

elements of
∏

p Q ⊂
∏

p Qp, are transcendental.

Proof. We will view
∏

p Q ⊂
∏

p C. Let us fix an index (sd, . . . , s1). The maps n 7→

Hn(sd, . . . , s1) and n 7→ nsd+...+s1 are strictly increasing functions N∗ → R ; thus so is

their product
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n 7→ nsd+...+s1 Hn(sd, . . . , s1). This last map is in particular injective. A polynomial, not

necessarily with rational coefficients, mapping infinitely many values nsd+...+s1 Hn(sd, . . . , s1)

to 0, has infinitely many roots in Q, and is equal to 0. �

Remark 5.3. Kaneko-Zagier’s finite multiple zeta values are obtained by reduction

modulo large primes of these sequence of prime multiple harmonic sums. The study of

their transcendence may use one day this simple fact.

5.2. On the totally real case. Fix an embedding Q →֒ C, and let zid+1
, . . . , zi1 be

non-zero algebraic numbers whose images by this embedding are in R+∗. Let w an index

of the form
( zid+1

, . . . , zi1

sd, . . . , s1

)
, with sd, . . . , s1 ∈ N∗.

Proposition 5.4. The sequence (Li T )O,prime[w], in
∏

p Q ⊂
∏

p Qp is transcendental.

Proof. Viewing
∏

p Q ⊂
∏

p C by the embedding above, the map n ∈ N∗ 7→ nweight(w)Hn[w]

is again injective as in the previous proposition. �

5.3. The "universal" case. The results of part I have been stated as being valid for all

curves P1 −Z over a number field. Except for the motivic results, they can be restated

as concerning by replacing elements of Z by formal variables. Then, the results concern

the following polynomials :

Definition 5.5. Let, for d ∈ N∗, and (sd, . . . , s1) ∈ (N∗)d, and n ∈ N∗,

Ps1,...,sd,n(T1, . . . , Td, Td+1) =
∑

0<n1<...<nd<n

T n1
1 . . . T nd

d

ns1
1 . . . nsd

d

T n
d+1 ∈ Q[T1, . . . , Td, Td+1]

The very simple statement below can be viewed as a "universal" analogue of the previous

propositions, involving implicitly all curves P1 − Z. We fix d ∈ N∗ and (s1, . . . , sd) ∈

(N∗)d.

Proposition 5.6. The polynomials Ps1,...,sd,n(T1, . . . , Td, Td+1) for n ∈ N∗ are pairwise

distinct.

Proof. For each n ∈ N∗, the degree of Ps1,...,sd,n(T1, . . . , Td, Td+1) with respect to Td+1

is equal to n. �

5.4. On the general case. For a general curve P1 −Z, we make the following conjec-

ture.

Conjecture 5.7. Let an index w =
( zid+1

, . . . , zi1

sd, . . . , s1

)
with zid+1

, . . . , zi1 ∈ Q − {0}.

Then, the subsets I of N such that Hn[w̃] takes the same value for all n ∈ I are finite.

In particular, there are infinitely many distinct values of Hn[w̃] when n varies in N.

Then (Li T )O,prime[w] is transcendental, by fact 5.1.

The reason for this conjecture is the following.

Remark 5.8. Assume first sd ≥ 2. If there are infinitely many n such that Hn[w] takes

the same value, then the limit limn→∞ Hn[w], which is a value of an hyperlogarithm at a

tangential base-point, is an algebraic number. This contradicts the usual transcendence
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conjectures on values of hyperlogarithms at tangential base-points. In the case where

sd = 1, we can make a similar reasoning using the asymptotic expansion of multiple

harmonic sums, which we will recall in the next paragraph.

5.5. The case of any complex or p-adic values of zid+1
, . . . , zi1 . The definitions of

multiple harmonic sums Hn[w], n ∈ N∗ and of (Li T )O,prime[w], extend to all indices

w =
( zid+1

, . . . , zi1

sd, . . . , s1

)
with (zid+1

, . . . , zi1 ) ∈ Cd+1 or (zid+1
, . . . , zi1 ) ∈ Cd+1

p , i.e. where

zij
are not necessarily algebraic, by the same formulas with the usual ones. As men-

tioned in the paragraph on the universal case, the algebraic relations of part I remain

true. We are going see below that, not surprisingly, for most values of (zid+1
, . . . , zi1 ),

the obtained sequence of prime multiple harmonic sums is trasncendental.

First, let Q ∈ Q[T1, . . . , Td, Td+1] be a polynomial such that its set of roots inside

Cd+1 or Cd+1
p satisfies that, for each i ∈ {1, . . . , d + 1}, its image by πi the projection

Cd+1 → C, resp. Cd+1
p → Cp, onto the ith coordinate, is infinite. Then Q = 0. Indeed,

this follows by induction on d using that a polynomial in one variable having infinitely

many roots is equal to zero.

This, together with proposition 5.6, implies that, for n, n′ ∈ N∗ with n 6= n′, the sub-

set of Cd+1 characterized by Ps1,...,sd,n − Ps1,...,sd,n′ 6= 0 is a dense open subset for the

complex resp. p-adic topology. In particular

Remark 5.9. The subset of Cd+1, resp. Cd+1
p such that Ps1,...,sd,n − Ps1,...,sd,n 6= 0 for

all n, n′ ∈ N∗ such that n 6= n′ is dense inside Cd+1, resp. Cd+1
p . This follows from the

facts above and Baire’s theorem that a countable intersection of dense open subsets of a

complete metric space is dense in the complete metric space. This very simple remark is

of course not sufficient to deal with the case that we want to study, where zid+1
, . . . , zi1

are algebraic.

6. On the valuation of multiple harmonic sums and algebraic relations

We know that some of the information on the p-adic valuation of multiple harmonic

sums Hpk [w̃] is equivalent to relations between motives, up to two conjectures : the

usual period conjecture for multiple zeta values, and Kaneko-Zagier’s conjecture on

finite multiple zeta values.

Here, we sketch how this principle can be extended in three different directions.

6.1. Constraints relating the p-adic valuation of Hn and Hpkn. Recall from our

p-adic analytic work [J2], that the multiplication by a power of a prime number of the

upper bound of multiple harmonic sums, under an appropriate hypothesis on P1 − Z,

is expressed in a compact way in terms of the fundamental groupoid, in the following

form :

(16)
(
(pkn)weightHpkn[w̃]

)
w̃

= nweight
(
Φ−1

0z ezΦ0z

)
p,−k
◦H

(
nweightHn[w̃]

)
w̃

where ◦H is an operation that we call the harmonic Ihara action, and the sequences

of multiple harmonic sums
(
(pkn)weightHpkn[w̃]

)
w̃

and
(
nweightHn[w̃]

)
w̃

are indexed by
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words w̃ =
( zid+1

, . . . , zi1

sd, . . . , s1

)
such that zid+1

= z.

Given the expression of
(
Φ−1

0z ezΦ0z

)
p,−k

in terms of prime multiple harmonic sums,

this indicates that some of the information on the p-adic valuation of multiple harmonic

sums, not necessarily prime, should have an algebraic origin. Separately, there are

bounds on the p-adic valuations of
(
Φ−1

0z ezΦ0z

)
p,−k

given by log-crystalline cohomology

; they imply constraints on the p-adic valuations of multiple harmonic sums Hpkn and

Hn.

6.2. Complex valuations of (Li T )O for n large and (Li T )M
O . Recall that (Li T )O

denotes the sequences of all multiple harmonic sums, not necessarily primes. We have

seen that relations between prime multiple harmonic sums can be obtained by taking

Taylor coefficients of algebraic relations between multiple polylogarithms.

We address the question of going backwards : how could we retrieve, from an algebraic

relations between prime multiple harmonic sums, an algebraic relation which would be

true for all, non necessarily prime, multiple harmonic sums, and thus true for multiple

polylogarithms. We are going to see that this question is related to the valuation of

multiple harmonic sums.

6.2.1. Preliminary : the asymptotics of multiple harmonic sums in C when n→∞. We

fix an embedding Q →֒ C. Let us see multiple harmonic sums Hn

( zid+1
, . . . , zi1

sd, . . . , s1

)
=

∑
0<n1<...<nr<n

(
zi2 /zi1

)n1
...

(
zid+1

/zid

)nd
(

1/zid+1

)n

n
s1
1 ...n

sd
d

as functions of their upper bound n,

viewed as a complex number. Here is a way to obtain their asymptotic expansion

when n → ∞. Such an asymptotic expansions appears in [CM] (at least in the case

of P1 − {0, 1,∞}), and also in [ABS]. There are many ways to obtain this asymptotic

expansion ; we write here the one that seems to us a quick way to get to a formula.

By using the series shuffle product, we can reduce ourselves to two subcases

i) the case of the indices
( zi2 , zi1

1

)
. When zi2 = zi1 = 1, this is the harmonic series

Hn = 1 + . . . + 1
n .

ii) the convergent case, i.e. the one of indices sd ≥ 2 : it is the case where Hn(w̃) has a

limit in C when n→∞.

The first case is classical. To deal with the second case, we can consider the com-

plex infinite sum
∑

0<n1<...<nd<∞

(
zi2 /zi1

)n1
...

(
zid+1

/zid

)nd
(

1/zid+1

)n

n
s1
1 ...n

sd
d

∈ Q, consider a

n ∈ N∗, and cut the sum at n :
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Proposition 6.1. We have :

(17)
∑

0<n1<...<nd<∞

(
zi2 /zi1

)n1
. . .

(
zid+1

/zid

)nd
(
1/zid+1

)n

ns1
1 . . . nsd

d

=

d∑

d′=0

( ∑

0<n1<...<nd′ <n

(
zi2 /zi1

)n1
. . .

(
zid′+1

/zid′

)nd′

ns1
1 . . . n

sd′

d′

×
∑

n≤nd′+1<...<nd<∞

(
zid′+1

/zid′+1

)n1
. . .

(
zid+1

/zid

)nd
(
1/zid+1

)n

n
sd′+1

d′+1 . . . nsd

d

)

This implies that the map n 7→ Hn

( zid+1
, . . . , zi1

sd, . . . , s1

)
is a C-linear combination of maps

(18) n 7→
∑

n≤nd′+1<...<nd<∞

(
zid′+1

/zid′+1

)n1
. . .

(
zid+1

/zid

)nd
(
1/zid+1

)n

n
sd′+1

d′+1 . . . nsd

d

)

where 1 ≤ d′ ≤ d and maps n 7→ Hn[w̃′] with depth(w̃′) < d. it reduces us, by induction

on d and application of the series shuffle product, to maps given by convergent iterated

sums from n to ∞, and to the case of the harmonic series. We can treat the case of the

maps (18) via the Euler Mac Laurin formula as follows. Take the following notations :

Notation 6.2. 1) Bernoulli polynomials : B0(x) = 1 ; for n ∈ N, B′
n(x) = nBn−1(x)

and
∫ 1

0 Bn(x)dx = 1

2) Their periodic variants : for n ∈ N, Pn(x) = Bn({x}), where {x} = x− ⌊x⌋.

3) Bernoulli numbers : bn, n ∈ N.

Notation 6.3. Let the following linear operators on the C-vector space of C∞ functions

on a given interval of R :

1) Mφ : multiplication by a function φ

2) ∂i : derivative iterated i times.

3) Ta : φ 7→ φ− φ(a), a ∈ R.

Proposition 6.4. (Euler Mac-Laurin formula) For [a, b] ⊂ R a segment and f : [a, b]→

C a C∞ -function we have, for all k ∈ N :

b−1∑

n=a

f(n) =

k∑

i=0

bi

i!
(f (i−1)(b)− f (i−1)(a))−

∫ b

a

Bk({1− t})

k!
f (k)(t)dt

Then, writing the primitive of f which vanishes in a as f (−1) we obtain :

b−1∑

n=a

f(n) =

k∑

i=0

bi

i!
(Ta∂if)(b)−

∫ b

a

Bk({1− t})

k!
f (k)(t)dt

It is also possible to write an iterated Euler Mac-Laurin formula :

Proposition 6.5. (iterated Euler Mac-Laurin formula) For [a, b] ⊂ R a segment, r ∈ N∗

and f1, . . . , fr : [a, b]→ C C∞ -functions we have, for all k ∈ N :
∑

a≤n1<...<nr≤b−1

fr(nr) . . . f1(n1)
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=
k∑

i1=0

. . .
k∑

ir=0

bi1

i1!
. . .

bir

ir!

(
Ta∂ir Mfr

. . . Ta∂i1 Mf1(1))(b)

−
r−1∑

s=1

∑

a≤ns+1<...<nr≤b−1

( r∏

j=s+1

fj(nj)

) ∫ ns+1

a

Bk({1− t})

k!

(
Mfs

Ta∂is−1 . . . Mf1 (1)

)(k)

(t)dt

−

∫ b

a

Bk({1− t})

k!

(
Mfr

Ta∂ir−1 . . . Mf1 (1)

)(k)

(t)dt

We will take a = n, and the limit b→∞ in the convergent case. It is possible to bound

the integral rest as in the application of the usual Euler Mac-Laurin formula. This gives

:

Proposition 6.6. For all indices w̃ of multiple harmonic sums, there is an asymptotic

expansion of Hn[w̃] in C when n→∞, of the form below, where I ∈ N, and ai,j ∈ C :
∑

0≤i≤I
0≤j

ai,j log(n)in−j

Now, we take f1 : t 7→ 1
ts1

, . . . , fr : t 7→ 1
tsr

, si ∈ N∗. We want to give an idea of

the shape of the formula in this case. If f : t 7→ 1
ts , s ∈ N∗, we have, for all i ∈ N,

∂if
i! : t 7→

(
−s
i

)
1

ts+i . (This extends to the case i = −1 if we pose
(

−s
−1

)
= 1

1−s .) For all

i1, . . . , ir ≥ 0 we obtain :

(Ta
∂ir

ir ! Mfr
. . . Ta

∂i1

i1! Mf1 )(b) =∑
P ⊂{1,...,r}

∏r
j=1

(
−ǫj(P )

ij

)
(−1)♯P b−(smax(P )+1+imax(P )+1+...+sr+ir)a−(s1+i1+...+smax P +imax P )

with

{
ǫj(P ) = sj if j ∈ P,

ǫj(P ) = sj−1 + ǫj−1 + sj if j 6∈ P
Now we take a = n, and take the limit b→

∞.

Proposition 6.7. In the case where b → ∞, the main term of the iterated Euler

Mac-Laurin formula is :
∑k

i1=0 . . .
∑k

ir=0
bi1

i1! . . .
bir

ir !

(
Ta∂ir Mfr

. . . Ta∂i1 Mf1(1))(b)

k∑

i1=0

. . .
k∑

ir=0

bi1 . . . bir

1

Ns1+i1+...+sr+ir

∑

P ⊂{1,...,r},r∈P

r∏

j=1

(
−ǫj(P )(s1, . . . , sr)

ij

)
(−1)♯P

=

r×k∑

i=0

1

Ns1+...+sr+i

∑

i1,...,ir≥0
i1+...+ir=i

bi1 . . . bir

∑

P ⊂{1,...,r},r∈P

r∏

j=1

(
−ǫj(P )(s1, . . . , sr)

ij

)
(−1)♯P

6.2.2. Properties of independence of multiple polylogarithms. Hyperlogarithms satisfy

standard properties of linear or algebraic independence that can be proven via their dif-

ferential equation. By taking Taylor coefficients, this implies properties of independence

of multiple harmonic sums functions.

Proposition 6.8. The maps n ∈ N∗ 7→ Hn[w̃] ∈ C are linearly independent over C.

This follows from the well-known linear independence of the hyperlogarithms on P1−Z.

Similarly, it follows form a property of hyperlogarithms.

Proposition 6.9. The only algebraic relations over C between the functions n ∈ C are

the series shuffle relations.
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6.2.3. Application to prime multiple harmonic sums. We fix k ∈ N∗, the power of

Frobenius and we consider the associated sequences of prime multiple harmonic sums,

(pk)weightHpk [w̃]. The asymptotic expansion above gives us a way to try to go back,

from certain relations between prime multiple harmonic sums, to relations between all

multiple harmonic sums, i.e. relations between hyperlogarithms.

Proposition 6.10. Every algebraic relation between prime multiple harmonic sums

Hpk is true for the asymptotic expansion of the previous paragraph.

Proof. Take the limit p→∞. �

This leads us to ask the following question.

Question 6.11. Are the algebraic relations satisfied by the asymptotic expansion of

multiple harmonic sums are also satisfied by sequences of multiple harmonic sums them-

selves ?

This amounts to a statement on the valuation of multiple harmonic sums. Take a linear

combination of words z =
∑

j∈J ajw̃j , where aj ∈ C and w̃j are words.

The condition that the asymptotic expansion of Hn(z) is trivial amounts to say that :

Hn(z) =n→∞ o( 1
ns ) for all s ∈ N∗.

Proposition 6.12. The implication
(
Hn(z) =n→∞ o( 1

ns ) for all s ∈ N∗ ⇒ Hn(z) = 0

for all n ∈ N∗
)

would imply that all algebraic relations between prime multiple har-

monic sums are true for general multiple harmonic sums, i.e. are relations between

hyperlogarithms.

6.3. p-adic valuations of (Li T )O,prime for p large and ζM
A . We have said in §5.1

that the question of the transcendence of finite hyperlogarithms may require the one of

sequences of prime multiple harmonic sums, which is more accessible, as a lemma. An

intermediate object between prime multiple harmonic sums and finite hyperlogarithms

is Rosen’s weighted finite multiple zeta values, generalized to all curves P1 − Z. Thus

we can imagine, for the very long term, a process of transfer of properties of linear or

algebraic independence :
{

prime multiple

harmonic sums

}
→

{
Rosen’s weighted

finite MZV

}
→

{
Kaneko-Zagier’s

finite MZV

}

Left aside the motivic aspects, let us try here to analyse the passage from prime multiple

harmonic sums to Rosen’s version, from the point of view of p-adic valuations. Equip∏
p Qp with the product topology associated with the p-adic topologies. The natural

quotient map ∏

p

Qp →
∏

p

Qp/⊕pQp

maps (Li T )O,prime[w] to the variant of Rosen’s weighted finite multiple zeta values [Ro]

recalled in §3.1.

We would like to know under which condition this map induces an injective on the

corresponding algebras. We have :

Remark 6.13. This injectivity would be true if any non-zero element S = (Sp)p =

(
∑

n≥0 an(pk)nHpk [wn])p ∈
∏

p Qp, with an ∈ Q, wn ∈ Hx(eZ) of weight n, is not in
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⊕pQp. In other words : either S = 0, or lim infp→∞ vpSp < ∞, i.e. a subsequence of

the sequence (vpSp)p. stabilizes at a value not equal to ∞. We conjecture that at least

a weak form of this fact (up to conditions on the sequences an, for example) is true.

6.4. Rings adapted to the valuation of prime multiple harmonic sums. We

now introduce some algebraic objects, in an axiomatic way when possible, which could

be useful one day to express some precise information on multiple harmonic sums. The

ring lim
←−

( ∏
p Z/pnZ

)
/
(
⊕p Z/pnZ

)
, which is part of this setting, has been introduced

by Rosen in [Ro].

6.4.1. A family of rings describing stabilization of the valuation of prime multiple har-

monic sums. The most basic information provided by Kaneko-Zagier’s conjecture on

finite multiple zeta values is actually the question to know which of them vanish. For

an index w = (sd, . . . , s1), the non-vanishing of ζA(w) is equivalent to

Hp(w) 6= 0 mod p for infinitely many p

To our knowledge, this subject is entirely conjectural : until today, no proof of the ex-

istence of a non zero value ζA(w) is known. For many indices w, it is expected, more

precisely, that there are both infinitely many p’s such that Hp(w) 6= 0 mod p and in-

finitely many p’s such that Hp(w) = 0 mod p.

Denote the set of prime numbers by P = {p1, p2, . . .} with pn < pn+1 for all n ∈ N∗.

Let φ : N∗ → N∗ a map satisfying, for all n ∈ N, φ(n) < φ(n + 1). Denote by∏
φ Qp =

∏
n∈φ(N∗) Qpn

. Let now their subsets describing the stabilisation of the valu-

ation.

Definition 6.14. Let

V +
φ Qp ⊂ VφQp ⊂

∏

φ

Qp

be defined as follows : VφQp is the subset of
∏

φ Qp made of sequences (xpn
)n∈N∗ such

that vpn
(xpn

) has a limit, distinct from −∞, when n → ∞, and V +
φ Qp its subset

characterized by those sequences having a limit > 0.

6.4.2. Two complete topological rings.

6.4.2.a. Generalities

Let (Kn, vn) be a sequence of fields with discrete valuation vn : Kn → Z ∪ {+∞} ; We

denote by On the ring of integers of Kn and mn its maximal ideal. We consider two

topologies on the product
∏

n Kn. For any element u of
∏

n Kn, for each n, the term at

Kn of u will be denoted by un.

1) Let, for all x ∈
∏

n Kn :

vi(x) = inf
n∈N∗

vn(xn)

We have, for x, y ∈
∏

n Kn such that vi(x), vi(y) > −∞,

i) vi(xy) ≥ vi(x) + vi(y)
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ii) vi(x + y) ≥ min(vi(x), vi(y)), which is an equality if vi(x) 6= vi(y).

It defines the uniform topology i.e.
∏

mn-adic topology, generated by the open subsets

V ′
x0,a = {x ∈

∏

n

Kn, vi(x− x0) ≥ a}

We have inclusions

I = ⊕nKn ⊂ {x ∈
∏

n

Kn, vi(x) > −∞}

I ∩
∏

n

On = ⊕nOn ⊂
∏

n

On = {x ∈
∏

n

Kn, vi(x) ≥ 0}

These are the inclusions of ideals into topological subrings of
∏

n Kn.

2) Let, for all x ∈
∏

n Kn :

v∞(x) = lim inf
n→∞

vn(xn) ∈ Z ∪ {±∞}

We have, for x, y ∈
∏

n Kn such that v∞(x), v∞(y) > −∞,

i) v∞(xy) ≥ v∞(x) + v∞(y)

ii) v∞(x + y) ≥ min(v∞(x), v∞(y)), which is an equality if v∞(x) 6= v∞(y).

Let the topology reflecting the valuations of the Kn’s for all n infinitely large, generated

by the

Vx0,a = {x ∈
∏

n

Kn, v∞(x − x0) ≥ a}

We have inclusions

I = {x, v∞(x) = +∞} = ⊕Kn ⊂ {x ∈
∏

n

Kn, v∞(x) ≥ 0}

I = {x, v∞(x) = +∞} = ⊕Kn ⊂ {x ∈
∏

n

Kn, v∞(x) > −∞}

These are inclusions of ideals into topological subrings.

3) We are interested in the comparison, not of the two topologies themselves but of

a certain quotient of them. The topological subrings of
∏

n Kn of 1) and 2) are related

by

(19) {x ∈
∏

n

Kn, vi(x) ≥ 0} ⊂ {x ∈
∏

n

Kn, v∞(x) ≥ 0}

(20) {x ∈
∏

n

Kn, vi(x) > −∞} = {x ∈
∏

n

Kn, v∞(x) > −∞}

By passing to the quotient by the ideals appearing in 1) and 2), these inclusions give

bijections

{x ∈
∏

n

Kn, vi(x) ≥ 0}/(I ∩ {x ∈
∏

n

Kn, vi(x) ≥ 0}) ≃ {x ∈
∏

n

Kn, v∞(x) ≥ 0}/I

{x ∈
∏

n

Kn, vi(x) > −∞}/I ≃ {x ∈
∏

n

Kn, v∞(x) > −∞}/I

Each member of these equalities being equipped with the quotient topologies arising

from 1) and 2), we have :
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Proposition 6.15. These bijections are isomorphisms of topological rings, and the

topologies on these rings are all induced the same ultrametric distance arising both

from vi and v∞.

These quotients have an axiomatic meaning :

Proposition 6.16. These two quotients are, respectively, the universal objects for all

the following problems :

i) A quotient of {x ∈
∏

n Kn, v∞(x) ≥ 0} (resp. {x ∈
∏

n Kn, v∞(x) > −∞}) in which

the topology of 2) is metrisable.

ii) A quotient of {x ∈
∏

n Kn, v∞(x) ≥ 0} (resp. {x ∈
∏

n Kn, v∞(x) ≥ −∞}) in which

there exists C ∈ Z such that each x is equal to a y satisfying vi(y) ≥ C + v∞(x) (we

can take C = 0).

iii) A quotient of both sides of (19) and (20) by an ideal which makes (19) and (20) into

isomorphisms of topological rings.

Proof. Essentially follows from the definitions and from that I is the intersection of the

open subsets for the topology 2) which contain 0. �

Proposition 6.17. Let us denote these two quotients by, respectively, ZKn→∞
et

QKn→∞
. The operation (Kn)n∈N 7→ (ZKn→∞

,QKn→∞
) commutes with the comple-

tion of topological rings, i.e. we have canonical isomorphisms of rings ẐKn→∞
= ZK̂n→∞

and Q̂Kn→∞
= QK̂n→∞

.

Proof. The completion of
∏

n Kn equipped with the uniform topology is
∏

n K̂n equipped

with the uniform topology.

Then, the completions of the subrings {x ∈
∏

n Kn, w′(x) ≥ 0}, {x ∈
∏

n Kn, w′(x) >

−∞} and of the ideal {x ∈
∏

n Kn, w(x) = +∞} are their analogues in
∏

n K̂n are still

completion morphisms. This implies the result. �

Corollary 6.18. In particular, we have ẐKn→∞
= limk(

∏
nOn/mk

n)/(⊕nOn/mk
n).

Proof. The uniform topology on
∏

nOn is the
∏

mn-adic topology. Hence the quotient

topology on Z(Kn) is the
∏

mn/(
∏

mn∩⊕On) =
∏

mn/⊕mn-adic topology. Ẑ(Kn) being

complete, it is thus isomorphic to the projective limit of its quotients by (
∏

mn/⊕mn)k =∏
mk

n/⊕mk
n which are equal to (

∏
nOn/mk

n)/(⊕nOn/⊕nm
k
n) ; in fine, ⊕nOn/mk

n is equal

to ⊕nOn/mk
n, where the bar denotes the closure for the quotient topology of

∏
nOn/mk

n.

�

Remark 6.19. i) Let n0 ∈ N∗. Let, for all n ∈ N, Ln = Kn+n0 . Then, there are

canonical isomorphisms ZKn→∞
≃ ZLn→∞

and QKn→∞
≃ QLn→∞

.

ii) The ideal D (resp. D′) of divisors of 0 in ZKn→∞
(resp. QKn→∞

) is the set of elements

x = (xn) such that there exists a subsequence of (xn) which is identically 0. We note

that QKn→∞
/D′ is the field of fractions of ZKn→∞

/D.
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6.4.2.b. The case of (Q, vp)p prime

Notation 6.20. In the case of (Kn, vn) = (Q, vp), the following notations seem natural

to us :

Zp→∞ =
∏

p

Zp/⊕pZp

Qp→∞ = {(xp) ∈
∏

p

Qp, inf
p

vp(xp) > −∞}/⊕pQp

Moreover Zp→∞ = lim
←−

(
∏

p Z/pnZ)/(⊕pZ/pnZ).

6.4.2.c. A generalization including the ring A

The construction of ZKn→∞
can be generalized, to every sequence of rings (An) equipped

with an ultrametric distance bounded by 1, as
∏

n An/⊕An where
∏

n An is equipped

with the uniform topology.

This can be applied to the all the sequences (Z/pnZ)p prime which yields the rings

(
∏

p Z/pnZ)/(⊕pZ/pnZ) and is compatible with the equality
∏

p Zp/⊕pZp =

lim
←−

(
∏

p Z/pnZ)/(⊕pZ/pnZ).

6.4.3. A discrete valuation ring. Let U , respectively V , the subring of
∏

n Kn made of

the elements x = (xn) such that (vn(xn))n∈N∗ has a limit when n → ∞ in N ∪ {+∞},

respectively Z ∪ {+∞}.

Definition 6.21. Let OKn→∞
= U/I∩U ⊂ ZKn→∞

, and KKn→∞
= V/I∩V ⊂ QKn→∞

.

Proposition 6.22. OKn→∞
equipped with x 7→ limn→∞ vn(xn) is a discrete valuation

ring. Its field of fraction is KKn→∞
. Its residue field is FKn→∞

= {0}∪ (
∏

n k∗
n/

⊕
n k∗

n).

Definition 6.23. We denote respectively by Op→∞, Kp→∞ et Fp→∞ the completed

discrete valuation subring, its field of fractions and its residue field, associated to the

sequence (Q, vp)p prime.

We will denote by vp→∞, the limit of the valuation when p → ∞, if it exists, of an

element of
∏

p Qp, as well as the valuation over OKn→∞
.

We thus have injections Op→∞ →֒ Zp→∞, and Kp→∞ →֒ Qp→∞.

The following result is a form of universality property of OKn→∞
among the subrings

ZKn→∞
which are of discrete valuation.

Lemma 6.24. Let A be a subring of ZKn→∞
on which v(x) = lim inf vn(xn) defines a

valuation. Then there exists a function ϕ : N → N, strictly increasing, such that the

intersection of A with the image of
∏

nOϕ(n) is equal to OKϕ(n)→∞
.

Proof. Let A be such a subring. A is countable ; we denote the elements of A − {0}

by x1, . . . , xk, . . ., with xk = (xk
n)n∈N. For each xk ∈ A, let Exk = {n ∈ N/vn(xk

n) =

lim infn→∞ vn(xk
n)} ; it is by definition an infinite set. The hypothesis implies that

lim infn→∞

∑n
j=1 vn(xj

n) =
∑n

j=1 lim infn→∞ vn(xj
n). We can modify a representant of
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the xj ’s by adding an element of J, which permits to assume, for all j ∈ N∗, n ∈ N, that

xj
n ≥ lim inf xj

n. We see then that Ex1...xk
⊂ ∩k

j=1Exj
. Thus, ∩k

j=1Exj
is an infinite set.

We define by induction a function ϕ such that for all k, ϕ([k, +∞[) ⊂ Eak
: ϕ(k + 1) is

an element of Ex1 ∩ . . . ∩ Exk+1
strictly superior to ϕ(k). �

7. The Taylor period map

7.1. Summary of the evidence for the existence of a Taylor period map. Our

results of part I and II can be seen as information towards the solution of the following

precise problem : show that any relation between numbers (Li T )O,prime[w̃] is equivalent

to a relation which is motivic up to the usual period conjectures on multiple zeta values

and finite multiple zeta values.

A solution to this problem would justify entirely the view of (Li T )O,prime[w̃] as "Taylor

periods" of (Li T )M
O,prime[w̃] and the definitions of a "Taylor period map".

Let us explain first why we think that this problem can be settled positively. If we con-

sider any identity between any multiple harmonic sums (e.g. not all primes at the same

time), there is no reason for this identity coming from the pro-unipotent fundamental

groupoid of P1 − Z : the first counter-example is our theorem expressing multiple har-

monic sums in terms of p-adic hyperlogartihms, viewed in each Qp and not the product∏
p Qp ; there, multiple harmonic sums, being algebraic numbers, are p-adic hyperloga-

rithms of weight 0.

What it seems that we obtain a very rigid object when we consider sequences of multiple

harmonic sums,
(
(pk)weightHpk [w̃]

)
p

with p varying in the set of all prime numbers. If

a relation between prime multiple harmonic sums is true for all p, given a k ∈ N∗, we

expect that it comes from a relation between hyperlogarithms ; either by taking Taylor

coefficients or by taking infinite sums of values at tangential base-points and using the

expression of prime multiple harmonic sums in terms of p-adic hyperlogarithms.

Now, let us explain the role of the results of part I and II regarding this problem.

In I, we have retrieved algebraic relations between prime multiple harmonic sums, proved

by elementary methods by Zhao, Hoffman and Rosen, as particular cases of our theorems

1 and 3, for which we know the geometric origin.

In II, we have seen in §6 that, embedding Q in C, given a relation between sequences(
(pk)weightHpk [w̃]

)
p
, we can take its limit p → ∞ and obtain a relation concerning

the complex asymptotic expansion of multiple harmonic sums when the upper bound

n→∞.

We have seen also in §4 that, given a relation between prime multiple harmonic sums

which is, moreover, true for all powers of Frobenius - which is true for all our known

examples - it implies, by considering the asymptotics with respect to the power of Frobe-

nius, a relation between p-adic hyperlogarithms.

We also have seen in §2 that a relation between prime multiple harmonic sums implies,

by reduction modulo large primes, a relation between finite multiple zeta values, which

is conjecturally motivic by Kaneko-Zagier’s conjecture which has been tested experi-

mentally.

This last statements reduces our problem to obtain a process of lift of congruences. In
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§3 we have constructed an implicit general lift of all congruences of for P1 − {0, 1,∞}

: this solves our problem up to a question of convergence of series, i.e. to a problem of

controlling certain rational coefficients.

7.2. Summary of the indications on the shape of the Taylor period map. We

have discussed in §1.2 in which form we would define a Taylor period map. This would

involve two topological algebras, over a ring that has to be determined. One of the

algebras is motivic and the other one is defined through prime multiple harmonic sums,

their valuation and p-adic numbers. Let us now review the indications that we have

concerning the shape of this Taylor period map.

We know that the p-adic valuation of a prime multiple harmonic sum (pk)weight(w)Hpk [w]

is superior or equal to the weight of w. The principle of lift of congruences says the fol-

lowing : if the valuation of a polynomial of prime multiple harmonic sums of a given

weight is strictly superior to the weight with certain additional assumptions, for example

"for all p large enough", then, the corresponding polynomial of prime multiple harmonic

sums can be expressed in higher weight. This gives a partial converse inequality compar-

ing the weight and the valuation. Note that, given the relation between prime multiple

harmonic sums and p-adic iterated integrals, and given the relation between the weight

filtration and the Hodge filtration on the fundamental groupoid, this question is close to

the one of studying the distance between the Hodge filtration and the slopes of Frobenius

on the associated log-crystalline cohomology groups.

As for the topology on the algebra of prime multiple harmonic sums, we have is that

certain particular parts of the information on the valuation on multiple harmonic sums

(non-necessarily prime) should have a motivic lift. These are provided by Kaneko-

Zagier’s conjecture, and by §6.1, §6.2, §6.3.

As for the possible denominators of the rational coefficients, we have the following in-

formation. The universal families of algebraic relations of part I between prime multiple

harmonic sums have rational coefficients in Z, except for the Kashiwara-Vergne equa-

tions, for which only the one dimensional part has coefficients in Z ; we expect the rest

of the equations to have non-trivial rational denominators of at most

1/ weight!

This kind of denominators also appears in the divided powers of the log-crystalline

cohomology associated to the pro-unipotent fundamental groupoid ; and also in our

lift of congruences of §3.1. On the other hand, Rosen’s work on lift of congruences

[Ro] suggests that there might be lifts for which the denominators are much bigger,

and do not give absolutely convergent p-adic series for all p large enough, but, instead,

absolutely convergent sums in the ring
( ∏

p Zp

)
/
(
⊕pZp

)
- where the closure refers to

the uniform topology on the product of all Zp’s.

7.3. Primary form of the conjecture. Now we can write the most primary version

of the conjecture. We chose a power k ∈ N∗ of Frobenius.

As in §1.2, we consider, for all primes p at the same time, the p-adic period map from
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the weight-adically completed algebra of motivic hyperlogarithms, and viewed with a

factor Λweight. It is a map :

ẐM →
∏

p

Zp[[Λ]]

Its restriction to the Z-algebra topologically generated by the prime multiple harmonic

sums motives (Li T )M
O,prime, and post-composed with the quotient by (Λ−1) gives a map

of Z-algebras :

per : (Li T )M
O,prime →

∏

p

Zp[[Λ]]/(Λ− 1)

that sends (Li T )M
O,prime[w] → (Li T )O,prime[w] for each index w. The image of per in-

side
∏

p Zp[[Λ]]/(Λ− 1) must be seen as included in
∏

p Qp ; the quotient by Λ− 1 gives

absolutely convergent series by the lower bounds of valuations of p-adic iterated integrals.

Take an integer s ∈ N∗ and consider the restriction of per to the sub algebra of

(Li T )M
O,prime generated by elements of weight ≥ s ; its images is and

∏
pZp[[Λ]]/(Λ− 1)

; then compose it with the quotient with keeps only the primes p > s :

per′ :
(
(Li T )M

O,prime

)
weight≥s

→
∏

p

Zp[[Λ]]/(Λ−1)weight≥s ։

∏

p>s

Zp[[Λ]]/(Λ−1)weight≥s

Question 7.1. Do there exist :

- a ring of coefficients A,

- a sub A-algebra of the source of per resp. per′,

- a quotient of the target of per, of per′,

- topologies on these two algebras, where the topology on the target is defined purely

in terms of prime multiple harmonic sums, and the one on the source is motivic, which

makes them into complete topological A-algebras,

such that the map perT aylor induced by per, or per′ is an isomorphism of complete

topological A-algebras ?
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