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THE BELOSHAPKA'S MAXIMUM CONJECTURE IS CORRECT

MASOUD SABZEVARI

ABSTRACT. Applying theElie Cartan’s classical method, we show that the biholomiarpquivalence prob-
lem to a totally nondegenerate Beloshapka’s universal hai@eR dimension one and codimensibnwhence

of real dimensior2 + k, is reducible to some absolute parallelisms, nameljefpstructures on some pro-
longed manifolds of real dimensions eitfter- k& or 4 + k. The proof relies on some weight analysis of the
structure equations associated to the mentioned problerguivalence. Thanks to achieved results, we prove
the Beloshapka’s maximum conjecture about the rigidityief@R models of certain lengths equal or greater
than three. Here, we mainly deal by CR models of fixed CR din@nsne though the results seem quietly
generalizable by means of some analogous proofs.

1. INTRODUCTION

In 2004, Valerii Beloshapka established [in [3] his univereadel surfaces associated to totally nonde-
generate CR manifolds of arbitrary CR dimensions and coaéines and designed an effective method to
construct them. It was in fact along the celebrated appra@thted first by Henri Poincaré [25] in 1907
to study real submanifolds in the complex spéteby means of the associated model surface, namely the
Heisenberg sphereSeveral years later in 1974, Chern and Moser in their sdmiogk [9] notably devel-
oped this approach by associating appropriate models iwaagbtotally nondegenerate relaypersurfaces
in complex spaces. In this framework, many questions ahgot@orphism groups, classification, invariants
and others, concerned the (holomorphic) transformatiéniead submanifolds in a certain complex space
can be reduced to similar problems about the associatedisnode

But — to the best of the author’'s knowledge — the Beloshapkask can be considered as the most
general establishment in this setting whereas he provigptbpriate models to totally nondegenerate CR
manifold of arbitrary dimensions. These models are all homogeneous, of finite appeenjoy several
other nice properties ([3, Theorem 14]) that exhibit their significancTwo totally nondegenerate germs
are holomorphically equivalent whenever their associatedlels are as well. Moreover, they are most
symmetric nondegenerate surfaces in the sense that thagionef the group of automorphisms associated
to a totally nondegenerate germ does not exceed that of ideino

For a CR modelM of CR dimensionn and codimensiork in coordinateszy, . . ., z,, w1, ..., wg), &
holomorphic vector field:

" R )
— J - l i
X = Z Z (z,w)azj —|—Z w (z,w)awl

7=1 =1
is called aninfinitesimal CR automorphisnhenever its real part is tangent Ad, that is(X + X)|y; = 0.
The collection of all infinitesimal CR automorphisms asaten to A/ form a Lie algebra, denoted by
autcr(M ), that parameterizes the family of maps taking a correspontbtally nondegenerate germ to
another. This Lie algebra, which is in fact the CR symmetrg aigebra ofM in the terminology of
Sophus Lie's symmetry theory [118], is finite dimensionalpofynomial type and graded — in the sense of
Tanaka — of a form like €f. [3][28]):

1) autcr(M) =g, ® g1 PG PG D PGy, 0, pEN
—_—— —_————
g— g+
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with:
[9:: 9] C gitj-

In this case, the integegr which is called thdengthof M, is in fact the maximum weight of the complex
variables appearing among its defining equations. If onfepEéo view the real analytic CR generic model
M in a purely intrinsic way, one may consider the local Lie gréwtcr(M), associated tautor (M),
comprising automorphisms of the CR structure, namely dll@c™ diffeomorphismsh : M — M satis-
fying:

ho(T°M)=TM, and hyoJ =Jo h,,
whereT“M is the complex tangent bundle 8f andJ is the associated structure map. In other wotds,
belongs tAAutcr (M) if and only if it is a (local) biholomorphism a¥/ ([19]). Accordingly, one may write
the associated Lie groubutcr(M) as:

2) AUtCR(M) =G_ ® Gy P Gy

Beloshapka in[3] showed that for a CR modélof CR dimensiom and codimensiokr — and whence of
real dimensior2n + k£ — then the Lie grougs_ associated to the aboy2n + k)-dimensional subalgebra
g_ of autcr(M) acts onM freely and can naturally be identified wift1, itself. Also,G, associated to the
subalgebray, comprises allinear automorphisms of/ in the isotropy subgrouput, (M) of Autcr(M)
at0 € M while G, associated tg,., comprises as well afionlinearones.

Determining such Lie algebras of infinitesimal CR autom@pts is a question which lies pivotally at
the heart of the problem of classifying local analytic CR if@ds up to biholomorphismssge e.g[6] and
the references therein). In fact, the groundbreaking wofl&ophus Lie and his followers (Friedrich Engel,
Georg Scheffers, Gerhard Kowalewski, Ugo Amaldi and ojhsltewed that the most fundamental question
in concern here is to draw up lists of possible such Lie alggkrhich would classify all possible manifolds
according to their CR symmetries. Moreover, having in hdrebé¢ algebras may also help one to treat the
problem of constructing (canonical) Cartan geometriesastamn classes of CR manifold$ (]22,/30]) or to
construct the so-called moduli spaces of model real sutfoidsi([26]).

In the computational point of view and though computing tbepositive parg_ ®gg of the above algebra
autor(M) is convenient — in particular by means of the algorithm desdyin [28] — but unfortunately
computingg, admits tremendous and much complicated computations wielghon constructing and
solving some arising systems of partial differential equret ([16,21[ 27, 29]). Nevertheless, after several
years of experience of computing these algebras in varioosrsions, Beloshapka inl[1] conjectured fhat

Conjecture 1.1. [Beloshapka’s Maximum Conjecture]Each CR modeM of the lengthp > 3 hasrigid-
ity; that is: in its associated Lie algebrautor(M) as (1), the subalgebray, is trivial or equivalently
o=0.

Holding this conjecture true may bring about having sevetiaér facts about CR models or their associ-
ated totally nondegenerate CR manifolded e.g[2]). At this time, there are just a few considerable results
that verify this conjecture in some specific cases. For m&aGammel and Kossovskiy [13] confirmed it
in the lengthp = 3. Also, Mamai in [16] proved this conjecture for the modeldta# fixed CR dimension
n = 1 and codimensions < 13. Some more relevant (partial) results in this setting ase ak follows:

o If p=2,thenp < 2 ([5] p. 32]).
o If p =4, thenp < 1 (4] Corollary 7]).
e If p =5, thenp < k, wherek is the CR codimension a¥/ ([31, Proposition 2.2]).

In almost all of these works the results are achieved by meaeemputingdirectly the associated Lie
algebras of infinitesimal CR automorphisms. But the mucticdity of this method, lying in the incredible
differential-algebraiccomplexity involved ¢f. [27]), may plainly convince oneself requiring some other
ways to attack this conjecture.

1Although Beloshapka introduced his conjecture in 2012 euiid his students had been aware of it since several years bef

For example seé[2, 18.116]
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On the other hand, recently in[21] and in particulagirof this paper (or i12 of its expanded version),
we attempted to study the biholomorphic equivalence prolite the5-dimensional lengtf3 cubic model
M? c C* of codimensiors, represented in coordinatés, w1, ws, ws) as the graph of:

w] — W, = 2127,

wo — Wy = 21 2Z(z + Z),

wsg — w3 = 22Z(z — Z).
As we observedsee[21], Theorem 5.1]), the associatédlimensional Lie algebra:

autcr(M?) == g3 B g2 © g_1 @ go,

computed ing3 of this paper, is isomorphic to the Lie algebra defined by thal ftonstant typestructure
equations of the mentioned equivalence problem/fd. This observation was our original motivation to
look upon the Cartan'’s classical approach of solving bimaiphic equivalence problems as an appropriate
way to consider the Beloshapka’'s maximum conjecture. Exengithis idea on some other CR models
like those studied if [22, 24, 26,129] also convinced us mbrauathe effectiveness of this approach to suit
our purpose. In fact, the systematic approach developedhgutin@ recent years by Joél Merker, Samuel
Pocchiola and the present author provides a unified way tbweating the wide variety of biholomorphic
equivalence problems between CR manifolds.

Cartan’s classical method for solving equivalence proklé@mludes three major partabsorption, nor-
malization, prolongationand usually, all steps require advanced computationssitleeof which increases
considerably as soon as the dimension of CR manifolds iees@&ven by one unit. In particular, among the
absorbtion-normalization steps, one encounters somiagpslynomial systems in which its solution de-
termine the value of some group parameters associated podhem. But, solving such appearing systems
may cause some unavoidable and serious algebraic conyplexit

As it is quietly predictable, one of our main obstacles tocpenl along the aim of proving the Be-
loshapka’s maximum conjecture by applying the Cartan’ssital approach, is actually solving the already
mentioned arising polynomial systems in this general mamaenely the outcome of normalizing the group
parameters. In order to bypass and manipulate this critizadplexity, our main weapon is in fact some
helpful results achieved by a carefueight analysin the preliminary equipments of constructing the as-
sociated structure equations to the problem of equivalemoger study. Such analysis notably enables us
to provide an appropriate weighted homogeneous subsydtéme already mentioned polynomial system.
This much more convenient subsystem is in fdeteptively hiddeimside the original one and opens our
way to find the desired general outcome of the normalizatiocgss.

This paper is organized as follows. In the next preliminaggtion[2, we present a brief description of
constructing defining equations of the Beloshapka’s CR nsddeCR dimensiori.

Then in sectior]3, we attempt to find certain expressionsrotsire equations associated to the bi-
holomorphic equivalence problem between an arbitrary CRehd/,, of codimensionk and any other
totally nondegenerate CR manifold of the same codimendian.this aim, we provide first some prelimi-
nary equipments such as an initial frame on the model, itsahfeame and the associated Darboux-Cartan
structure. Moreover, we find the ambiguity matgpof the mentioned equivalence problem as an invertible
(2 + k) x (2 + k) lower triangular matrix of the formcf. (14)):

abal 0 ... 0 0 0 0 0
2
Qe Qe ... aia7 0 0 0
. 2—
N T 0 aiay 0 0 R
e X ... —as as a1a1 0 0
e . ... aq as —a2 ai 0
de de e 65 a4 az 0 al

where some powers a@f, anda; are visible only at its diagonal.
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The main focus of sectidd 4 is on a weight analysis on the tsre@quations, constructed in the preceding
section. In particular, after appropriate weight assamiato the appearing group parameters and also after
inspecting carefully the inverse of the ambiguity matgixwe discover that all the torsion coefficients
through the structure equations are of the same weight gesf(opositior 4.5).

Next in sectioi b, we consider the outcome of the absorptimhr@rmalization steps on the constructed
structure equations. It is in this section that we extraatlale weighted homogeneous subsystem of the
polynomial system, arising among the absorbtion and ngzatédn steps. As the result of solving this
subsystem by means of some computational techniques Wreighted algebraic geomet(ji1]) and in
particular bydehomogenizinghe associated weighted homogeneous varsgggubsection_5]2), we find
out that;

Proposition 1.2. (see Propositiof 5]5) All the appearing group paramet@jsas, ... vanish identically
after sufficient steps of absorption and normalization.

This gives also an appropriate form of the final constant stpecture equationsséePropositior 5.6).
Concerning the only not-yet-determined parameterwe also discover that it is either normalizable to a
real (or imaginary) group parameter or it is never normalegseeCorollary[5.7). In the former case,
the structure groug’ of the above ambiguity matrices will be reduced@t of real dimensionl while
in the later casea™ is of real dimensior2. Next, we start the last part, namely prolongation, of the
Cartan’s method. Accordingly, our equivalence problemuparbitrary CR modelM/,, converts by that to
the prolonged spack/;, x G of real dimension eithes + k or 4 + k. We conclude that;

Theorem 1.1. (see Theoreri 5.1) The biholomorphic equivalence probleatofally nondegenerate CR
model;, of codimensiork and real dimensiorR + £ is reducible to some absolute parallelisms, namely to
some certair{ e}-structures on prolonged manifolds of real dimensionsegifh+- & or 4 + k.

In sectior[ 6, then we start to utilize the achieved resulfgéve the Beloshapka's maximum conjecture.
According to the principles of the Cartan’s theory ([23]hce we receive the final constant type structure
equations of the equivalence problem to each CR maddglthen one can plainly attain the structure of
its symmetry Lie algebrautor(M;). Computing and inspecting this algebra, then we realizeithia
graded, without any positive pari€ePropositior 6.11) as was the assertion of the Beloshapkasnmuan
conjecture.

Finally in appendiXx’A, we illustrate the results by considgrthe lengtht and8-dimensional CR model
Mg of CR codimensiork = 6.

It may be worth to notice at the end of this section that thotighmain purpose of this paper is to
prove the Beloshapka’s maximum conjecture in CR dimensjdiut in fact we achieve a more general and
stronger fact about his CR models, namely Thedrerh 1.1. Exaer,mve show that;

Corollary 1.3. (see Propositioi 6]1) The associated Lie algetms- (M} ) of a k-codimensional weight
p modelM, is graded of the form:

autcr(My) :==9-p & ... B g-1Bgo
o
whereg_ is (2 + k)-dimensional and wherg, is Abelian of dimension eithdror 2. Thus, we have:
dim(autcr(My)) = 3+k or 4+k.

As a homogeneous space, each Beloshapka's CR nidgdelan be considered as a quotient spase (
the paragraph after equatidd (2)):
_ AUtCR(Mk)
o AUtQ(Mk)
of the CR automorphism grouputcr(M), corresponding tawtor(My) by its isotropy subalgebra
Auto (M) at the origin, corresponding tgy @ g+. The above corollary states, in a more precise man-
ner, that such isotropy group is jusg, corresponding to the Abelian algelygaand comprises onliinear

=G
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CR automorphismé : M; — M, preserving the origin. Even more precisely, in this casédhm gg is
either1 or 2, thenGy can be identified with the matrix Lie groupL(1,R) = (R*, x) in the former case
andGL(1,C) = (C*, x) in the latter casesge e.g[16, Theorem p. 102]).

2. BELOSHAPKA' S MODELS

In this preliminary section, let us explain the method of stamcting defining equations of the Be-
loshapka’'s CR models in CR dimension For more general and detailed explanation, we refer thderea
to [3,[15]. In each fixed CR codimensidn a certain Beloshapka’s modgf;, is in fact a real submanifold
in the complex ambient spa¢e' * equipped with the coordinatés, w, ... ,w;) and represented as the
graph of somé: real-valued polynomial functions. Throughout constmgtihese defining polynomials and
to each appearing complex variablest will be assigned a so-callegreightnumber|x]. Recall that for a
monomialxj* - - -x%~, the associated weight is defineday’ ; «; [x;]. Moreover, a polynomial is called
weighted homogeneows the weightw whenever all of its monomials are of this weight. In this paged
for each complex variable, we assign the same weight to its conjugatiorx and its real and imaginary
parts.

Definition 2.1. (see[14]) An arbitrary4? complex functionf : @ ¢ C* — C in terms of the canonical

coordinategzy, ..., z,) is calledpluriharmonicon its domair2 whenever we have:
82
f_ =0
aZi azj
foreachi,j =1,...,n.

In the case thaf is real-valued, then locally, pluriharmonicity ¢fis equivalent to state that it is the real
part of a holomorphic function[([14, Propoition 2.2.3]).

By convention, here we assign to the complex variabthe weight[z] = 1. The weights of the next
complex variablesvy, ws, . . ., Which are absolutely bigger than will be determined as follows, step by
step. At the first onset that only the weight of the singlealale = is known, let_45 be a basis for the set
of all non-pluriharmonic real-valued polynomials of thenfmmgeneous weight, in terms of the complex
variablesz andz. A careful inspection shows that; comprises merely the single term:

Ny = {zZ}.
Then, since the cardinality of this setés = 1, then we assign immediately the weighto the only first
complex variablevy, i.e. [w;] = 2.
At the moment, two of the complex variablesand w; have received their weight numbers. Then,
consider the next set/; as a basis for the collection of all real-valued polynomddlthe weight3, in terms

of the variables:, Z andRe w1, which are non-pluriharmonic on the submanifold represgtrats the graph
of the weight two homogeneous polynomial:

Imw; = 2%
in C2. Again, a careful inspection shows that:
2— =2 2= =2
Nz :={Re2*z = w, Im 2%%Z = ﬂ}
2 21
This time, since the cardinality off5 is k3 = 2, then immediately we assign the weight— namely the
weight of the monomials in#; — to the next two complex variables, andws.

Inductively, assume that/}, is the last constructed collection of non-pluriharmonidypomials. This
means that so far all the complex variables, ws, ws, . . . , w, have received their weight numbers where
r.= 50:2 k; and wherek; is the cardinality of the set;. To construct the next collection/j, ., and for
the sake of clarity, let us show tlte elements of eachy; as:

©) Ni={t]th, ..t )
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Also foreaclV = 2,. .., jo, letw’ = (wy, ... ,Witk,—1)" be thek,-tuple of all complex variables, . . ., w,
of the same weight and consider:
¢ ¢
0/11 ... a;17k;£
Ag — : . .
¢ [
akzl e akm

as some reak, x k, matrix of the maximunRank(A,) = k.. Then, the sought set; , is a basis for
the collection of all real-valued polynomials of the weightt 1, in terms of the already weight determined
variablesz, z, Re wy, Re wo, . .., Re w,, which are non-pluriharmonic on the submanifold repre=eras
the graph of someweighted homogeneous polynomial functions:

t)
Imw'=4,-1 : |, (6=2,....j0),
i
t,
in C™+1. Here,Im w' is thek,-tuple of imaginary parts of*. If the cardinality of #;, ;1 is kj,+1, then one
assigns the weighi + 1 to all the next complex variables:

Wr41s - - - 7wr+kj0+1-

2.1. Constructing the defining equations. After associating appropriate weights to the complex \des
z,we, We are ready to explain the procedure of constructing aefipolynomials of a Beloshapka's model
M, ¢ CF*+1 of CR codimensiork. One notices that in this case, we need only the associatigiiseo the
complex coordinates, w1, . . . ,w of M. Then, we have to construct the above séfauntil we arrive at
the stage = p where the integep satisfies the two inequalities:

4) k:2+...+l<:p,1§k<k2+...+kp,1+k:p.

In this case, the chain of associated weights to the complgablesz, w, . . . , w; is ascending and the last
variablewy, is of the maximum weighp.

Definition 2.2. The above unique integeris called thelengthof the CR modelM/y, in question.

Now, for eact¥ = 2,..., p — 1, consider thé,-tuplew’ = (wy, . .. , Witk,—1) and thek, x k, matrix A,
as above. Fof = p and since in this case the number of the present weighriables amongy, . .., wy
ism==Fk— 25;21 k; < k,, then consider then-tuplew” asw” = (wy—m41, - - -, wy). Also let:

aly ... a’kap
Ap = : :
Ay afnkp

be a certain reah x k, matrix of the maximunRank(A,) = m. Then, the defining equations of our CR
model M, can be represented in the following matrix forse¢(3)):

t‘e
1
(5) Imw'=A4,-| : |, (t=2,....p).
te
k¢
As we observe, in a fixed codimensigérone may find infinite number of CR modeld;,. determined by
different values of the above matrix entri@%. Nevertheless, possibly many of them are equivalent, up to

some biholomorphic change of coordinates. For exampledimensionk = 3, CR modelsM/s ¢ C* can
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be represented as the graph of some three defining polyreomial

w) — Wi _
——— =azz,

21
Wy — Wa 9 2\, 29— 2
o = a1 (2°Z + 22°) + a1z (2“2 — 2z7), (a,a;;€R),
w3 — W3 _ _ . _ _
—g = Az (22Z + 27°) + iag (222 — 27%).

i

But by some simple biholomorphic changes of coordinatestliose presented at the page 50 of [21], one
shows that they are biholomorphically equivalent to thealted5-cubicmodel:

wi—wi _ oz
TR

M3 w22 — 227 + 227,
W = (2% — 272).

Anyway, in this paper we do not stress on such biholomorphbignalizations since it does not mat-
ter whether the under consideration defining equations anaalized or not in our case of proving the
Beloshapka’s maximum conjecture.

Summing up the above procedure, then each arbitrary CR midget C!** of codimensiont and of
the lengthp can be represented as the graph of séroertain real-valued defining functions:

w, — wyp = 21 @1(2,2),
(6) My, - wj —wW; = 2 <I>j(z,2,w,@),

W — W, = 21 (I)k(z,z,w,w),

where each®; is a weighted homogeneous polynomial of the weight, in terms of the complex variables
z,7z and real variableRew; = 2% with [w;] S [w;]. As one observes, the defining equations of
M, are in fact those of a certaifk — 1)-codimensional modelM},_,, added just by the last equation
wg — Wi = 21 (I)k(z,z,w,@).

Definition 2.3. Let M be an arbitrary CR manifold of CR dimensienand codimensiork and assume
that710M andT%' M = T1.0M are the holomorphic and antiholomorphic subbundles of tneptexified
bundleC ® T'M. Then,M is calledtotally nondegeneratehenevelC @ T'M can be generated by means of
the minimum possible number of iterated Lie brackets betvike generators af*-°M + 791 M, growing
up through the chain:

with Dy :=T"OM + T%'M andD; = D;_1 + [D1, Dj_4].

All the Beloshapka’s CR models/, are totally nondegeneraté {[3]) and the numpen the above
chain is actually equal to the length &f;, or equivalently to the (maximum) weight of the last complex
variablew, among its defining equations. Even more, as is proved!ingé¢dlso [21]) and after some

holomorphic polynomial changes of coordinates, everylljotmndegenerate CR model of CR dimension
and codimensiolk, can be represented as the graph of sérdefining equations of the form:

wy — Wy, = 21 <I>1(z,2) + 0(2),
M = :
Wy — Wi, = 2t (I)k(z,z,w,w) + O([wk]),
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where the polynomial®, are precisely those considered [ih (6) and where) is some certain sum of
monomials of the weightg ¢. Therefore, it is completely reasonable to consider eacm@Rifold A/}, as
some suitable model for the above totally nondegenerate @fohds /.

Remark 2.4. Instead of the above Beloshapka’s algebraic method fortearisg defining equations of a
totally nondegenerate CR model,,, Joél Merker in[[17] has introduced a more geometric wayotwstruct
them by considering the affect of totally nondegeneracyhenconverging power series expansions of the
desired defining equations.

3. CONSTRUCTING THE ASSOCIATED STRUCTURE EQUATIONS

Studying equivalences between geometric objects by mefaiie cCartan’s classical approach entails
first some preliminary equipments, the last of which is thestiction of the structure equations associated
to the problem. In the current case of biholomorphic egeive¢ between CR manifolds, we follow the
systematic method developed among the recent years byMi&er, Samuel Pocchiola and the present
author in [24[ 26/, 21, 29]. It includes four major steps taprus to the stage of constructing the required
structure equations:

Finding an appropriate initial frame of the model and corimguits Lie commutators.
Passage to the dual coframe and computing the associatedi>aCartan structure.
Finding the ambiguity matrix of the equivalence problemgrestion.

Constructing the desired structure equations.

3.1. Associated initial frames for the complexified tangent bunées. From now onlet us fixM;, ¢ CFH!
as a(2 + k)-dimensional and weight Beloshapka’s CR model in CR dimensiérand codimensiong,
represented as the graph of som@olynomial functions ad{6) in coordinatés, wy, ..., w). As we
mentioned in the preceding section, each real-valued palyal ®;(z,z,w) is a weighted homogeneous
polynomial of the weight equal tav;]. These polynomials are al)(2) and thus we can apply the analytic
implicit function theorem in order to solve these equatitmighe k variablesw; , j = 1,. .., k. Performing
this, we obtain a collection df complex defining equations of the shape:

@) My, : { w; = @j(Z,E,@) (j=1,...,k),

where eacltomplex-valuegholynomial function©; is in terms ofz, z, w; and some other conjugated vari-
ablesw, of absolutely lower weights thgm;]. One notices that similar to the case of real-valued funstio
®,, also each complex-valugsl; is a weighted homogeneous polynomial of the weight. To prove this
assertion, we make a plain induction on the associated wedigithe complex variables,. More precisely,
in the first weight2, we have the simple defining equation:

wy = 2127 + wy =: @1(2,2,@1)

and henceo, is of the expected weighiv;] = 2. Now, letw; be a weight» 4+ 1 complex variable and,
as the induction hypothesis, assume that for each variapteé the weight[w;| = 2, ..., n, the associated
complex-valued functio®; is of the weighfw;]. Then thej-th corresponding defining equation:

wj —wW; = 2 Qy(z,?, We, W),

of (6) — where®; admits just complex variables, andw, of the weights absolutely less thgm;] —
converts into the form:

w; =2iP;(2,%Z,04(2,Z,W),Ws) +W; =: 0;(2,Z,W).

Here, the polynomiafp; is of the weight homogeneitjw;] and we have replaced each complex variable
wy, in its expression, by some equal complex functidnof the same weight. Such substitutions do not
change the weight homogeneity ®f and henc®; will be remained as a weighted homogeneous complex
polynomial of the same weight ds;.
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Having in hand the complex defining polynomidls (7) of the C&el M, and according td [20, 21], then
the associated holomorphic and antiholomorphic tangentles 7" A7, and T%! M;,, can be generated
respectively by the single vector fields:

ak@_a ’“@_a
®) 2 =g ga—z ) ;2N ;F w) G

Weight association.Let x be one of the complex variableswy, . . . , wy, or one of their conjugations of the
weight [x]. Then we assign the weight|x] to the standard vector fiIe§§.

S|
E
%’|Q>

Notice that forF'(x,X) as a weighted homogeneous polynomial, then each diffet@ntiof the shapé;,
or Fy, decreases its weight Hy;] numbers. Then, by a glance on the above expressioé ahd.Z one
finds them as two weighted homogeneous fields of the same iveigh

According to the totally nondegeneracy of the Beloshapkaiglels, it is possible to construct a frame
for the complexified bundI€ @ 7'M, of the weightp CR modelM;, by means of the (minimum number)
2 + k iterated Lie brackets betweerf and.Z of the lengths from throughp (cf. [3,[28]).

3.1.1. Notations. Henceforth, let us denote b¥’ ; and.# », the above vector field” and its conjugation
Z, respectively. Then, the desired initial frame bf, can be constructed by the iterated Lie brackets of
these two vector fields, up to the lengthLet us denote by ;, thei-th appearing vector filed obtained by
an iterated Lie bracket of the lengttbetween these two fields. For example, the next and thirdaaimoe
vector filed can be computed as the (length two) iterated taeket:

L3 =241, L)
In the case thatis not important and by abuse of notation, we denote it jus#byn arbitrary iterated Lie
brackets of the lengthwhich actually is a vector field obtained (inductively) as:
) L= Ly [Lrins [ [P Al (=12, £=1,...,p).

L1

Notice that from the lengtid = 2 to the end, one will not observe any coeﬁicient@zf or % in the
expression ofZ;. In fact, this is a plain consequence of the fact that in thevalexpression$8) o 1
and.?; » these coefficients are constant, namikly

Accordingly then in each point € M, near the origin, the Lie algebta:= C ® T'M, is graded (in the
sense of Tanaka) of the form:

h:=b_,®bh_p1®&---Bbhy

whereh_, is the collection of all vector fields/; of the lengthY. For example, we havg_ | = (£11, .21 2),
h_o = (L 3) and so on.

Lemma 3.1. Each lengtl¥ iterated vector fieldZ; is homogeneous of the weight.

Proof. We proceed by a plain induction on the lendtbf vector fields. For its base step, we saw that the
two vector fieldsZ’ ; and.Z » of the length? = 1 are of the homogeneous weight. Also by computing
the Lie bracket?, 3 = [.Z 1, % 2], one easily verifies that the only lengdttiield % 5 is of the weight-2.

For the next lengths and as our induction hypothesis, asthamall length? vector fields:

0
:;%‘a—wi

are weighted homogeneous of the weighit Hence the nonzero polynomial coefficientsz,z, w, w) are
homogeneous of the weight;] — ¢. Now, consider the new appearing vector figtl,; = [.£],.%] of
the weight/ 4+ 1. Then applying the Leibniz rule on the present expressibtiseoweighted homogeneous
vector fields; in (@) and.%;, this Lie bracket manifests itself as a weight/ + 1) homogeneous vector
field, as was expected. O]
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3.2. The associated initial coframes and their Darboux-Cartan suctures. For/ = 1,...,p and
i = 1,...,2 + Fk, let us denote by, the dual 1-form associated to the initial vector fielj ;. Since
the collection of the weighted homogeneous vector fi¢ld$ ;,...,.Z, >, } forms a frame for the com-
plexified bundleC ® T'Mj,, then the dual s€ffo 1, ...,0,244} is @ coframe for it.
Lemma 3.2. Given aframe{”f/l, ce Y/n} on an open subset &" enjoying the Lie structure:
n
[Yirs V] =D ki W (1<i1<iz <n),
k=1
where thecfm2 are certain functions o™, the dual coframdw!, ..., w"} satisfying by definition:
Wk (%) = oF
enjoys a quite similar Darboux-Cartan structure, up to am@l minus sign:
dwt = — Z Cfmé W™ A w2 (k=1-n).
1<ii<ia<n

Proceeding along the same lines as the proof of Lemnja 3.1venfees that the Lie bracket?;, %]
of the two weight—¢ and—/' initial fields is again homogeneous of the weigh? + ¢'). Then, as a local
section ofC @ T'Mj,, it should be generated as some combination of the length- ¢') initial vector fields
inthe frame{.#, 1, ...,.%, 24« }. Thanks to the above Lemma, then it follows the Darboux-#Pestructure
of our initial coframe;

Proposition 3.3. The exterior differentiation of eachform o, dual to the weight-/ initial vector field.%;
is of the form:

doy := Z Cay 08N\ Oy,
B+y=¢
for some constant complex integefs,. This equivalently means that in the expression of eaclespond-
ing Lie bracket.#3, .Z, ], with 3 + v = ¢, one sees the coefficientg , of .Z;.

Weight association. Naturally, we associate the weight to a certain 1-fornv,; and its differentiation
doy ; associated to the weight? homogeneous vector field ;.
Another simple but quietly useful result is as follows;

Lemma 3.4. For each weight-/ initial 1-form o, ; with ¢ # 1, there is a weight-(¢ — 1) initial 1-form
o,—1,; Where eithero,_y ; A 011 Or 0,_1; A 01,2 IS visible uniquelyin the Darboux-Cartan structure of
dg@,i-

Proof. This is a consequence of the fact that in the procedure otrwaning our initial frame, each weight
—¢ vector field.; ; is constructed as the Lie bracket betwe#n, or %} » and auniqueweight —(¢ — 1)
vector filed.Z;_; ;. Then, Lemm&3]2 implies the desired results. O

3.3. Associated ambiguity matrix. After providing the above appropriate initial frame andreafie on the
complexified Tangent bundl€ ® T M., now this is the time of seeking the associated ambiguityirat
the problem which actually encodes biholomorphic equiveds to)M,. The procedure of constructing this
matrix is demonstrated in our recent worksl|[29, 24,[21, 26h& specific cases d&f = 1,2,3,4. Let us
explain it here in the general case of the CR modd}s Assume that:

h: My —s M),
(z,w) —> (z’(z,w), w'(z,w))

is a (biholomorphic) equivalence map between @ur k)-dimensional CR model/;, and another arbitrary
(24 k)-dimensional totally nondegenerate and CR generic sulfolari/’;, ¢ C'** of codimensiork and
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in canonical coordinateg’, w}, ..., w}). Naturally, we assume that/;, is also equipped with a frame of
2 + k lifted vector fields:

{L1,1, Lio, Logs, L34, Ly, ... 7Lp,2+k}

where, as beford,; ; andL; » = L ; are local generators a"° M and7?! M, respectively and where

each other vector fielll,; can be computed as an iterated Lie bracket betWaenandL; » of the length

¢, exactly as[(P) for constructing the initial vector fil&g ;. The differentiation of the biholomorphisin
he: TM, — TM;

induces a push-forward complexified map, still denoted leyslime symbol with the customary abuse of
notation ([7]):
he: C®TM; — C®TM,,

2@ X —z® h(Z).
Our current purpose is to seek the associated matrix toitiéarn map between the complexified vector
spacesC @ TM;, andC @ T M.

According to principles in CR geometry {[7,]19]), the diffetiation /., transfers every generator of
T19 M to a vector field in the same bundlé-° ;. Hence for the single generatef, ; of 71007, there
exists someonzerofunctiona; := a1 (2’, w’) with:

(10) he(Z11) = a1 Ly .
Moreover,h, preserves the conjugation, whence 6, := £, 1, we have:
he(Z12) = a1 Ly 2.
The third vector field in the basis &f @ 7'M, is theimaginary field%; ; := [.£] 1,2 2] which is our only
length two vector field. Here we have:
hi(Lo3) = hi([L11, L1 2]) = [Re(Z21), h(Z12)] = [a1 Lig, @ Lo,
and if we expand it, then we obtain:
hi(Zo3) = ar@1 [ L1 Ly o] —@1 Lya(a1) Ly + a1 Ly (@) Lo
~————
(11) =az
=:ara1Lo 3 +as Ly —as Ly o,
for a certain functioruy := as(2/, w').
Next in the length three, we have two iterated Lie brackets:
L3y =211, D3] and L5 = Lo, Lo3],

where.%s 5 = %3 4. In a similar fashion of computations, one finds:

hi(L4) = afa Ls g + (a1 Ly1(a1a1) — aqaz) Lo g+
-
+ (= a1@ Log(a1) + a1 Lyg(az) — a Ly i (a1) + @2 Lya(ar)) Ly —

~
=:a4

(12)

—a1Ly 1 (a2) Ly 2,
— —

=:a5
for some three certain complex functioms:= a;(z',w’), j = 3,4,5. By conjugation, we also have:
hi(Zs5) = a1@; L5 — a3 Lo + @5 Ly + @4 L.

Proceeding along the same lines of computations, then ot tfiie value of the linear differentiatidn
on all the basis field¥, of C ® T M. By a careful inspection of this procedure one observes that
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Lemma 3.5. For a fixed lengtl initial vector field.Z, ;, the differentiation map.,. transfers it to a combi-
nation like:
hi (L) = alja] Ly, + Z ar; Ly,  with p+qg=/
i<t
wherea, s are some (possibly zero) complex functions in terms ofiigett coordinategz’, w’). In other
words,h.(-%.;,) is a combination of some coefficieda! of the corresponding lifted vector field, ;, and
some other ones of absolutely smaller lendthks/.

Accordingly, our sought invertible matrix associated te timear maph.. is a(2 + k) x (2 + k) upper
triangular matrix of the form:

gpyi a{’ﬁ‘f de de de de de de de Lp’l’
jp—l,j 0 a’f E({ de de de de de de Lp—ld
: 0 0 Ae . . ... Qe
(13) Ly = 0 0 aai 0 —a @ a |-| DLss
L34 0 0 0 alar  as as a4 L34
La3 0 0 e 0 a1a1  —asz a2 Los
L2 0 0 0 0 a 0 Lio
L 0 0 0 0 0 a Li:

If on the main diagonal of the matrix and in front &f;, we havea” a?", then we havep, + ¢, = ¢
wherep, andg, are respectively the numbers of the appearifigy and.Z » in the iterated Lie bracket of
constructing?; , (cf. (9)).

As a result ofexplicitnessn the already procedure of constructing the above desiadxmnwe have also
the following key observation;

Lemma 3.6. In the case that both the group parametessand a3, appeared in(11) and (I2), vanish then
all the next parameteray, as, . .. vanish identically. Moreover as a nonzero complex functibthe first
group parameter:; is constant then all the next group parametessas, aq, . . . vanish identically, too.

Proof. To prove the assertion, first we claim that in the above proedf computing the value éf, on the
initial vector fields, all the appeared group parametgraith j > 1 are some combinations of the iterated
{L1 1, L; 2 }-differentiations of the first parameter and its conjugatior;. One can check the correctness
of this claim by a careful glance on the explicit expressiohs,, a3, a4, a; in (1) and[[IR), reminding that
by our assumption on the lifted vector fields, evEnywith ¢ > 1 is in fact an iterated Lie bracket between
two fundamental field%,; ; andL; , (cf. (). We prove our claim by an induction on the length of thigiah
fields and by perusing the image &f, = [£11,.%;] under the linear map.. (similar argument holds
in the case that/),, = [.Z] 2,-%]). As our induction hypothesis, assume that all the groupmpatersz,
appearing among computing the valuehgfon each initial field%; of the length less or equal tis an
iterated{L; ;, L; » }-differentiation ofa;. Then for the next length+ 1 vector field.Z,,, and according to
the above Lemmla3.5 we have:

h(Lig1) = [h(Z1), b (L0i)] = [a1La 1, afa] Ly, + Z ar, Ly, |,
1<t

where, by hypothesis induction, the appearing coefficientsare some combinations of the iterated
{L1 1, L; 2 }-differentiations ofa;. Then, computing this Lie bracket by means of the Leibnie,rane
finds the new appearing coefficients, namely new group pdeasjeagain as some combinations of the
iterated{L; 1, L; 2 }-differentiations ofz;. This completes the proof of our claim.

Thus, ifa; is constant then, clearly all the next parametersanish, identically. Moreover, according to

(@1) and[(1R) we have:

az = —a1 Ly 2(ay),

a3 = a1 Ly (a1a1) — a1ag,
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and by the assumptiom; # 0, then vanishing ofi, andas implies that — remindind.; » = Ly 1:
L171(61) =0, Ll,l(al) =0, L172(a1) =0, L172(61) =0.

Thus according to our claim, if, andas vanish then all the next group parameteysanish, identically. [

Weight association.Let a; be a group parameter which has been appeared among comihetinglue of
h, on alengttY initial vector field.%;. Then, from now on, we associate the weidtt this group parameter
and its conjugatiom;. For example, according tb (10, (11) abdl(12) we have:

la1] =1, [a2] =2, [as] = [a4] = [a5] = 3,

According to this association, the nonzero group paramsetiszach row of the above matrix{13) have equal
weight since they are actually coefficient functions apipgeamong computing the value bf on an initial
vector field of the similar length.

For each lifted vector field., ;, let us considel’,; as its associated dual 1-form. Similar to initial 1-
forms o, ;, here we also associate the weight to eachlifted 1-form I'; ;. The ambiguity matrix of our
equivalence problem, in question, is in fact the invertilslatrix associated to the dual linear maphof
Then, in terms of the dual basis of 1-forms it becomes, affdaia matrix transposition, as:

Ty . Op,i
0 :
; ae aal’ 0 0 0 0
r,_ Op_1.j
o ae ae 0 0 0 o
: _ Qe Ae aa’? 0 0 0
(14) F3,5 . o 03,5
T34 ae : e 0 aiay 0 0 03,4
F2’3 de e —63 as aial 0 0 92,3
IR ] 01,2
IEWT ae : ... aa as —as a O 01,1
Qe Qe L. as a4 az 0 a

Remark 3.7. In order to know better this matrig, it is important to notice that thanks to Leminal3.5 and
for each arbitraryi-th columnof this matrix, the first nonzero entry, which is at the diagjoof the matrix,

is of a form likeaja$. Also if the i-th row of the left (or right) hand side vertical matrix in-(14) is difet
weight —¢, then all the entries below thigaf in g and in front of a weight-¢ 1-formI'; are zero. This
fact is shown for example by the zero vectbin the first column ofg or by the entry0 below a;a? at the
middle of this matrix.

The collection of all invertible matrices of the forghconstitutes a finite dimensional (matrix) Lie group
G, called by thestructure Lie groupf the equivalence problem to the CR modé}.

Lemma 3.8. All the group parameters appearing at thth column ofg are of the same weight equal to
the length of thea-forms at thei-th row of the left (or right) hand side vertical matrices(@#).

Proof. It is a straightforward consequence of the two paragraphsioreed before the equaliti (114). O

Recall that §ee(@) and the paragraph after it) the defining equations oftecodimensional CR model
M, C C'** are precisely those of a CR model,_; of codimensiont — 1 added just by the last equation
wy, — Wy, = 2iPk(z,Z,w,w). Then one finds out that;
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Proposition 3.9. the (k — 1) x (k — 1) ambiguity matrixg;_; associated to the CR mod#&f;_; is a
submatrix of the ambiguity matrig associated ta\/,,. More precisely, we have (ofi4)):

a?a? 00 -~ 0000
0
de

15 = :
(15) g . -

de
de
de

Proof. Let M,,_; be of the lengthy’ < p. If we proceedab initio along the procedure of constructing an
initial frame for the CR modelM,,_; (cf. subsection_3]1), then we realize that though here the esipres
of initial vector fields of the appearing franfe/ P\, Y ... ,Zp‘}'ﬂ ..} are slightly different (at least they
do not contain any coefficient %%k) but according to the totally nondegeneracyléf_, one can construct
them by means of the iterated Lie brackets#ff! and.£s' of 7100, _; andT%! M;,_;; exactly as those
for the initial vector fields onV/;, (cf. (@) — here we assign the symbabld” to objects corresponding
to My, More precisely, if we havez?l! = [£7'9, £p'q /] then correspondingly we should ha#6 ; =
(4, %-1.]. Now, for a general biholomorphiswe'd : M, — M;_, and proceeding along the same
lines of computing the value @%¢ : C ® TM;_; — C @ TM,,_, as subsection_3.3 then, one finds that if
we have ¢f. Lemmd3.5):

he( L) == aba] Ly; + Z ar, Lip,  (i=1,.,1+4k)
1<t

then correspondingly we also should have:

oM (.,?ﬂd) = ala] LZ'? + Z ar, Lﬁ'ﬁi, (i=1,...,1+k),
1<t
though in the former case the appearing group parametetifims are in terms of the complex variables
z,w1,. .., wg_1,w; While in the latter case they do not admit the last ane The only distinction here is
that the frame of\/;, has one more initial vector field, namely, » ;. for which its value undeh.. should
be computed, separately. This valug.Z), 1) manifests itself as the first column gf OJ

Remark 3.10. By an inspection of the above proof, one finds that among thetoaction of the ambiguity
matrix associated td/;,_, the assigned weights to all the appearing initial vectadddiel-forms and group
parameters will be exactly as their corresponding onesarcése of\/y.

3.4. Associated structure equations.After providing the preliminary equipments of the (biholomhic)
equivalence problem to our CR mode#f,, including its associated initial frame and coframe, Darbo
Cartan structure and the desired ambiguity matrix, now tlhéstime of launching the Cartan’s method of
solving this problem. For this aim, first we have to computegb-called associated structure equations.

The procedure of constructing desired structure equabegss by the exterior differentiation from the
both sides of the equation{14). Assumifig= (T, 21%,...,I1,1)" andX := (0, 24k, ...,01,1)" @s our
lifted and initial coframes, then by differentiating theuadjty I' = g - ¥ we have:

(16) dI' =dg NY+g-d¥.
For the first partig A X of this equation, one can replace it by:

dg-g ' Ng- 3,
—_———

wue r
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wherewyc is the well-known Maurer-Cartan form of the matrix Lie groGp Sinceg is a lower triangular
matrix with the powers of the form{a; on its main diagonalcf. (14)), then the associated Maurer-Cartan
matrix is again a lower triangular matrix of the form:

pa+ qo 0 0 0 0
Je pa+¢da 0 0 0
(17) We 1= : : SEURR I
5. 5. 5. a O
5. 5. 5. 5. e}
with:
L da1
=
and withd,s as some (possibly zero) certain combinations of the stdrfdemsda;, j = 1,2, ... with the
coefficient functions in terms afy, as, . . .. Thus, the equation (16) will take the expanded form:
dl, Tpi
o1, pa+ qa 0 0 0 0 Lo-1s
O pat+qgda 0 0 0 :
dl's5 = : : oA Iss
dls.4 5 5o 6 @ 0 Ts4
dla3 5 5 5o b0« I3
dFLQ ° ° ° ° 1—\1’2
dl“l,l wye” Fl,l
wma 0 0 0 0 0 0 0
(18) ae a’l’,ﬁ‘{ 0 0 . . 0 0 dop;
. dop—1,5
de de 0 0 0
Qe Qe ae s 0 0 0
. dos,s
e : ae 0 adfa O 0 dos 4
Qe Qe —a3 as a1a1 0 0 do’z’g
) doi,2
Qe . e ay as —az a1 0 dUl,l
de de de as a4 as 0 ai

These equations are called thigucture equationsf the biholomorphic equivalence problem id,. The
following lemma is encouraging enough to have some rigoveeight analysis on the structure equations
in the next section. Recall that for each tesfdo, ;, coming from the last matrix multiplication df([L8), the
associated weight is naturally definedag + [doy ;).

Lemma 3.11. All entries of the vertical matrig - d3 at the right hand side of the above structure equations
(@I8) are homogeneous of the equal weight zero.

Proof. It is a straightforward consequence of Lemmd 3.8, remindhiag if o, is a length? initial 1-form
then the assigned weight to it and its differentiatifor is —¢. O

As one observes, the first matrix term of the structure equaf{18) is only in terms of the wedge products
between Maurer-Cartan and lifted 1-forms while, still, Hseond terng - dX is expressed in terms of the
initial 2-formsdo,. But, using the Darboux-Cartan structure computed in Fsitpa[3.3, one can replace
each 2-formdo, by some combination of the wedge products between initfarits o,. Afterward, by
means of the equality:

Y= gil : F,
it is also possible to replace each initial 1-fosgiby some combination of the lifted 1-formdg. Doing so,
then all differentiations at the right hand side verticakmxag - > of (18) will be expressed simultaneously
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in terms of the wedge products of the lifted 1-forfig. Consequently, our structure equations will be
independent of the initial 1-forms and can be rewritten mftrm:

dTy; = (pia+qa) AT+ Y 6, ATy

ijv lig

+ Z T]?n(a.)FlJ/\Fm,n, (t=1,....p, i=1,....24k),

l7j7m7n

(19)

whereT" s are some certain functions in terms of the group parameterich are called by théorsion
coefficientsof the problem.

Remark 3.12. Since our ambiguity matrix is invertible and lower triangular with the powes$a] at
its diagonal, then a simple induction on the number of itsicol and rows shows that its inversigm!

is again lower triangular and its non-diagonal entries armaesfraction polynomial functions where their
denominators are only some powers of the faffa;. Also, if thei-th diagonal entry of is, say,a}a] then
this entry ing=! is a,}aq. Finally, thanks to Lemmia_3.5 and again sircis a lower triangular matrix, then
in the expression of each lengthifted 1-from I, ; in the equation[(14), the only appearing initial 1-form
of the lengths< 7 is 0, ;. Consequently, we encounter the same fact in expressitgigigial 1-formoy; in
terms of the lifted ones by means of the equality= g~! - I'. This means that if thé-th row o, ;, of the

vertical matrixX is of the length¥ then thei-th row of g ! is of the form:

1
(Cos-rrrCe,0,...,0, — ,0,...,0)
N—— Q147 Ne——
titimes S~~~ to times
i—th place

wherer + s = £ andty + t, is at least equal to the number of all initial 1-formsof the lengths< ¢, except
ov4,- ONe notices that here of course we haye- 2 + k — 7.

4., WEIGHT ANALYSIS ON THE STRUCTURE EQUATIONS

In the previous section, we assigned naturally some wetghtise complex variables, initial and lifted
vector fields and 1-forms, their differentiations and alsgytoup parameters. in this section, our main
aim is to show that all the appearing torsion coefficientshia ¢onstructed structure equatiohs] (19) are
homogeneous of the same weight zero. These torsion corffi@ee some polynomial fractions in terms of
the group parameters with only some powers pénda; in their denominatorscf. Remark3.1R). We also
will inspect more the inverse matrix .

Definition 4.1. Let:

151 ,52=52 TnS

0107 Gy7Gg7 - Gy Gy
flar,a,---) = P
ayaq

be an arbitrary monomial fraction in terms of the group patars. Then the weight ¢fis defined as:

[f] = rila1] + s1[@i] + raag] + sof@] + - - - + rofan] + snfan] — rlai] — sfai].
A weighted homogeneous polynomial fraction is a sum of soroeamial fractions as above of the same
weigh.

As stated in LemmpB_3/.8, all the nonzero entries in a fixed colofour ambiguity matrixg are of the
same weight. Our next goal is to show that in the inverse mgtri, the rows enjoy a similar fact.

Lemma 4.2. Fix an integerig = 1,...,2 + k and let—/ be the weight of thé-form ¢, at theiy-th row of
the vertical matrix:

t
Y = (O’p72+k7 -..501.2, 0'1’1) s
appearing in(14). Then:
(i) all the nonzero entries of thig-th row ofg~! are of the same homogeneous weiglif too.
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(i) if the (ipj)-th entrye;,;, at theio-th row ofg is of the weigh? + 1, then this entry ing~! is of the
form:
_ Cigj
af'ay
for some constant integefra andn.

Proof. We prove the assertion by an induction on the CR codimerisimiithe CR model, under study. The
base of this induction is provided in[21, p. 104] for= 3. Thanks to Proposition_3.9, one shows that if
g,;_ll is the inverse of the ambiguity matrgg,_, associated to the equivalence problem to the CR model
M;._; of codimensiork — 1, then we have:

= 00 - 0000
171

(20) g ' = : ,
b4 gk—l

with p + ¢ = p and for some certain functiorg. Thus according to Remalk 3]10 and to prove the first part
of the assertion, it suffices to show it just for the new ebirat theiy-th row ofg~!. According to Lemma
[3.8, all the nonzero group parameters at the first columg arfe of the same maximum weight By our
induction hypothesis and except we know that all the nonzero entries at theth row of g~! are of the
same weight-¢. Our aim is to show thal, is also of this weight. Multiplying theé,-th row of g~! by the
first column ofg gives:

b; - (afal)+ ¥ =0
whereV is some function of the weight — ¢. Taking into account that + ¢ = p, then the polynomial
fractionb; = p = is of the homogeneous weight- ¢ — p = —/¢, as we expect.

For the second part of the assertion and according to ouciiuh, it suffices to prove it only for some of
the entries;,; at the first column of. These entries are all of the same maximum wejganhd hence we
have to look for weight-(p — 1) rows of the inverse matrig—'. These rows start immediately after the
zero vectol at the first column and are in front of the weightp — 1) initial 1-formso,,_ ; in the equation
(TI4). Let us assume thht is at theig-th such rows ofg~!. Then, this row is of the formef. RemarkK3.1R):

1

I
11

(by,c1,...,¢,0,...,0, ,0,...,0),

10-th place

wheret + 1 is the number of the weightlifted 1-formso,. Moreover, let us assume that at theth row of
the first column of is e;,;. Then, multiplying again the above row gf ! to the first column of implies
that:

€i1
ajai

by - (a1a{) + —— =0

and hence:
€i1
ptrogts’
a;

as was desired. O

b, = —

Roughly speaking, the first paft) of this lemma states that for each fixed row of the three mesric
appearing in the equation = g—! - T, all the nonzero entries are of the same weight. Furthernaking
into account the shape of the lower triangular magix and by the first part of the above lemma, one
observes that;
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Lemma 4.3. For each weight-/ initial 1-formoy;, its expression in terms of the liftéeforms is as follows:

Z AZ CL. Fl] pz—Qz Fél’
=4

with p; + ¢; = ¢ and for some weighted homogeneous polynomial frac@@rm‘ the weight-¢ where their
denominators are some powers of oalyanda;.

Also, after expressing each initial 1-forsnin terms of the lifted one§ by means of the inverse matrix
g~!, then the second part of Lemial4.2 implies that;

Lemma 4.4. If in the structure equatiodl',_; ,, of (18) we have the termjdo—g » for some (possibly Zero)
group parameter:;, then the coefficient dfgn in the expression afy_1 ,

constant integers ands.

Proof. First one notices that according to Lemma 8.11, the grougrpetera; should be of the weight.
The terma;doy ,, in (18) can come only from the second pgrt dX of this matrix equation and hence the
appearance of this term in the structure equafibp_; ,,, means that the coefficient of ,, in the expression
of I'y_y ,, — coming from the equality’ = g - > — is a;:

Ot

Féfl,m N7

r g %
As one sees in the above matrix equality, the weitgiMoup parameted; is settled in a certain row qf in
front of a weight—(¢ — 1) row of I" (andX). Then according to the second pgii) of LemmdZ.2, we have
some—a‘;—gf in the same entry of the inverse matgx!. But this entry in the inverse matrix determines,

through the equality = g~! - T, the coefficient of the lifted 1-fornhy ,, in the expression ofy_q ,,,. O
This suggests that if we are seeking the coefficient of in the expression of some,_; ,,,, then it is
opposite to the fraction of the coefficient @f, ,, in the structure equatiodl’,_; ,,, by some powers of;
anda;.
Now, we are ready to prove the main result of this section;

Proposition 4.5. All torsion coeﬁicient?jn(a.) appearing among the structure equatid@8) are weighted
homogeneous polynomial fractions of the equal weight zéerevtheir denominators are some powers of
onlya; anday.

Proof. According to [I8), each structure equation can be exprezssed
dl'e; = (pia+ qia) ATy + Z di; AT+ Z ai;doyj + ai'af doy;

120 12¢
with p; + ¢; = £. Our torsion coefficients come from the last parts:
(22) Z a;;doy; + al'al doy;

12¢
of this equation after replacing each differentiatifary according to the Darboux-Cartan structure computed
in Propositior 3.8 and next substituting each initial Infar, with some combinations of lifted 1-fornig,

by means of the equality = g~' - I". Thanks to Lemm&3.11, the weight of the coefficieptin the term
ai;doy j of @1) isl . On the other hand, according to Proposifiod 3.3, we have:

doy ;= Z cgyogNoy with B+ =1
By
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After replacing the expressions @f ando., as Lemm&4]3, such Darboux-Cartan structure takes the form:

dO’lJ' = Z Tgn,n(a") Fll,m A Flg,n

l1,l2>1

where the polynomial fractioniinm appear as multiplications of some weightt and —~ polynomial
fractions. Thus, all the coefficienTiL,n are of the same weight3 —~v = —I. Now, our torsion coefficients
Tﬂ;m come from the terms; do; ; in the above structure equationsi(21) by multiplying thecﬁnmsT{m
by the weightl group parameted;; and this results some weighted homogeneous polynomididnecof
the equal weight zero. O

5. PICKING UP AN APPROPRIATE WEIGHTED HOMOGENEOUS SUBSYSTEM

After providing the structure equations of the biholomacpbquivalence problem td7,, now we are
ready to apply the Cartan’s method which includes three n@gasabsorbtion, normalizatioand prolon-
gation The main result behind the first two parts is the following;

Proposition 5.1. (se€[21, Proposition 4.7]In the structure equations:
‘ n r ' k—1 ' .
a' =3 (Z iy + ZT}kﬁj> AOF e,
k=1 “s=1 j=1

one can replace each Maurer-Cartan forni and each torsion coefficieﬂg?k with:

n
o'ty Y (s=1-7),
—
(22) '
,
T;k’—>Tfk+Z (s 2t — s 25) (i=1-n; 1<j<k<n),
s=1

for some arbitrary functions? on the base manifold/.

This proposition permits one to substitute each MauretaDat-forma andd; in the structure equations

by any combination of the form:

- a—a+toy,yDpoyp+. ..+t o+t 1,

( ) (5j|—>(5j+S%+krp72+k+...—|—8j2F1,2+S]1F171,

for some arbitrary coefficient functiortg ands?. In the absorption-normalization step, we can apply such
substitutions (absorption) and try to convert new coeffitseof the wedge products, ;, ATy, ;, to some
constant integers — possibly zero — by appropriate detextioins of the arbitrary functiongy, s3. But,

to convert all the already mentioned coefficients to somestamt integers, it may be inadequate only ap-
propriate determination of these arbitrary functions bsib @& is necessitates to determine — or normalize
in this literature — some of the group parameters, apprtgyiaIn fact, after appropriate determination
of the arbitrary coefficient functiong andsg, it is possible to remain still some non-constant coefficien
functions of the mentioned wedge products. Such coeffigjamich we call them bgssential torsion co-
efficients are some combinations of the extant torsion coefficiendsaa@ in terms of the group parameters
ae. In the normalization step, we shall also converts thesengiss torsion coefficients to some constant
integers — possibly zero — by appropriate determinatioroafies group parameters.

Thus to proceed along the absorption and normalizatiorsstape has to solve an arising polynomial
system witht,, s; and some of the group parameters as its unknowns. But thealimhportance of the
solution of this system is not determining the coefficiemdtionst, and sg but it is actually the found
values of involving group parametets. But unfortunately, solving such arising polynomial syste—
specifically in this general manner — may cause some unaveidad serious algebraic complexity, the
size of which increases considerably as soon as the codiomelagncreases, even by one unit. To bypass
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and manipulate such complexity, in this section we intredaanethod of picking up an appropriate and
convenient subsystem for which it affords all results thatawe seeking from the solution of the original
system. At first, we need the following useful lemma;

Lemma5.2. Assume that,_; ;Ao 4, fort = 1 or 2, is the unique appearing wedge product in the Darboux-
Cartan structure oflo, ;, as stated in Lemnia3.4. Then, among all the expressionffereditiationsdo; .,
with ! > ¢, in terms of the wedge products of the liftefbrms, a nonzero coefficientBf_; ; AT’y ; appears
uniquely indoy ;. Such coefficient is a fraction of the forﬁﬁ for some constant integegsandg.

Proof. Sinceg~! is a lower triangular matrix, then in the expression of eagh by means of the equality
¥ = g1 - T, the only appearing lifted 1-form, ,,, with [ < ¢’ is someap—laql“ggr (cf. Remark3IR). In
particular, the only initial 1-form having some coefficiedtl’; ; in its exprelsslion i%1,1 and this coefficient
is %; also, the only initial 1-form admitting some coefficientiafs is o » and this coefficient isjus&#l. Ifin
the expression of a differentiatiefy;, ,., with [ > ¢, itis found a nonzero coefficient %_, ; AI'; ; then in
its Darboux-Cartan structurég;, , includes some nonzero coefficient of the wedge proaugtA oy ; with

I < ¢—1. Butif oy ;A0 + appears in the Darboux-Cartan structuréaf . then Lemma3I3 implies that we
should havé’ +1 = [, > ¢ and whencé > ¢—1. Consequently, we havé= ¢—1 and thusr; ; = oy_1 ;.
But according to our assumption,_; ; A o1 appears uniquely in the Darboux-Cartan structurécof;
and hence we should have;, , = doy ;, as desired. In addition, the coefficidnt_; ; AT'; ; in do, ; comes
from the wedge produet,_; ; A o1, in its Darboux-Cartan structure and according to what roeet at
the beginning of the proof, it will be nothing but some fractilike Wla‘{ O

5.1. Picking up an appropriate subsystem.Consider a weight-(p — 1) structure equation:

drpfl,io = (pioa + Qioa) N Fpfl,io + Z 6ij A Fp,j

(24) g
+ Z i, dopr + ay°ay " dop—1,
s

as one of those im(18). Lemrha 3l11 implies that all the abowemparameters;, are of the weighp and
alsop;, + ¢i, = p — 1 (seethe paragraph after equatidn[13)). Then, as a consequétioe above Lemma
and for each fixed termy, do, . of the above structure equation, one finds a unique wedgeigirod

a;

T
Pe—Qe
ay-ap

(25) Lp15, AT,
coming from a uniquely appearing,_; ;. Ao, in the Darboux-Cartan structure é#, , for which no any
other weight—p differentiationdo, ,~ in the above structure equation gives any nonzero coeffiofesuch
Fp—l,jq- VAN FLtr'

Now, let us inspect whether it is possible for the other teim{&4) to produce any nonzero coefficient of
the same produdt, ; ;, ATy ,. We begin with the last terma, @, do, 1 ;,. According to the constructed
Darboux-Cartan structure in Proposition]3.3, if we assumé t

dop-tio= D, CiOim/Obm
li+la=p—1

then to pick a wedge product of the forf),_; ;, A I'1;, we have to look for the terms of the fdfim
cm0Op—2,m A 014, in the above expression and next pick the coefficient of; ; from the expression of
op—2,m- According to Lemm&4]4 and if we assume that the coefficiedtg_, ;. in the structure equation
of dI',—2 ,,, is a weightp — 1 group parametet;, , then this desired coefficient will be of the formaf‘.j#

2Remind that one can find the lifted 1-forMs ; andl'; > only in the expressions ef; 1 ando 2, respectively.
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for some constant integers ands . Hence the the last terzrflo_q’0 do,—1,4, May give some term like:

(26) - (Z Cm T.]Lns. ) Pp—l,jr A Fl,tr-
™ ap ap

for some weighp — 1 group parameters;, , .

The second part j 0i; ANLpj of the structure equatiof (P4) does not give any nonzerdicizaft of the
wedge product',_; ;. AT'1,, but, nevertheless, after the substitutidng (23) in the fiast(p;, o + gi, @) A
I')—14,, We receive two terms:

(27) — (Piot1 + Gigt2) Tp1,i0 AT11 @nd  — (pigta + qigl1) Tp—1i0 AT12,

where in the case thag = j,, then they will be of the same form as the wedge product; ;. AT'i;,, in
question.

Then, all possible coefficients of the wedge produgt, ; AI';;, in the above weight-(p— 1) structure
equation [[24) are those presented[inl [25[26, 27). Equatisgoefficient to zero — as is the method of
absorption-normalization — then one finds some fractioymainial equation of the form:

a; _ -
J / /
Pe—de — E Cm—imss = i b1 + b to + 2% 11 + by 1o,
1 Gy ay

for some (possibly zero) constants, b;_,a’; ,b’;.. Here, the left hand side of this equation is in fact the
possible torsion coefficient df,—1 ;. A I'14, in the structure equatiof_(P4) which comes frdml (25, 26).
Hence according to Propositibn #.5, it is of the weight zé&Winding that heres;, is a weightp parameter
while a;,,s are of the weighp — 1, then multiplying both side of this equation by the denortona’*a{*
gives the following equivalenweighted homogeneopslynomial equation — here we assign naturally the
weight zero to the parameterrs t, and their conjugations:

(28) ai, — Z Cm, ag'a‘;'ajm = a]f.atf. (aiotl + biOtQ + a’iofl + b/iozz).
m

Proceeding along the same lines of computations, it enbags t

Proposition 5.3. Among the procedure of absorbtion and associated to eacghiveigroup parameter
a;. appearing in an arbitrary weight-(p — 1) structure equatiorf24), one finds a weighted homogeneous
parametric complex polynomial equation @8), expressing:;,. in terms ofa;, a;, some weighp — 1 group
parametersz;, and two parameters; andts.

This constructive result is generalizable to arbitraryghés —¢ = —(p — 1),..., —1. To make it more
precise, for each weight/ structure equation:

AT = (Pm@ + qm@) AT + Y 0i, ATy

120

+ Z ajndo-l,n + Z adeO'g+1 r al al dO’g ms
1>04+2,n r

(29)

in (18) andjust for eachterm of the forma;, doy1 ., in the penultimate pa ", a;,doy 1, we shall seek
the coefficient of the wedge product;, /\F1 . Whereoy ;. Aoy, is visible uniquely in the Darboux-Cartan
structure ofdoyy1 ., (cf. Lemma3.#). Let us look for |t part by part.

According to Lemmd 512, from the pabt;~, o, @j,doin + >, aj.doesq, one finds merely one
nonzero coefficient of the form:

jTO F /\ F
—ge L 0i; 1,t
a’f' a‘f‘ J "

which comes just from the teray, doy.1 .. Here notice that;, is of the weight/ + 1.

SNotice also that here;,, can be zero and it does not effect our next results.
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Moreover, by a similar argument like that presented bef@®),(one realizes that the last term
a™al™ doy ., may produce some (possibly zero) coefficient of the form:

a;
(30) Z Cm r.lr_ns. Fé ZJ /\ Pl Jtr

for some weight group parameters;, , .
The second tery_,~, 6;, AT, ; will not introduce any nonzero coefficient b ;; AT'1 ¢, while after the

substitutions[(23) in the first pafp,,,a + ¢, @) A L'y, ONe may find some terms like:
(31) — (Pmt1 + gmt2) Tom AT11 @nd  — (ppta + gmt1) e AT 2,

where in the case that = i;, then they will be of the same form as the wedge produgt A I'y ;,, in
question.

Summing up the computations and by equating to zero the ceeffiof ', ;; A 'y, in the structure
equation ofdI', ,,,, after absorption, then we find a weight zero homogeneoustieguof the form:

a;
Jrg 'lm _ / n / I
P-—qo z : Cm 7"-—5. aJr tl + bjrotQ +a jrotl + b jr0t2>

where after some sufficient multiplication by powersapfanda,, it converts to a weighted homogeneous
parametric polynomial equation:

(32) aj'ro Z Cm al al Ay, = a’llj.a(ll. (a]'r tl + b]'r t2 + a Jro tl + b Jrg 2 ) -

Here notice that;, is of the weight’ + 1 while the weight ofu;,,s is’.

Proposition 5.4. (Extension of Proposition 3.3)et¢ = 1,...,p — 1. Then, among the procedure of
absorbtion and associated to each weight 1 group parametew;, appearing in an arbitrary weight
—/ structure equatiorf29), one finds a weighted homogeneous parametric complex puolghequation as
32), expressingz;, in terms ofa;, a;, some weight group parameters;,,, and two parameters; ands.

Let us denote by the weighted homogeneous parametric polynomial sﬁtﬁmquations mentioned
in the above proposition and extracted throughout the weidh. .., —(p — 1) structure equationdl’ ; in
(@8), after absorption. Among this systé&mntwo equations coming from the last two structure equations

dF273 = (a + a) AN F273 + Z 62‘j AN Fl,j + Z @i, dO’lJ' + as d0'374 + as d0'375 + ajay d0'273,
12 123

drl,l =aA F171 + Z (SZ']. VAN Fl,j + Z Qi dO’lJ' + as d0'273 + aq dUl,l
=1 =2

are of particular importance. According to our suggestethot in the weight-2 structure equatiodl’s 3

we should focus on the teray dos 4 Sincedos 4, together withdos 5, are the only weight-(2 + 1) = -3
differentiations visible in it. Sincezz 4 = [£ 1, % 3], then the uniquely appearing wedge product in the
Darboux-Cartan structure @b 4 is 023 A 011 (cf. Lemm&3.%4 and its proof). Thus, we shall look for the
(torsion) coefficient ofl’y 3 A I'y 1 in this structure equatiodI's 3. Then, correspondingly we will find a
weighted homogeneous equation, expresainm terms ofaq, ao, t1, t2 and their conjugations. Also in the
weight —1 structure equatiodI’; ; we should focus on the single term do, 3. The uniquely appearing
wedge product in the Darboux-Cartan structureles 3 is 01,1 A 012, then let us find the coefficient of
I'y 1 AT 2 in this structure equation. This will give us a weighted hgeweous equation that expresses

4Notice that this system does not involve all the group patarse.. Also, it involves only the parametets andt. in the
substitutions[(283).
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in terms ofaq, t1, t2 and their conjugations. Performing necessary computstiae respectively find the
following two weight zero homogeneous equations, aftefyapg the substitutiond (23):

as ) -
= +i1—— = 751 + t27
(33) alal a1aq
. a2
11— = tg,
al1aq
which give, surprisingly, the parametefsandt, as some weight zero expressions:
a a a
(34) = g + 2ty =i |.
alal alay alal

Putting these expression $hand multiplying again the appearing fractional equatiopsdme sufficient
powers ofa; anda,, then one finds it as a weighted homogeneous polynomialraystth no any param-
eter. Excepta, andas that we already spent their associated equations (33) tdHmexpressions of the
parameter$; andt,, for each other involving group parametersthere exists one equation fhthat ex-
presses it in terms of some lower weight group parameters.néxt goal is to find two more polynomial
equations including. andag as their unknowns, too.

5.1.1. Structure equations of the weightp. One might be somehow surprised that since the beginning of
this subsectiof 511, we have not talked about the weighstructure equations, yet. In fact, our main trick
was to retain these structure equations for our current &ipraviding two more weighted homogeneous
eqguations containing, andag as their unknowils One notices that the method suggested above, can not
be applied on a weight p structure equation:

(35) de,i = (pl'Oé + qia) VAN Fpﬂ' + alfia(fi dO'pﬂ‘

since, obviously, it does not contain any teignio, with do, of the weight—(p+1). However, here we can
think about picking up coefficients of the wedge producte Iik ; A I'; ; from dI',; for t = 1,2. Making

it more precise and associated to each structure equdlign, one finds the Darboux-Cartan structure
of do,;, visible in it, as a combination of some certain wedge prtglug_; ; A o1 (cf. Lemma[3.B).
According to Lemma 4l4, if the coefficient db, ; in the weight—(p — 1) structure equatiodl',_; ; —
considered at the beginning of this subsection — is a (plysz#ro) weightp group parametet;,, then

the coefficient ofl’,; in o,_; ; is some fraction of the form- ‘?T.. Moreover, sincer, 1 ; has no any
nonzero coefﬁment of 1 +, then the coefficient of the sought Wedge prodigt AL s ino,_1; Aopgis

the multiplication between the coefficient s “” of I'y; in 0,1 ; and the coefficient ofy ; in o1 ¢, which

is a— wheret = 1 and2 wheret = 2. This |mpI|es that:
1 al

(i) After absorption and equating to zero the coefficients of A I'y ; andIl',; A T'; o in this structure
equationdI’,, ;, then one finds:

>
— alal

Jr 171

a]r
Z o— +th1+Pzt2—0
ajay

it +qita =0,

(36)

s/
r

where according td_(34) they are actually two equationsrim$eofas, a3 and some other weight
group parameters ones, .

(#) Inthe systens, one finds some polynomial equations which exptgss anda}-rs in terms of some
lower weight group parameters.

5Actually in CR dimensionl, the reason of satisfying the Beloshapka’'s maximum counjedn the lengthg > 3 refers to
this part of our constructions. In fact, to provide two moreighted homogeneous equations dgrandas, we need some more
structure equations than thosedif2 3, dl',1 anddl'; 2 = dI'1,1. This means that we should at least have the next structure
equationdT's 4 which appears in the case of CR models which are of lepgth3.
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Granted the fact that throughout the polynomial sys$eand for each group parameter(exceptaq, as, as)
involving in it, there is some equation which expressg terms of some lower weight group parameters,
then one can consider eventually the above two equafiohat3ome equations in terms of oaly, a; and

a1. Now, to finalize constructing the desired subsystem, wetlaelse two already found equationsSto

5.2. Solving the picked up subsystemAfter providing the weighted homogeneous polynomial syste
S, now let us attempt to find the weighted projective vari®ty.# ) of the polynomial idealy = (S) —
namely the solution of the systesn— in the weighted projective spaé¥1, 2,3, 3,3, ...) (see e.g[11] for
more details). Since the only weighigroup parameted; is assumed to be nonzero, then this variety does
not contain any point at the infinity surfage = 0. Assume that?>f ¢ Clas, as, ..., a,] is the affine ideal
obtained by dehomogenizing by settinga; = 1. If g is a weighted homogeneous polynomialén then

the following relation holds between it and its dehomogatiin ¢%" (see[11], Theorem 5.16]):

—d deh/ @2 a3 a
57 g(al’az’a?’""’ar):a\{v € e( [az}’a[as}a«..’a[;])

1 1 1
wherew — deg is the weight degree of the affine polynomidt". One plainly verifies about this new affine
ideal that:

e Associated to each group parametgrvisible in it, there exists some polynomial in 2ff where
its expression is in terms af; and some other group parameters (variables) of absoluielgr!
weights. Moreover, these polynomials are all linear (cdeisthe equations & after settingz; = 1
in (32), (32), [36)).

This means that after selecting some appropriate okden the extant group parameters enjoying the
property thats; < a; wheneveria;] < [a;], then the affine idea¥* is in fact inNoether normal position
and according to the Finiteness Theorem([10, Theorem 6 andll@ry 7, pp. 230-1]), the affine variety
V(72 is zero dimensional containing just the or@i(m), 0,...,0). Then according to the above equal-
ity (87)), one concludes that the weighted projective vard{.# ), or equivalently the solution set of the
weighted homogeneous systéncomprises some points of the concrete form:

V(F) = {(a1,0,0,...,0), a #0}.

In other words, in the solution set of our weighted homogesesystens, all the group parameters visible
in it — but not necessarily all the group parameters appgarirour ambiguity matrix — take the value
zero, identically. In particular, the two fundamental ggquarameterss andas shall be zero. But, thanks
to Lemmd3.B, vanishing of these two group parameters iccgiffito assert thatll the group parameters
a;,j # 1, appearing in the ambiguity matrgxwill be normalized to zero;

Proposition 5.5. After sufficient steps of applying absorption and normaiiaon the structure equations
of the equivalence problem to a totally nondegenerate Belgisa’s CR moded/;, of CR dimensiord and
codimensiork, all the appearing group parametets with j = 2,3, 4, ... vanish, identically.

After vanishing these group parameters, then our ambigudgrix groupG (see(d4)) reduces to the
simple diagonal matrix Lie grou@™? comprising matrices of the form:

ajal 0 o --- 0

0 aa 0 - 0

(38) gred = 0 o .0 0
0 0 - a0

0 0 e 0w

Also in the Maurer-Cartan matrikx (1.7), all the Maurer-Carfarmsé vanish identically and it reduces to
a diagonal matrix with the combinations of the 1-formsand@ at its diagonal. Finally, after applying

60ne notices that according to Proposition] 4.5, all the nostant torsion coefficients vanish by putting = a; = ... = 0.
Then the origin is a solution of the syste&n
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vanishing of the group parametets, as, ..., then all torsion coefﬁmentﬁfZ vanish identically except
those which were constant from the beglnnlng of constrgdtire structure equatlons in(18);

Proposition 5.6. After vanishing the group parameteis, as, a4, . . ., OUr Structure equations convert into
the simpleconstant type

dT; = (pia+q;@) ATg; + Z Tl AT (=Liep, i=1,..2+k)

l+m=/{
Jn

(39)

for some (possibly zero) constant complex integ%s

Proof. According to [I8), our structure equations were originallghe form:

ng,i = (piOé + qia) N Pgﬂ' + Z 5ij N FlJ + Z ai].dal,j + al al dO’gZ
1= 1=

o)

As mentioned, after vanishing of the group parametgtss, ... all the Maurer-Cartan formé, vanish
identically and this kills the first suhv,, d;; A I'; ;. For the second tery,-, a;;doy,; and according to
Lemma&3.1lL, since all the differentiatiods; ; are of the weights: —1 (notice that heré = ¢ and/ > 1)
then all the group parameters; are of the weightsz 1 and hence none of them ig. This implies the
vanishing of this term, too. Then, it suffices to consider |t termall_ql doy; of the above structure
equation. According to the computed Darboux-Cartan siredn Prop05|t|0|[3]3 we have:

doy; == g Crs OB, N\ Onys.
T8
B+y=t

On the other hand, our inverse matgx! is now converted to the simple form:

aﬁ’la‘{ 0 0O --- 0
1
= 0O -+ 0
( g|red) 1
0 . 0 0
1
0 0 2 0
0 0 0o L

al

and hence, if we seek nonzero coefficients of the wedge pt®biucA I', in o3, A 0,5, then we will find
nothing apart from:
FB r A\ F'y ED

a71n7 ans

for some constant integers, andn,. Then, the last term{"a{* do,; can be brought into a combination of

the form:
Pi—=qi

ay'a
1%
a'af doy; = E Cros —m—ns T Igr AT, .
B+y=t

7,8

P;—9; .
On the other hand, these coefficients == are in fact the only remained torsion coefficieftfs of the
1 1

wedge product§ 'z, A T, g, in the structure equatiodl’, ; and hence according to Proposition]4.5, are of
the weight zero. Since they involve just weight one grou@peaters:; anda; then, after simplifications if
necessary, they will be either some constants or somedrectf a form like:
al at
Crs—r OF Cro—r

.
ay ay



26 MASOUD SABZEVARI
Consequently, our structure equatidin, ; is converted into the form:

dPZ,i = (pza =+ an) A\ FZ,i + Z Cp/ s/ FBIJJ A P’Y’,S’+

B/ +~'=t

r! s’

al @,

+ g Crs— Lgr Ay s+ E Crs— Ugr N1y s
at aj
B+=t 1 B+r=t 1

All the appearing3s andvys in this equation are absolutely less tifanvhence in the case that ong; is

nonzero then the torsion coefficienf , = cmg—:l orTi, = cr,s‘;—:l of I'g,. AT, is essential and can be
k] 1 ] 1 ’ )

plainly normalized to some constant, say;, by determiningz; such thaa—i = 1, i.e. by considering the

only remaining parametet; asreal. This gives the normalization of all powers of the fractighto 1.
Thus, we receive finally just some constant coefficients e$étremaining wedge products. O

What mentioned at the end of the above proof also determireeadrmalization of the only remaining
group parameteti;. Accordingly, this parameter is never normalizable in theecthat after vanishing the
group parameterss, as, . . ., all the torsion coefficients of the structure equationscarestant. Otherwise,
a1 Will be normalized to a real group parameter.

Corollary 5.7. There are two possibility for the normalization of the ondymaining group parameter; .
It is either normalizable to a real group parameter or it isvee normalizable. The reduced structure group
G4 (cf. (39)) is of real dimensiori or 2 respectively in the former or latter cases.

For instance, one observes [in[21] that in the cas&/gf the group parameter; is never normalizable
while for My, it is normalizable to a real group parameter as is showin6h [2

To continue along the Cartan’s method of solving equivagsroblems and after applying all the required
absorption-normalization steps, now one has to stanptblengationprocedure. The main fact behind this
step is the following fundamental proposition;

Proposition 5.8. (see[23, Proposition 12.3]Let # and ¢’ be two lifted coframes on two manifoldd
and M’ having the same structure group, let o and o/ be the modified Maurer-Cartan forms obtained
by solving the absorption equations and assume that negffeerp-dependent essential torsion coefficients
exist nor free absorption variables remain. Then theretexagdiffeomorphisn® : M — M’ mappingd to
0’ for some choice of group parameters if and only if there isfledmorphism¥ : M x G — M’ x G
mapping the prolonged cofram{@, o} to {¢’, o' }. O

This permits us to substitute the current equivalence prolib the(2 + k)-dimensional CR model/j,
by that of the(3 + k) or (4 + k)-dimensional prolonged spade;, x G™4. To do this, we have to add
the remaining Maurer-Cartan formsanda to the original lifted coframd” and consider the collection
(p24k,---,'1,1, 0, @) as the new lifted coframe associated to this prolonged spadbe case thai, is
normalizable to a real group parameter, then of course wednay @. Constructing the associated structure
equations to this new equivalence problem is easy, jushgddi

da1
dao=d(—) =0
o =d(")

to the former structure equations. Then, the final struatgueations of our new equivalence problem to the
prolonged space/;, x G take the following{e}-structureconstant type:

dFM = (pi a+q; @) A Fg,i + Zelﬂzze Cé-’n Fgl,j AN Fg%n (b=1,...,p, i=1,...,2+k),
I,n

(40) da =0,
da = 0.

Then we have arrived at the stage of stating the main resthipaper;
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Theorem 5.1. The biholomorphic equivalence problem t¢2a+ k)-dimensional totally nondegenerate CR
model)M;, of CR dimension and codimensiolk is reducible to some absolute parallelisms, namely to some
certain {e}-structures on prolonged manifolds;, x G'? of real dimensions eithet + & or 4 + k.

Weight association.We assign naturalﬂ/the weight zero to our new lifted 1-formsanda.

6. PROOF OF THEBELOSHAPKA'S MAXIMUM CONJECTURE

After providing key results in the previous section, now we eeady to present our proof of the Be-
loshapka’s maximum conjecture. As we saw, the equivalenaiglgm to a certain Beloshapka’s CR model
M, is converted finally to that of a prolonged spad@" := M;, x G4 with the final constant type structure
equations[(40).

According to [23, Theorem 8.16], if the final structure edmaé of an equivalence problem to an

dimensional smooth manifold/ equipped with some lifted coframg, ... ,~" is of the constant type:
dF= Y dyay (k=1-7),
1<i<j<r
thenM is (locally) diffeomorphic to am-dimensional Lie group- corresponding to the Lie algebgawith
the basis elements/y, . .., v, } enjoying thestructure constants
s
[Vi,v,] = k o
VZ,VJ] = — Cij Vi (1<i<j<r).
k=1

Accordingly, let us try to find the Lie algebgacorresponding to the constant structure equations (40). At
first, we associate to each lifted 1-fodm; the basis element; of g. Also, for the new appearing lifted 1-
formsa anda, let us associate the basis elemefntandv;. Of course, if the real part ef; is normalizable
(cf. Corollary[5.T) then we dispense withy since in this case we have = @. Then accordingly, our
desired Lie algebrg will be of dimension eitheB + k or 4 + k. In particular, because we do not see any
wedge productr A @ among the structure equatiofisl(40) then we haye/;] = 0. This means thafvg, vy}
generates aAbeliansubalgebra of. Let us assign naturally the weight to each basis element ; and
also the weight zero ta, andvg.

Each structure equatiail’y ; in (40) is some constant combination of the wedge produdtsds those
lifted 1-forms for which the sum of their weights is exactly. This implies that the Lie bracket between
each two basis elemenig of g of the weights—¢; and —/5 will be some constant combination of those
basis elements af which are of the same weight(¢; + ¢5). This means that;

Proposition 6.1. The desired Lie algebrg associated to the final structure equatidd$)) is graded (in the
sense of Tanakf@1],[22) of the form:

9 =90-pDPg (,b-1)D...Dg-1Dgo
with:
(9015 0-02] = O—(01442)
where eacly_, is generated by all basis elements of the weight-/ andg,, which is Abelian, is generated
by vy andvg. Consequentlyg_ is (2 + k)-dimensional wherg is of dimension eithet or 2.

On the other hand, Corollary 14.20 pf [23] says that this lgelrag is in fact the symmetry Lie algebra
of the prolonged spack/P" = M, x G"*4 with respect to its cofram@™; 1, . . . ,Lpoyr, o, @); thatis the Lie
algebra associated to the Lie groGmf self-equivalence® : MP" — MP", satisfying®*(#) = 6 for each
0 =T11,...,T )24k «,@. But, according to[[23, Proposition 12.1] and also its pr@otan be identified
with the CR symmetry grouputcr (M) of biholomorphic maps : M;, — M, and hence:

autcr(My) = g.

"Notice that the differentiatioo took the value zero, exactly as constant functions. Hencassin the weight of constant
integers to this new-form « and its conjugation.
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This helps us to complete the proof of the Beloshapka’s maxiraonjecture;

Theorem 6.1. (The Beloshapka’s maximum conjecture). The Lie algebta r ()M} ) associated to a Be-
loshapka’s CR model of CR dimensibrand codimensiork and of the lengtlp > 3 — or equivalently
of codimensiork > 2 — contains no any homogeneous component of absolutelyvpdsimogeneity. In
other words, such CR model is rigid. Moreover, this Lie algeb of dimension eithe + kor4 + k. [

APPENDIXA. AN EXAMPLE IN THE LENGTH FOUR

Let us conclude this paper by an illustrative example. Ik fachis appendix we aim to check our method
proposed in Sectidd 5 by means of inspecting the equivalerat@em to the length foug-dimensional Be-
loshapka’s CR model/s  C” of codimensiork = 6 represented as the graph of six defining polynomials:

w] — Wy = 21272,
Wy — Wy = 2i(2* 2+ 22%), w3 — W3 = 2(2°Z — 27°),
Wy — Wy = 22'(232 + 223), Ws — Wy = 2(232 — 223), we — Weg = 21 2272
The assigned weights to the extant complex variables are:
[z]=1, [w] =2, [w]=lws]=3, [ws]=][ws]=][we]=42

Saving the space, we do not present the intermediate ctidmgaAccording to our computations according
to what explained in Sectidd 3, our initial frame contairgheivector fields of various lengthst, ..., —4:

L= A, Li=Lo,
T = Ly3 =1L, 2,
S =Ly =1L, T, L i=LBs= L, T,
U = L= LS, U:=SL:=[2L,7), Vi=%F%s=¥S =L
The other Lie brackets between these eight initial vectdddiare all zero. Assume that:
5 := (vo, pos g, @, Lo @ )t is the dual coframe to( ¥, %, %, %, 7 , ﬁ,f,g)t.
weight -4 weight -3 weight -2 weight -1
Then the associated Darboux-Cartan structure to thisroefia:
dvy =30 Ao+ 00 ACo,  dpo =00 Ao,  diig =70 A (o

doo = po A Go, doo = po A Cos
dpo = iCo A (o,
d¢p = 0, d¢y = 0.

Assumingl’ := (v, u, @, 0,7, p, (,Zo)t as the associated lifted coframe, then our computatioratevbe
ambiguity matrix of the biholomorphic equivalence problenl/; as:

afa? 0 0 0 0 0 0 0
0 al@m O 0 0 0 0 0
0 0 aa 0 0 0 0 0
ro | @ms a 0 a?@m O 0 0 0 [
(41) | @z 0 @ 0 a@ 0 0 0 ’
ai ar ar as a3 aja; 0 O
a12 as ag a4 as az ar O
a2 ag as as [ as 0 a

g
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with the assigned weights:
[al] = 1, [CLQ] = 2, [CL3] = [CL4] = [CL5] = 3, [CL6] = ...= [alg] = 4

By computing the (somehow big) inverse maigix!, one can check also the assertion of some results like
Lemmasg 4.P and4.3. Also, our Maurer-Cartan matrix is of trmf

20 + 2 0 0 0 0 0 0 0
0 3a+a 0 0 0 0 0 0
0 0 a+ 3a 0 0 0 0 0
L 513 56 0 2 +a 0 0 0 0
whe = 513 0 B 0 a4+2@ 0 0 0
511 57 37 53 53 a+a 0 0
512 58 39 54 55 52 « 0
d12 do Js 5 4 02 0 «
Then, our structure equations will be of the form — we ablatvthe combinations of the wedge products
d; A e just by some’ - --” since they will not play any important role:
dv = (2o + 2a) A v + aja; duvy,
dp = (3a +a@) A p + abay dug,
(42) do=---+ 2a+a@) Ao + a3 dvy + ag dug + a3a; doy,
dp=---+ (OZ—FE) A p~+ ar1 dvg + a7 dpg + @y ding + as dog + as dog + aya; dpo,
d¢ =+ aN(+aadyvy + agdug + ag diig + as dog + as dog + az dpg + a1 dlp.

Now, let us proceed along the lines of subsedfioh 5.2 to piekappropriate weighted homogeneous system
S. To do it and as is the method of absorption-normalizatiep,dirst we apply the substitutions:

arattgyttrp+ ... +tal+tC,

5j»—>6j+séu—|—sj7‘,u+...—|—sgz+sig, 7=2,...,13,
on the above structure equations. According to our propasetthod of constructing, for the minimum
weight —4 structure equationdv anddy, we have to compute the coefficientstof\ {¢,(} andu A {(, ¢}
dy respectively. Moreover, in the length3 structure equatiodo, we should pick up the coefficients of
o N{(, ¢} since respectively A (p andog A ¢, uniquely appear in the Darboux-Cartan structure of the only
extant length—4 differentiationsdpy anddy visible in this structure equation. Similarly, for the léhg-2

and—1 structure equationdp anddc, we should pick the coefficients pfA {¢, ¢} and¢ A ¢, respectively.
Equating these coefficients to zero gives respectively:

a3 = ag < <
Sav =1 — =55 =21+ 22y, Sy =1 — 5 =3 +t2, 0=11+ 3y,
- .. 1 }
a a . a -

3—5—2—322151-1-1527 %:t1+2t2}7

Sio = {

as . ao _
Sap i= +i—— =t] + 1o},
dp { a%al a1a ! 2}
. a2
Sgci={i——— =1t
¢ 2a161 2},
whereS is the union of these five systems. After putting the obtaiergutessions of the parametéfsand
to into these equations and multiplying them by sufficient peaaf o, anda;, one receives the following

weighted homogeneous system:

S := {513 + 2a1a3 + 2tar1a1as =0, ag+ 3ajaz + 5t G%EQ =0, a3z+iajae =0,

ag — 3ajas — 3ia%62 =0, ai3z—ajaz= 0}-
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Solving this weighted homogeneous system, first let us lgldiehomogenize it by equating the weight one
parameter;; to 1. Then, either by hand or by means of some computer softwamnesyersifies that the only
solution of the obtained dehomogenized system is nothitxg bu

a2:a3:a6:a13£0

which immediately implies that all the group parametersas, aq, . . ., a13 can be normalized to zero. As
we check, the only remaining group parameteis not normalizable. Applying these results and after one
prolongation, the first structure equatiohs](42) converth¢ simple constant form:

dv=(2a+2a) A\v+GA(+0 A,

dp=Q@Ba+a)Au+oAN(,

do=Q2a+a)No+pAC,

dp=(a+a@)Ap+ilAC,

d¢ =a A

da = 0.
Proposition A.1. The Lie algebrgy associated to these structure equationsiiglimensional with the basis
elementg{v¥, v¥ v v7 v vP ve vE, v v@ ) and with the Lie brackets, displayed in the following table:

VY RV VAR VLRV Y Ve ve v
vv10 O 0 O 0 0 0 0 20”7 2v¥
vl 0 0O O 0 O 0 0 RIValYs
vViix x 0 0 0 0 0 0 VP3P
vy % * * 0 0 0 —v* —vr 2v7 V7
vl | x * * * 0 0 —v —vF v °
V- * * * * 0 —v7 =7 v v’
vé | o« * * * * * 0 —iv? v 0
vé * * * * * * * 0 0 ve
ve | ox * * * * * * * 0 0
VI * * * * * * * * 0

This Lie algebra is graded of the form:
0 =90-4Dg3Dg-2Dg-1Dgo,
withg_4 = (v/, v/, vH), withg_3 = (v7,v7), withg_o = (v*), withg_; = <v<,vE> and withgg = (v&, v®).
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