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DEPTH REDUCTIONS FOR ASSOCIATORS

DAVID JAROSSAY

Abstract. We reformulate part of the associator equations in a way for which
the term of highest depth is significative, implying certain properties of "depth re-
duction". This has natural applications to multiple zeta values, and a particular
application to p-adic and finite multiple zeta values.
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1. Introduction

1.1. Multiple zeta values and the depth. The origin of this paper is the study of
multiple zeta values. These are the following real numbers :

ζ(sd, . . . , s1) =
∑

0<n1<...<nd

1

ns1

1 . . . nsd

d

= (−1)d
∫

0<t1<...<tn<1

∧ni=1

dti
ti − ǫi

∈ R

with d ∈ N∗, sd, . . . , s1 ∈ N∗, sd ≥ 2, n =
∑d

i=1 si, (ǫn, . . . , ǫ1) = (

sd−1
︷ ︸︸ ︷

0 . . . 0 1, . . . ,

s1−1
︷ ︸︸ ︷

0 . . . 0 1).
The integral expression above makes multiple zeta values into periods in the sense of al-
gebraic geometry, and gives rise to the problematic of studying the polynomial relations
over Q that they satisfy, which is our precise motivation.

Given an index (sd, . . . , s1) of a multiple zeta value, the sum sd + . . . + s1 is called
its weight, and the integer d is called its depth. For theoretical reasons, conjecturally,
the relations among multiple zeta values are homogeneous for the weight.
The analogue of this conjecture for the depth is not true ; for example, we have
ζ(3) = ζ(2, 1). The depth plays, nevertheless, a certain role in the study of algebraic
relations between multiple zeta values, for reasons that we recall below.
The depth filtration is the data of the Q-vector spaces V≤d generated by multiple zeta
values of depth ≤ d. It gives rise to the depth graded multiple zeta values, i.e. the
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images of the ζ(sd, . . . , s1)’s in V≤d/V≤d−1. A key fact is that the depth filtration de-
scends to a filtration on the so-called motivic multiple zeta values : this means that
depth-graded multiple zeta values can be studied as periods as well : there is a notion
of motivic depth-graded multiple zeta values. These have been studied in [IKZ], [B2].
Their interest comes partly from their surprising connection with iterated integrals of
modular forms.
The notion of depth reduction is subjacent - or, more precisely, essentially dual - to the
one of depth-graded multiple zeta values :

Definition 1.1. A Q-linear combination of multiple zeta values of depth d ∈ N∗ is said
to admit a depth reduction if it can be written as a polynomial over Q of multiple zeta
values of depth ≤ d− 1 and 2πi.

1.2. Double shuffle relations and depth reductions. Multiple zeta values satisfy
the so called double shuffle relations ; they are described in detail in [IKZ]. They are im-
mediate consequences of the formulas of §1.1 and they give, despite that, a conjecturally
complete description of the algebraic relations over Q between multiple zeta values.
A further interesting aspect of double shuffle relations is that they are naturally adapted
to the depth filtration. This means that their depth graded version gives instantly a good
conjectural description of algebraic relations between depth graded multiple zeta values.

Provided by this framework, two different examples of depth reduction have been singled
out in the literature, for their special meaning or application. We state them below, and
they will reappear in the next parts. The first one is well-known :

Proposition 1.2. (Tsumura, [Ts], §1, Theorem ; Ihara-Kaneko-Zagier, [IKZ], §8, corol-
lary 8, Panzer, [P]) Let d ∈ N∗ and sd, . . . , s1 ∈ N∗ such that sd + . . .+ s1 − d is odd.
Then ζ(sd, . . . , s1) admits a depth reduction.

A particularity of this proposition is that it actually goes back to Euler, who defined
multiple zeta values in one and two variables, and proved the part of depth one and two.
The depth one part is nothing else than the famous equality, valid for all n ∈ N∗,

ζ(2n) =
|B2n|

2(2n)!
π2n

The depth two part of the statement is that multiple zeta values of depth two and odd
weight admit a depth reduction ; its first example is

ζ(3) = ζ(2, 1)

A second significative example is the following result, also announced by Zagier :

Proposition 1.3. (Yasuda, [Y1], corollary 3.3) Let d ∈ N∗ and sd, . . . , s1 ∈ N∗. Then
ζ(sd, . . . , s1) + (−1)sd+...+s1ζ(s1, . . . , sd) admits a depth reduction. Precisely, there is a
particular way to write in lesser depth the number

∑d

k=0(−1)sk+1+...+sdζ(sk+1, . . . , sd)ζ(sk, . . . , s1)

These numbers are analogues of Kaneko-Zagier’s finite multiple zeta values. For us,
a particularity of this proposition is that it helps to write the reduction modulo large
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primes of p-adic multiple zeta values in terms of finite multiple zeta values, as we will
explain in §5.

1.3. Associators and multiple zeta values. The notion of associator has been de-
fined by Drinfeld in [Dr]. Primarily, it arises as part of the axioms of the definition of
a quasi-triangular quasi-Hopf algebra. An interest of associator equations is that they
have a lot of other different incarnations, in various mathematical contexts. For our con-
cerns, associators are certain elements of a non-commutative algebra of formal power
series

R〈〈e0, e1〉〉

where R is any Q-algebra and e0, e1 are formal variables. The following theorem is non
trivial and important :

Theorem 1.4. (Furusho, [F], Theorem 1.1.) Associators satisfy the double shuffle
equations.

To illustrate the notion of associators, let us recall briefly its meaning in the case of
multiple zeta values, which is the fundamental example given in [Dr] as well as our
motivation. In [Dr],§2 is defined an element

ΦKZ ∈ R〈〈e0, e1〉〉

the definition is through integration of the canonical connection ∇KZ on the fundamental
bundle of paths of the pro-unipotent fundamental groupoid [D] of M0,4 = P1 −{0, 1,∞},
and M0,5 = (P1 − {0, 1,∞})2 − diagonal. The algebraic automorphisms of M0,4 and
M0,5 induce horizontal automorphisms of this bundle with connection ; they are, on the
one hand, expressed in terms of ΦKZ and, on the other hand, of finite order. This gives
the associator equations, recalled in §2.2, in the case of ΦKZ and the constant m = 2iπ.
Now, an element of R〈〈e0, e1〉〉 can be written uniquely in the following form, with the
brackets refering to coefficients

f = f [∅] +
∑

d∈N∗

sd,...,s0∈N∗

f [esd−1
0 e1 . . . e

s1−1
0 e1e

s0−1
0 ]esd−1

0 e1 . . . e
s1−1
0 e1e

s0−1
0

Finally, the integral expression of multiple zeta values of §1.1 is equivalent to

ζ(sd, . . . , s1) = (−1)dΦKZ[esd−1
0 e1 . . . e

sd−1
0 e1]

Thus, the associator equations for (ΦKZ, 2iπ) amount to algebraic relations between
multiple zeta values provided by the associator equations for ΦKZ ; they provide a
conjecturally complete description of the algebraic relations between multiple zeta values
over Q.

1.4. Role of associators for depth reduction - main result. What we develop
in this paper is a partial analogue for associators relations of the depth-graded double
shuffle relations, with applications to the two examples of depth reductions phenomena
of Proposition 1.2 and Proposition 1.3.

The difficulty is that, unlike double shuffle equations, associator equations are not
adapted to the depth filtration. Precisely, for each n ∈ N∗, the highest depth appearing
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in an associator equation in weight n is essentially equal to n, and the depth graded
highest depth term is not significative ; that is to say, it is essentially always equal to
0, and for an obvious reason. Thus, it is necessary to slightly change the formulation of
associator equations.
The way we rewrite part of the associator equations involves a couple (Φ,Φ∞) of ele-
ments of R〈〈e0, e1〉〉 and the depth filtration for both Φ and Φ∞. Such a couple is a usual
data, subject to Kashiwara-Vergne equations if Φ is an associator [AET]. The equations
that we will write are partly related, but not equivalent to the usual formulation of a
part of Kashiwara-Vergne equations. In the case of multiple zeta values, ΦKZ,∞ is the
natural analogue of ΦKZ given by iterated integrals from 0 to ∞ instead of from 0 to 1.
Roughly speaking, our main result is :

Main result (theorem 3.1, §3.1, and corollaries 3.3 and 3.4, §3.3.1) The one dimensional
part (in the sense recalled in §2) of the associator equations for an associator Φ can be
formulated in terms of (Φ,Φ∞), with significative highest depth terms, reimplying the
propositions 1.2 and 1.3.

1.5. Further comments. The propositions 1.2 and 1.3 are congruences. The exact
formulas beyond the congruences can always be written. The ones obtain via double
shuffle equations and via associator equations are not the same a priori.
Furthermore, whereas the double shuffle relations are more practical for many aspects,
the proof via associators for the depth reduction of the numbers

∑d

k=0(−1)sk+1+...+sdζ(sk+1, . . . , sd)ζ(sk, . . . , s1)

is much shorter. This is basically because these numbers are a natural quantity from
the point of view of associators. This was our first observation. Our computations are
actually inspired by p-adic computations, originated in the work of Ünver [U1]. At the
end of the paper, we discuss the interest of the depth of Φ∞ in the case of p-adic multiple
zeta values.

1.6. Outline. In §2, we recall the definition of associators. In §3, we state the results.
In §4 we prove them. In §5, we explain their meaning relative to multiple zeta values.

Acknowledgments. I thank Benjamin Enriquez for his advices throughout the writing
of this paper. I also thank Pierre Cartier for earlier discussions on this work. I thank
the organizers of the conference "Combinatorics and Arithmetics for Physics : special
days" held at IHES on 11st and 12th may of 2015 where I explained some of this paper.
I also thank Erik Panzer for discussions. This work has been achieved at Université
Paris Diderot and at Institut de Recherche Mathématique Avancée. It has been funded
by the ERC grant n◦257638 and by the Labex IRMIA.

2. Definition of associators and notations

2.1. Two pro-unipotent affine group schemes Πun
1 (M0,4) and Πun

1 (M0,5). These
are the affine algebraic groups over Q canonically associated to the de Rham pro-
unipotent fundamental groupoid of the varieties M0,4 and M0,5 via the main result
of [D], §12. We will use mostly the case of M0,4.
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Definition 2.1. Let Πun
1 (M0,4) be the exponential of the pro-nilpotent Lie algebra over

Q defined by generators e0, e1, e∞ subject to the relation e0 + e1 + e∞ = 0 - i.e. freely
generated by e0, e1 for example.

Definition 2.2. Let Πun
1 (M0,5) be the exponential of the pro-nilpotent Lie algebra over

Q defined by generators ei,j , 1 ≤ i, j ≤ 4, subject to the relations : eii = 0, eji = eij ,
[ejk + ejl, ekl] = 0 if j, k, l are pairwise distinct, and [eij , ekl] = 0 if i, j, k, l are pairwise
distinct.

Proposition 2.3. We have Πun
1 (M0,4) = Spec(Hx), where Hx is defined below.

Definition 2.4. The shuffle Hopf algebra Hx = Hx(e0, e1) over Q associated with the
alphabet {e0, e1} is the following :
i) as a the Q-vector space, it is the one freely generated by the words on {e0, e1},
including the empty word ;
ii) the product x of Hx is defined by

(u1 . . . ur)x(ur+1 . . . ur+s) =
∑

σ, permutation of {1,...,r+s}
σ(1)<...<σ(r), σ(r+1)<...<σ(r+s)

uσ−1(1) . . . uσ−1(r+s)

iii) the coproduct of Hx is the deconcatenation of words ;
iv) the antipode is S : ur . . . u1 7→ (−1)ru1 . . . ur
v) the counity ǫ is the augmentation map of the Q-monoid of words.

To make certain formulas more readable, we will denote a word esd−1
0 e1 . . . e

s1−1
0 e1e

s0−1
0

by e
sd−1,...,s0−1
0 ; when s0 = 1, we may denote the same word by e

sd−1,...,s1−1
0 e1 to

emphasize that it starts with e1.

The notation with brackets for coefficients of formal series given in §1.3 extends to
the whole of Hx by linearity.

Proposition 2.5. For any Q-algebra R, we have :

(1) Πun(M0,4)(R)

= {f ∈ R〈〈e0, e1〉〉 | for all words w,w′, f [wxw′] = f [w]f [w′], and f [∅] = 1}

The equation f [wxw′] = f [w]f [w′] is called the shuffle equation.

We will not use the similar description of the points of Πun(M0,5).

2.2. Definition of associators.

Definition 2.6. An associator (m,Φ) (with coefficients in a Q-algebra R) is an ele-
ment of R × Πun(M0,4)(R), with Φ[e0] = Φ[e1] = 1, such that we have, respectively in
Πun(M0,4)(R) and Πun(M0,5)(R) :

(2) Φ(e0, e1)Φ(e1, e0) = 1

(3) e
m
2
e0 Φ(e∞, e0)e

m
2
e∞ Φ(e1, e∞)e

m
2
e1 Φ(e0, e1) = 1

(4) Φ(e12, e23 + e24)Φ(e13 + e23, e34) = Φ(e23, e34)Φ(e12 + e13, e24 + e34)Φ(e12, e23)
5



These equations are called, respectively, the 2-cycle or duality, 3-cycle or hexagon, and
5-cycle or pentagon equations. A different presentation involves two variants of the
hexagon equation instead of the duality and hexagon equation.

Proposition 2.7. The hexagon and duality equations imply :
i) for m 6= 0 ([AET], equation (3) p.1) :

(5) exp(−Φ−1(e0, e1)me1Φ(e0, e1))) exp(−me0)

= exp(
m

2
e0) exp

(
Φ(e0, e∞)−1me∞Φ(e0, e∞)

)
exp(−

m

2
e0)

ii) for m = 0 ([Dr], Proposition 5.9),

(6) e0 + Φ−1(e0, e1)e1Φ(e0, e1) + Φ(e0, e∞)−1e∞Φ(e0, e∞) = 0

When m = 0, the equation (6) together with the equations (2), (3), (4) actually form the
definition of GRT1 in [Dr]. The equation (6) is the coefficient of degree 1 with respect
to m of equation (5). We could unify the statements for m 6= 0 and for m = 0 as part
of a same statement. Nevertheless, for readability, we will distinguish the two cases in
the statements and proofs.
We will refer to (5), (6) as the equations of the special automorphism, as a reference to
the automorphism of Lie Πun(M0,4) defined by (Φ,Φ∞) in the Kashiwara-Vergne context
and a usual terminology (see [AET]).
What we study is the part of the equations above which can be expressed purely in
terms of Πun(M0,4), i.e., all equations above except for the pentagon equation.

2.3. Notations and conventions concerning the depth filtration and the weight.

First, the constant m in the definition must be thought of as having always depth 0 and
weight 1, relatively to any equality

Notation 2.8. i) Let a collection of Q-vector subspaces, resp. Q[m] sub-modules of
Hx , resp. Hx [m]

(Hx)D≤d, (Hx)D≤d, Hx [m]D≤d, Hx [m]D≥d

defined as the spans of the shuffle polynomials of elements whose depth is ≤ d, resp.
≥ d. Their subspans of weight n ∈ N∗ are denoted by adding W = n, i.e.

(Hx)D≤d,W=n, etc.

ii) For u a point of Πun(M0,4) in any algebra, and R another algebra, the image of the
previous modules by u resp. u⊗Q Q[m], tensorized with R, is denoted by

R[u]+
D≤d, resp. R[u]+

D≤d,W=n, etc.

Definition 2.9. If u is a point of Πun(M0,4), m as in the definitions, and d > r ∈ N∗,
let

DRd→d−r(u)

be the vector subspace of (Hx)D≤d generated by words w such that u[w] is a polynomial
over Q of coefficients of u or depth ≤ d− r and of m.

6



3. Results

3.1. Highest depth parts of the one dimensional associator equations. In the
rest of the paper, R is a Q-algebra. The points Πun(M0,4), when viewed as maps
Hx → R, induce maps on Hx [m] → R[m] by tensorisation by Q[m], which we will
denote in the same way.

Theorem 3.1. There exist linear functions Am, A∞
m , Bm, B

∞
m : Hx → Hx [m] (see §4.4

for the definitions) such that, given (m,ψ) ∈ R×Πun(M0,4)(R), the condition that (m,ψ)
satisfies the equations of duality, hexagon and special automorphism is equivalent to

(7) the couple (ψ, ψ∞) satisfies ψ ◦Am = ψ∞ ◦A∞
m and ψ ◦Bm = ψ∞ ◦B∞

m

Moreover, for all words w, the highest depth terms of Am(w), A∞
m (w), Bm(w), B∞

m (w)
are given as follows.

Formulas for Am and A∞
m .

(8) Am(esd−1,...,s0−1
0 )

≡
s0−1∑

k=0

(1 − (−1)(
∑

d

i=0
si)−1−k−d)esd−1,...,s1−1,s0−1−k

0

(m

2

)k
mod Hx [m]D≤d−1

(9) A∞
m (esd−1,...,s0−1

0 ) ≡
sd−1∑

k=0

(m

2

)k
e
sd−1−k,sd−1−1,...,s1−1,s0−1
0 mod Hx [m]D≤d−1

Formulas for Bm and B∞
m . (resp. when m 6= 0 and m = 0)

(10) Bm(esd−1,...,s0−1
0 )







≡
∑s0−1

k=0 1sd+1=1m
(−m)s0−1−k

(s0−1−k)! e
sd−1,...,s1−1−k
0 −m (−m)s0−1

(s0−1)! e
sd+1−1,...,s1−1
0

mod Hx [m]D≤d−2

resp. ≡ 1s0=1e
sd+1−1,...,s1−1
0 − 1sd=1e1e

sd−1−1,...,s0−1
0 mod Z[u]+

D≤d−1

(11) B∞
m (esd−1,...,s0−1

0 )






≡
∑

0≤k0≤s0−1
0≤kd≤sd−1

(−1)k0

(
m
2

)kd+k0

(
∑

0≤l≤sd−1−kd
mle

sd−1−kd−l,sd−1−1,...,s0−1−k0

0

−
∑

0≤l≤s0−1−k0

(
mle

sd−1−kd,sd−1−1,...,s0−1−k0−l
0

)

mod Hx [m]D≤d−1

resp. ≡ 1sd≥2e
sd−2,sd−1−1,...,s0−1
0 + 1s0≥2e

sd−1,...,s1−1,s0−2
0

Injecting equations (8), (9), (10),(11) in (7) turns these equations into congruences
relating coefficients of ψ and ψ∞, modulo modules of coefficients of §2.3, which we do
not need to write.

3.2. Comparison of ψ and ψ∞. The first particular byproduct of the congruences
relating ψ and ψ∞ is :

7



Proposition 3.2. With the hypothesis of the theorem, we have : for all d ∈ N∗,

Z[m][ψ]+
D≤d = Z[m][ψ∞]+

D≤d+1

3.3. Depth reductions. The congruences relating coefficients of ψ and ψ∞ also pro-
duce elements in DRd→d−1(ψ), DRd→d−1(ψ∞), and also DRd→d−2(ψ).

3.3.1. Depth reductions for ψ. Let (m,ψ) ∈ R × Πun(M0,4)(R′) satisfying the assump-
tions of the theorem. Let (sd, . . . , s1) an index.

Corollary 3.3. If sd + . . .+ s1 − d is odd, then (sd, . . . , s1) ∈ DRd→d−1(ψ).

Corollary 3.4. We have (sd, . . . , s1) + (−1)sd+...+s1 (s1 + . . .+ sd) ∈ DRd→d−1(ψ)

Formula when m = 0. We have more precisely :

(12) ψ(sd, . . . , s1) + (−1)sd+...+s1ψ(s1, . . . , sd)

≡ (−1)
∑

d

i=1
si

∑

l1,...,ld−1∈N

l1+...+ld−1=sd

d∏

i=1

(
−si
li

)

ψ[es1+l1−1,...,sd−1+ld−1−1
0 e1]

+
∑

l′2,...,l
′

d∈N

l′2+...+l′d=s1

d∏

i=2

(
−si
li

)

ψ[esd+ld−1,...,s2+l2−1
0 e1] mod Z[ψ]D≤d−2

Note that the right-hand side admits a more concise expression : let z = e
sd−1,...,s1−1
0 ,

then the right hand side is also congruent to

(13) ψ[ze0] + ψ−1[e0z] ≡ ψ[ze0] − ψ[e0z] ≡ ψ[ze0] + ψ−1[e0z] mod Z[ψ]D≤d−2

Recall from that ψ(sd, . . . , s1) + (−1)sd+...+s1ψ(s1, . . . , sd) is congruent modulo ... to ...
.

(ψ−1e1ψ)[e1w] =
d∑

k=0

(−1)sk+1+...+sdψ[esk+1−1,...,sd−1
0 e1]ψ[esk−1,...,s1−1

0 e1]

and the depth reduction appears in a natural way as a depth reduction for this number.
We gave the formula only for m = 0 because the application that we have in mind
concerns p-adic multiple zeta values, for which the associated m is 0 (see §5).

Combining the two corollaries 3.3 and 3.4 gives instantly :

Corollary 3.5. Assume that (s1+. . .+sd)−d is even. Then (sd, . . . , s1)+(−1)sd+...+s1 (s1+
. . .+ sd) ∈ DRd→d−2(ψ).

This is also known in the double shuffle case.

3.3.2. Depth reductions for ψ∞. We take (m,ψ) satisfying the assumption of the theo-
rem, d ∈ N∗, and (sd, . . . , s1) ∈ (N∗)d. The following corollaries are respective counter-
parts of corollaries 3.4 and 3.5 for ψ∞.

Corollary 3.6. Assume that sd + . . .+ s1 − d is odd. Then we have
sd−1∑

k=0

(m

2

)k
ψ∞[e

sd−1−k,sd−1−1,...,s1−1
0 e1] ∈ DRd→d−1(ψ∞)

8



The fact that ψ∞ in depth d can be written in terms of ψ in depth ≤ d − 1, implied
by the theorem, is a restrictive condition - it implies for example that ψ∞ vanishes in
depth one, which is not true in general. Intuitively, this condition means, intrinsically
on ψ∞, that ψ∞ depends on "one too much variable" as a function of indices sd, . . . , s1.
The following corollary can be seen as a formalization of this idea.

Corollary 3.7. Assume for simplicity m = 0. For all d ∈ N∗, sd, . . . , s0 ∈ (N∗)d,
rd, r0 ∈ N :

(14)

(
s0 + sd + r0 + rd − 1

s0 + sd − 1

)

ψ∞[e
sd−1+rd;sd−1−1,...,s1−1;s0−1+r0

0 ]

−
∑

ud−1+...+u1=rd+r0

d−1∏

k=1

(
−sk
uk

)

ψ∞[e
sd−1;sd−1−1+ud−1,...,s1−1+u1;s0−1
0 ] ∈ DRd→d−1(ψ∞)

When we take sd = s0 = 1, we obtain that all coefficients of f∞ can be written, modulo
lesser depth, as coefficients on words of the form ψ∞[e1 . . . e1].
If, moreover, we take r0 = 0, renaming rd = sd − 1 we obtain

(15) ψ∞[esd−1;sd−1−1,...,s1−1
0 e1]

−
1

sd

∑

ud−1+...+u1=rd+r0

d−1∏

k=1

(
−sk
uk

)

ψ∞[esd−1;sd−1−1+ud−1,...,s1−1+u1;s0−1
0 ] ∈ DRd→d−1(ψ∞)

3.4. Examples in depth 1 and 2. Let us write the first examples of the formulas.
The corollary 3.4 with m = 0, gives in depth one and two : for all s ∈ N∗, and
(s1, s2) ∈ (N∗)2,

(ψ−1e1ψ)[e1e
s−1
0 e1] = 0

(ψ−1e1ψ)[e1e
s2−1,s1−1
0 e1] ≡ (−1)s1

(
s1 + s2

s1

)

ψ[es1+s2−1
0 e1]

The depth reduction for symmetric sums for ψ∞ gives in depth one, combined to the
equation of the special automorphism, gives in depth one : for all s ∈ N∗,

ψ[es−1
0 e1] =

1

s− 1
ψ∞[e1e

s−2
0 e1]

4. Proofs

4.1. Preliminaries.

4.1.1. The shuffle equation and role of the words starting with e1. We will use implicitly
the following standard fact in the proofs. Let u be a point of Πun(M0,4) satisfying
u[e0] = u[e1] = 0, for all n, d ∈ N∗. We recall that the shuffle equation for u is the fact
that we have, for all words w,w′ of Hx , u[wxw′] = u[w]u[w′]. It implies that :

Fact 4.1. Z[u]+
D=d,W=n is generated linearly by the coefficients of the form

u[esd−1,...,s1−1
0 e1] with sd ≥ 2. More precisely, we have :

1) For all sd, . . . , s1, l ∈ N∗ :

u[esd−1,...,s1−1,l
0 ] =

∑

l1+...+ld=l

d∏

i=1

(
−si
li

)

u[esd+ld−1,...,s1+l1−1
0 e1]

9



2) For all words w and k ∈ N∗ :

k.u[ek1e0w] + u[ek−1
1 e0(e1xw)] = 0

4.1.2. Formulas for the dual of maps Πun(M0,4) → Πun(M0,4) induced by homographies.

The homographies z 7→ 1
z

and z 7→ z
z−1 of P1 − {0, 1,∞} induce by functoriality of the

pro-unipotent fundamental groupoid the maps Πun(M0,4) → Πun(M0,4), given on the
points by, respectively, u(e0, e1) 7→ u(e∞, e1) and u(e0, e1) 7→ u(e0, e∞). Their respective
duals are given by :

Fact 4.2. For u ∈ Πun(M0,4)(R), and w ∈ Hx , we have :

u(e∞, e1)[w] = u[w(−e0,−e0 + e1)]

u(e0, e∞)[w] = u[w(e0 − e1,−e1)]

4.1.3. The inverse of a formal series and the depth. We will use implicitly the fact that,
for u : Hx → R, the inverse of u is given by u−1 =

∑

k≥1(−1)kuk, and that in particular,
we have

Fact 4.3. For all words w, u−1[w] ≡ −u[w] mod Z[u]+
D≤depth(w)−1

4.1.4. Injectivity of the conjugation maps.

Fact 4.4. Let i ∈ {0, 1,∞}. Consider the maps R〈〈e0, e1〉〉 → R〈〈e0, e1〉〉,

conji : u 7→ u−1eiu, conj′i(m) : u 7→ u−1emeiu

Then, for u, v ∈ Πun(M0,4)(R), we have

conji(u) = conji(v) ⇔ conj′i(m)(u) = conj′i(m)(v) ⇔ u−1v = exp(λei) for a λ ∈ R

In particular, the restrictions of conji and conj′i(m) to the subgroup
{u ∈ Πun(M0,4)(R) | u[e0] = u[e1] = 0} of Πun(M0,4)(R) are injective.

Proof. Let (we can restrict to write the proof for i = 1 only) ∂, ∂̃ : Hx → Hx be the
linear functions defined by, for all words w, ∂(e1w) = w, ∂(e0w) = 0, ∂̃(we1) = w,
∂̃(we0) = 0 and ∂(∅) = ∂̃(∅) = 0.
1) (This is known and a similar proof appears in [U1]) Let u ∈ R〈〈e0, e1〉〉 such that u
commutes to e1.
Let w a word which is not of the form en1 , n ∈ N∗. It is written uniquely in the form

e
a(w)
1 e0z, with a(w) ∈ N and z a word. We have u[w] = (ue1)[we1] = (e1u)[we1] =
u(∂e1

(w)e1). This shows that u[w] = 0 for all words w containing at least one letter e0,
by induction on a(w). Thus u ∈ R〈〈e0, e1〉〉 and ; if moreover u is grouplike i.e. satisfies
the shuffle equation, we have u = exp(λe1) with λ ∈ R.
2) Let u ∈ R〈〈e0, e1〉〉 such that u commutes to eme1 . Then we also have (eme1 − 1)u =
u(eme1 −1). Let a word w which contains at least one letter e0. It is written uniquely in

the form e
a(w)
1 ze

b(w)
1 with (a(w), b(w)) ∈ (N)2 and z a word such that ∂(z) = ∂̃(z) = 0

(i.e. z = e0 or z is of the form e0 . . . e0). We obtain
∑a(w)
l=1

ml

l! u[ea(w)−l
1 ze

b(w)
1 ] =

∑b(w)
l′=1

ml′

l′! u[ea(w)
1 ze

b(w)−l′

1 ]. This shows, by induction on (a(w), b(w)) for the lexico-
graphical order, that u[w] = 0 for all words w containing at least one letter e0. �

4.2. Transformation of the depth by certain conjugation operations.

10



4.2.1. Conjugation operations of emex , resp. ex, x ∈ {0, 1,∞}, by a series. Let for this
paragraph, u ∈ Πun(M0,4)(R) and m ∈ R − {0}.

Lemma 4.5. (conjugation of eme0 resp. e0)
a) For all d ∈ N∗, we have :

Z[m][u]+
D≤d = Z[u−1eme0u]+

D≤d

Z[u]+
D≤d = Z[u−1e0u]+

D≤d

b) More precisely, we have, for all, d ∈ N∗, sd, . . . , s1 ∈ N∗ :

(u−1eme0u)[esd,sd−1−1,...,s1−1
0 e1] ≡

sd∑

k=1

mk

k!
u[esd−k,sd−1−1,...,s1−1

0 e1] mod Z[u]+
D≤d−1

(u−1e0u)[esd,sd−1−1,...,s1−1
0 e1] ≡ u[esd−1,...,s1−1

0 e1] mod Z[u]+
D≤d−1

Proof. We prove first the more precise formula of b) :it follows from u[e0] = 0 and
from the property u−1 recalled in §4.1.3. By Fact 4.1, the highest depth terms in the
congruences of b) generate all the modules of coefficients of a) : whence a) by induction
on the depth. �

Lemma 4.6. (conjugation of eme1 resp. e1)
a) We have, for all d ∈ N∗,

Z[m][u]+
D≤d = Z[u−1eme1u]+

D≤d+1

Z[u]+
D≤d = Z[u−1e1u]+

D≤d+1

b) More precisely, for all sd+1, . . . , s0 ∈ N∗, resp. sd, . . . , s1 ∈ N∗ with sd ≥ 2,

(u−1eme1u)[esd+1−1,...,s0−1
0 ] ≡ 1sd+1=1m.u[esd−1,...,s0−1

0 ] − 1s0=1m.u[esd+1−1,...,s1−1
0 ]

mod Z[m][u]+
D≤d−1

−m.u[esd−1,...,s1−1
0 e1] ≡ (u−1eme1u)[esd−1,...,s1−1

0 e2
1] mod Z[m][u]+

D≤d−1

(u−1e1u)[esd+1−1,...,s0−1
0 ] ≡ −1s0=1u[esd+1−1,...,s1−1

0 ] + 1sd=1u[e1e
sd−1−1,...,s0−1
0 ]

mod Z[u]+
D≤d−1

−u[esd−1,...,s1−1
0 e1] ≡ (u−1e1u)[esd−1,...,s1−1

0 e2
1] mod Z[u]+

D≤d−1

Proof. Same with the previous lemma. �

Lemma 4.7. (conjugation of eme∞ resp. e∞)
a) We have, for all d ∈ N∗,

Z[m][u]+
D≤d−1 = Z[u−1eme∞u]D≤d

Z[u]+
D≤d−1 = Z[u−1e∞u]D≤d

b) More precisely, for all sd, . . . , s1, s0 ∈ N∗, we have :

(u−1eme∞u)[esd−1,...,s0−1
0 ]

≡
sd−1∑

k=0

mku[esd−1−k,sd−1−1,...,s0−1
0 ]+

s0−1∑

k=0

mku[esd−1,...,s1−1,s0−1−k
0 ] mod Z[m][u]+

D≤d−1

(u−1e∞u)[esd−1,...,s0−1
0 ]
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≡ 1sd≥2u[esd−2,sd−1−1,...,s0−1
0 ] + 1s0≥2u[esd−1,...,s1−1,s0−2

0 ] mod Z[u]+
D≤d−1

Proof. Same with the previous lemma. �

4.2.2. Other conjugation operation. We take the same hypothesis as in the previous
paragraph.

Lemma 4.8. (conjugation by e
m
2
e0 )

a) We have, for all d ∈ N∗ :

Z[m][u]+
D≤d = Z[e

m
2
e0ue− m

2
e0 ]D≤d

b) Precisely, we have

u

[ sd−1∑

k=0

(m

2

)k
e
sd−1−k,sd−1−1,...,s0−1
0 +

s0−1∑

k=0

(
−
m

2

)k
e
sd−1,sd−1−1,...,s0−1−k
0

]

≡ (e
m
2
e0ue− m

2
e0 )[esd−1,...,s0−1

0 ] mod Z[
m

2
][u]+

D≤d−1

(e
m
2
e0ue− m

2
e0 )

[ sd−1∑

k=0

(m

2

)k
e
sd−1−k,sd−1−1,...,s0−1
0 +

s0−1∑

k=0

(
−
m

2

)k
e
sd−1,sd−1−1,...,s0−1−k
0

]

≡ u[esd−1,...,s0−1
0 ] mod Z[

m

2
][u]+

D≤d−1

Proof. The first congruence of b) follows from the property of u−1 recalled in 3.1.3.
The second congruence is obtained by writing that, if v = e

m
2
e0ue− m

2
e0 , we have u =

e
−m

2
e0ue

m
2
e0 , and applying the first congruence with (v,−m) instead of (u,m). The b)

implies a) via Fact 4.1. �

4.3. Rewriting of the set of equations. We replace the set of associator of equations
of dimension 1 by a slightly modified version.

Proposition 4.9. Let ψ a point of Πun(M0,4). We have an equivalence between :
i) ψ satisfies the duality, hexagon and special automorphism equations
ii) (if m 6= 0) ψ satisfies the equations :

(16) e
m
2
e∞ψ(e0, e∞) = ψ(e∞, e1)−1e

m
2
e1ψ(e0, e1)e

m
2
e0

(17) ψ−1(e0, e1)e−me1ψ(e0, e1)e−me0 = e
m
2
e0ψ(e0, e∞)−1eme∞ψ(e0, e∞)e− m

2
e0

ii’) (if m = 0) ψ satisfies the equations :

(18) ψ(e0, e∞) = ψ(e∞, e1)−1ψ(e0, e1)

(19) − e0 − ψ−1(e0, e1)e1ψ(e0, e1) = ψ(e0, e∞)−1e∞ψ(e0, e∞)

Here, equations (17) and (19) are respectively the equation of the special automorphism
(5) and (6).

Proof. It is the direct consequence of the following four facts :
a) Rewriting of the hexagon equation : in both cases m 6= 0 and m = 0, we have an
equivalence, for ψ a point of Πun(M0,4)un : ψ satisfies the duality and the hexagon
equations ⇔ ψ satisfies the duality equation and

e
m
2
e∞ψ(e0, e∞) = ψ(e∞, e1)−1e

m
2
e1ψ(e0, e1)e

m
2
e0

12



b) Replacing the duality by its conjugated version : because of lemma 4.4, we have
the equivalence : f satisfies the duality equation ⇔ (ψ−1e1ψ)(e1, e0) = ψe0ψ

−1 ⇔ for
m 6= 0, (ψ−1eme1ψ)(e1, e0) = ψeme0ψ−1.
c) Elimination of the duality equation in the m 6= 0 case : it is proved in [AET] (§5.2,
first proof) that the hexagon and duality equation imply the special automorphism equa-
tion. The proof in [AET] is for m = 1, but the same proof works for any m 6= 0.
d) Elimination of the duality or hexagon equation in the m = 0 case :
Let ψ satisfying the equation of the special automorphism with m = 0 (6). Then :
ψ satisfies the duality equation (2) ⇔ ψ satisfies the hexagon equation (3) with m = 0.
Indeed, let us apply to the special automorphism equation, on the one hand, the con-
jugation by ψ, and, on the other hand, the change of variables (e0, e1) → (e1, e0). We
obtain

ψ(e0, e1)e0ψ(e0, e1)−1 + e1 + ψ(e0, e1)ψ(e0, e∞)−1e∞ψ(e0, e∞)ψ(e0, e1)−1 = 0

e1 + ψ(e1, e0)e0ψ(e1, e0)−1 + ψ(e1, e∞)−1e∞ψ(e1, e∞) = 0

This implies the equivalence by the lemma 4.4. �

Remark 4.10. The analog of d) in the proof above for m 6= 0 gives only, with X =
eψ(e1,e0)−1me1ψ(e1,e0), Y = eme1 , that :

Y −1 = X

[

e
m
2
e1ψ(e1, e∞)−1eme∞ψ(e1, e∞)e− m

2
e1

]

X−1 = Y

[(

ψ(e0, e∞)e− m
2
e0ψ(e0, e1)−1

)−1

eme∞

(

ψ(e0, e∞)e− m
2
e0ψ(e0, e1)−1

)]

This does yields the same elimination result.

4.4. The maps Am,A∞
m ,Bm,B∞

m and their highest depth terms . The modified
hexagon equation, resp. the special automorphism equation gives rise to maps Am,A∞

m ,
resp. Bm,B∞

m .

Definition 4.11. Let Am, A∞
m , Bm, B

∞
m : Hx → Hx [m] be the unique linear maps

satisfying respectively, for all points u of Πun(M0,4) viewed as maps on Hx [m] :

u(e0, e1) ◦Am = u(e∞, e1)−1e
m
2
e1u(e0, e1)e

m
2
e0

u(e0, e∞) ◦A∞
m = e

m
2
e∞u(e0, e∞)

u(e0, e1) ◦Bm =

{
u−1(e0, e1)e−me1u(e0, e1)e−me0 if m 6= 0
−u(e0, e1)−1e1u(e0, e1) − e0 if m = 0

u(e0, e∞) ◦B∞
m =

{
e

m
2
e0u(e0, e∞)−1eme∞u(e0, e∞)e− m

2
e0 if m 6= 0

u(e0, e∞)−1e∞u(e0, e∞) if m = 0

Proof. (of the theorem 3.1) i) follows from the proposition 4.9 and the definitions of
Am, A

∞
m , Bm, B

∞
m .

ii) The results for A and B follow from lemma 4.6. The result on B∞
m uses lemma 4.7.

The only two operations which we have not translated on the level of coefficients in the
preliminary lemmas are the right multiplication of the series u by e

m
2
e0 or eme0 , and the

left multiplication of the series u by eme∞ . Their translations on the level of coefficients
are straightforward. �
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Proof. (of the corollary 3.2) This is a consequence of lemma 4.6 and lemma 4.7. �

4.5. Proofs of the depth reductions. First of all, the theorem has the first following
corollary.

4.5.1. The depth reductions for ψ. We take (m,ψ) satisfying the assumptions of the
theorem.

Proof. (of the corollary 3.3 : depth reduction for f with a parity assumption) By the
formula for the congruence 8, applied to w = esd−1,...,s1−1

0 e1 (s0 = 0), and the equation
ψ ◦Am = ψ∞ ◦A∞

m , we obtain that if sd + . . .+ s1 − d is odd, ψ[w] ∈ Z[m][ψ∞]+
D≤d.

But by the equation ψ◦Bm = ψ∞◦B∞
m , we also have that Z[m][ψ∞]+

D≤d ⊂ Z[m][ψ]+
D≤d−1.

We obtain the result. �

Proof. (of the corollary 3.4 : depth reduction for f with a parity assumption)
We apply the equality ψ ◦Bm = ψ∞ ◦B∞

m to the coefficients e1e
sd−1,...,s1−1
0 e1. For those

special coefficients, we obtain that they are in Z[ψ∞]+
D≤d. Applying the expression of

ψ∞ in depth d in terms of ψ in depth ≤ d − 1 given by ψ ◦ Bm = ψ∞ ◦ B∞
m gives the

result. �

4.5.2. The depth reductions for ψ∞. We take again (m,ψ) satisfying the assumptions of
the theorem.

Proof. (of the corollary 3.6) : depth reduction for f with a parity assumption) Combine
the result of the corollary 3.3 with the formula for the highest depth term of the equation
ψ ◦A = ψ∞ ◦A∞. �

For the depth reduction for symmetric sums on f∞, which we write only for m =
0, we could have kept the counterpart on f∞ of the corollary 3.4, as we did for the
parity. Nevertheless, we found interesting to modify it and take some particular linear
combinations of the highest depth term, in order to obtain an interesting formula related
to the pole at 1 of the zeta function. This modification is inspired by a computation of
Ünver done in depth one, and in depth two and odd weights in [U1].

Proof. (of the corollary 3.7). For convenience, we do not use here the preliminary
lemmas of §4.2 and we start directly at the special automorphism equation with m = 0.
Let χ = ψ−1e1ψ and let χ̃ = χ − e1. The equation of the special automorphism for
(m = 0, ψ) can be rewritten as

(20) e0ψ∞ − ψ∞e0 = −(e1ψ∞ − ψ∞e1) + ψ∞χ̃

We note that, since ψ[e0] = 0, χ̃ vanishes in depth 0 and 1. This and the corollary 3.2
implies that we have

(21) Z[ψ∞χ̃]+
D=d ⊂ Z[ψ∞]D≤d−2

Let us take d ∈ N∗ and td, . . . , t0 ∈ N. By considering the coefficient of etd+1;td−1,...,t1;t0+1

in (20), we obtain

(22) ψ∞[etd;td−1,...,t1;t0+1] − ψ∞[etd+1;td−1,...,t1;t0 ] = (ψ∞χ̃)[etd+1;td−1,...,t1;t0+1]
14



On the other hand, the shuffle relation ψ∞[e0 x (etd;td−1,...,t1;t0 )] = 0 gives

(23) (td + 1)ψ∞[etd+1;td−1,...,t1;t0 ] + (t0 + 1)ψ∞[etd;td−1,...,t1;t0+1]

= −
d−1∑

k=1

(tk + 1)ψ∞[etd;td−1,...,tk+1,...,t1;t0 ]

The combination of (22) and (23) is a linear system which is inversed into the following
system, after a change of variable replacing t0 by t0 − 1, resp. td by td − 1 :

(24) ψ∞[etd;...,t1;t0 ]

=
d−1∑

k=1

−(tk + 1)

td + t0 + 1
ψ∞[etd;...,tk+1,...;t0−1] +

td + 1

td + t0 + 1
(ψ∞χ̃)[etd+1;td−1,...,t1;t0−1]

ψ∞[etd;td−1,...;t0 ]

=
d−1∑

k=1

−(tk + 1)

td + t0 + 1
f∞[etd−1;...,tk+1,...;t0 ] −

t0 + 1

td + t0 + 1
(ψ∞χ̃)[etd−1;td−1,...,t1;t0+1]

Let S = (ad,i, a0,i)0≤i≤rd+r0
be any sequence of elements of {0, . . . , rd} × {0, . . . , r0},

satisfying :
{

(ad,0, a0,0) = (rd, r0) and (ad,rd+r0
, a0,rd+r0

) = (0, 0)
For all i ∈ {0, . . . , rd + r0 − 1}, (ad,i+1, a0,i+1) ∈ {(ad,i − 1, a0,i), (ad,i, a0,i − 1)}

The proof of the lemma follows by induction on (rd, r0) for the lexicographical order,
using the the linear system (24), and equation (21) which enables to eliminate the terms
ψ∞χ̃ : we apply the first. resp second equation of (24) inductively to (td, . . . , t0) =
(sd−1+ad,i, sd−1−1, . . . , s1−1, s0−1+ad,i) if a0,i+1 = a0,i−1, resp. ad,i+1 = ad,i−1. �

4.6. Variants.

Remark 4.12. The special automorphism equation combined with the duality equation
relative to a couple (m,ψ) implies :

(25) ψ(e0, e1)e−me0ψ(e0, e1)−1e−me1 = e
m
2
e1ψ(e1, e∞)−1eme∞ψ(e1, e∞)e− m

2
e1

With this version, we obtain, instead of two maps Bm and B∞
m , a single map Cm : Hx →

Hx [m], such that 25 amounts to ψ ◦ Cm = 0. It can be used to give another proof to
some of the corollaries of depth reduction.

5. Applications to multiple zeta values and comments

5.1. Applications to multiple zeta values.

5.1.1. Multiple zeta values and the KZ associator. Recall that ΦKZ is an element of
Πun(M0,4)(R) defined in [Dr], §2 and

Proposition 5.1. ([Dr], §2) ΦKZ is an associator with m = 2iπ.

It is called the Knizhnik-Zamolodchikov associator. We have, for all d ∈ N∗, sd, . . . , s1 ∈

N∗, sd ≥ 2,

(26) ΦKZ[esd−1,...,s1−1
0 e1] = (−1)dζ(sd, . . . , s1)
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By the facts concerning the shuffle algebra recalled in §4.1, since ΦKZ[e0] = ΦKZ[e1] = 0,
all the coefficients of ΦKZ are expressed as Q-linear combinations of multiple zeta values.

The definition of multiple zeta values can be extended in two different ways to the case
where sd = 1. This yields two families of real numbers, ζx(sd, . . . , s1) and ζ∗(sd, . . . , s1),
indexed by ∐d∈N∗(N∗)d, which do not coincide in general on tuples (1, sd−1, . . . , s1).
The first one is defined by regularization of iterated integrals on P1 − {0, 1,∞} and the
second one by regularization of iterated integrals. For details, see for example [C].

The formula (26) extends to all indices of ∐d∈N∗(N∗)d as

(27) ΦKZ[esd−1,...,s1−1
0 e1] = (−1)dζx(sd, . . . , s1)

5.1.2. Separation of the even and odd powers of 2iπ. Applying the results of §3 to mul-
tiple zeta values gives congruences among linear combination of multiple zeta values
over Q[2iπ]. For example, the corollary 3.3 gives that when s1 + . . . + sd − d is odd,
ζ(sd, . . . , s1) ∈ Q[2iπ][ΦKZ]+

D≤d−1.
In all such statements, Q[2iπ] can be replaced by Q, by considering the real and imagi-
nary parts of the congruence, which separates the even and odd powers of 2iπ.

5.1.3. p-adic multiple zeta values and the p-adic KZ associator. Furusho and Deligne
have defined independently two different but closely related versions, that we can de-
note respectively by Φp,KZ and Φp, of a p-adic analogue of ΦKZ, with coefficients in Qp

(in, respectively, [F1], [F2], and [DG], §5.28). Ünver has shown that Φp,KZ satisfies the
equations of GRT1, i.e. is an associator for m = 0, in [U] ; it is thus also the case for
Φp by [F2].

Thus, the results of this paper can be applied to p-adic multiple zeta values, and certain
applications are quite specific as we explain in the next paragraph.

The associator equations are also true for motivic multiple zeta values but we will not
discuss it here.

5.1.4. Finite multiple zeta values and the reduction modulo large primes of p-adic mul-

tiple zeta values. A notion of "finite multiple zeta values" has been recently defined by
Zagier.

Definition 5.2. (Zagier) Let the Q-algebra of integers "modulo infinitely large primes"

A =

(
∏

p prime

Z/pZ

)

/

(

⊕p prime Z/pZ

)

Let finite multiple zeta values be the following numbers, for all (sd, . . . , s1) ∈ ∐d∈N∗(N∗)d

:

ζA(sd, . . . , s1) =

(
(
Hp(sd, . . . , s1) :=

∑

0<n1<...<nd<p

1

ns1

1 . . . nsd

d

)
mod p

)

p

∈ A
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Kaneko and Zagier gave a precise conjecture describing finite multiple zeta values as
variants of multiple zeta values. To explain it, we have proved that Hp(sd, . . . , s1) can
be written in a concise way as an infinite sum of p-adic multiple zeta values [J2] : if ζp
denotes Deligne’s p-adic multiple zeta values, then, for all d ∈ N∗, sd, . . . , s1 ∈ N∗, we
have :

(28) psd+...+s1Hp(sd, . . . , s1)

= (−1)d
∑

lk+1,...,ld≥0

d∑

k=0

d∏

i=k+1

(−1)si

(
−si
li

)

ζp(sk+1+lk+1, . . . , sd+ld)ζp(sk, . . . , s1) ∈ Qp

This had been conjectured by Yasuda and Hirose. A result of Yasuda on the valuation
of p-adic multiple zeta values implies that, for d′ ∈ N∗, td′ , . . . , t1 ∈ N∗ and p a prime
number, we have ζp(td′ , . . . , t1) ∈

∑

n≥td′ +...+t1
pn

n! Zp ; in particular ζp(td′ , . . . , t1) ∈

ptd′ +...+t1Zp if p > td′ + . . .+ t1, and one obtains :

Hp(sd, . . . , s1) ≡ p−(sd+...+s1)
d∑

k=0

(−1)sk+1+...+sdζp(sk+1, . . . , sd)ζp(sk, . . . , s1) mod p

Thus, the finite multiple zeta values in A can be entirely written in terms of p-adic
multiple zeta values. This formula explains the formula in Kaneko and Zagier’s con-
jecture which involves the complex analogue modulo ζ(2) of the right hand side of the
congruence above.

Because of §5.1.3, the corollary 3.4 of depth reduction for symmetric sums with (0,Φp)
implies a depth reduction for the numbers

d∑

k=0

(−1)sk+1+...+sdζp(sk+1, . . . , sd)ζp(sk, . . . , s1)

This is a step in our algorithm in [J4] to write the reduction modulo large primes of
all p-adic multiple zeta values in terms of finite multiple zeta values. As we explain in
§5.2.1 below, the low depth case of this depth reduction (§3.4) retrieves congruences
among finite multiple zeta values proved by an elementary way.

5.2. Comparison with known formulas.

5.2.1. The implicit depth reduction in low depth for finite multiple zeta values.

Facts 5.3. i) For all s ∈ N∗, ζA(s) = 0.
More precisely, Hp(s) is equal to −1 mod p if p− 1|s and 0 mod p otherwise.
ii) For all s2, s1 ∈ N∗, ζA(s2, s1) depends only on the weight s2 + s1 up to a rational
coefficient, and vanishes is the weight is even.
More precisely, we have, if p > s1 + s2, Hp(s2, s1) ≡ (−1)s1

(
s1+s2

s1

)Bp−s1−s2

s1+s2
mod p

The i) is very classical and ii) follows from [H], theorem 6.1.

This is in accordance with the formulas of §3.4 for the depth reduction of symmetric
sums for f .
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5.2.2. Yasuda’s formula for the depth reduction of symmetric sums. In [Y1], Yasuda
studies the numbers ζF defined as, for all (sd, . . . , s1) ∈ ∐d∈N∗(N∗)d, (the series regu-
larization of)

ζF (sd, . . . , s1) = lim
N→∞

∑

n1,...,nd∈Z
0<|n1|<...<|nd|<N

1
n1
>... 1

nd

1

ns1

1 . . . nsd

d

Following [Y1], §6.1, beginning of the proof of Theorem 6.1, we have, for all indices :

ζF (sd, . . . , s1) =
d∑

k=0

(−1)sk+1+...+sdζ∗(sk+1, . . . , sd)ζ∗(sk, . . . , s1)

and, in the Q-algebra of multiple zeta values

(29)
d∑

k=0

(−1)sk+1+...+sdζ∗(sk+1, . . . , sd)ζ∗(sk, . . . , s1)

≡
d∑

k=0

(−1)sk+1+...+sdζx(sk+1, . . . , sd)ζx(sk, . . . , s1) mod (ζ(2))

In corollary 3.3 he gives a formula for the depth reduction of each ζF (sd, . . . , s1) modulo
(Q[ΦKZ]D≤d−2+ the Q-vector subspace generated by products of multiple zeta values of
total weight sd + . . .+ s1). The formula depends on the parity of sd + . . .+ s1 − d and
coincides with our formula (13) only when sd + . . .+ s1 − d is odd.

5.3. The depth of ψ∞ in the case of p-adic multiple zeta values .

5.3.1. The depths of ψ∞ and p-adic iterated integrals and the computation of p-adic mul-

tiple zeta values. The depth of ψ∞ appears naturally in the context of p-adic multiple
zeta values for the following reasons.

The Frobenius map z 7→ zp on P1(Fp) has the lift F0∞ : z 7→ zp on P1(Zp) ; it is
a good lift at 0 and ∞, but not at 1 : i.e. the preimages of 0 and ∞ by F0∞ are 0 and
∞ with multiplicity p whereas 1 has as preimages the p-th roots of unity.
In order to relate p-adic multiple zeta values to sums of series with rational coefficients,
one has to consider the overconvergent variant of the KZ connection on the pro-unipotent
fundamental group of (P1 − {0, 1,∞})/Qp (as in [U1], [J1], [J2], [J3]), and solve it on
a p-adic analytic space over Qp. Because of the previous properties of F0∞, we are
led, following Ünver [U1], to choose the generic fiber X0∞ of the formal completion of
P1/Zp along (P1 −{1})/Fp. This gives an indirect computation of Φp, in the sense that
it passes through the intermediate object (Φp)∞.

There are of course other possible choices : one can take the rigid analytic fiber of
the formal completion of P1/Zp along the reduction modulo p of P1 − {∞}, which
gives in appearance a direct computation of p-adic multiple zeta values. However, the
good lift of Frobenius on this space is the conjugation of z 7→ zp by z 7→ z

z−1 , namely

F01 : z 7→ zp

zp−(z−1)p . Dealing with power series
∑
anz

n twisted by F01 instead of F0∞

18



can be decomposed into steps which consist implicitly in passing through the value at
∞. It seems that we are obligated to refer at least implicitly to the value at ∞.

Definition 5.4. Let the depth of a word over {ω0 = dz
z
, ω1 = dz

z−1 , ωp = zp−1dz
zp−1 } be the

sum of the numbers of letters ω1 and of letters ωp.

Fact 5.5. The values of (Φp)∞ in depth d ∈ N∗ are linear combinations of p-adic

iterated integrals from 0 to ∞ on X0∞ of words of {ω0 = dz
z
, ω1 = dz

z−1 , ωp = zp−1dz
zp−1 } of

depth in {1, . . . , d}.

Because of this fact 5.5, and corollary 3.2, applied to (m,ψ) = (0,Φp), p-adic multiple
zeta values in depth d are expressed in terms of iterated integrals whose depth is in
{1, . . . , d+ 1}.
This relation between the depth of p-adic multiple zeta values and the depth of those
elementary p-adic integrals is crucial to obtain lower bounds on multiple zeta values
which are sufficiently precise to prove equality (28).

5.3.2. Depth reduction for ψ∞ and the computation of p-adic multiple zeta values. In
the cases of depth one, and depth two and odd weights, Ünver modifies the expression of
those iterated integrals in a way such that the indices (sd, . . . , s1) play a more symmetric
role, and this expression retrieves the simple pole of the p-adic zeta function [U1], and
a sort of pseudo-pole at s2 = 1 for ζ(s2, s1) in odd weights.

More generally, the depth reduction of symmetric sums for ψ∞ (corollary 3.7) leads
to express any coefficient of ψ∞ in terms of coefficients of the form ψ∞[e1 . . . e1], with
rational coefficients related to the poles of zeta functions.
On the other hand, if we express fully ψ in terms of ψ∞ by equation (5) or (6), we are
led to separate the cases sd, . . . , s1 ≥ 2 and the others. The coefficients of f at the other
indices are recuperated via the shuffle equation.
In particular, the values of the form ψ[esd−1

0 . . . e1] with sd ≥ 2 are related to values of
the form ψ∞[esd−2

0 . . . e1] which is expressed in terms of values ψ∞[e1 . . . e1] with rational
coefficients having as denominator 1

sd−1 . Both 1
sd−1 and ψ∞[esd−2

0 . . . e1] do not make
sense when sd = 1.

When m = 0 this formula is in [U1], and is related the simple pole at 1 of the p-adic
zeta functions s 7→ Lp(s, ω1−s).

5.4. Comments. Let us slightly essentialize the proofs. The associator equations of
ΦKZ are the consequence of the horizontality of automorphisms of M0,4 and M0,5 with
respect to the KZ equation. One general ingredient is results of depth reduction con-
cerning the automorphisms of Hx that they induce, and automorphisms of the form
(−1)depth id, (−1)weight − depth id, in the sense of the fact below.

Moreover, certain maps of this type satisfy properties, not of depth reduction but of
"depth augmentation".
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Fact 5.6. i) The map f1 : w ∈ Hx 7→ w(e0 − e1,−e1) − (−1)depth(w)w ∈ Hx , dual to
u 7→ u(e0, e∞) − u(e0,−e1), admits a "depth augmentation" : we have, for all words w

f1(w) ∈ Z[Hx ]D≥depth(w)+1

ii) f2 : w ∈ Hx 7→ w(−e0,−e0 + e1) − (−1)weight(w)−depth(w)w ∈ Hx , dual to u 7→

u(e∞, e1) − u(−e0, e1) admits a depth reduction : we have, for all words w,

f2(w) ∈ Z[Hx ]D≤depth(w)−1
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