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ALGEBRAIC RELATIONS, TAYLOR COEFFICIENTS OF

HYPERLOGARITHMS AND IMAGES BY FROBENIUS - III

DAVID JAROSSAY

Abstract. We widen our geometric framework that enables to study the properties
of multiple harmonic sums, and to understand them in terms of motives and periods.
We define what we call a reindexation of the pro-unipotent fundamental groupoid
of P1 − Z. It is a period map in a generalized sense, that enables to transport
the fundamental groupoid and certain of its motivic structures into a variant. It is
equipped with a "conjecture of periods".
We show results of structure on the reindexed variant of the fundamental groupoid
of P1 − Z. We apply it, among others, to the obtention of other algebraic relations,
to the theory of series of p-adic multiple zeta values, and to the interpretation in
terms of motives and periods of other of our results of p-adic analysis.
Finally, we also explain, thanks to this language, how we can build ad hoc a Galois
theory of iterated series adapted to prime multiple harmonic sums.
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1. Introduction

1.1. Quick overview.

1.1.1. General framework. Our framework is the pro-unipotent fundamental groupoid

of the curves of the type P1 minus a finite number of points over a number field, and

the arithmetics of its periods, which are algebraic iterated integrals.

In the case of P1 − {0, 1, ∞}, the periods of interest are multiple zeta values, that is to

say the numbers :

ζ(sd, . . . , s1) =
∑

0<n1<...<nd

1

ns1
1 . . . nsd

d

= (−1)d

∫

0<t1<...<tn<1

∧n
i=1

dti

ti − ǫi
∈ R

with d ∈ N∗, sd, . . . , s1 ∈ N∗, sd ≥ 2, n =
∑d

i=1 si, (ǫn, . . . , ǫ1) = (

sd−1︷ ︸︸ ︷
0 . . . 0 1, . . . ,

s1−1︷ ︸︸ ︷
0 . . . 0 1).

In the more general case of a curve P1 − Z, with Z = {0, z1, . . . , zr, 1, ∞} ⊂ P1(Q),

r ∈ N, analogues of multiple zeta values are the values of hyperlogarithms at tangential

base points, that we will denote by Li

(
zid

, . . . , zi1

sd, . . . , s1

)
(zid+1

).

They are defined by iterated integrals, on a special path, of the form :

Li
( zid

, . . . , zi1

sd, . . . , s1

)
(zid+1

) =

∫ z

0

ωzin
(tn)

∫ tn

0

. . .

∫ t3

0

ωzi2
(t2)

∫ t2

0

ωzi1
(t1)

1.1.2. The algebraic interpretation of a p-adic analytic equality. The origin of these

three papers is the our work of p-adic analysis on πun
1 (P1 − Z). We have proved an

unexpected equality relating two different objets in a very specific way. The first object

is the multiple harmonic sums associated with P1 − Z :

Hn

( zid+1
, . . . , z1

sd, . . . , s1

)
=

∑

0<n1<...<nr<n

(
zi2/zi1

)n1
. . .

(
zid+1

/zid

)nd
(
1/zid+1

)n

ns1
1 . . . nsd

d

where d ∈ N∗, i1, . . . , id+1 ∈ {1, . . . , r}, sd, . . . , s1 ∈ N∗, and n ∈ N∗.

The second one is p-adic hyperlogarithms at tangential base points. We found that

multiple harmonic sums have an expression in terms of infinite p-adic sums of p-adic

hyperlogarithms at tangential base-points. The formula is the simplest in the case where

n is a power of a prime number p : if w̃ =
( zid+1

, . . . , z1

sd, . . . , s1

)
, then :

(1) (pk)sd+...+s1 Hpk (w̃) =

z−pk

id+1
(−1)d

∑

0≤d′≤d | zi
d′ =zid+1

ld′+1,...,ld≥0

d∏

i=d′

(
−si

li

)
(−1)si Lip,−k

(
zid′+1

. . . . . . zid+1

sd′+1 + ld′+1, . . . , sd + ld

)
(z)

× Lip,−k

(
zid′ , . . . , zi1

sd′ , . . . , s1

)
(z)

where the index −k in Lip,−k refers to the power of Frobenius.

In the case of P1 −{0, 1, ∞} and k = 1, this gives, where ζp denotes the p-adic analogues
2



of multiple zeta values (here, zi1 = . . . = zid
= 1) :

(2) psd+...+s1 Hp(sd, . . . , s1)

= (−1)d
d∑

d′=0

∑

ld′+1,...,ld≥0

d∏

i=d′

(
−si

li

)
ζp(sd′+1 + ld′+1, . . . , sd + ld)ζp(sd′ , . . . , s1)

In part I and II, we explained that, although this equality involves infinite sums, it

"reflects algebraic relations" : we can built, via both sides of the equality, two variants

of multiple zeta values, two periods of the same motive, a "Taylor period" and a "p-adic

period".

This motive does not lie in the usual algebra of motivic hyperlogarithms, but in its

completion relatively to the weight filtration. This slightly larger context has several

particular aspects : one of them is that it makes sense to define period maps and period

conjectures in the context, not of algebras, but of topological algebras. This leads to

interpret motivically some of the information on the valuation on multiple harmonic

sums.

1.1.3. Part I. In part I, we defined what a "prime multiple harmonic sum motive"

(Li T )M
O,prime[w̃]

It admits a formal complex period, a formal p-adic period : they lie respectively in

(Z/ζ(2)Z)[[Λ]], Zp[[Λ]]

where Z, resp. Zp, is the Q-algebra of complex, respectively p-adic hyperlogarithms.

It also admits what we call a "Taylor period", which is the following :

(Li T )O,prime[w̃] =

(
pkHpk [w̃]

)

p

∈
∏

p

Qp

where w̃ is an index
( zid+1

, . . . , z1

sd, . . . , s1

)
and k ∈ N∗ is the number of iterations of Frobenius.

We showed that the motive and its periods satisfy certain algebraic relations which are

variants of the usual algebraic relations between multiple zeta values, that conjecturally

generate all their relations. As for the Taylor period, the relations can be obtained by

considering Taylor coefficients of algebraic relations between multiple polylogarithms.

All those results are for us a justification for this definition of this motive and this

periods.

We also defined period maps and stated the associated conjectures of periods, except

for the "Taylor period" which we delayed to part II.

1.1.4. Part II. A generic subject of part II is the Taylor period map and its period con-

jecture, in the context of complete topological algebras. We show how delicate it is to

formulate - our formulation at the end of part II is not as precise than the other ones -

and what questions it englobes.

We study in part II the relations between the prime multiple harmonic sum motive
3



and its periods and, others motives and periods : the usual hyperlogarithm and multi-

ple zeta motives, and the one attached to the finite multiple zeta values of Kaneko and

Zagier. In particular, we study lift of congruences between finite multiple zeta values,

and how the part I combined to our results of p-adic analysis yields a theory of series for

p-adic hyperlogarithms. Finally, we explain that some precise parts of the information

on the valuation of multiple harmonic sums could have a motivic avatar.

We explain how the question of the Taylor period map in the context of complete topo-

logical algebras enables to condensate several questions at the same time, on lift of

congruences, their rational coefficients, and the valuation of multiple harmonic sums.

1.1.5. Part III. We are now going to see that the amount of information that can be

formulated through motives and periods - periods in a generalized sense - is wider than

what we saw in part I and II.

We are going to obtain, among other things, an essentialization of our computations of

parts I and II, and a more canonical framework to understand prime multiple harmonic

sum motive.

1.2. Heuristics for part III.

1.2.1. A canonical framework around the prime multiple harmonic sum motive. There is

actually an empty space between the prime multiple harmonic sum motive and the pro-

unipotent fundamental groupoid of P1 − Z. Let us recall that the relation between the

two uses maps of reindexations of differential forms and of paths, that we have denoted

respectively by Σω and Σγ in part I. We are going to define a "reindexed fundamental

groupoid", which keeps all the structures of the motivic fundamental group that enable

to study the algebra and arihmetics of periods, and which is more directly related to

the prime multiple harmonic sum motive : the role played by multiple zeta values in

the usual context will be played by the prime multiple harmonic sums. It is no more

a groupoid, but a finite sequence of schemes - which still contains the same arithmetic

information - it is the pushed forward version of the pro-unipotent fundamental groupoid

by a "reindexation" Σ :

Σ(Li T )M
O,prime

: πun,dR
1 (XZ) → Σ(Li T )M

O,prime

(
πun,dR

1 (XZ)
)

1.2.2. The completed Hopf algebra of the pro-unipotent fundamental groupoid. An es-

sential object in this paper will be the completion of the graded Hopf algebra of the

fundamental groupoid at its canonical base point, i.e. the weight-adically complete

shuffle Hopf algebra
̂O(πun,dR

1 (XZ , can))

It appeared in part I, only as the target of certain re-indexation maps of differential

forms Σω. In the present paper, it will appear slightly more intrinsically. Intuitively, it

is the algebra of functions on a "completed pro-unipotent fundamental groupoid" ; but,

a priori, there is no natural notion of points of an hypothetical completed pro-unipotent

fundamental groupoid. What we want to point out is that, after having applied certain

reindexation maps Σ, the operation of "completing" the reindexed fundamental group

Σ
(
πun,dR

1 (XZ)
)

can become natural.
4



Indeed, in our example of prime multiple harmonic sums, the completion of the rein-

dexed fundamental group is the natural receptacle, not of prime multiple harmonic

sums, but of the algebra of absolutely convergent infinite sums of prime multiple har-

monic sums. Unlike for the usual context of πun,dR
1 (XZ), this algebra occurs naturally,

because the valuation of multiple harmonic sums is lower bounded by their weight and

because the relations between prime multiple harmonic sums involve infinite sums - or

instead because the definition of the prime multiple harmonic sum motive uses a certain

completion.

What we could call the absolute "completed pro-unipotent fundamental groupoid" is

thus the collection of all such possible examples of completions ̂Σ
(
πun,dR

1 (XZ)
)

that

we can build naturally - involving both a comparison between the valuation and the

weight filtration (we can also say the Hodge filtration instead) and a natural apparition

of sums of series. Each of these examples yields a map from the universal complete

algebra
̂O(πun,dR

1 (XZ , can)) to a complete topological algebra which can genuinely be

viewed, in a natural way, as an algebra of functions of a certain group, whose points

are generating series of periods, and which is equipped with motivic tools to study their

arithmetics.

1.2.3. The reindexation map as a period map. In this part III, we will take, as a sub-

stitute to the motivic Galois action on the fundamental group, the Ihara action. Using

it, we are going to see that the p-adic analytic equality (1) which is the origin of this

work has an algebraic analogue : the equality between two different push forwards of

the Ihara action ; one acts naturally on Taylor coefficients of hyperlogarithms (left hand

side of the equality (1)), and the other one which acts naturally on the infinite sums

of p-adic multiple zeta values (right hand side of the equality (1)). We will view the

fact that the two are equal despite that they are defined differently as an additional

argument to the consistency to the notion of Taylor period, as a notion by itself, and

not a simple byproduct of the p-adic (or we should say adelic) period.

We are going to interpret it in terms of motives and periods : let us view the two

push-forwards of the Ihara action as its two "periods", and the two pushing forward

operations as "period maps", associated with the reindexation Σ(Li T )M
O,prime

.

Let us push further the interpretation : the result of part II that the prime multiple

harmonic sum motives of P1 −{0, 1, ∞} generate the weight-adic completion of the Hopf

algebra of motivic multiple zeta values, combined with the equality of the two "periods"

of the Ihara action is reinterpreted as the validity of a "conjecture of periods" for the

reindexation - it is accessible because the target of the map is still motivic and there are

no issues of transcendence. It provides the validity of this reindexation.

A period map transports algebraic information, conjecturally to the identical. A rein-

dexation of the fundamental group also has the same fundamental property ; we will

consider the reindexed fundamental group as the "period" of the fundamental group

under the reindexation.

1.2.4. Reindexations of algebraic relations. In the literature, there are many examples

of relations between multiple zeta values, proved by elementary algebraic of analytic
5



methods, and which have been later retreived as consequences of the double shuffle

relations. The emblematic example, proved by Hoffman and Ohno by using partial

fractions, is called "the cyclic sum formula" and is the following : for d ∈ N∗, and

sd, . . . , s1 ∈ (N∗)d such that sd ≥ 2, we have :

(3)

d∑

k=1

ζ(sk + 1, sk−1, . . . , s1, sd, . . . , sk+1)

=
∑

1≤k≤d

sk−2∑

j=0

ζ(sk − j, sk−1, . . . , s1, sd, . . . , sk+1, j + 1)

We will obtain in this part III a variant of the cyclic sum formula for prime multiple

harmonic sums and finite multiple zeta values. It is implicitly a byproduct of the rein-

dexation for algebraic relations that we will define.

A known method for retrieveing such equalities as byproducts of the double shuffle

relations are apparented to our methods of part I. In their paper [IKZ] on double shuffle

relations, Ihara1, Kaneko and Zagier retrieve the cyclic sum formula and many other

similar ones by certain specific automorphisms of the algebra of indices, which involve -

although with a different point of view - a weight-adic completion.

Thus, our framework of reindexations is also an attempt to unify and essentialize our

computations of part I, some computations of Ihara-Kaneko-Zagier and other computa-

tions in the same style ; we will take into account not only double shuffle relations and

their variants, but also, Kashiwara-Vergne relations (and the motivic Galois action). It

is an attempt to provide a systematic method of computation for proving variants of

algebraic relations.

1.2.5. A Galois theory for series. Our reindexed fundamental group will have the fol-

lowing particularity : its structures such as Frobenius action or Ihara action on prime

multiple harmonic sums will admit an extremely concise formula in terms of series, and

their indices lying in N.

This is not at all a usual phenomenon : the Ihara action, or its dual, the Goncharov

coaction, are defined in the context of the motivic fundamental group, or at least of its

Hodge realization, and have a priori nothing to do with series.

We are going to turn these observations into definitions and conjectures, expressed again

by motives, periods, and period maps ; they will provide a sort of motivic Galois theory

for prime multiple harmonic sums.

1.3. Notations. For a fully detailed account of the notations, see part I, §1 and §2. We

give here the ones which will be specifically useful for this part. We will give additional

notations when necessary throughout the paper.

1This is K.Ihara, distinct from Y.Ihara who defined the motivic Galois action on πun

1
(P1 − {0, 1, ∞})

of the previous paragraph
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1.3.1. For the fundamental group. Here, let us take again a curve P1 −Z with Z a finite

subset of P1(Q).

We denote the elements of Z through Z = {0, z1, . . . , zr, 1, ∞}, with r ∈ N.

The de Rham version of the pro-unipotent fundamental groupoid will be denoted by

πun,dR
1 . A tangential base-point ~v at a point x will be denoted by ~vx. The canonical

base-point will be denoted by can.

Let eZ be the alphabet {e0, ez1 . . . , ezr
, e1}. The shuffle Hopf algebra over Q relative to

eZ is denoted by Hx(eZ).

Let the non-commutative algebra of formal power series with variables the letters of eZ ,

and coefficients in an algebra R, be denoted by

R〈〈eZ〉〉 = R〈〈e0, ez1 . . . , ezr
, e1〉〉

An element of it can be written uniquely as

f = f [∅] +
∑

sd,...,s0∈N∗

id,...,i1∈Z−{0,1,∞}

f [esd−1
0 ezid

. . . es1−1
0 ezi1

es0−1
0 ]esd−1

0 e1 . . . es1−1
0 e1es0−1

0

For each couple of base-points u, v, and for each algebra R, we have

πun,dR
1 (XZ , u, v)(R) ⊂ R〈〈eZ〉〉

For i ∈ {0, . . . , r + 1}, we have linear maps

∂ei
, ∂̃ei

: Hx(eZ) → Hx(eZ)

defined by the removing of the letter the most at the left or at the right of a word : they

are characterized uniquely by the following equality : for all w ∈ Hx(eZ),

w =

r+1∑

i=0

ei∂ei
(w) =

r+1∑

i=0

∂̃ei
(w)ei

The weight of a word on eZ is its number of letters. The depth of a word w on eZ is its

number of letters distinct from e0.

1.3.2. Periods and their generating series. Generating series of (complex, p-adic, mo-

tivic) hyperlogarithms, resp. multiple zeta values are elements

Φ0z ∈ πun,dR
1 (XZ ,~10,~1z)(C) ⊂ C〈〈eZ〉〉 , (Φ0z)p,−k ∈ πun,dR

1 (XZ ,~10,~1z)(Qp) ⊂ Qp〈〈eZ〉〉

ΦM
0z ∈ πun,mot

1 (XZ ,~10,~1z) ∈ ZM〈〈eZ〉〉

resp., with Z = {0, 1, ∞},

Φ ∈ πun,dR
1 (XZ ,~10, −~11)(R) ⊂ R〈〈e0, e1〉〉, Φp,−k ∈ πun,dR

1 (XZ ,~10, −~11)(Qp) ⊂ Qp〈〈e0, e1〉〉,

ΦM ∈ πun,mot
1 (XZ ,~10, −~11) ⊂ ZM〈〈e0, e1〉〉,

where k ∈ N∗ is the number of iterations of Frobenius, and z is the extremity of the

path of integration appearing in the definition of §1.1.

The fact that these are generating series of periods must be understood via the following
7



correspondence between words on eZ and indices introduced before :

( zid
, . . . , zi1

sd, . . . , s1

)
↔ esd−1

0 ezid
. . . es1−1

0 ezi1

Namely, we have, for all indices :

ζ(sd, . . . , s1) = (−1)dΦ[esd−1
0 e1 . . . es1−1

0 e1] etc.

The factor (−1)depth comes from that the series expansion with respect to z of a differ-

ential form dz
z−zi

, which occurs in the iterated integral representation of multiple zeta

values, comes with a negative sign. Finally, the p-adic, resp. motivic analogues of mul-

tiple zeta values are denoted by ζp,−k, resp. ζM. The p-adic, resp. motivic analogues of

hyperlogarithms are denoted by Lip,−k, LiM.

We denote by ζp,−∞, resp. Lip,−∞ the numbers obtained from ζp,−k, Lip,−k by taking

limits k → ∞. These are the inverse for the Ihara action of the numbers reflecting the

Frobenius-invariant path in the fundamental group.

We will denote Kaneko-Zagier’s finite multiple zeta values by ζA ; their motivic versions

by ζM
A . They have complex and p-adic analogues, which we will denote by ζ

Z/ζ(2)Z
A ,

and ζ
Zp

A .

1.4. Outline. This third part is less computational than the two others and, although

we still make some computations, we give a wider role to definitions and interpretations,

marked with the notions of motives and periods. The conclusion of these definitions

and interpretations is a Galois theory of series at the end. Below, we mark in bold only

three computations.

Until now, the motivic objects that we defined to apply them to prime multiple har-

monic sums passed only through the way of infinite sums of p-adic hyperlogarithms. We

restricted the use of Taylor coefficients to proving algebraic relations.

In §2 we abolish this situation. We define two variants of the Ihara action. One is

adapted to the way of Taylor coefficients and arises naturally from the proof of our

p-adic theorem stated above. The other uses the way of infinite sums of p-adic hyper-

logarithms. We are going to prove that, although the two are defined differently, they

are equal.

Theorem 1. Two "periods" of the Ihara action, ◦T aylor and ◦Λ−adic defined differ-

ently, and they are equal.

This is an algebraic analogue of the p-adic equality which is the origin of this work.

In §3, we recall the basics on the schemes of solutions to the usual sets of relations,

such as DMR for the double shuffle relations. We define the variants arising of those

schemes from part I.

We define a variant DMRS and we explain its analogy with a scheme close but not

exactly equal to the one of solutions to the Kashiwara-Vergne equations.
8



We prove a result on those sets of relations.

Proposition 2. The shuffle relation for the Λ-adic periods of the prime multiple har-

monic sum motive is equivalent to the shuffle relation for multiple zeta values.

It has an application to the algebraic theory of series of p-adic multiple zeta values

: by this proposition, the shuffle relations of prime multiple harmonic sums, which can

be read quite explicitly, can be seen as an indirect way to read on series the shuffle

relation for p-adic multiple zeta values. This partial answer to the question of reading

explicitly algebraic relations goes in a different direction from the one that we gave in

II.

In §4, we discuss in general the reindexations of algebraic relations of the fundamental

groupoid. It is a sort of systematic rule of computation for deriving variants of algebraic

relations.

We also define a notion of "formal algebraic relations" : relations involving infinite sums

of periods but that "come from geometry". We give two significative counter-examples,

one complex and one p-adic, of relations involving infinite sums that are not algebraic

relations. Inspired by the notion of reindexation, we prove the following result :

Proposition 3. There exists a variant of the cyclic sum formula (3) for prime multiple

harmonic sums and finite multiple zeta values.

In §5, we define the fundamental group reindexed according to the prime multiple har-

monic sum motive :

ΣLiM
O,prime

[w̃]

We describe, in two distinct ways, its structures : Ihara action, Frobenius, existence

and unicity of invariant path by Frobenius, expansion of Frobenius with respect to the

number of iterates. First, in §5.2, in the way of the fundamental groupoid, up to the

reindexation ; secondly, in §5.3, relying on our p-adic analytic work, in an elementary

way.

We interpret in §5.4 this elementary description in terms of periods. This gives an in-

terpretation in terms of motives and periods of some analogies observed in our p-adic

analytic work.

In §6, we explain, using again our p-adic analytic work, how the elementary descrip-

tion can be "indexed by N".

We define then a framework which works as a motivic Galois theory of series to describe

the properties of multiple harmonic sums. It is supported by a period conjecture which

reformulate the one of the previous parts.

In §6.1 we define a variant of the fundamental groupoid "indexed by N" ; in §6.2 we

define a class of relations between prime multiple harmonic sums in terms of this frame-

work of series.

9



We conclude in §7 on the motivic Galois theory of series that we have obtained.

Acknowledgments. I thank Benjamin Enriquez and Pierre Cartier for their sup-

port. This work has been achieved at Institut de Recherche Mathématique Avancée,

Strasbourg, supported by Labex IRMIA.

2. The Ihara action and the prime multiple harmonic sum motive

2.1. Preliminaries on the de Rham fundamental groupoid. Recall from part I

that the de Rham fundamental groupoid of P1 − Z admits, as base points, the rational

points of P1 − Z, the non zero rational tangent vectors ~vz at z to P1, and a canonical

base point can. The pro-unipotent affine group scheme πun,dR
1 (P1 − Z, can) over Q is

described explicitly as follows.

Definition 2.1. Let Hx(eZ) be the Q-vector space Q〈(ezi
)i=0,...,r+1〉 = Q〈eZ〉, freely

generated by words over eZ , including the empty word. It is graded by the length of

words called the "weight" of words. It is a Hopf algebra, called the shuffle Hopf algebra,

endowed with :

i) The shuffle product x defined by, for all words u1 . . . um, um+1 . . . um+m′ over eZ :

(u1 . . . um) x (um+1 . . . um+m′) =
∑

σ permutation of {1,...,m+m′}
σ(1)<...σ(m)

σ(m+1)<...<σ(m+m′)

uσ−1(1) . . . uσ−1(m+m′)

ii) The deconcatenation coproduct ∆dec : u1 . . . um 7→
∑r

k=0 u1 . . . uk ⊗ uk+1 . . . um

iii) the counit ǫ equal to the augmentation morphism

iv) the antipode S : um . . . u1 7→ (−1)mu1 . . . um.

Proposition 2.2. i) We have : πun,dR
1 (XZ , can) = Spec(Hx(eZ))

ii) The points of the group πdR
1 (X, can) are the grouplike series :

πun,dR
1 (XZ , can)(R) = {f ∈ R〈〈eZ〉〉 s.t. ∆x(f) = f ⊗ f, ǫ(f) = 1}

iii) We have

Lie(H∨
x

(Z)) ⊗K(Z) R = {f ∈ R〈〈eZ〉〉 s.t. ∆x(f) = f ⊗ 1 + 1 ⊗ f}

Proposition 2.3. For all points x, y, πun,dR
1 (P1 − Z, x, y), has a canonical path x1y.

These paths are compatible with the groupoid structure : we have for all x, y, z,

(x1y).(y1z) = (x1z). They induce canonical isomorphisms of schemes

πun,dR
1 (XZ , x, y) ≃ πun,dR

1 (XZ , can)

We can work most of the time using this identification and make most of the computa-

tions in πun,dR
1 (XZ , can).

2.2. The Ihara action.

2.2.1. Introduction. We will use the following operation as a substitute to the motivic

Galois action of Goncharov that we used in I. It is essentially dual to it.

The computation will be through the trivialization at 0 of the fundamental torsor of

paths that start at 0, obtained by left multiplication of a scheme πun,dR
1 (X, x,~10) by the

canonical path ~10
1x.

10



2.2.2. The Ihara action on the restricted groupoid. We consider the following set of

couples of tangential base points of πun,dR
1 (P1 − Z) :

T = {(~10,~10)} ∪ {(~10,~1z) | z ∈ Z − {0, ∞}} ∪ {(~1z,~1z) | z ∈ Z − {0, ∞}}

Definition 2.4. Let πun,dR
1 (XZ , t)t∈T be the subgroupoid of πun,dR

1 (XZ) generated

by the schemes πun,dR
1 (XZ , x, y) with (x, y) ∈ T . It is the "restricted fundamental

groupoid".

The Ihara action is primarily an action of a certain group of automorphisms of the

restricted groupoid. It factorizes the motivic Galois action of the pro-unipotent part of

the motivic Galois group associated to the de Rham realization.

In the following, all the schemes of πun,dR
1 (XZ , t)t∈T are identified to πun,dR

1 (XZ , can)

by the canonical isomorphisms. The case of roots of unity, where particular phenomena

happen, is treated in [DG].

Definition 2.5. Let V ′ the group of sequences v = (vt)t∈T ∈
∏

t∈T Aut(πun,dR
1 (XZ , t))

such that :

1) v is compatible with the groupoid structure of πun,dR
1 (XZ , t)t∈T

2) For all i ∈ {0, . . . , r + 1}, Lie v(~1z,~1z) maps ezi
7→ ezi

Definition 2.6. Here we assume that Z = {0, ∞} ∪ µN with N ∈ N∗. Let ξ be a

primitive root of unity over Q. Let V be the subgroup of V ′ which consists of the

automorphisms which are, moreover, compatible with the automorphism (z 7→ ξz)∗ of

the restricted groupoid.

Proposition 2.7. (Ihara, Deligne-Goncharov)

The map

V → πun,dR
1 (XZ ,~10,~11)

v 7→ v(~11
1~10

)

is an isomorphism of schemes. Via the identification V ≃ πun,dR
1 (XZ ,~10,~11) given by

this isomorphism, it induces a group law on πun,dR
1 (XZ ,~10,~11), called the Ihara group

law.

Notation 2.8. We will denote the Ihara action, both on the restricted groupoid and

the full groupoid in the general case of P1 − Z, by ◦I .

Proposition 2.9. (Ihara, Deligne-Goncharov)

i) In the case of P1 − {0, 1, ∞}, the action of V , identified to πun,dR
1 (XZ ,~10,~11), on

πun,dR
1 (XZ ,~10,~11) is given by

g 7→
(
f 7→ g ◦I f = g.f(e0, g−1e1g)

)

and its action on πun,dR
1 (XZ ,~10,~10) is given by

g 7→
(
f 7→ g ◦I f = f(e0, g−1e1g)

)

ii) In the general case of P1 − ({0, ∞} ∪ µN ), N ∈ N∗, denote, for g a point of

πun,dR
1 (XZ ,~10,~11), the image of g by the automorphism (z 7→ ξkz)∗ of the fundamental

11



groupoid by gξk . Then the analogues of the two actions above are, respectively,

g 7→
(
f 7→ g ◦I f = g.f(e0, g−1

ξ eξgξ, . . . , g−1
ξN−1eξN−1gξN−1 , g−1e1g)

)

g 7→
(
f 7→ g ◦I f = f(e0, g−1

ξ eξgξ, . . . , g−1
ξN−1eξN−1gξN−1 , g−1e1g)

)

Proof. [DG], §5, Proposition 5.11. �

Let us go back to the general case on XZ . We only need a weaker version of this

statement.

Proposition 2.10. The map

(4) i :
V ′ 7→

∏
z∈Z−{0,∞} πun,dR

1 (XZ ,~10,~1z)

v 7→
(
v0z = v(~10,~1z)(~10

1~1z
)
)

z∈Z−{0,∞}

is injective.

Precisely, let z ∈ Z − {0, ∞}. The action of V ′ on πun,dR
1 (XZ ,~10,~1z) is given by

(5) (v0z1 , . . . , v0zr
, v01) ◦I fz = v0z .fz(e0, v−1

0z1
ez1v0z1 , . . . , v−1

0zr
ezr

v0zr
, v−1

01 e1v01)
)

The action of V ′ on πun,dR
1 (XZ ,~10) is given by

(6) (v0z1 , . . . , v0zr
, v01) ◦ f = f(e0, v−1

0z1
ez1v0z1 , . . . , v−1

0zr
ezr

v0zr
, v−1

01 e1v01)
)

Proof. Same with the classical statement. �

2.2.3. On the whole groupoid. Now we consider the similar action in the whole groupoid.

It is sufficient for the general case, and adapted to our purposes to describe of the

fundamental torsor πun,dR
1 (XZ , ∗,~10) of paths that start at ~10 - it is a torsor under

πun,dR
1 (XZ ,~10). The case of P1 − {0, 1, ∞} is treated in [Br2], §6.3, equation (6.6). We

need to single out the action on the restricted groupoid, and consider the product

πun,dR
1 (XZ , ∗,~10) × πun,dR

1 (XZ , t)t∈T

Definition 2.11. Let x be a point of XZ . Let V ′′
x be the group of sequences v =

(vx, (vt)t∈T ) ∈ Aut(πun,dR
1 (XZ ,~10, x)) ×

∏
t∈T Aut(πun,dR

1 (XZ , t)) such that :

1) v is compatible with the groupoid structure of πun,dR
1 (XZ , x, 0) × πun,dR

1 (XZ , t)t∈T

2) For all i ∈ {0, . . . , r + 1}, Lie v(~1z,~1z) maps ezi
7→ ezi

.

Proposition 2.12. The map

(7) ix :
V ′′

x 7→ Aut(πun,dR
1 (XZ ,~10, x)) ×

∏
z∈Z−{0,∞} πun,dR

1 (XZ ,~10,~1z)

v 7→
(
v0x = v(~10,x)(~10

1x),
(
v0z = v(~10,~1z)(~10

1~1z
)
)

z∈Z−{0,∞}

)

is injective. Precisely, the action of V ′′ on πun,dR
1 (XZ ,~10, x) is given by

(8)
(
v0x, (v0z1 , . . . , v0zr

, v01)
)

◦I fx = v0x.fz(e0, v−1
0z1

ez1v0z1 , . . . , v−1
0zr

ezr
v0zr

, v−1
01 e1v01)

)

and the action of V ′′
x on the restricted groupoid is already described as the action of V ′.

Proof. Same with the previous statement. �

2.3. Interlude on the relation between multiple harmonic sums and p-adic

hyperlogarithms. Here, we recall some of the principles of the proof of the equality

(1) which is the origin of these three papers. This explains both the terminology "images
12



by Frobenius" that we have used since the beginning, and the origin of some of the defi-

nitions below in §2.4. For the simplicity of the formulas let us write it for P1 −{0, 1, ∞},

and the first power of Frobenius.

The following is a consequence of the study of p-adic overconvergent differential equation,

the equation of horizontality of the Frobenius map F∗ : πun,dR
1 (XZ) → πun,dR

1 (X
(p)
Z )

with respect to the KZ connexion. Denote by Li the series expansion of multiple poly-

logarithms at z = 0, and recall that we denote by [zm] the operation of taking the

coefficient of degree m in the series expansion
∑

m≥0 amzm. Let a word wl ∈ Hx(eZ),

of the form el−1
0 e1esd−1

0 e1 . . . es1−1
0 e1. By minorations of valuations we can prove that

the overconvergent factor tends to 1 in a certain limit and we have :

(9) lim
l→∞

Li(zp)
(
e0, Φ−1

p,−1e1Φp,−1

)
[wl][z

pn](pn)weight(wl)

= lim
l→∞

Li(z)(pe0, pe1)[wl][z
pn](pn)weight(wl)

The term of the right hand side Li(z)(pe0, pe1) actually does not depend on l, and is

equal to (pn)sd+...+s1 Hpn(sd, . . . , s1).

On the left hand side, note that , for all l,

(10) Li(zp)
(
e0, Φ−1

p,−1e1Φp,−1

)
[wl][z

pn](pn)weight(wl)

= Li(z)
(
pe0, pΦ−1

p,−1e1Φp,−1

)
[wl][z

n]nweight(wl)

This last expression mixes coefficients of Li and coefficients of Φ−1
p,−1e1Φp,−1. The part

of the expression related to Li does not depend on l. When taking the limit l → ∞, the

part related to Φ−1
p,−1e1Φp,−1 will give infinite sums of p-adic multiple zeta values, giving

the equality (1).

The terminology "images by Frobenius" comes from that Li(zp)
(
e0, Φ−1

p,−1e1Φp,−1

)
is

essentially the image of Li(z) by the Frobenius isomorphism, where the action

F∗ : πun,dR
1 (P1 − {0, 1, ∞},~10,~10)(Qp) → πun,dR

1 (P1 − {0, 1, ∞},~10, −~11)(Qp)

maps e0 7→ 1
pe0 and e1 7→ 1

pΦ−1
p,−1e1Φp,−1.

2.4. Application to the prime multiple harmonic sum motive.

2.4.1. Introduction. Let W the set of indices w̃ of the form

(
zid+1

. . . zi1

sd . . . s1

)
with i ∈

{1, . . . , r + 1} and si ∈ N∗, including the "empty words"

(
zid+1

)
(the d = 0 case).

Definition 2.13. Let AW be the scheme AN over Q where N is viewed as being in

bijection with W .

For each N ∈ N∗, we have a point

HN ∈ AW (Q)

whose coordinates are multiple harmonic sums of upper bound N .

13



We denote by 1 ∈ AW (Q) the point whose all components are 0, except for those

of the empty word which are 1. Note that we have :

1 = H1

2.4.2. Pushing forward by the map Φ0z 7→ Φ−1
0z ezΦ0z. For each z ∈ Z − {0, ∞}, we

consider the map

Σγ(z) :
πun,dR

1 (XZ ,~10,~1z)(R) → Lie∨ πun,dR
1 (XZ ,~10) ⊗ R

Φ0z 7→ Φ−1
0z ezΦ0z

Let Σγ be the product of all Σγ(z) for all z.

Proposition 2.14. We have a commutative diagram

V ′(R) × πun,dR
1 (XZ ,~10,~1z)(R)

◦
−→ πun,dR

1 (XZ ,~10,~1z)

↓ Σγ × Σγ(z) ↓ Σγ(z)

Lie∨ V ′ ⊗ R × Lie∨ πun,dR
1 (XZ ,~10) ⊗ R

◦Σγ (z)

−→ Lie∨ πun,dR
1 (XZ ,~10) ⊗ R

where ◦Σγ (z) is defined by the formula :

(u0z1 , . . . , u0zr+1) ◦Σγ (z) f = f(e0, u0z1 , . . . , u0zr+1)

Proof. Follows directly from the formula for the Ihara action of V ′ of the previous

paragraph. �

Definition 2.15. We will call ◦Σγ
the symmetric Ihara action.

The exponential variant is also useful. Let

Σmu
γ (z) :

πun,dR
1 (XZ ,~10,~1z)(R) → πun,dR

1 (XZ ,~10)(R)

Φ0z 7→ Φ−1
0z eµez Φ0z

Let Σµ
γ be the collection of all Σµ

γ (z) for all z.

Proposition 2.16. We have a commutative diagram

V ′(R) × πun,dR
1 (XZ ,~10,~1z)(R)

◦I−→ πun,dR
1 (XZ ,~10,~1z)

↓ Σµ
γ × Σµ

γ(z) ↓ Σµ
γ(z)

πun,dR
1 (XZ ,~10)(R) × πun,dR

1 (XZ ,~10)(R)
◦

Σ
µ
γ (z)

−→ πun,dR
1 (XZ ,~10)(R)

where ◦Σµ
γ

is defined by :

(u0z1 , . . . , u0zr+1) ◦Σγ (z) f = f(e0, u0z1 , . . . , u0zr+1)

Proof. Clear. �

2.4.3. Version adapted to the images by Frobenius. We go one step further and push

forward ◦Σγ
. For each z ∈ Z − {0, ∞}, let

Σω,Lie(z) :

W → Hx(eZ)[[Λ]](
z, zid

, . . . , zi1

sd, . . . , s1

)
7→ Λ

1+

∑
si

1−Λe0
ezi

esd−1
0 ezid

. . . es1−1
0 ezi1

Its dual is a map

Σ∨
ω,Lie(z) : Lie∨ πun,dR

1 (XZ ,~10,~1z)(R) → AW (R[[Λ]])

14



Proposition 2.17. There exists a unique map ◦Λ−adic such that the following diagram

is commuative.

Lie∨ V ′(R) × Lie∨ πun,dR
1 (XZ ,~10)(R)

◦Σγ (z)

−→ Lie∨ πun,dR
1 (XZ ,~10)(R)

↓ id ×Σ∨
ω,Lie(z) ↓ Σ∨

ω,Lie(z)

Lie∨ V ′(R) × AW (R[[Λ]])
◦Λ−adic

−→ AW (R[[Λ]])

Proof. Follows directly from the formula for the symmetric Ihara action. �

Recall that the Λ-adic periods of the prime multiple harmonic sum motive are the

numbers

(Li T )
Zp[[Λ]]
O,prime[w̃] = (Φ−1

0z ezΦ0z)

[
1

1 − Λe0
ezw

]

These form a point of AW which is naturally subject to the Ihara action.

We note that the case of w̃ = ∅ yields (Φ−1
0z ezΦ0z)

[
1

1−Λe0
ez

]
= 1, which is coherent

with our convention that the component of empty words of a point of AW is 1.

Remark 2.18. The ◦Λ−adic action on 1 amounts to the application of Σ∨
ω,Lie(z) : for

all g, we have

g ◦Λ−adic 1 = Σ∨
ω,Lie(z)(g)

2.4.4. Version adapted to the Taylor coefficients.

2.4.4.a. Setup for the Ihara action on Taylor coefficients

We denote by C∞ = C, and let p be a prime number or ∞. Choose any branch of

the logarithm on Cp. Let ǫ ∈ R+∗ and D = {x ∈ Cp | 0 < |x| < ǫ} ⊂ XZ(Cp) be a

punctured disk around 0. Let the set san(D, π1) of sections of the fundamental torsor of

paths πun,dR
1 (XZ ,~10, ∗) over D, that are analytic, with a logarithmic singularity at 0.

Fact 2.19. The set san(D, π1) is in bijection with a subgroup

GD ⊂ πun,dR
1 (XZ , can)(Q[[x]][log(x)])

characterized by a convergence condition depending on D, via the map

(11) L ∈ GD 7→
(
x ∈ D

L
→ πun,dR

1 (XZ , can)(Q[[x]][log(x)]) → πun,dR
1 (XZ ,~10, x)(Cp)

)

where the last arrow is the composition of the substitution of x to X , and the canonical

isomorphism between πun,dR
1 (XZ , can) and πun,dR

1 (XZ ,~10, x).

We will not choose here a particular convergence condition ; only work abstractly with D.

Now let s(D, V ′′) be the set of sections on D (not necessarily analytic) of the bun-

dle V ′′ appearing in §2.2.3. It acts on san(D, π1) by the Ihara action, and this action

factorizes through the map

s(D, V ′′) →֒ s(D, π1) ×
∏

t∈T

πun,dR
1 (XZ , t)

where s(D, π1) is the set of sections (not necessarily analytic) on D of the fundamental

torsor at ~10.
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The proof of the relation between multiple harmonic sums and p-adic hyperlogarithms

indicates that, for our purposes, we can restrict to the term of order zero with respect

to the action of s(D, π1), that is, replace it by 1. A full formula would necessitate to

write a Taylor expansion of the analytic sections in s(D, V ′′).

The Ihara action on the term of order zero is described by the following proposition.

Let

pr : Aut(πun,dR
1 (XZ ,~10, x)) ×

∏

z∈Z−{0,∞}

πun,dR
1 (XZ ,~10,~1z) → Aut(πun,dR

1 (XZ ,~10, x))

be the natural projection.

Proposition 2.20. Let x a point of XZ . Let ix be the map of equation (7). The

subscheme

V ′
x = ker(pr ◦ix) ⊂ V ′′

x

is canonically isomorphic (via a certain isomorphism f) to the scheme V ′ of §2.2.2, which

does not depend on x ; its Ihara action on πun,dR
1 (XZ ,~10, x) is equal to the Ihara action

of V ′ on πun,dR
1 (XZ ,~10). Precisely, there is a commutative diagram

V ′
x × πun,dR

1 (XZ ,~10, x)
◦

−→ πun,dR
1 (XZ ,~10, x)

↓ f × can ↓ can

V ′ × πun,dR
1 (XZ ,~10)

◦
−→ πun,dR

1 (XZ ,~10)

where can is the canonical isomorphism induced by the canonical base-point.

Proof. The fact that V ′
x is canonically isomorphic to V ′ follows from their definition as

groups of sequences of automorphisms. The commutativity of the diagram follows from

the formulas (6) and (8). �

Corollary 2.21. Composing the canonical isomorphism πun,dR
1 (XZ ,~10, x) ≃

πun,dR
1 (XZ ,~10) for all x ∈ D, with the isomorphism (11), the term of the Ihara action

on san(D, π1) of order zero with respect to the action of s(D, π1) is the Ihara action over

a subgroup of

πun,dR
1 (XZ ,~10)(Q[[x]][log(x)])

Below, we will not pick a particular D : our object of interest is now the Ihara action

on πun,dR
1 (XZ ,~10)(Q[[x]][log(x)]).

2.4.4.b. Taking Taylor coefficients and limits

For all this paragraph, we fix an n ∈ N∗.

Definition 2.22. Let, for each l ∈ N∗, a map of "coefficient of degree n in the series

expansion"

πun,dR
1 (XZ ,~10)(Q[[x]][log(x)])

(l)

deg n
−→ AW (Q)

L 7−→ L
(l)
deg n =

(
nl+weight(w)L[xn log(x)0][el−1

0 w]
)

w̃∈W

where, for each w̃ =

(
zid+1

, . . . , zi1

sd, . . . , s1

)
, the associated w is ezid+1

esd−1
0 ezid

. . . es1−1
0 ezi1

.
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Proposition 2.23. Let the S be the subset of πun,dR
1 (XZ ,~10)(R[[X ]][log(X)]) made of

the elements f such that f
(l)
deg n does not depend on l. There is a unique map ◦deg n

characterized by the commutative diagram

V ′(R) × S
◦

−→ S

↓ id ×
(l)
deg n ↓ deg n

V ′(R[[Λ]]) × AW (Q)
◦

(l)

deg n
−→ AW (Q)

The following definition, which involves a limit, can be defined directly on the level of

the Hopf algebras, by involving a completion. Since we have chosen the point of view of

groups, let us consider the map

V ′(R) →֒ V ′(R)[[Λ]]

which maps each component f =
∑

w f [w]w of i(V ′) to
∑

w f [w]wΛweight and view ◦
(l)
deg n

through this embedding. Then it makes sense to define :

Definition 2.24. Let

◦T aylor,n = lim
l→∞

◦
(l)
deg n : V ′(R) × AW (Q) −→ AW (Q[[Λ]])

2.4.5. Theorem. We can now state the theorem.

Theorem 1. We have :

◦T aylor,n|Sdeg n
= ◦Λ−adic

Proof. Follows from the definitions of the two Ihara actions, and the usual combinatorics

of the composition of formal series f(e0, g) in terms of subwords and quotient words, us-

ing the key hypothesis that we have restricted to elements of πun,dR
1 (XZ ,~10)(R[[x]][log(x)])

whose image by l
deg n is independent of l. �

This is an algebraic analogue of the equality between Taylor period and the p-adic period

of the prime multiple harmonic sum motive. We see it as an additional reason to view

the Taylor period as a period by itself and not just a byproduct of the p-adic period.

We also view it as a reason why it makes sense to push-forward the fundamental group

by this map.

It seems to us that we can see it in the language of motives and periods, by saying

that ◦T aylor,n|Sdeg n
and ◦Λ−adic are two different "periods" of the Ihara action by the

push-forward, which are equal.

3. On the sets of solutions to the relations of part I - p-adic

applications

In this part, for the simplicity of the formulas, we consider the case of P1 − {0, 1, ∞}.

3.1. Preliminaries. We have recalled the definition of the shuffle Hopf algebra in §2.1.

Let us now recall the definition of the quasi-shuffle Hopf algebra.

Definition 3.1. The quasi-shuffle or series shuffle graded Hopf algebra H∗ is the Q-

vector space Q〈(ys)s∈N∗ 〉 of words over Y , including the empty word y0 = 1, graded by
17



the length of words. It is endowed with the following structures :

i) the quasi-shuffle product ∗, defined recursively by, for w1, w2 words, and s, s′ ∈ N∗,

ysw1 ∗ ys′w2 = ys(w1 ∗ ys′w2) + ys′(ysw1 ∗ w2) + ys+s′(w1 ∗ w2)

Each word appearing in the expression of w1 ∗ w2 as sum of words is called a "series

shuffle element" of (w1, w2).

ii) the deconcatenation coproduct ∆dec relative to words in the ys’s

iii) the counit ǫ equal to the augmentation morphism

iv) and the antipode given by the two following formulae

zsd,...,s1 =
∑

1≤l≤d
1=i1<i2<...<il+1=d

y∑
il+1=d

i=il
si

. . . y∑
i2

i=i1
si

Then

S(ysd
. . . ys1) = (−1)dzs1,...,sd

=
∑

l≥1
ysd

...ys1 =wl...w1

(−1)lwl ∗ . . . ∗ w1

Fact 3.2. The completed dual Ĥ∨
∗ of H∗ is the non-commutative algebra of series

Q〈〈(ys)s∈N〉〉, equipped with the (continuous) coproduct ∆∗, satisfying ∆∗(yn) =
∑n

k=0 yk∗

yn−k.

Definition 3.3. i) Let inv : H∗ → H∗ the unique linear map sending ysd
. . . ys1 7→

(−1)s1+...+sdysd
. . . ys1

ii) Let (Σω)∗ : H∗ → Ĥ∗ the unique continuous linear map sending : ysd
. . . ys1 7→∑

l1,...,ld≥0 Λl1+...+ld
∏d

i=1

(
−si

li

)
ysd+ld

. . . ys1+l1 .

Let also r : R〈〈e0, e1〉〉 → R〈〈(yn)n∈N〉〉 be the unique continuous linear map defined on

words by

{
esd−1

0 e1 . . . es1−1
0 e1 7→ ysd

. . . ys1

w = ze0 7→ 0
.

We review the usual sets of solutions to the algebraic relations of I.

Definition 3.4. (Drinfeld) Let Mµ be the scheme of couples (µ, Φ) satisfying the asso-

ciator relations.

Definition 3.5. (Racinet : [Ra], IV, 1.2, définition 1.3)

Let R a Q-algebra. Let DMR(R) be the set of couples (Φ, Φ∗) of R〈〈e0, e1〉〉×R〈〈(yn)n∈N〉〉,

satisfying : Φ[∅] = 1, Φ[e0] = Φ[e1] = 0, and

∆xΦ = Φ ⊗ Φ

∆∗Φ∗ = Φ∗ ⊗ Φ∗

Φ∗ = e

∑
n≥2

(−1)n−1

n
Φ[en−1

0 e1]en
1 r(Φ)

Drinfeld has shown in [Dr] that the preservation of the associator relations by a law of

composition that is nothing but the Ihara group law. Racinet has shown in [Ra] similar

results for double shuffle relations.

3.2. Defintions and comments. Our proofs of part I, theorem 1 and theorem 3 and

the definitions of DMR and M lead naturally to the following definitions.
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3.2.1. The variants adapted to Φ−1e1Φ.

Definition 3.6. Let DMRS be the scheme defined as follows : for R a Q-algebra,

DMRS(R) is the set of couples (Θ, Θ
(l)
∗ ) ∈ R〈〈e0, e1〉〉 × (R〈〈(yn)n∈N〉〉)N such that :

∆xΘ = Θ ⊗ 1 + 1 ⊗ Θ

For all l ∈ N, ∆∗(Θ
(l)
∗ ) = Θ

(l)
∗ ⊗ Θ

(l)
∗

For all l ∈ N, Θ
(l)
∗ [sd, . . . , s1] ≡ Θ[el

0e1esd−1
0 e1 . . . es1−1

0 e1] mod Θ[e1e0e1]

Part of our proof of theorem 1 in part I, §4 reformulates as :

Proposition 3.7. We have a map DMR → DMRS, given by

(f, f∗) 7→
(
f−1e1f,

(
inv(f∗(l))f∗

)
l∈N

)

where f∗(l) is the coefficient of Λl in (Σω)∗(f).

Remark 3.8. This definition of DMRS can be made without any reference to the fact

that Θ can be of the form Φ−1e1Φ with Φ a grouplike series.

This is not true anymore if we deal with the full setting ζM(2) 6= 0, we have to make a

reference to Φ.

The second fact that we want to point out is a remark rather than a definition. Following

[AET], the following equation is satisfied by the monodromy automorphism µΦ attached

to an associator Φ :

(12) ” Ad Φ(t12, t23) ◦ µ12,3
Φ ◦ µ1,2

Φ = µ1,23
Φ ◦ µ2,3

Φ ”

It is close but not exactly equivalent to the Kashiwara-Vergne relations.

Since both DMRS and this relation carry a family of algebraic relations for the prime

multiple harmonic sum motive, as we saw in part I, we find that there is an analogy

between the map DMR → DMRS and the map from the scheme of associators to the

scheme of solutions to this equation.

It is surprising because, usually we always think of three families of universal algebraic

relations : double shuffle, associator and Kashiwara-Vergne relations. Here, it seems as

if there was four different schemes : DMR, M, DMRS, and the scheme of solutions to

(12) that we could denote by MS.

3.2.2. The variants adapted to prime multiple harmonic sums.

Definition 3.9. Let DMRhar be the scheme of solutions to the double shuffle equations

of prime multiple harmonic sums of theorem 1 of part I.

Definition 3.10. Let KVhar be the scheme of solutions to the Kashiwara-Vergne equa-

tions of prime multiple harmonic sums of theorem 3 of part I.

Both are subschemes of AW .

3.3. The case of the shuffle relation and application to the theory of series

of p-adic multiple zeta values. Let us recall Deligne-Goncharov’s question on the

theory of series of p-adic multiple zeta values ([DG], S5.28) : "il serait intéressant aussi
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de disposer pour ces coefficients [p-adic multiple zeta values] d’expressions p-adiques

qui rendent clair qu’ils vérifient des identités du type [series shuffle relations]".

The same question can be asked for all the families of relations that p-adic multiple

zeta values satisfy.

We gave a partial answer to it in part II, based on the expression of the Frobenius, and

in particular of prime multiple harmonic sums, with respect to the number of iterations

of Frobenius, with coefficients expressed in terms of the Frobenius-invariant paths, i.e.

Furusho’s p-adic multiple zeta values.

Here we give another approach to the same problem. We construct a bridge, in the

case of the shuffle relation :




shuffle relation for

the p-adic formal period of

the prime multiple harmonic sum motive



 →

{
shuffle relation for

p-adic multiple zeta values

}

Thus, it is a bridge from relations between prime multiple harmonic sums to relations

between p-adic multiple zeta values up to the comparison between several periods of a

same motive.

Proposition 3.11. Let f be a point of πun,dR
1 (P1 −{0, 1, ∞}, can), satisfying f [en

1 ] = 0

for all n ∈ N∗.

i) We have the following equivalence :

f satisfies the shuffle relation , i.e. ∆x(f) = f ⊗f ⇔ f−1e1f satisfies the shuffle relation

modulo products, i.e. ∆x(f) = f ⊗ 1 + 1 ⊗ f .

ii) We have the following equivalence :

f−1e1f satisfies the shuffle relation modulo products ⇔ the map

w ∈ ker ∂̃e1 7→ (f−1e1f)

[
1

1 − Λe0
e1w

]

satisfies the shuffle relation of prime multiple harmonic sums, i.e.

(Li T )O,prime[w x w′] = (Li T )O,prime[(Σω)∗ ◦ inv)(w′)w]

and we have, for all words w ∈ ker ∂̃e1 ,

(f−1e1f)[w x e0] = 0

Proof. i) The fact that f−1e1f is a Lie series is equivalent to say that ∆x(f)(f ⊗ f)−1

commutes to ∆x(e1). Thus the statement is equivalent to the following one : let u ∈

R〈〈e0, e1〉〉⊗R〈〈e0, e1〉〉. Then u commutes to ∆x(e1) if and only if u ∈ R〈〈e1〉〉⊗R〈〈e1〉〉.

Let us prove it. For u in R〈〈e1〉〉 ⊗ R〈〈e1〉〉, we have :

(∆x(e1)u)[w ⊗ w′] = u[∂e1 (w) ⊗ w′] + u[w ⊗ ∂e1 (w′)]

(u∆x(e1))[w ⊗ w′] = u[∂̃e1 (w) ⊗ w′] + u[w ⊗ ∂̃e1 (w′)]

Let (w, w′) ∈ W ×W , where W is the set of words in e0, e1, with at least one among w, w′

not of the form eN
1 , N ≥ 0 - we can assume that it is w - we show that u[w ⊗ w′] = 0.

u[w ⊗ w′] = u[∂̄e1 (we1) ⊗ w′]
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= (u∆x(e1))[we1 ⊗ w′] − u[we1 ⊗ ∂̃e1 (w′)] = (∆x(e1)u)[we1 ⊗ w′] − u[we1 ⊗ ∂̃e1 (w′)]

= u[∂e1 (w)e1 ⊗ w′] + u[we1 ⊗ ∂e1 (w′)] − u[we1 ⊗ ∂̃e1 (w′)]

Because of the hypothesis on w, the index of nilpotence for ∂ei
is strictly smaller for

∂e1 (w)e1 than for w. The result then follows by induction on m + m′ + k where m, n, k,

are respectively the smallest integers satisfying :

∂m
e1

(w) = 0, ∂m′

e1
(w′) = 0, (∂̃e1 )k(w′) = 0

ii) The fact that f−1e1f satisfies the shuffle relation modulo product is equivalent to the

fact that, for all words w, w′, we have (f−1e1f)[w x w′] = 0.

We have to go back to the proof of the shuffle relations for the prime multiple harmonic

sum motive : part I, §4. There, we have shown that, for all w, w′ words, and s ∈ N∗,

the following formal infinite sum of words :

−
1

1 − Λe0
e1

[
(es−1

0 e1w)xw′ − wx

(
es−1

0 e1

(1 − Λe0)s
e1w′

)]

was a linear combination of shuffles, more precisely equal to

s−1∑

k=0

(ek
0e1w) x (−1)s−k es−1−k

0

(1 − Λe0)s−k
e1w′

Thus, the shuffle relation for w 7→ (f−1e1f)
[

1
1−Λe0

e1w
]

is true if and only if, for all

s ∈ N, for all w, w′ words, we have :

(f−1e1f)

[ s−1∑

k=0

(ek
0e1w) x (−1)s−k es−1−k

0

(1 − Λe0)s−k
e1w′

]
= 0

It remains to show that these linear combinations of shuffles generate all the possible

shuffles. Now, for each l ∈ N, the coefficient of Λl in this linear combination is of the

form :

(es−1
0 e1w)x(el

0e1w′) +
∑

0≤s′<s cs′(es′−1
0 e1w)x(el+s−s′

0 e1w′) = 0 with cs′ ∈ Q. This

shows that for all z, z′ ∈ ker ∂̃e1 , zxz′ is a linear combination of the shuffles of the

statement, by induction on the index of nilpotence of z for ∂e0 . �

Let us enlarge the definition of the prime multiple harmonic sum motive to non-convergent

words, i.e. words w such that w 6∈ ker ∂̃e1

Definition 3.12. For w any word on eZ of the form e1w′, let :

(Li T )M
O,prime[w̃] =

(
(ΦM)−1e1ΦM

[
1

1 − Λe0
e1w′]

)

Then, the shuffle relation remains true, and the Kashiwara-Vergne relations also remain

true : both proofs are independent of the words involved being or not in ker ∂̃e1 . On

the other hand, by nature, the series shuffle relation is a statement concerning words in

ker ∂̃e1 . If we want the equality between the Taylor period and the p-adic period to re-

main true, we have to consider, instead of prime multiple harmonic sums, polynomials on

a formal variable representing log, with coefficients being prime multiple harmonic sums.

The application of this definition to the purposes of the present paragraph is that
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it enables to state the previous proposition without the artificial additional condition

"(f−1e1f)[w x e0] = 0"

Proposition 3.13. The terms of the equivalence of ii) of the previous proposition are

also equivalent to "the map w 7→ (f−1e1f)

[
1

1−Λe0
e1w

]
satisfies the extended integral

shuffle relation of the prime multiple harmonic sum motive".

Proof. Indeed, the conjunction of : for all words w, w′ ∈ ker ∂̃e0 , (f−1e1f)[w x w′] = 0,

and for all words w ∈ ker ∂̃e0 , (f−1e1f)[w x e0] = 0, is equivalent to : for all words

w, w′ (not necessarily in ker ∂̃e0 ), (f−1e1f)[w x w′] = 0. �

We apply this proposition to f = Φp,−k ∈ πun,dR
1 (P1 − {0, 1, ∞},~10, −~11)(Qp), the gen-

erating series of p-adic multiple zeta values : we see that the shuffle relations of multiple

harmonic sums, which can be visualized completely explicitly, can be seen as an indirect

way to vizualise the shuffle relation of p-adic multiple zeta values.

This approach has the advantage, relatively to the one of part II, that it leads, starting

with the shuffle relation of prime multiple harmonic sums, directly to the genuine shuffle

relation for p-adic multiple zeta values, instead of a variant as in part II. On the other

hand, we are obligated, as in the other approach, to pass through a conjectural step.

If we would not have had the notion of prime multiple harmonic sum motive, we would

have said that this conjectural step is essentially the use of the weight homogeneity of

algebraic relations.

Here, we can say that this conjectural step is the isomorphism between the Taylor pe-

riod and the formal p-adic period of the prime multiple harmonic sum motive. This

formulation seems much better, because because we see that it is much more specific.

4. Reindexations of algebraic relations on πun
1 (P1 − Z)

4.1. Reindexation of algebraic relations.

4.1.1. Definition.

Notation 4.1. i) In this part, to shorten the formulas, we will denote the canonical

scheme πun,dR
1 (XZ , can) by Πun(XZ).

ii) Let O∗(Πun(XZ)) be the vector subspace of the shuffle Hopf algebra O(Πun(XZ)),

generated by words whose first letter at the right is not a e0, i.e. the subspace ker ∂̃e0 .

It is also another name for the vector space underlying the quasi-shuffle Hopf algebra.

We have the natural inclusion O∗(Πun(XZ)) →֒ O(Πun(XZ)). On the other hand, we

have a surjective linear map

O(Πun(XZ)) ։ O∗(Πun(XZ))

defined by

esd−1
0 ezid

. . . es1−1
0 ezi1

el
0 7→

∑

l1,...,ld≥0
l1+...+ld=l

d∏

i=1

(
−si

li

)
esd+ld−1

0 ezid
. . . es1+l1−1

0 ezi1
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Given a linear map f : O(Πun(XZ)) → ̂O(Πun(XZ)), we will denote by f∗ the compo-

sition of f by those two maps :

f∗ : O∗(Πun(XZ)) →֒ O(Πun(XZ))
f
→ ̂O(Πun(XZ)) →֒ ̂O∗(Πun(XZ))

Separately, given f , a linear map O(Πun(XZ))) → ̂O(Πun(XZ)), or a bilinear map de-

fined on O(Πun(XZ)) × O(Πun(XZ)), the corresponding weight-adic completion will be

denoted by f̂ , and similarly f̂∗ will be the completion of f̂∗.

Goncharov’s coaction ∆M (see part I, §2 for the formula) can be considered as a map

O(Πun(XZ)) → O(Πun(XZ)) ⊗ O(Πun(XZ))

It can be factorized in a natural way as

∆ = (id ⊗x) ◦ ∆T

with ∆T : O(Πun(XZ)) → O(Πun(XZ)) ⊗ T (O(Πun(XZ))), where T denotes the tensor

algebra, and x : T (O(Πun(XZ))) → O(Πun(XZ)) is the shuffle product of all tensor

components.

Let us consider a linear map

Σω : O(Πun(XZ)) → ̂O(Πun(XZ))

Definition 4.2. i) The map Σω is a reindexation relative to the double shuffle equations

if there exists a couple of bilinear maps
{

Bx : O(Πun(XZ)) × O(Πun(XZ)) → O(Πun(XZ)) × O(Πun(XZ))

B∗ : O∗(Πun(XZ)) × O∗(Πun(XZ)) → O∗(Πun(XZ)) × O∗(Πun(XZ))

such that :

(13) x̂ ◦ (Σω ⊗ Σω) = Σω ◦ x ◦ Bx

(14) ∗ ◦(Σω ⊗ Σω) = Σω ◦ ∗ ◦ B̂∗

ii) The map Σω is a reindexation relative to algebraic automorphisms if, for each linear

map τ : O(Πun(XZ)) → O(Πun(XZ)) induced by an algebraic automorphism of XZ ,

there exists a linear map

Lτ : O(Πun(XZ)) → O(Πun(XZ))

satisfying :

(15) τ̂ ◦ Σω = Σω ◦ τ ◦ Lτ

iii) The map Σω is a reindexation with respect to the motivic Galois coaction if there

exists a linear map

L∆ : T (O(Πun(XZ))) → T (O(Πun(XZ)))

such that we have

∆ ◦ f = x ◦ f̃ ◦ L∆ ◦ ∆T
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with f̃ ; T (O(Πun(XZ))) → T (O(Πun(XZ))) is a sum of tensor products of f and

idO(Πun(XZ )).

4.1.2. Examples. The part I provided us two examples that we recall below.

The simplest way to modify an iterated integral is to modify the path of integration

: it is a small part of the fundamental groupoid, that is the image of the topological

fundamental groupoid in the Betti fundamental groupoid.

The pro-unipotent fundamental group is a quite rigid object from the point of view

the of choice of those paths, and this is especially true in the case of curves P1 − Z.

Here, basically, the only natural domains of (iterated) integration are the paths from a

tangential base point ±~1 at z ∈ Z to another, and the loops around such a base point.

Example 4.3. The example of this kind that we have from the proofs of part I, and

also their rewriting in 3, is the one of the map

Φ 7→ Φ−1e2iπe1 Φ

or the Lie algebra version :

Φ 7→ Φ−1e2iπe1 Φ

The first version consists in passing from an iterated integral on the straight path γ

from 0 to 1 to an iterated integral on γ−1 ◦ c ◦ γ, where c is a loop around 1 ; i.e. the

monodromy of ∇KZ transported at 0, 0.

Example 4.4. The second example that we studied in part I is given by

Σω,Lie : w 7→
1

1 − Λe0
ezi

w

For those two examples, we have treated the aspect "motivic Galois action" by the dual

point of view of the Ihara action in the §2 of this part III.

4.2. Formal algebraic relations. There are several examples of "relations" between

multiple zeta values that involve infinite sums. There is no general reason to believe

that all of them should come from geometry.

Using the notion of reindexation, we can define a subclass of them for which we know

that they are the consequences of algebraic relations.

4.2.1. Definition.

Definition 4.5. A formal algebraic relation between multiple zeta values is a relation

obtained by applying Φ0z to equations (13) or (14).

We call it "formal" as a reference to the formal schemes that are defined as the sets of

their solutions (they are formal completions with respect to the weight), and "algebraic"

because they are the consequence of algebraic relations.

4.2.2. Examples. The part I has provided a family of examples of formal algebraic re-

lations attached to the prime multiple harmonic sum motive. The simplest to write is

surely the following :

Hp(s1)Hp(s2) = Hp(s1, s2) + Hp(s2, s1) + Hp(s1 + s2)
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Viewing it as a relation on p-adic multiple zeta values via the expression of Hp in terms

of infinite sums of p-adic multiple zeta values, the part I proves that this is a formal

algebraic relation.

4.2.3. Counter-examples. We give two counter-examples to formal algebraic relations,

i.e. relations between multiple zeta values that involve infinite sums but that are not -

up to the usual conjectures - formal algebraic relations.

The first counter-example concerns complex multiple zeta values ; it is the one that we

find the most significative to our knowledge. The second counter example is the only

one that we know in the p-adic setting, given that our theory of series for p-adic multiple

zeta values is more recent.

4.2.3.a. A complex counter-example

The following equality is classical : for all s ∈ N∗,

1 =
∑

l∈N

(s + l − 1) . . . s(s − 1)

(l + 1)!

(
ζ(s + l) − 1

)

This cannot be a formal algebraic relation, simply because there are infinitely many

terms of weight 0 (recall that rational numbers are multiple zeta values of weight 0).

The analogue in depth ≥ 2 is due, to our knowledge, to Goncharov and independently

to Ecalle : for all s1, . . . , sd ∈ N∗ with sd ≥ 2 :

ζ(sd, . . . , s3, s1 + s2 − 1) =
∑

l∈N

(s1 + l − 1) . . . s1(s1 − 1)

(l + 1)!
ζ(sd, . . . , s2, s1 + l)

Here, assume that it is a formal algebraic relation. By the conjecture of weight homo-

geneity of algebraic relations, the relation should still be true after identifying the terms

of each value of the weight. This would imply the vanishing of ζ(sd, . . . , s3, s1 + s2 − 1),

which is the term of weight (
∑d

i=1 si)−1, and of each (s1+l−1)...s1(s1−1)
(l+1)! ζ(sd, . . . , s2, s1+l),

which is the term of weight (
∑d

i=1 si) + k, whereas they are all real numbers > 0.

4.2.3.b. A p-adic counter-example

In the p-adic setting, let us recall our theorem, for simplicity in the case of P1 −{0, 1, ∞}

: for all indices s1, . . . , sd, primes p, k ∈ N∗, we have

(pk)sd+...+s1Hpk (sd, . . . , s1) =

∑

l∈N

∑

l1,...,ld≥0
l1+...+ld=l

( d∑

i=0

d∏

j=i

(
−si

li

))
ζp,−k(si+1 + li+1, . . . , sd + ld)ζp,−k(si, . . . , s1)

But, this time, view it in each Zp instead of
∏

p Zp.

If this was a formal algebraic relation, this would imply the vanishing of each part

of given weight.

The part of weight 0 is the rational number (pk)sd+...+s1 Hpk(sd, . . . , s1) ; it is a real
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number > 0 as soon as the sum is non-empty, i.e. as soon as pk > d.

In all remaining cases, it would imply the vanishing of each

∑

l1+...+ld=l

( d∑

i=0

d∏

j=i

(
−si

li

))
ζp,−k(si+1 + li+1, . . . , sd + ld)ζp,−k(si, . . . , s1)

We think that even in those cases, this vanishing of all those p-adic multiple zeta values

at the same time contradicts the usual conjectures, for example the one on the dimension

of Q-vector spaces on p-adic multiple zeta values.

4.3. Further examples. First, let us mention that the paper [IKZ] can be read in the

context of reindexations.

4.3.1. Essentializing the example of part I. A part of the properties of the examples of

reindexations of part I come from what follows.

For all words w in Hx(eZ), we have :

1

1 + e0
x w(ez0 , ez1 , . . . , ezr+1) = w

( 1

1 + e0
ez0 ,

1

1 + e0
ez1 , . . . ,

1

1 + e0
ezr+1

) 1

1 + e0

= (Σω)∗(w)
1

1 + e0

This implies the following formula (Σω)∗, as in [IKZ] :

(16) (Σω)∗ : w 7→
( 1

1 + e0
x w

)
(1 + e0)

We can ask ourselves what happens if we replace 1
1+e0

by a more general word x.

Proposition 4.6. Let the following equation on x ∈ ̂
O(πun,dR

1 (XZ , can)) :

(17) For all words w ∈ Hx(eZ), x x w(e0, ez1 , . . . , e1) = w(xe0, xez1 , . . . , xe1)x

The solutions to this equation are the words x such that, if xk is their weight k part, we

have, for all k ∈ N, xk = xk
1 , i.e. these are the words of the following form

(1 −
∑

z∈Z−{∞}

λzez)−1

with, for z ∈ Z − {∞}, λz ∈ Q.

Proof. We take w = ezi
in (17). We obtain

(18) x x ez1 = x ezi
x

Let x ∈ ̂
O(πun,dR

1 (XZ , can)) satisfying (18). For k ∈ N, let xk be the weight k part of x

satisfying (17) ; we have x =
∑∞

k=0 xk. The term x0 is of the form λ0.∅ where λ0 ∈ Q

and ∅ is the empty word. Considering the part of weight one of (18) gives x0ezi
= x2

0ezi
,

thus, x0 = 0 or x0 = 1. We distinguish those two cases.

i) Assume x0 = 0. Recall Radford’s theorem that the shuffle algebra Hx(eZ) is a free

polynomial algebra over Lyndon words. In particular we have the implication : for all

y ∈ Hx(eZ), y x ezi
= 0 ⇒ y = 0. By induction on k, considering the weight k + 1 part

of (18) and using this implication, we obtain that x0 = . . . = xk−1 = 0.
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ii) If x0 = 1, considering the weight k +1 part of (18), we obtain by induction on k, that

xk is both of the form xk−1
1 u and u′xk−1

1 , hence xk = xk
1 . This implies x = (1 − x1)−1.

Conversely, a word satisfying xk = xk
1 for all k ∈ N clearly satisfies the equation. �

Remark 4.7. i) This means that much of the combinatorics of part I remain true when

replacing (1 − Λe0)−1 by

(1 −
∑

z∈Z−{∞}

Λzi
ezi

)−1

where Λzi
are formal variables.

ii) On the other hand the multiplication by (1 −
∑

z∈Z−{∞} Λzi
ezi

)−1 admits a natural

factorization by the multiplication by (1−Λ0e0)−1, and of course also by each (1−λzez)−1

given that all the letters of eZ play a symmetric role : we have

(1−Λ0e0)(1−
∑

z∈Z−{∞}

Λzez)−1 = (1−
∑

z∈Z−{∞}

Λzez+
∑

z∈Z−{0,∞}

Λzez)(1−
∑

z∈Z−{∞}

Λzez)−1

= 1 +
∑

z∈Z−{0,∞}

Λzez(1 −
∑

z∈Z−{∞}

Λzez)−1

whence :

(1−
∑

z∈Z−{∞}

Λzez)−1 = (1−Λ0e0)−1+(1−Λ0e0)−1
∑

z∈Z−{0,∞}

Λzez(1−
∑

z∈Z−{∞}

Λzez)−1

Such a factorization has been used to write the one dimensional part of the Kashiwara-

Vergne equations.

4.3.2. On the cyclic sum formula . The following computation it implicitly a byproduct

of a reindexations. To simplify the formulas we take the case of P1 − {0, 1, ∞}, but the

general case is similar.

The cyclic sum formula is an emblematic example of a formula that can proved by an

ad hoc elementary method and can be retrieved as a consequence of the double shuffle

equations. We show that a counterpart exists on the level of prime multiple harmonic

sums and finite hyperlogarithms.

Notation 4.8. i) We will modify the notation of (Σω)∗, and denote it by (Σω)∗,Λ. We

can substitute to Λ a complex or p-adic number λ, in which case the application will be

denoted by (Σω)∗,λ.

ii) The coefficient of Λl, l ∈ N, in a power series S ∈ R[[Λ]], for R a ring, will be denoted

by S
[
Λl

]
.

Proposition 4.9. (Cyclic sum formula for prime multiple harmonic sums) We have,

for all d ∈ N∗, (sd, . . . , s1) ∈ (N∗)d :

(19) (−1)sd+...+s1 (Li T )O,prime(Σω)∗(1, s1, . . . , sd−1)
[
Λsd−1

]
)

= −(Li T )O,prime(sd, . . . , s1)

−
d∑

n=1

sn−1∑

tn=0

(Li T )O,prime

(
(Σω)∗,1

(
Σ∗,Λ(sd−1, . . . , sn+1)[Λtn ]

)
, sn−tn+1, sn−1, . . . , s1)

)

Proof. Let us express the inverse of the generating series of hyperlogarithms in two

different ways ; first using the antipode of the shuffle Hopf algebra ; secondly by the
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usual operation of inversion of a formal series. We have, on the one hand :

Li−1[esd−1
0 e1 . . . es1−1

0 e1] = (−1)sd+...+s1 Li[e1es1−1
0 . . . e1esd−1

0 ]

and, on the other hand,

(20) Li−1[esd−1
0 e1 . . . es1−1

0 e1] = − Li[esd−1
0 e1 . . . es1−1

0 e1]

−
d−1∑

n=1

sn−1∑

tn=0

Li[etk

0 e1e
sk+1−1
0 . . . e

sd−1−1
0 e1esd−1

0 ] Li[esk−tk−1
0 e1 . . . es1−1

0 e1]

We translate this equality on the sums of Taylor coefficients of order 0 < n < pk. To deal

with the Taylor coefficients of the product of two hyperlogarithms, we use the formula

of part I, §3.2.2. �

Corollary 4.10. (Alternative symmetry formula for prime multiple harmonic sums)

(21) (−1)s1+...+sd(Li T )O,prime(s1, . . . , sd) − (Li T )O,prime(sd, . . . , s1)

=

d∑

n=1

sn∑

tn=1

(Li T )O,prime

(
(Σω)∗,1(sd, . . . , sn+1, sn − tn), tn + 1, sn−1, . . . , s1

)

Proof. This is obtained by translating on the Taylor coefficients of order pk the equality

:

(22) (−1)
∑

d

i=1
si+1 Li[e1esd−1

0 e1 . . . es1−1
0 e1] = Li−1[e1es1−1

0 e1 . . . esd−1
0 e1]

= − Li[e1esd−1
0 e1 . . . es1−1

0 e1]

−
d∑

n=1

sn−1∑

tn=0

(−1)
∑

d

i=n
si−t Li[esn−1−t

0 e1e
sn+1−1
0 e1 . . . esd−1

0 e1] Li[et
0e1e

sn−1−1
0 e1 . . . es1−1

0 e1]

�

Proposition 4.11. (Cyclic sum formula in the finite case)

For all sd, . . . , s1 ∈ N∗, p prime :

(23) (−1)s1+...+sd

d∑

i=1

siHp(s1, . . . , si + 1, . . . , sd)

≡
d∑

n=1

sk−1∑

tk=0

Hp

(
sd, . . . , sn+1, sn − tn), tn + 1, sn−1, . . . , s1

)
mod p

Proof. Compare the terms of weight sd + . . . + s1 and sd + . . . + s1 + 1 in the symmetry

formula 2’) of theorem 1 and proposition 4.10 ; divide by psd+...+s1+1 and take the

reduction modulo p. �

Remark 4.12. Dividing by ps1+...+sd and taking the reduction modulo p, we obtain a

proof of Hp(sd, . . . , s1) ≡ (−1)sd+...+s1 Hp(s1, . . . , sd) mod p which does not involve the

change of variable (nd, . . . , n1) 7→ (p − nd, . . . , p − n1).

28



5. The reindexed fundamental group Σ(Li T )M
O,prime

(
πun

1 (P1 − Z)
)

5.1. Definition. In §2, we wrote the Ihara action on πun,dR
1 (XZ) by considering the

product of the fundamental torsor of paths starting at ~10 by the restricted groupoid at

the usual tangential base-points t ∈ T :

πun,dR
1 (XZ , ∗,~10) × πun,dR

1 (XZ , t)t∈T

Then, we considered separately the two factors of the products.

i) From the fundamental torsor of paths at ~10, we kept the germs of analytic sections at

0, equipped with its Ihara action. We explained in §2.4.4.a that, given the p-adic analytic

proof of the relation between prime multiple harmonic sums and p-adic hyperlogarithms,

we could restrict ourselves to a "zeroth order term" of the Ihara action with respect to

one of its factors, on these germs of sections. This part of the Ihara action was equivalent

to the Ihara action on :

πun,dR
1 (XZ ,~10)(Q[[x]][log(x)])

Finally, a certain byproduct of it was equipped with what we called a "Taylor version"

of the Ihara action.

ii) On the other hand, from the restricted groupoid, which is associated with the base

points

T = {(~10,~10)} ∪ {(~10,~1z) | z ∈ Z − {0, ∞}} ∪ {(~1z,~1z) | z ∈ Z − {0, ∞}}

we considered specifically the subset {(~10,~1z) | z ∈ Z − {0, ∞}} ; and we applied, to the

corresponding schemes, two successive reindexation maps

Σ∨
ω,Lie ◦ Σγ : πun,dR

1 (XZ ,~10,~1z)) → AW

Let us rename : ΣΛ−adic = Σ∨
ω,Lie ◦ Σγ .

Definition 5.1. Let us denote by

Σ(Li T )M
O,prime

πun,dR
1 (XZ)

and call the reindexed pro-unipotent fundamental groupoid of XZ along the prime mul-

tiple harmonic sum motive,the product

(24) πun,dR
1 (XZ ,~10)(Q[[x]][log(x)]) × ΣΛ−adic(π

un,dR
1 (XZ ,~10,~1z))z∈Z−{0,∞}

We keep the minimal information that we need to have a substitute to the fundamental

groupoid directly adapted to prime multiple harmonic sums. It is only one possible

convention among others, since we have not defined in a precise way a general notion of

reindexation. We could have chosen an object which is closer to the genuine fundamental

groupoid. Actually, the general spirit that we follow is to show how we can transform

the fundamental groupoid until a form where it is not recognizable at all, yet still carries

all its structures necessary to describe a family of periods which is essentially equivalent

to the basic one, multiple zeta values.

5.2. Geometric description. Now we describe the reindexed fundamental group.

5.2.1. Ihara action. The Ihara action on the two factors of (24) is described as follows.

- The Ihara action on πun,dR
1 (XZ ,~10)(Q[[x]][log(x)]) is given directly by the usual Ihara
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action on πun,dR
1 (XZ ,~10). It has, as a particular byproduct, the action ◦T aylor of §2.

- The Ihara action on ΣΛ−adic(π
un,dR
1 (XZ ,~10,~1z))z∈Z−{0,∞} is the action ◦Λ−adic intro-

duced in §2.

5.2.2. Canonical element. The reindexed fundamental group ΣΛ−adic(π
un,dR
1 (XZ ,~10,~1z))

contains as a canonical element

ΣΛ−adic(Φ0z)

Consider the p-adic version of this element depends on a choice of a power of Frobenius

k ∈ Z ∪ {±∞} − {0}, and can be denoted by (ΣΛ−adicΦ0z)p,k. Our theorem expressing

prime multiple harmonic sums in terms of p-adic iterated integrals is that, when k ∈

−N∗, we have, for all indices :

(ΣΛ−adicΦ0z)p,k

[ zid
, . . . , z1

sd, . . . , s1

]
= pkHpk

[ z, zid
, . . . , z1

sd, . . . , s1

]

The actions ◦T aylor and ◦Λ−adic, of p-adic iterated integrals (Φ0z)p,−1, on this p-adic

version with −k, send it to the analogue element with −(k + 1). In particular, this

preserves all the algebraic relations of part I, II and III between prime multiple harmonic

sums, which are true for all k at the same time.

5.2.3. Canonical connexion. The factor πun,dR
1 (XZ ,~10)(Q[[x]][log(x)]) keeps a track of

∇KZ :

Definition 5.2. Let

∇T aylor
KZ : πun,dR

1 (XZ ,~10)(Q[[x]][log(x)]) → πun,dR
1 (XZ ,~10)

(
Q[[x]][log(x)]

dx

x

)

L 7→

(
dx

x
e0 −

∑

z∈Z−{0,∞}

∑

n≥0

xnz−(n+1)dxez

)
L

5.2.4. Frobenius. Assume now that XZ is defined on an absolutely non ramified discrete

valuation ring, let X
(p)
Z be its extension of scalars by Frobenius, and let F : XZ

z 7→zp

−→ X
(p)
Z

be the relative Frobenius map. The explicit p-adic computations of iterated integrals

are based on the fact that there is an isomorphism

F∗ : πun,dR
1 (XZ)

∼
−→ F ∗πun,dR

1 (X
(p)
Z )

which is horizontal for the KZ connexion, where the pull-back by Frobenius F ∗πun,dR
1 (XZ)

is constructed analytically ([D], §11). In general, the analytic F ∗ does not coincide with

the one that can be defined directly algebraically.

The factor πun,dR
1 (XZ ,~10)(Q[[x]][log(x)]) keeps a track of this Frobenius structures as

follows.

Let us define the analogue of the map F here can be defined x 7→ xp.

This leads immediately to a notion of F ∗.

An analogue of F∗ is obtained by taking the image of F∗ by ΣΛ,adic.

Following the notation of [D], §13, let φ be the inverse of F , and let the associated φ∗

and φ∗
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The expression of prime multiple harmonic sums in terms of p-adic hyperlogarihms

is the origin of these three papers, and is written as :

(25) (pn)weightHpn = nweight
(
Φ−1

0z ezΦ0z

)
◦H nweightHn

where ◦H is a certain "harmonic Ihara action". It was obtained as a certain limit case,

in which the overconvergent factor becomes trivial, of the equation of horizontality of

F∗. In this setting, we can rewrite it as follows : for all n ∈ N∗,

φ∗(nweightHn) = φ∗(nweightHn)

It is the analogue of the equation of horizontality of Frobenius in this setting.

The image of the invariant by Frobenius in πun,dR
1 (XZ ,~10) by ΣΛ−adic is the element :

(
lim

k→∞
(pk)weightHpk [w̃ =

[ 1, zid
, . . . , z1

sd, . . . , s1

]
]
)

w̃

5.2.5. The completion. Consider the algebras of functions on the fundamental groupoid

πun,dR
1 (XZ). It has a natural weight-adic completion. Apply to it the reindexation map :

we obtain the completed version of the algebras of functions on Σ(Li T )M
O,prime

πun,dR
1 (XZ).

It is the natural receptacle for the convergent infinite sums of prime multiple harmonic

sums (pk)weight(w̃)Hpk(w̃).

5.2.6. Application to non-prime multiple harmonic sums.

5.2.6.a. Introduction

Let us consider now the multiple harmonic sums, Hn[w̃], where n is any element of N∗,

not necessarily a power of a prime number. We follow here a suggestion of Pierre Cartier.

For all p, a prime and k ∈ N∗ such that pk divides n, there is a p-adic formula given

by (25) expressing Hn in terms of Hnp−k and p-adic hyperlogarithms associated to the

−k-th power of Frobenius. In other words, if we consider the prime decomposition of

n, which we will write as n = pk1
1 . . . pkr

r , there is an expression of all multiple harmonic

sums Hn[w̃], inductive on the prime decomposition of n, in terms of pi-adic iterated

integrals, i ∈ {1, . . . , r}. It can be written in a way that, at first sight, mixes pi-adic

numbers with different i :

(26) (nweightHn[w̃])w = τ(pk1
1 . . . p

kr−1

r−1 )(Φ0z)pr ,kr
◦h . . . ◦h (Φ0z)p1,k1 ◦h 1

The well-definedness of the formula comes from that each τ(pk1
1 . . . p

ki−1

i−1 )(Φ0z)pi,ki
◦h

. . . ◦h (Φ0z)p1,k1 ◦h 1, i ∈ {1, . . . , r − 1}, has coefficients in Q.

In part II, §6.1, we have explained how this formula implies constraints on the pi-adic

valuations of Hn. We discuss here the meaning of this formula from the points of view

of algebraic relations and the motivic Galois action.

5.2.6.b. Interpretation in terms of algebraic relations

We have seen that the Ihara action ◦Λ−adic of p-adic hyperlogarithms on prime multiple

harmonic sums amounts to a Frobenius action, that increases the power of Frobenius,
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and perserves the algebraic relations of prime multiple harmonic sums. It is legitimate

to ask whether we have a similar phenomenon for general multiple harmonic sums.

Actually, this question has no sense, except for the series shuffle relations, for which

the series shuffle relation is preserved since it is true for all n ∈ N∗ : for all words w, w′,

Hn(w ∗ w′) = Hn(w)Hn(w′)

All the other relations between non-prime multiple harmonic sums involve different

values of n at the same time. The integral shuffle relation, for example, can be written

as

Hn(w x w′) =

n−1∑

k=1

Hk(w)Hn−k(w′)

and the multiplication of n by a number pk does not send the interval {1, . . . , n} to the

interval {1, . . . , pkn}.

We believe that the fact that only the series shuffle relation is preserved is not an absurd

accident. We will define, in the next paragraph, a framework of a Galois theory of series

for multiple harmonic sums, in which the series shuffle relation will play the role that is

played by the integral shuffle relation for iterated integrals. The integral shuffle relation

is true for all iterated integrals and the points of the fundamental groupoid are precisely

the non-commutative formal power series that satisfy the integral shuffle relation. In the

setting of Galois theory of series, the multiplication of the upper bound by a power of a

prime number will be then an analogue of a morphism of the fundamental groupoid.

5.2.6.c. View of Hn as ’iterated periods’ of ◦Λ−adic

Here, the role of the motivic Galois action is played by the action ◦Λ−adic. The particular

phenomenon is that, starting with the trivial element 1 pf AW , applying the action

◦Λ−adic of p-adic hyperlogarithms successively yields multiple harmonic sums by the

formula (26), which are algebraic whence the possibility to iterate the action. We will

say that multiple harmonic sums Hn as "iterated periods" of the couple (◦Λ−adic, 1).

5.3. Elementary description and interpretation in terms of periods. Here, we

recall some other parts of our p-adic analytic work ’the Frobenius horizontal isomorphism

of the pro-unipotent fundamental group of curves P1 − Z’. In the parts II and IV of this

work [J2], [J4], we showed analogies between the results of two types computations : one

"geometric", in the framework of the pro-unipotent fundamental group ; the other one

made purely with multiple harmonic sums and elementary operations. In those papers,

this was just an analogy. We will suggest here a formulation of this analogy in terms of

motives and periods, using again the term "period" in a generalized sense as in §2 : a

period of a motivic Galois action rather than a motive as the multiple zeta motive.

5.3.1. The mutiplication by a prime number of the upper bound of multiple harmonic

sums. In the part II of our p-adic analytic work [J2], we made a computation on mul-

tiple harmonic sums which is parallel to the one giving the formula (25) : there is a
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way to express each (pkn)weightHpkn[w̃] in terms of nweightHn[w̃] and absolutely con-

vergent p-adic series whose terms are Q-linear combinations (in
∏

p Qp) of elements

(pk)weightHpk [w̃].

To interpret it, we might say that this operation is a "period" of the Ihara action ◦Λ−adic.

5.3.2. Elementary description of the expansion with respect to k. In part IV of our p-adic

analytic work [J4], we have given a computation on the fundamental group expressing

how iterated integrals depend on the power of Frobenius. This applies in particular

to prime multiple harmonic sums, via their expression as infinite sums of p-adic iter-

ated integrals at tangential base-points. This showed an expansion of prime multiple

harmonic sums in terms of their upper bound pk. For prime multiple harmonic sums,

we also made a parallel computation involving elementary operations giving a similar

result. We might say that the expansion obtained by elementary means is a period of

the expansion of Frobenius in terms of its power.

5.3.3. Algebraic relations in terms of series. All the proofs of algebraic relations, which

are proofs in the context of the fundamental groupoid, can be expressed in terms of

elementary operations on finite sums.

- The series shuffle relations is by nature a property of the series expansion.

- Since Euler, it is known that the integral shuffle relation can be proved in terms of the

series expression.

- Hoffman’s method to prove the one dimensional part of Kashiwara-Vergne equations

for prime multiple harmonic sums, which he calls the duality theorem and which has

been lifted p-adically by Rosen, uses Newton series.

This suggests that, when pushing forward the fundamental group by the reindexation,

we may also push forward the rules of computation. We will essentialize this idea in the

next paragraph.

6. Interpretation of the elementary description of

Σ(Li T )M
O,prime

(
πun

1 (P1 − Z)
)

: the role of indices in ∐d≥1(N)d

We are now going to define a language that enables to write in a simple way the

formulas arising in the previous paragraph, which describe elementarily the reindexed

fundamental group. The notions of this language, which are indexed entirely by elements

of N, work as a pseudo-motivic setting, including substitutes to the motivic Galois

coaction on prime multiple harmonic sums, and "conjectures of periods" that reformulate

the conjecture of the previous paragraph. Thus, everything happens as if there was a

conceptual framework behind this language.

6.1. Interpretation in terms of indices on N.

6.1.1. The "pro-unipotent paths on N". In the analogy and the correspondence with the

usual setting that we derive here, N will appear as a sort of "fundamental open affine

subset" of a natural "space" that will play the role of P1 − Z.

Definition 6.1. Let n, m ∈ N with n < m.

i) A path from n to m is an element of ]n, m[.
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ii) A pro-unipotent path from n to m with n < m is an increasing sequence of elements

of ]n, m[, which we will denote by n < n1 = . . . = ni1 < ni1+1 = . . . = ni2 < . . . <

nir−1+1 = . . . = nir
< m.

Let us denote the set of pro-unipotent paths from n to m by Pn,m.

Let the depth of a pro-unipotent path be the number of < minus one. Let P
(d)
n,m be the

part of depth d of Pn,m : we have Pn,m = ∐dP
(d)
n,m.

Note that P
(d)
n,m is non empty if and only if |m − n| > d.

Definition 6.2. i) Let the associative composition Pn,m ×Pm,l → Pn,l be the one given,

if n < m < l ∈ N, by concatenation of sequences :

(n < n1 = . . . < . . . nd < m).(m < m1 = . . . < . . . md′ < l)

= (n < n1 = . . . < . . . < nd < m < m1 = . . . < . . . md′ < l)

ii) Let the associative and commutative "pre- series shuffle product" Pn,m ×Pn,m →(free

Z-module over Pn,m) be given by the logical operation "or" : for example

(n < n1 < m) × (n < m1 < m)

= (n < n1 < m1 < m) + (n < m1 < n1 < m) + (n < n1 = m1 < m)

and where a pro-unipotent path whose depth exceeds |m − n| is send to 0.

When we will refer to the Z[Pn,m] below, it will mean the free Z-module over Pn,m,

equipped with the pre-series shuffle product, which is a bilineary map Z[Pn,m]×Z[Pn,m] →

Z[Pn,m]. This is a parallel to the shuffle product which applies to iterated integrals.

The composition of paths extends uniquely to a bilineary map Z[Pn,m] × Z[Pm,l] →

Z[Pn,l].

Definition 6.3. Let us say that two pro-unipotent paths in Pn,m (having the same

number of letters) are equivalent, which we will denote by the symbol ∼, if we obtain

the same sequence of symbols = and < when removing the letters ni.

Proposition 6.4. i) This is clearly an equivalence relation.

ii) The set of equivalence classes identifies to the set of words on the alphabet {<, =}.

We denote the set of equivalence classes of unipotent paths from n to m by Pn,m/ ∼.

Proposition 6.5. The composition of paths and the pre - series shuffle product pass

to the quotient and induce maps

Pn,m/ ∼ ×Pm,l/ ∼ −→ Pn,l/ ∼

Z[Pn,m/ ∼] × Z[Pn,m/ ∼] −→ Z[Pn,m/ ∼]

They also induce maps between equivalence classes on Pn,m obtained by summing on

all the paths of an equivalence class.

Remark 6.6. Our way to define functions over an homotopy class of paths (that will

play the role of homotopy-invariant iterated integrals) will be to sum over all the paths

of a homotopy class.
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6.1.2. Descending the de Rham setting. By keeping only the series expansion of differ-

ential forms
∑

n≥−1 anzndz at 0 and 1, and considering maps n 7→ an we obtain a map

from O(πdR
1 (P1 − {0, 1, ∞}) to the following.

First, to A1/Q, associate the set N and the Q-vector space of functions F>0(N,Q)

having a strictly positive radius of convergence both in the complex and the p-adic set-

ting for all primes p.

To Gm/Q, associate the set N∪{−1} and the extended Q-vector space F>0(N∪{−1},Q)

of functions satisfying the same condition of convergence (the convergence condition does

not affect the value at −1).

Now, to (A1 − {0 = z0, z1, . . . , zr, zr+1 = 1})/Q, associate r + 2 copies of N ∪ {−1},

labeled by 0, z1, . . . , zr, zr+1 and transition maps

F>0(N ∪ {−1},Q)(zi) → F>0(N ∪ {−1},Q)(zj)

such that the transition map from zi to 0 sends

1n=−1 at zi to n 7→ −z−n
i × 1n≥0 at 0

The definition of the transition maps, and their view as arising from transition maps on

the level of the N∪{−1} themselves, can be stated, for example, by embedding N∪{−1}

into a vector space of infinite formal sums of elements of N, to suppress the additional

issues of convergence. Since, for the present paper, we will discuss only computations,

that are made inside the "affine subset" N∪{−1} at 0, we do not need to enter into such

a formalism and leave it to a future paper.

6.1.3. The correspondence. We have the natural "cohomological equivalence" ∼ of ele-

ments of F>0(N ∪ {−1},Q) defined by two functions having the same value at −1.

In the case of P1 − {0, 1, ∞}, iterated integration induces a correspondence between the

data above modulo this cohomological equivalence and the "pro-unipotent paths of N"

of the previous paragraph, that we do not need to write explicitly, and that recasts the

Taylor expansion of hyperlogarithms. It essentially consists in the identification from

the words on (=, <) to words on (e0, e1). In the general case we would have had to add

to the letter < an additional label zi.

What we will use is that this correspondence factorizes through the following other

correspondence : we consider now functions fi : N → Q which are no more coefficients

of series expansions of a dz
z−zi

, but a piece of the result of the iterated integration.

Given a path γ = (nj)j ∈ Pn,m with n < m, regroup the indices ni which are equal to

each other, and order them according to the order of N. This gives depth(γ) equivalence

classes which we denote by 1(γ) < . . . < d(γ). Given an index j, let i = step(j, γ) be

the element of {1, . . . , d} such that nj occurs in i(γ). It depends only on the homotopy

class of γ.
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Definition 6.7. Let, for each value of the depth d, the "summation" coupling :

(27)
(
[γ′] ∈ P (d)

n,m, (f1, . . . , fd) ∈ F(N,Q)d
) S

7−→
∑

γ=(ni)∈
homotopy class [γ′]

∏

i

fstep(i,[γ′])(ni)

In the case of f1 = . . . = fd : l 7→ 1
l , the result of the coupling map is the multiple

harmonic sum function and its shifted versions :

Hn<m(sd, . . . , s1) =
∑

n<n1<...nd<m

1

ns1
1 . . . nsd

d

6.1.4. Pro-unipotent paths on N "relative to a subspace" and associated "motivic Galois

coaction". In this paragraph, let M be a subset of N.

Our setting here is all the sets of pro-unipotent paths Pn,m with extremities in M ,

i.e. such that (n, m) ∈ M2.

We first define a notion of restriction of a path to M .

Definition 6.8. Let γ = (nj) ∈ Pn,m, with (n, m) ∈ M2. The restriction of γ to M ,

denoted by

γ|M

is the subsequence of γ made of the nj ’s such that nj ∈ M .

Now we define a notion of homotopy of pro-unipotent paths relative to M .

Definition 6.9. We say that two pro-unipotent paths γ1, γ2 ∈ Pn,m, with (n, m) ∈ M2

are homotopic relative to M if and only if

i) they are homotopic

ii) their steps that are in M are the same

Proposition 6.10. This defines clearly an equivalence relation.

We will denote this equivalence relation by ∼M .

Definition 6.11. Let, for n, m ∈ M , the function

∆M : Z[Pn,m] 7→ Z[Pn,m] ⊗
(

⊗n<l<l′<m Z[Pl<l′ ]
)

γ 7→ γ|M ⊗
(

⊗i=1r(p)−1 ni(p) < . . . < ni+1(p))︸ ︷︷ ︸
subpath of γ from ni(p) to ni+1(p)

where

γ|M = (0 < n1(p) = . . . = n1(p) < . . . < nr(p) = . . . = nr(p) < n)

In the case of prime multiple harmonic sums, ∆M is compatible with the coupling.

6.1.5. Prime multiple harmonic sums. Let k ∈ N∗ (the power of Frobenius).

Consider the set of parts pkN, for all primes p.
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The coupling (27) applied to functions f1, . . . , fd all equal to l 7→ pk

l and classes of

P
(d)

0,pk yields the prime multiple harmonic sum function :

(sd, . . . , s1) 7→ (pk)sd+...+s1 Hpk (sd, . . . , s1)

Definition 6.12. Let Har be the Z-algebra generated by the constant function n 7→ 1

and the maps n 7→ pk

n .

Remark 6.13. The algebra Har contains certain binomial coefficient functions

n 7→ n

(
pk

n

)
=

pk(pk − 1) . . . (pk − n + 1)

1 . . . (n − 1)
= (1 −

pk

1
) . . . (1 −

pk

n − 1
)

Remark 6.14. If we consider the weight-adic completion of Har, the obtained algebra

also contains the series expansion of p-adic multiple zeta values. For example, the series

expansion of p-adic multiple zeta values of depth one was : for all s ∈ N∗ such that

s ≥ 2 :

ζp,−k(s) =
1

s − 1
(pk)s

∑

N≥−1

(pk)N (−1)N

(
N + s

s − 1

)
BN+1

∑

0<n<pk

1

ns+N

And it can be rewritten as :

ζp,−k(s) =
∑

0<n<pk

1

s − 1

∑

N≥−1

(−1)N

(
N + s

s − 1

)
BN+1

(pk

n

)s+N

We will consider the map ∆M with M = pkN.

Definition 6.15. By summing on an equivalence class, we obtain a map which passes

to the quotient :

∆pkN,∼ : Z[Pn,m/ ∼] 7→ Z[Pn,m/ ∼] ⊗
(

⊗n<l<l′<m Z[Pl<l′ / ∼]
)

6.1.6. Application. The elementary computation of [J2] evoked in §5.3.1, that expresses

the multiplication by pk of the upper bound of a multiple harmonic sum, can be ex-

pressed efficiently in terms of ∆pkN,∼. This adds up to the fact that ∆p applied to

prime multiple harmonic sums amounts to change the power of Frobenius and preserves

all known algebraic relations.

This means that, for numbers obtained by coupling elements of Har and pro-unipotent

paths on N, applying ∆p yields numbers obtained by coupling elements of the weight-

adic completion of Har and pro-unipotent paths on N, and we have a notion of "algebraic

relation preserved by ∆pN".

Question 6.16. ("conjecture of periods" in this case) Are all the relations preserved by

∆pN ?

6.2. Interpretation in terms of a class of operations and of relations between

multiple harmonic sums.

6.2.1. Usual operations on periods. Let us recall general statements on periods, from the

paper of Kontsevich and Zagier [KZ] on this subject.

The most elementary definition of periods is the following ([KZ], §1.1) : "A period is
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a complex number whose real and imaginary parts are values of absolutely convergent

iterated integrals of rational functions with rational coefficients, over domains in Rn

given by polynomial inequalities with rational coefficients."

Then, the most elementary way to formulate the conjecure that all algebraic relations

between periods should come from their integral representation is the following ([KZ],

§1.2, conjecture 1) : if a period has two different integral expressions, we could pass

from one to another by using the following rules :

- additivity of the integral with respect to the integrand and the domain of integration.

- invertible change of variable

- the "Newton-Leibniz formula", i.e. the expression of the difference of a value of f at

two points by the integral of the derivative of f .

6.2.2. An algebra of functions and a class of operations on multiple harmonic sums.

Given the previous paragraphs, we are led to ask for an analogue of this conjecture,

of course not in the general case of all series, but in the very particular case of prime

multiple harmonic sums.

We define first an algebra of functions on N. A priori, there are expressions of prime mul-

tiple harmonic sums other than the usual one and we cannot consider only the algebra

Har of the previous paragraph.

Definition 6.17. Let the field generated by the following functions on N: polynomial

functions, functions k 7→ (−1)k, and k 7→ k!.

Definition 6.18. Consider the following operations :

i) Additivity of the summation with respect to the domain of summation - in the case

of iterated sums, this includes the series shuffle product.

ii) Additivity of the summation with respect to the summand.

iii) Change of variable.

iv) Limits in
∏

p Qp ; this includes absolutely convergent sums and the expansion 1
1−x =∑

n≥0 xn for x = (xp)p ∈
∏

p Qp such that for all p, |xp|p < 1.

Question 6.19. If we have an equality between prime multiple harmonic sums in
∏

p Qp,

can we pass from one to another using those operations between sums defined via the

field of functions above ?

In other terms, does the class of algebraic relations obtained this way generates all

relations between prime multiple harmonic sums ? If not, does it become true with

certain restrictions, such as restrictions appearing in the conjecture associated to the

Taylor period map in II ?
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7. Conclusion : example of a motivic Galois theory of series

Usually, the introductions to multiple zeta values start with their expression as series
∑

0<n1<...<nd

1

ns1
1 . . . nsd

d

shortly followed by their expression as iterated integrals, of the form

(−1)d

∫

0<t1<...<tn<1

∧n
i=1

dti

ti − ǫi

There is thus at first an apparent symmetry between the two expressions ; moreover,

the usual introductions continue then by stating that each of these expressions yields

a shuffle product and a shuffle relation, giving rise to the double shuffle relations. At

some point, a radical dissymetry appears, because the iterated integral expression is the

starting point to the study of multiple zeta values as periods, whereas the series shuffle

relation is mostly left aside.

At such a point, we asked ourselves, as did other people, the following naive question :

is there an analogous Galois theory for iterated sums ?

The usual answer to this question is that there is of course no Galois theory for series.

Here, as a conclusion to these three papers, let us explain what we call a motivic Galois

theory of series in the case of prime multiple harmonic sums.

In the diagram below, the highest level will be refered to at the zeroth step, etc. and

the lowest one to the third step.

There is a passage, in three steps, from the usual fundamental groupoid (precisely, the

torsor of paths starting at 0 multiplied by the groupoid restricted to usual tangential base

points) to a collection of elementary algebras of functions on N :

πun,dR
1 (XZ , 0, ∗) ×

∏
t∈T πun,dR

1 (XZ , t)y
πun,dR

1 (XZ ,~10)(Q[[x]][log(x)]) ×
∏

z∈Z−{0,∞} ΣΛ−adicπun,dR
1 (XZ ,~10,~1z)y∏

z∈Z−{∞} A
W (Q[[x]][log(x)])y

Elementary algebras of functions on N

with,

a) for the two first steps :

i) the arrow (the first one is the reindexation Σ(Li T )M
O,prime

of §5, the second one is de-

scribed in §5.4) is subject to a commutative diagram involving the motivic Galois action

and a pushed forward version of it

ii) we make a "conjecture of periods" for the arrow, establishing the consistence of the
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setting, i.e. the view of the pushed forward action as a motivic Galois action

Before stating the property satisfied by the third step, let us mention the status of

those two "conjectures of periods" : the one of the first arrow, which lies purely in the

motivic framework, is proved by parts II and III ; our hope in the conjecture of periods

of the second arrow comes from the main results of parts I and II. The equality between

the substitutes of the motivic Galois action at the first and second step comes from our

p-adic work.

At the end of the two first arrows, we have object attached to prime multiple har-

monic sums, keeping a track of the motivic Galois action and the conjectures of periods,

and having the particularity that it is purely expressed in terms of Taylor coefficients at

0 of hyperlogarithms. We add the following observation.

b) We can define, at the third step, a substitute to a part of the motivic fundamen-

tal groupoid of XZ that is indexed purely in terms of N ; it is compatible with the usual

fundamental groupoid.

Precisely, it is a substitute to : the variety XZ , its Betti and de Rham fundamental

groupoid, its motivic Galois action on multiple zeta values, and the class of motivic

relations between multiple zeta values

(formula for the analogue of the Galois action on the "pro-unipotent paths on N" :

”∆p : γ 7→ γ|pN ⊗
(

⊗
r(p)−1
i=1 ni(p) < . . . < ni+1(p))︸ ︷︷ ︸

subpath of γ from ni(p) to ni+1(p)

”)

It satisfies :

i) the third arrow (described in §6.1, and which goes actually from the third step to the

second step) is compatible with ∆p on the third step and the avatar of the Galois action

on the second step.

ii) there is thus a "conjecture of periods" for the arrow, it reformulates the conjecture of

periods at the second step.

Moreover, it becomes natural in this context to define a class of relations between multi-

ple harmonic sums that is an analogue of the class of relations between periods arising

from elementary manipulations of integrals, and to formulate the conjecture of periods

in this terms.

As a conclusion, we can say that, in the example of prime multiple harmonic sums,

we can build ad hoc of a motivic Galois theory of series.
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