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Abstract

In this note we report on the new version of FeynCalc, a Mathematica

package for symbolic semi-automatic evaluation of Feynman diagrams and
algebraic expressions in quantum field theory. The main features of version
9.0 are: improved tensor reduction and partial fractioning of loop integrals,
new functions for using FeynCalc together with tools for reduction of scalar
loop integrals using integration-by-parts (IBP) identities, better interface to
FeynArts and support for SU(N) generators with explicit fundamental
indices.
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1. Introduction

In the last decades the importance of computer tools for higher order per-
turbative calculations in quantum field theory (QFT) has increased tremen-
dously. Indeed, some recent achievements [1, 2, 3] in this field would have
been hardly possible to complete within a reasonable time frame, if such
projects were to be carried out only by pen and paper. The question that
most QFT practitioners pose themselves today is not whether to use software
tools or not, but rather which combination of tools will be the most efficient
for the endeavored project. It is clear, that, in principle, there can be no
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universal package to cover any demand of any particle theorist. Instead, spe-
cific programs that provide different level of automation should be used for
specific tasks. One of such specific tools is FeynCalc [4], that recently was
released in the version 9.0.

FeynCalc is aMathematica package for algebraic calculations in QFT
and semi-automatic evaluation of Feynman diagrams. The very first public
version of FeynCalc, developed by Rolf Mertig with guidance from Ansgar
Denner and Manfred Böhm, appeared in 1991. The main developments and
improvements between 1991 and 1996 were triggered by the work of Mertig in
electroweak theory [5, 6, 7, 8] and perturbative QCD [9]. Between 1997 and
2000, important contributions to the project came from Frederik Orellana,
who, besides work on the general code, contributed the sub-package PHI for
using FeynCalc in Chiral Perturbation Theory (χPT) [10] and interfacing
to FeynArts 3 [11]. From 2001 until 2014, with both developers out of
theoretical physics, the development of FeynCalc was mostly constrained
to bug fixing and providing support through the mailing list 1, although some
interesting projects with external collaborators still were conducted [12]. In
2014, the developer team was joined by Vladyslav Shtabovenko, who started
to work on rewriting some parts of the existing code and implementing new
features. In the same year the source code repository of FeynCalc was
moved to GitHub

2, where the master branch of the repository represents
the current development snapshot of the package. Not only the stable re-
leases, but also the development version of FeynCalc can be anonymously
downloaded by everyone at any time free of charge. The code is licensed
under the Lesser General Public License (LGPL) version 3. To minimize the
number of new bugs and regressions, an extensive unit testing framework 3

with over 3000 tests was introduced.
This note is organized in the following way. Section 2 compares Feyn-

Calc to other packages for automatic evaluation of 1-loop Feynman dia-
grams and discusses setups, in which FeynCalc can be particularly useful.
Section 3 provides an overview of interesting new features and improvements
in FeynCalc 9.0. Section 4 gives an example of using FeynCalc to deter-
mine matching coefficients in NRQCD [18], a non-relativistic effective field

1http://www.feyncalc.org/forum
2https://github.com/FeynCalc
3https://github.com/FeynCalc/feyncalc/tree/master/Tests
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theory (EFT) for heavy quarkonia. Finally, we summarize and draw our
conclusions in Section 5.

2. Comparison to similar tools

In view of the existence of several publicly available symbolic packages
(FormCalc [13], GoSam [14], GRACE [15], Diana [16]) that offer almost
fully automatic evaluation of Feynman diagrams at 1-loop from Lagrangian
till the cross-section, it appears necessary to explain how FeynCalc differs
from such tools and why it is useful.

FeynCalc by itself does not provide a fully automatic way of computing
cross sections or decay rates. Indeed, FeynCalc cannot generate Feynman
diagrams and has no built-in capabilities for the numerical evaluation of
master integrals and for the phase space integration. Therefore, these two
important steps should be done using other tools.

Second, FeynCalc normally performs all the algebraic manipulations
using Mathematica. This leads to a slower performance when compared
to tools that rely e.g. on FORM [17] for the symbolics. Despite some
possibilities [12] to link FeynCalc with FORM, one should keep in mind
that FeynCalc is not very well suited for evaluating hundreds, thousands
or even millions of Feynman diagrams.

Finally, FeynCalc doesn’t impose any particular ordering in which dif-
ferent parts (Dirac matrices, SU(N) matrices, loop integrals etc.) of the
amplitudes are supposed to be computed. It is always up to the user to
decide what is the most useful way to carry out the calculation. This par-
ticular feature makes FeynCalc very different from tools that attempt to
automatize all the steps of the evaluation process. Such tools usually stick
to a particular workflow which roughly consists of the following steps:

1. The user specifies the process that needs to be computed.

2. If the given process is available in the standard configuration, load the
corresponding model (e.g. Standard model (SM)). Otherwise the user
must create a new model that contains this process.

3. Using the loaded model, generate relevant Feynman diagrams for the
given process.

4. Evaluate the amplitudes by performing all the necessary algebraic sim-
plifications.
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5. Square the amplitude and sum/average over the spins of the involved
particles.

6. Integrate over the phase space.

In this list, already the second step might turn out to be problematic. The
list of built-in models usually includes SM and some popular (e.g. SUSY in-
spired) extensions, while more exotic theories require custom model files to be
added by the user. If the Lagrangian of such a theory looks very different from
LSM (e.g. in EFTs that are not strictly renormalizable (with an arbitrary
number of legs in vertices) like χPT or even not manifestly Lorentz covariant
like non-relativistic QCD (NRQCD) [18] or potential non-relativistic QCD
(pNRQCD) [19]), then its implementation becomes a formidable task. On
the other hand, even if the model can be implemented with a limited amount
of effort, is still might cost more time than just writing down the amplitudes
by hand and then manually entering them into the program. Although it
is of course possible to make fully automatic tools accept such amplitudes
as input, this is usually much less straight-forward than the official way of
just specifying the process, launching the diagram generator and letting the
automatics do the rest.

FeynCalc avoids such difficulties by accepting any kind of input that
consists of valid FeynCalc objects. Hence, one can enter e.g. standalone
Dirac traces, Lorentz vectors or loop integrals and then manipulate them
with suitable FeynCalc functions. In this sense FeynCalc can be used
much like a “calculator” for QFT expressions.

For manual input of Feynman diagrams FeynCalc contains some func-
tions (FeynRule, FunctionalD, CovariantD, QuantumField etc.) for deriv-
ing Feynman rules from Lagrangians that are manifestly Lorentz covariant.
At the same time it is of course also possible to evaluate Feynman diagrams
that were generated automatically (e.g. by FeynArts), so that the user
always can choose the most efficient strategy to get the calculation done.

Steps 4 and 5 usually imply that the user is not supposed to interfere too
much with the evaluation process. Instead, one should rely on the available
options to influence the outcome of the calculation. For example, when an
automatic tool handles the Dirac algebra, it would normally try to simplify
everything it can. While in general, this approach is perfectly fine, sometimes
one would like to simplify only some of the Dirac structures, leaving the others
(e.g. all the traces involving an odd number of γ5) untouched. In principle,
provided that the particular tool is open source, one can always modify its
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code accordingly to obtain the desired output. Depending on the complexity
of the code and the amount of documentation, this might, however, take
some time and even introduce new bugs.

With FeynCalc, the same result can be achieved in a more simple way,
as one always has full access to all kind of intermediate expressions. For this
purpose FeynCalc also provides various helper functions (e.g. Collect2,
Expand2, Factor2, Isolate, ExpandScalarProduct, DiracGammaExpand,
MomentumCombine, FCLoopSplit, FCLoopIsolate, FCLoopExtract) that can
be used to expand, sort, abbreviate and collect the given expressions with
respect to particular structures.

Thus we see that FeynCalc should not be regarded as a direct competi-
tor to highly automatized packages like e.g. FormCalc, because it neither
provides routines for numerical evaluation nor offers a fully automatic work-
flow to evaluate a scattering process.

For studies that can be carried out using an automatic tool from the
beginning to the end, it obviously would not be very efficient to stick to
FeynCalc. While one certainly can chain FeynCalc with appropriate
tools and libraries to obtain the same result, this would require more time
and effort - which could be invested elsewhere.

The real niche that FeynCalc fills are calculations that are too specific
to be done in a fully automatic fashion but also too challenging to be done
(only) by pen and paper, so that semi-automatic evaluation is very welcome.

One example for such problems is the determination of matching coeffi-
cients in EFTs. Matching coefficients are extracted by comparing suitable
quantities (e.g. Green’s functions) between the higher energy theory and its
EFT at energies, where both theories should agree by construction. Then
the quantity in the higher energy theory usually needs to be expanded in
small scales and massaged into a form that resembles the same quantity in
the lower energy theory, so that one can read off the values of the matching
coefficients.

Such calculations are usually too special to be automatized in a full gener-
ality, but they can benefit a lot from functions provided by FeynCalc. This
is one of the reasons, why FeynCalc enjoys certain popularity in the heavy
quarkonium physics, where it is used to perform the matching between QCD
and NRQCD for production [20, 21, 22] or decay [23, 24] of heavy quarko-
nia. Other studies where FeynCalc was used involve such fields as Higgs
[25, 26, 27] and top quark physics [28], phenomena in hadronic interactions
[29, 30], dark matter [31, 32], neutrino physics [33, 34, 35] or gravity [36]. It
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is worth noticing that FeynCalc was also used at some stages of NNLO
[37, 38] calculations. Indeed, FeynCalc can be well employed for small or
medium size multi-loop processes if one connects it to suitable tools for IBP-
reduction (e.g. FIRE [39]) and numeric evaluation of multi-loop integrals
(e.g. FIESTA [40] or SecDec [41]).

Last but not least, FeynCalc can be also quite useful for educational
purposes. The possibility of easily getting hands-on experience with com-
puting Feynman diagrams and exploring the different steps involved can be
very helpful and motivating for students of quantum field theory.

3. New features in FeynCalc 9.0

3.1. Improved tensor decomposition

In the very early versions of FeynCalc, tensor decomposition of 1-loop
integrals (using Passarino-Veltman technique [42]) could be done only using
the function OneLoop, where the maximal rank of the integrals was limited
to 3 and the output was always written in terms of Passarino-Veltman co-
efficient functions. While working on [9], Rolf Mertig added to FeynCalc

3.0 a tool (Tdec) for tensor decomposition of multi-loop integrals of arbitrary
rank and multiplicity (for non-zero Gram determinants) and even included a
database (TIDL) to load already computed decompositions, but only a very
small amount of this functionality was turned into a user-friendly routine TID
(1-loop only), while the rest remained to “lie idle” in the source code. TID

was limited to 4-point functions of rank 4 and could not handle kinematic
configurations with zero Gram determinants, so that for such cases one was
forced to use OneLoop.

In FeynCalc 9.0 TID was rewritten almost from scratch to allow for
1-loop tensor decompositions of any rank and multiplicity. At the beginning,
the function computes Gram determinants for all the unique 1-loop integrals
in the expression. If the determinant vanishes, the decomposition for that
integral is done in terms of the Passarino-Veltman coefficient functions.

In[1]:= FCClearScalarProducts[];
ScalarProduct[p1, p1] = 0;
int = FCI[SPD[p2, q] FAD[{q, m0}, {q + p1, m1}]]

Out[1]:= p2·q
(q2−m02).((p1+q)2−m12)
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In[2]:= TID[int, q]

Out[2]:= iπ2(p1 · p2)B1
(

0,m02,m12
)

Otherwise, TID will output the result in terms of scalar 1-loop integrals.

In[1]:= FCClearScalarProducts[];
int = FCI[SPD[p2, q] FAD[{q, m0}, {q + p1, m1}]]

Out[1]:= −
(m02−m12+p12)(p1·p2)

2p12(q2−m02).((q−p1)2−m12) +
p1·p2

2p12(q2−m02) −
p1·p2

2p12(q2−m12)

If needed, those scalar integrals can be converted to Passarino-Veltman
scalar functions by using ToPaVe, which is also available since FeynCalc

9.0.

In[2]:= TID[int, q] // ToPaVe[#, q] &

Out[2]:= −
iπ2(m02−m12+p12)(p1·p2)B0(p12,m02,m12)

2p12 +
iπ2A0(m02)(p1·p2)

2p12 −
iπ2A0(m12)(p1·p2)

2p12

The decompositions in terms of scalar integrals tend to become very large
already for 3-point functions, so to obtain more compact expressions it might
be desirable to use the basis of Passarino-Veltman coefficient functions, even
if there are no zero Gram determinants. This can be easily achieved via the
option UsePaVeBasis.

In[1]:= int = FCI[FVD[q, mu] FVD[q, nu] FAD[{q, m0}, {q + p1, m1}, {q + p2, m2}]]

Out[1]:= qmuqnu

(q2−m02).((p1+q)2−m12).((p2+q)2−m22)

In[2]:= TID[int/(I∗Piˆ2), q, UsePaVeBasis −> True]

Out[2]:= gmunuC00

(

p12,−2(p1 · p2) + p12 + p22, p22,m02,m12,m22
)

+p1mup1nuC11

(

p12,−2(p1 · p2) + p12 + p22, p22,m02,m12,m22
)

+(p2mup1nu + p1mup2nu)C12

(

p12,−2(p1 · p2) + p12 + p22, p22,m02,m12,m22
)

+p2mup2nuC22

(

p12,−2(p1 · p2) + p12 + p22, p22,m02,m12,m22
)

All the Passarino-Veltman functions are defined as in LoopTools [13]
and explicit definitions are encoded for functions with up to 5 legs. For
integrals with even higher multiplicities the coefficient functions (denoted as
GenPaVe) simply include the dependence on the external momenta that can
be used to convert them to the LoopTools or any other convention.
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In[1]:= int = FCI[FVD[q, mu] FVD[q,nu] FAD[{q, m0}, {q, m1}, {q, m2}, {q, m3}, {q
+ p4, m4}, {q + p5, m5}, {q + p6, m6}]]

Out[1]:= (qmuqnu) /
(

q2 −m02
)

.
(

q2 −m12
)

.
(

(p2+ q)2 −m22
)

.
(

(p3+ q)2 −m32
)

.
(

(p4+ q)2 −m42
)

.
(

(p5+ q)2 −m52
)

.
(

(p6+ q)2 −m62
)

In[2]:= TID[int/(I∗Piˆ2), q, UsePaVeBasis −> True]

Out[2]:=

gmunuGenPaVe





















{0, 0},





















0 m0
p1 m1
p2 m2
p3 m3
p4 m4
p5 m5
p6 m6









































+ p1mup1nuGenPaVe





















{1, 1},





















0 m0
p1 m1
p2 m2
p3 m3
p4 m4
p5 m5
p6 m6









































+ . . .

Here, GenPaVe[{1,1},{{0,m0},{Momentum[p1],m1}, ...,

{Momentum[p6],m6}}] stands for the coefficient function of pµ1p
ν
1 in the tensor

decomposition of

∫

dDq
qµqν

[q2 −m2
0][(q − p1)

2 −m2
1][(q − p2)

2 −m2
2] · · · [(q − p6)

2 −m2
6]
. (1)

Since this kind of output is useful if one explicitly wants to obtain coef-
ficient functions defined in a different way than in LoopTools, it can be
activated also for functions with lower multiplicities by setting the option
GenPaVe of TID to True.

In[1]:= int = FCI[FVD[q, mu] FVD[q, nu] FAD[{q, m0}, {q + p1, m1}]]

Out[1]:= qmuqnu

(q2−m02).((p1+q)2−m12)

In[2]:= TID[int/(I∗Piˆ2), q, UsePaVeBasis −> True, GenPaVe −> True]

Out[2]:=

gmunuGenPaVe

(

{0, 0},

(

0 m0
p1 m1

))

+ p1mup1nuGenPaVe

(

{1, 1},

(

0 m0
p1 m1

))

One should also keep in mind that FeynCalc cannot perform any fur-
ther simplifications of GenPaVe functions, because internally they are not
recognized as Passarino-Veltman integrals (PaVe).
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It is well known that for a general multi-loop multi-scale integral, tensor
decomposition doesn’t allow to cancel all the scalar products containing loop
momenta in the numerator, as it is the case at 1-loop. Nevertheless, this
technique is widely used also in calculations beyond 1-loop, especially if one
needs to deal with integrals that have loop momenta contracted to Dirac
matrices or epsilon tensors or even loop momenta with free Lorentz indices.
FeynCalc uses a quite simple reduction algorithm (implemented in Tdec)
that consists of decomposing the integral into all tensor structures allowed
by the symmetries and using Gaussian elimination to obtain the coefficients
of each tensor.

Since tensor decomposition of multi-loop integrals with FeynCalc’s
function Tdec is not quite straight-forward and usually requires some addi-
tionalMathematica code, in FeynCalc 9.0 a new function FCMultiLoop-

TID was added, that makes multi-loop tensor reduction work out of the box.

In[1]:= int = FCI[FVD[q1, mu] FVD[q2, nu] FAD[q1, q2, {q1 − p1},
{q2 − p1}, {q1 − q2}]]

Out[1]:= q1muq2nu

q12.q22.(q1−p1)2.(q2−p2)2.(q1−q2)2

In[2]:= FCMultiLoopTID[int, {q1, q2}]

Out[2]:= Dp1mup1nu−p12gmunu

4(D−1)q22.q12.(q2−p1)2.(q1−q2)2.(q1−p1)2 −
Dp1mup1nu−p12gmunu

2(D−1)p14q12.(q2−p1)2.(q1−q2)2

+ p12gmunu−p1mup1nu

(D−1)p12q22.q12.(q1−q2)2.(q1−p1)2 −
p12gmunu−p1mup1nu

2(D−1)p12q22.q12.(q2−p1)2.(q1−p1)2

Unfortunately, the reduction breaks down when the corresponding Gram
determinant vanishes. For such cases, in a future version it is planned to
include a more useful algorithm.

3.2. New partial fractioning algorithm

Since the version 3, FeynCalc includes ScalarProductCancel and
Apart2 that can be used to rewrite loop integrals in a simpler form. Scalar-
ProductCancel essentially applies the well known identity [42]

q · p =
1

2
[(q + p)2 +m2

2 − (q2 +m2
1)− p

2 −m2
2 +m2

1] (2)
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repeatedly, until all scalar products containing loop momenta that can be
canceled in this way are eliminated. Apart2 uses the trivial identity

1

(q2 −m2
1)(q

2 −m2
2)

=
1

m2
1 −m

2
2

(

1

q2 −m2
1

−
1

q2 −m2
2

)

(3)

to simplify suitable denominators. In principle, these two functions imple-
ment some aspects of partial fractioning, i.e., the decomposition of a loop
integral with linearly dependent propagators into a sum of integrals where
each integral contains only linearly independent propagators. Notice that
here we count scalar products that involve loop momenta as propagators
with negative exponents. Unfortunately, there are plenty of examples where
neither ScalarProductCancel nor Apart2 can partial fraction an integral
with linearly dependent propagators, e.g.

∫

dDq
1

q2(q − p)2(q + p)2
=

1

p2

∫

dDq

(

1

q2(q − p)2
−

1

(q − p)2(q + p)2

)

(4)

A general partial fractioning algorithm that is suitable for multi-loop inte-
grals including its Mathematica implementation (APart4) was presented
in [43]. The author has also shown how his code can be used together with
FeynCalc in order to decompose different loop integrals. For this the user
is required to convert a loop integral in the FeynCalc notation (with de-
nominator encoded in FeynAmpDenominator) to a somewhat different form
and to specify all the scalar products that contain loop momenta and appear
in this loop integral. After the decomposition the resulting integrals need to
be converted back into FeynCalc notation.

In FeynCalc 9.0 the algorithm from [43] was adopted and reimple-
mented to be the standard partial fractioning routine. As such, it is fully
integrated with all other FeynCalc functions and objects and doesn’t re-
quire any explicit conversion of the input or output.

In[1]:= int = FAD[{q}, {q − p}, {q + p}]

Out[1]:= 1
q2.(q−p)2.(p+q)2

In[2]:= ApartFF[int1, {q}]

4https://github.com/F-Feng/APart
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Out[2]:= 1
p2q2.(q−p)2 −

1
p2q2.(q−2p)2

The name of the corresponding function is ApartFF which stands for
“Apart Feng Feng” and serves as an additional acknowledgement of the orig-
inal author. One should also notice that while the original APart can be
used for partial fractioning of quite general multivariate polynomials, the
FeynCalc version is limited only to polynomials that appear in Feynman
diagrams as propagators and scalar products. Thus, it is much less general
than APart but is also more convenient when used with FeynCalc.

3.3. Tools for interfacing FeynCalc with packages for IBP-reduction

In modern multi-loop calculations, reduction of scalar loop integrals via
integration-by-parts (IBP) identities [44] is a regular step needed to arrive
to a smaller set of master integrals.

Although FeynCalc doesn’t include a general purpose tool for IBP re-
duction (the built-in TARCER [45] is suitable only for 2-loop self-energy
type integrals), this omission can be compensated by using one of the pub-
licly available IBP-packages (FIRE [39], LiteRED [46], Reduze [47], AIR

[48]). However, one should keep in mind that such tools usually expect their
input to contain only loop integrals with linearly independent propagators
that form a basis. For example, the integral

∫

dDq1 d
Dq2 d

Dq3
1

[q21 −m
2]2[(q1 + q3)2 −m2](q2 − q3)2q22

(5)

cannot be processed by FIRE in this form because q21, q
2
2, (q1 + q3)

2 and
(q2 − q3)

2 alone do not form a basis.

In[1]:= << FIRE5‘FIRE5‘
Internal = {q1, q2, q3};
External = {};
Propagators = {q1ˆ2 − mˆ2, (q1 + q3)ˆ2 − mˆ2, (q2 − q3)ˆ2, q2ˆ2};
PrepareIBP[];

Out[1]:= FIRE, version 5.1
DatabaseUsage: 0
UsingFermat: False
Not enough propagators. Add irreducible nominators
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If one includes also q23 and q1 · q2 with zero exponentials, then we have a
proper basis and the reduction works as it should. Also the integral

∫

dDq1 d
Dq2

(p · q1)
2(p · q2)

2

[q21 −m
2][q22 −m

2](q1 − p)2(q2 − p)2(q1 − q2)2
(6)

cannot be reduced right away, this time because its propagators are linearly
dependent.

In[1]:= << FIRE5‘FIRE5‘
Internal = {q1, q2};
External = {};
Propagators = {q1ˆ2 − mˆ2, q2ˆ2 − mˆ2, (q1 − p)ˆ2, (q2 − p)ˆ2, (q1 − q2)

ˆ2, p q1, p q2};
PrepareIBP[];

Out[1]:= FIRE, version 5.1
DatabaseUsage: 0
UsingFermat: False
Linearly dependant propagators. Perform reduction first

To detect such problems before the reduction actually fails, FeynCalc

9.0 introduces two new special functions. When FCLoopBasisIncompleteQ

is applied to a loop integral, it returns True if this integral doesn’t contain
enough irreducible propagators.

In[1]:= intP1 = FCI[FAD[{q1, m, 2}, {q1 + q3, m}, {q2 − q3}, q2]]

Out[1]:= 1
(q12−m2).(q12−m2).((q1+q3)2−m2).(q2−q3)2.q22

In[2]:= FCLoopBasisIncompleteQ[intP1, {q1, q2, q3}]
Out[2]:= True

In[3]:= FCLoopBasisIncompleteQ[SPD[q3, q3] SPD[q1, q2] intP1, {q1, q2, q3}]
Out[3]:= False

An integral with linearly dependent propagators will be detected by
FCLoopBasisOverdeterminedQ,

In[1]:= intP2 = FCI[SPD[p, q1]ˆ2 SPD[p, q2]ˆ2 FAD[{q1, m}, {q2, m}, q1 − p, q2 − p,
q1 − q2]]

Out[1]:= (p·q1)2(p·q2)2

(q12−m2).(q22−m2).(q1−p)2.(q2−p)2.(q1−q2)2

In[2]:= FCLoopBasisOverdeterminedQ[intP2, {q1, q2, q3}]
Out[2]:= True
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so that only an integral for which both functions return False can be reduced
in a straight-forward way.

Of course, in a practical calculation where one knows what integral topolo-
gies are involved, such issues can be easily resolved. In particular, a clever
choice of additional propagators that are needed to have a basis, can greatly
simplify the reduction. On the other hand, depending on the size of the prob-
lem and the number of topologies involved, a less clever but fully automatic
solution may also be useful.

For an integral with linearly dependent propagators we can use ApartFF,
that is guaranteed to decompose it into integrals where all propagators are
linearly independent.

In[1]:= ApartFF[intP2, {q1, q2}]

Out[1]:=
(m2+p2)4

16(q12−m2).(q22−m2).(q2−p)2.(q1−q2)2.(q1−p)2

−
(m2+p2)

3

8(q12−m2).(q22−m2).(q1−q2)2.(q1−p)2

−
(m2+p2)(p·q1)

8(q22−m2).(q1−q2)2.(q1−p)2 + . . .

For integrals with an incomplete basis of propagators one can use the
new function FCLoopBasisFindCompletion that finds out which irreducible
propagators (with zero exponents) are missing.

In[1]:= FCLoopBasisFindCompletion[intP1, {q1, q2, q3}]

Out[1]:=
{

1
(q12−m2).(q12−m2).((q1+q3)2−m2).(q2−q3)2.q22 ,

{

−(q1 · q3) + q2 · q3+ 2q32, q1 · q2
}

}

With the suggested propagators the integral is guaranteed to have a com-
plete basis, but the choice of the propagators themselves is usually not very
clever. This is because in general FeynCalc cannot guess the topology
of the given integral without any additional input. It is planned to pro-
vide a possibility for specifying the topology, which would admittedly make
FCLoopBasisFindCompletion much more useful than it is now.

Still, with ApartFF and FCLoopBasisFindCompletion it is now possible
to automatically bring any scalar multi-loop integral in FeynCalc notation
to a form that can be directly (modulo notation conversion) forwarded to an
IBP tool.
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3.4. Advanced extraction of loop integrals

The idea to use FeynCalc as a sort of switch board for different com-
putational tools in a larger framework (see e.g. [49]) is further developed in
version 9.0 by the introduction of new functions that can extract different
loop integrals from the given expression.

One of them, FCLoopSplit, breaks the given expression into 4 pieces,
which are

1. Terms that contain no loop integrals.

2. Terms that only contain scalar loop integrals without any loop mo-
menta in the denominators, e.g.

∫

dDq
1

q2 −m2
. (7)

3. Terms that contain scalar loop integrals with loop momenta dependent
scalar products in the denominators, e.g.

∫

dDq
(q · p)

q2(q − p)2
(8)

4. Terms that contain tensor loop integrals, e.g.
∫

dDq
qµqν

q2 −m2
or

∫

dDq
(γ · q)

q2(q − p)2
(9)

In[1]:= int = FCI[(GSD[q − p] + m).GSD[x] FAD[q, {q − p, m}] + (mˆ2 + SPD[q, q])
FAD[{q, m,2}]];

Out[1]:= (m+γ·(q−p)).(γ·x)
q2.((q−p)2−m2) + m2+q2

(q2−m2).(q2−m2)

In[2]:= FCLoopSplit[int, {q}]

Out[2]:=
{

0, mγ·x−(γ·p).(γ·x)
q2.((q−p)2−m2) + m2

(q2−m2).(q2−m2) ,
q2

(q2−m2).(q2−m2) ,
(γ·q).(γ·x)

q2.((q−p)2−m2)

}

This splitting makes it easier to handle different types of loop integrals
and to simplify them with FeynCalc or other tools. For example, if one
wants to perform tensor reduction of multi-loop integrals with FaRe [50]
instead of FCMultiLoopTID, it can be done by applying FCLoopSplit to the
given expression and working with the 4th element of the resulting list, while
the other elements remain unchanged and can be later added to the final
expression.
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To handle a larger number of loop diagrams in an efficient way, FCLoop-
Split alone is not sufficient. This is because same integrals may appear
multiple times in different diagrams and ignoring this fact would make the
evaluation more complex than it actually is. To avoid this kind of problems
one should better first analyze the amplitude and extract all the unique
integrals. Then each unique integral needs to be evaluated only once, no
matter how often it appears in the full expression. In FeynCalc 9.0 this
can be conveniently done with FCLoopIsolate. The function wraps loop
integers with the given head, such that the list of unique integrals can be
quickly created withMathematica’s Cases and Union or just FeynCalc’s
Cases2

In[1]:= int = FCI[GSD[q − p1].(GSD[q − p2] + M).GSD[p3] SPD[q, p2] FAD[q, q −
p1, {q − p2, m}]];

Out[1]:= (p2·q)(γ·(q−p1)).(M+γ·(q−p2)).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

In[2]:= res = FCLoopIsolate[int, {q}, Head −> loopInt]

Out[2]:= loopInt
(

p2·q
q2.(q−p1)2.((q−p2)2−m2)

)

((γ · p1).(γ · p2).(γ · p3)−M(γ · p1).(γ · p3))+

M loopInt
(

(p2·q)(γ·q).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)

− loopInt
(

(p2·q)(γ·p1).(γ·q).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)

−loopInt
(

(p2·q)(γ·q).(γ·p2).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)

+ loopInt
(

(p2·q)(γ·q).(γ·q).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)

In[3]:= Cases2[ res , loopInt ]

Out[3]:=
{

loopInt
(

p2·q
q2.(q−p1)2.((q−p2)2−m2)

)

, loopInt
(

(p2·q)(γ·q).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)

,

loopInt
(

(p2·q)(γ·p1).(γ·q).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)

, loopInt
(

(p2·q)(γ·q).(γ·p2).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)

,

loopInt
(

(p2·q)(γ·q).(γ·q).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)}

The combined application of FCLoopIsolate and FCLoopSplit is pro-
vided by FCLoopExtract. This function returns a list of three entries. The
first one contains the part of the expression which is free of loop integrals.
The second entry consists of the remaining expression where every loop in-
tegral is wrapped with the given head. Finally, the last entry contains a list
of all the unique loop integrals in the expression.
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In[4]:= FCLoopExtract[int, {q}, loopInt ][[1]]
Out[4]:= 0

In[5]:= FCLoopExtract[int, {q}, loopInt ][[2]] ===
FCLoopIsolate[int, {q}, Head −> loopInt]
Out[5]:= True

In[6]:= FCLoopExtract[int, {q}, loopInt ][[3]] ===
Cases2[ res , loopInt ]
Out[6]:= True

Suppose that we want to evaluate these loop integrals using some custom
function loopEval (in this example it is just a dummy function that computes
the hash of each loop integral). All we need to do is to apply FCLoopExtract

to the initial expression, map the list of the unique integrals to loopEval,
create a substitution rule and apply this rule to our expression in order to
get the final result.

In[7]:= {rest , loops , intsUnique} = FCLoopExtract[int, {q}, loopInt];

In[8]:= loopEval[ x ] := ToString[Hash[x]];

In[9]:= solsList = loopEval /@ uniqueInts

Out[9]:= {2069116068,115167616,776830638,1878762839,1337833147}

In[10]:= repRule = MapThread[Rule[#1, #2] &, {intsUnique, solsList}]

Out[10]:=
{

loopInt
(

p2·q
q2.(q−p1)2.((q−p2)2−m2)

)

→ 2069116068,

loopInt
(

(p2·q)(γ·q).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)

→ 115167616,

loopInt
(

(p2·q)(γ·p1).(γ·q).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)

→ 776830638,

loopInt
(

(p2·q)(γ·q).(γ·p2).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)

→ 1878762839,

loopInt
(

(p2·q)(γ·q).(γ·q).(γ·p3)
q2.(q−p1)2.((q−p2)2−m2)

)

→ 1337833147
}

Int [11]:= res = rest + loops /. repRule

Out[11]:= 115167616M + 1337833147− 1878762839+

2069116068((γ · p1).(γ · p2).(γ · p3)−M(γ · p1).(γ · p3))− 776830638

With FCLoopSplit, FCLoopIsolate and FCLoopEvaluate it is now much
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easier not only to manipulate loop integrals, but also to check which integrals
actually appear in an expression. Unique loop integrals can be evaluated with
tools outside of FeynCalc and then substituted back by just a couple of
lines of Mathematica code.

3.5. Better interface to FeynArts

If FeynCalc needs to be used with a Feynman diagram generator, then
FeynArts is usually the most convenient choice. Initially the syntax of
both packages was adjusted to make them fully compatible with each other.
In fact, for the very first version of FeynArts [51], FeynCalc was re-
ferred to as the standard tool to evaluate the generated amplitudes. As
FeynArts was developed further, the full compatibility was lost, but even
now, the output of FeynArts can be converted into valid FeynCalc in-
put with only little effort. A more severe problem in using this setup arises
when FeynArts and FeynCalc are loaded in the same Mathematica

session. Unfortunately, both packages contain objects with same names but
different contexts, definitions and properties (e.g. FourVector, DiracMatrix
or FeynAmpDenominator) such that it is not possible to use them together
without risking inconsistencies. To avoid these issues FeynCalc is able
to automatically patch the source code of FeynArts by renaming all the
conflicting symbols, such that e.g. FourVector becomes FAFourVector and
no variable shadowing can occur. This patching mechanism was greatly im-
proved in FeynCalc 9.0 both in terms of user friendliness and compatibility
to other Mathematica packages. The patched copy of FeynArts now re-
sides in the FeynArts directory inside the FeynCalc installation. By default
this directory is empty. The user is expected to manually download the lat-
est FeynArts tarball from the official website5 and unpack its content to
FeynCalc/FeynArts. When FeynCalc is loaded via

$LoadFeynArts=True;
<<FeynCalc‘

it will automatically detect FeynArts installation and offer the user to
patch it. This procedure is required only once and after that one can use
FeynArts and FeynCalc together without any problems.

5http://www.feynarts.de
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After all the required diagrams have been generated and turned into am-
plitudes with FeynArts‘ function CreateFeynAmp, the output still needs to
be converted into valid FeynCalc input. In FeynCalc 9.0 this is handled
by the new function FCFAConvert that takes the output of CreateFeynAmp
and generates proper FeynCalc expressions based on the given options.
With IncomingMomenta, OutgoingMomenta and LoopMomenta the user can
specify how the corresponding momenta should be named. Otherwise they
will be denoted as InMom1, InMom2, . . . , OutMom1, OutMom2, . . . and LoopMom1,
LoopMom2, . . . . Polarization vectors of external massless bosons are by default
not transverse, but can be made so if the momenta of the bosons are listed in
TransversePolarizationVectors. The splitting of fermion-fermion-boson
couplings into left and right handed chirality projectors (default in Fey-

nArts) can be undone with the option UndoChiralSplittings. For exam-
ple, the amplitude for the tree level process γ∗ u→ u g is obtained via

In[1]:= $LoadFeynArts = True;
$FeynCalcStartupMessages = False;
<< FeynCalc‘;
$FAVerbose = 0;

In[2]:= diags = InsertFields[ CreateTopologies[0, 2 −> 2], {F[3, {1}],
V[1]} −> {V[5], F[3, {1}]}, InsertionLevel −> {Classes},
Model −> ”SMQCD”];

In[3]:= FCFAConvert[CreateFeynAmp[diags], IncomingMomenta −> {p1, kp},
OutgoingMomenta −> {kg, p2}, UndoChiralSplittings −> True,
TransversePolarizationVectors −> {kg}, DropSumOver −> True,
List −> False] // Contract

Out[3]:= −
2ELgsT

Glu3
Col4Col1(ϕ(p2,MU)).(γ̄·ε̄∗(kg)).(γ̄·(kg+p2)+MU).(γ̄·ε̄(kp)).(ϕ(p1,MU))

3((−kg−p2)2−MU2)

−
2ELgsT

Glu3
Col4Col1(ϕ(p2,MU)).(γ̄·ε̄(kp)).(γ̄·(p2−kp)+MU).(γ̄·ε̄∗(kg)).(ϕ(p1,MU))

3((kp−p2)2−MU2)

3.6. Finer-grained expansions

To expand scalar products of Lorentz vectors FeynCalc provides the
function ExpandScalarProduct. The standard behavior of this command is
to expand every scalar product in the expression.

In[1]:= exp = SPD[q1, p1 + p2] SPD[q2, p3 + p4] SPD[p5 + p6, p7 + p8]

Out[1]:= ((p1 + p2) · q1)((p3 + p4) · q2)((p5+ p6) · (p7+ p8))
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In[2]:= ExpandScalarProduct[exp]

Out[2]:= (p1 · q1+ p2 · q1)(p3 · q2+ p4 · q2)(p5 · p7+ p5 · p8+ p6 · p7+ p6 · p8)

which might lead to an unnecessary increase of terms, if the user wants
to expand only some particular scalar products. FeynCalc 9.0 improves
ExpandScalarProduct by introducing the option Momentum which allows to
specify a list of momenta that need to be contained in a scalar product that
will be expanded. All the other scalar products will remain untouched.

In[1]:= exp = SPD[q1, p1 + p2] SPD[q2, p3 + p4] SPD[p5 + p6, p7 + p8]

Out[1]:= ((p1 + p2) · q1)((p3 + p4) · q2)((p5+ p6) · (p7+ p8))

In[2]:= ExpandScalarProduct[exp, Momentum −> {q1}]

Out[2]:= (p1 · q1+ p2 · q1)((p3 + p4) · q2)((p5+ p6) · (p7+ p8))

In[3]:= ExpandScalarProduct[exp, Momentum −> {q2}]

Out[2]:= (p3 · q2+ p4 · q2)((p1 + p2) · q1)((p5+ p6) · (p7+ p8))

The same option is now present also in DiracGammaExpand that is used
to expand Lorentz vectors contracted with Dirac matrices

In[1]:= exp = GSD[q1 + p1 + p2].GSD[q2 + p3 + p4].GSD[p5 + p6 + p7 + p8]

Out[1]:= (γ · (p1+ p2+ q1)).(γ · (p3+ p4+ q2)).(γ · (p5+ p6+ p7+ p8))

In[2]:= DiracGammaExpand[exp]

Out[2]:= (γ · p1+ γ · p2+ γ · q1).(γ · p3+ γ · p4+ γ · q2).(γ · p5+ γ · p6+ γ · p7+ γ · p8)

In[3]:= DiracGammaExpand[exp, Momentum −> {q1}]

Out[3]:= (γ · p1+ γ · p2+ γ · q1).(γ · (p3+ p4+ q2)).(γ · (p5+ p6+ p7+ p8))

In[4]:= DiracGammaExpand[exp, Momentum −> {q2}]

Out[4]:= (γ · (p1+ p2+ q1)).(γ · p3+ γ · p4+ γ · q2).(γ · (p5+ p6+ p7+ p8))

3.7. SU(N) generators with explicit fundamental indices

FeynCalc denotes SU(N) generators in the fundamental representation
as SUNT[a] where a stands for the adjoint index. The fundamental indices
are suppressed, so that a chain of SUNT-matrices is understood to have only
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two free fundamental indices, e.g. SUNT[a,b,c] stands for T a
ijT

b
jkT

c
kl and it

is not possible to express, say T a
ijT

b
kl with SUNT objects only.

Due to this limitation, evaluation of Feynman amplitudes with more
than two free fundamental color indices (e.g qq̄ → qq̄ scattering in QCD)
was very inconvenient and usually required additional Mathematica code
to obtain the correct result. For this reason FeynCalc 9.0 introduces a
new object SUNTF[{a},i,j] that stands for T a

ij , an SU(N) generator in
the fundamental representation with explicit fundamental indices i and j

and the adjoint index a. Hence expressions like T a
ijT

b
kl or T a

ijT
b
jkT

c
lm can

be now conveniently expressed with SUNTF[{a},i,j]*SUNTF[{b},k,l] and
SUNTF[{a,b},i,k]*SUNTF[{c},l,m] respectively. The new SUNTF objects
are fully compatible with SUNSimplify, the standard routine for simplifying
SU(N) algebra.

In[1]:= exp1 = SUNTF[{a}, i, j] SUNTF[{b}, j, k] SUNTF[{c}, k, l]

Out[1]:= T a
ijT

b
jkT

c
kl

In[2]:= SUNSimplify[exp1]

Out[2]:=
(

T aT bT c
)

il

In[3]:= exp2 = exp1 SUNFDelta[i, l]

Out[3]:= δilT
a
ijT

b
jkT

c
kl

In[4]:= SUNSimplify[exp2]

Out[4]:= tr(T c.T a.T b)

4. Using FeynCalc with non-relativistic EFTs

Up to now we silently assumed that all the amplitudes and expressions
that we want to evaluate stem from a theory that is manifestly Lorentz co-
variant. This nice property of relativistic QFTs is often taken for granted,
but one surely should not forget about EFTs that are used to describe non-
relativistic systems, where the corresponding Lagrangians often do not ex-
hibit manifest Lorentz covariance.

To our knowledge, there are no public tools for doing algebraic calcu-
lations in non-relativistic EFTs, where one has to explicitly distinguish be-
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tween temporal and spatial components of Lorentz tensors. Naively, one
might think that to do a calculation in such a theory using computer, one
would need to write a large amount of additional code almost from scratch.
However, with such a versatile tool like FeynCalc, this estimate turns out
to be too pessimistic. In the following we want to give a simple example of
using FeynCalc in a non-relativistic calculation, where only a comparably
small amount of additional Mathematica code is needed.

In Sec. 2 we have already mentioned NRQCD [18], which is an EFT of
QCD that was developed to exploit the separation of scales

mv2 ≪ mv ≪ m (10)

in a heavy quarkonium. Here, m denotes the heavy quark mass and v stands
for the relative velocity of heavy quarks in the quarkonium. The scales m,
mv and mv2 are usually called hard, soft and ultrasoft respectively.

NRQCD is obtained from QCD by integrating out all degrees of freedom
above the soft scale. The hard contributions are of course not simply thrown
away. Their effects are incorporated in the matching coefficients ωn that mul-
tiply operators On of the NRQCD Lagrangian, which can be schematically
written as

LNRQCD =
∑

n

ωn

mn
On. (11)

Since for charm and bottom quarks we have

m≫ ΛQCD, (12)

with ΛQCD being the QCD scale at which the perturbation theory breaks
down, the matching can be always done perturbatively.

The matching coefficients are fixed by comparing suitable quantities in
perturbative QCD and in perturbative NRQCD at finite order in the ex-
pansion in v. The NRQCD Lagrangian itself contains an infinite number of
operators of arbitrary high dimensions that are compatible with the symme-
tries of QCD. Using the power counting rules of the theory, one can estimate
the relative importance of the operators for each process of interest. For
this reason, usually only a small number of NRQCD operators needs to be
considered in a practical calculation.

In the following we want to use FeynCalc to perform the matching
between QCD and NRQCD in order to extract the matching coefficients (at
leading order in αs) that enter the decay rate of χc0,2 → γγ at leading order
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in v. Notice that the decay χc1 → γγ does not occur, because it is forbidden
by the Landau-Yang theorem.

These matching coefficients have been calculated in the framework of
NRQCD multiple times [18, 22, 52, 53, 54], with many of these calculations
carried out in a fully covariant way using the covariant projector technique
[23]. Nevertheless, for pedagogical reasons we want to stick to the explicit
non-covariant matching in the spirit of [18] and [53]. We also would like to
remark that the projector technique has not yet been generalized for higher
quarkonium Fock states, that include not only two heavy quarks |QQ̄〉 but
also gluons (e.g. |QQ̄g〉 or |QQ̄gg〉). For this reason, the presented approach
might still be useful in calculations, where such higher order contributions
have to be considered.

The factorization formulas for the decay rates [18] are given by

Γ(χc0 → γγ) =
2Imfem(

3P0)

3m4
〈χc0|χ

†(− i
2

←→
D · σ)ψ|0〉 〈0|ψ†(− i

2

←→
D · σ)χ|χc0〉

(13)

Γ(χc2 → γγ) =
2Imfem(

3P2)

m4
〈χc2|χ

†(− i
2

←→
D (i

σ
j))ψ|0〉 〈0|ψ†(− i

2

←→
D (i

σ
j))χ|χc2〉 .

(14)

Here, Pauli spinor field ψ (χ) annihilates (creates) a heavy quark (antiquark),
σ is the Pauli vector and the covariant derivative is defined as

Dµ = ∂µ + igAµ ≡ (D0,−D), (15)

so that

iD0 = i∂0 − gA0, (16)

iD = i∇+ gA, (17)

where Aµ is the gluon field and g stands for the QCD coupling constant.
Furthermore,

ψ†
↔

D χ ≡ ψ†(Dχ)− (Dψ)†χ, (18)

←→
D (i

σ
j) ≡

1

2

(←→
D i

σ
j +
←→
D j

σ
i
)

−
1

3
δij
←→
D · σ. (19)
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The NRQCD long distance matrix elements (LDME)

〈χc0 |χ
†(− i

2

←→
D · σ)ψ|0〉 〈0|ψ†(− i

2

←→
D · σ)χ|χc0〉 (20)

and

〈χc2|χ
†(− i

2

←→
D (i

σ
j))ψ|0〉 〈0|ψ†(− i

2

←→
D(i

σ
j))χ|χc2〉 (21)

are non-perturbative. They can be determined from fitting to the experi-
mental data or computed on the lattice. On the other hand, the matching
coefficients fem(

3P0) and fem(
3P2) can be calculated in perturbation theory

from the matching condition [18]

2 ImA (QQ̄→ QQ̄)

∣

∣

∣

∣

pert. QCD

=
2Imfem(

3P0)

3m4
〈QQ̄|χ†(− i

2

←→
D · σ)ψ|0〉 〈0|ψ†(− i

2

←→
D · σ)χ|QQ̄〉 |pert. NRQCD

+
2Imfem(

3P2)

m4
〈QQ̄|χ†(− i

2

←→
D (i

σ
j))ψ|0〉 〈0|ψ†(− i

2

←→
D (i

σ
j))χ|QQ̄〉 |pert. NRQCD,

(22)

where on the right hand side we have displayed only spin triplet terms that
contribute at leading order in v. The left hand side of Eq. 22 denotes twice
the imaginary part of the perturbative QCD amplitude QQ̄ → QQ̄ with 2
photons in the intermediate state. It is understood that this amplitude also
has to be expanded to second order in v.

We start the matching calculation by considering the on-shell amplitude
for the perturbative process Q(p1)Q̄(p2) → γ(k1)γ(k2) in QCD. The kine-
matics of this process reads

p1 + p2 = k1 + k2, (23)

p21 = p22 = m2, (24)

k21 = k22 = 0, (25)

with pi = (
√

m2 + p2
i ,pi) ≡ (Ei,pi) and ki = (|ki|,ki). Obviously, it is most

convenient to work in the quarkonium rest frame, where

p1 = −p2 ≡ q, (26)

E1 = E2 ≡ Eq =
√

m+ q2, (27)

k1 = −k2. (28)
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For convenience, the photon polarization vectors can be chosen to be purely
spatial, satisfying

ǫ(k1)
0 = ǫ(k2)

0 = 0, (29)

ǫ(k1/2) · k1/2 = ǫ(k1/2) · k2/1 = 0. (30)

We need to expand the QCD amplitude in v, i.e. in |q|/m up to second order
which involves rewriting Dirac spinors for Q and Q̄ in terms of the Pauli
spinors. For the latter let us recall that in 4-dimensions we can decompose
any chain of Dirac matrices into scalar, pseudoscalar, vector, axial vector and
tensor (SPVAT) components. This decomposition stems from the fact that
the 4 dimensional matrices I, γ5, γµ, γ5γµ and σµν = i

2
[γµ, γν ] form a basis,

such that any 4× 4 matrix M can be written as

M = c1I + c2γ
5 + c3µγ

µ + c4µγ
5γµ + c5µνσ

µν . (31)

Therefore, there are only 5 unique spinor structures involving heavy
quarks that we can encounter in any tree level amplitude. In fact, the only
components that appear in this calculation are vector and axial vector, so
that we do not need to consider the other three. Using the explicit form of
the Dirac spinors with the non-relativistic normalization,

u(q) =

√

Eq +m

2Eq

(

ξ
q·σ

Eq+m
ξ

)

, (32)

v(−q) =

√

Eq +m

2Eq

(

− q·σ

Eq+m
η

η

)

, (33)

with ξ and η being 2-component spinors, we obtain

v̄(−q)γ0u(q) = 0, (34)

v̄(−q)γiv(q) = η†σiξ −
qi

2m2
η†q · σξ +O((|q|/m)3), (35)

v̄(−q)γ0γ5u(q) = η†ξ

(

1−
q2

2m2

)

+O((|q|/m)3), (36)

v̄(−q)γiγ5u(q) =
i

m
η†(q× σ)iξ +O((|q|/m)3). (37)
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Let us first ignore all the complications related to the non-relativistic
expansion and see how far we can get with the QCD amplitude without
breaking the covariant notation.

At this order in v and αs, there are only two tree level diagrams to consider
that can be trivially generated with FeynArts.

In[1]:= $LoadFeynArts = True;
$FeynCalcStartupMessages = False;
<< FeynCalc‘;
$FAVerbose = 0;

In[2]:= diags = InsertFields[CreateTopologies[0, 2 −> 2],
{F[3, {2, a}], −F[3, {2, b}]} −> {V[1], V[1]},
InsertionLevel −> {Classes}, Model −> ”SMQCD”];

Then the amplitudes are converted into FeynCalc notation and simplified
using standard FeynCalc functions.

In[3]:= amps = (9/4 EQˆ2∗FCFAConvert[
CreateFeynAmp[diags, Truncated −> False, PreFactor −> −1],
IncomingMomenta −> {p1, p2}, OutgoingMomenta −> {k1, k2},
UndoChiralSplittings −> True,
TransversePolarizationVectors −> {k1, k2},
ChangeDimension −> 4, List −> False]) // Contract // Factor

Out[3]:= iEL2EQ2δab
(ϕ(−p2,MC)).(γ̄·ε̄∗(k1)).(γ̄·(k1−p2)+MC).(γ̄·ε̄∗(k2)).(ϕ(p1,MC))

(p2−k1)
2
−MC2

+iEL2EQ2δab
(ϕ(−p2,MC)).(γ̄·ε̄∗(k2)).(γ̄·(k2−p2)+MC).(γ̄·ε̄∗(k1)).(ϕ(p1,MC))

(p2−k2)
2
−MC2

The next step is to put the external particles on-shell

In[4]:= FCClearScalarProducts[];
ScalarProduct[k1, k1] = 0;
ScalarProduct[k2, k2] = 0;
ScalarProduct[p1, p1] = MCˆ2;
ScalarProduct[p2, p2] = MCˆ2;

and perform the SPVAT decomposition of the spinor chains,

In[5]:= repRuleHideChains = {
FCI[Spinor[−p2, MC].GA[x ].GA[5].Spinor[p1, MC]] :> FCI[FV[A, x]],
FCI[Spinor[−p2, MC].GA[x ].Spinor[p1, MC]] :> FCI[FV[V, x]],
FCI[Spinor[−p2, MC].GS[x ].GA[5].Spinor[p1, MC]] :> FCI[SP[A, x]],
FCI[Spinor[−p2, MC].GS[x ].Spinor[p1, MC]] :> FCI[SP[V, x]]
};

In[6]:= amps2 = amps // DiracSimplify // DiracReduce // FCI //
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ReplaceAll[#, repRuleHideChains] & //
PropagatorDenominatorExplicit[#, Dimension −> 4] & //
Contract // ReplaceAll[#, Pair[Momentum[k1 | k2],
Momentum[Polarization[k1 | k2, ]]] −> 0] &

Out[6]:= EL2EQ2δabǫ
Ak1ε̄∗(k1)ε̄∗(k2)

2(k1·p2)
− EL2EQ2δabǫ

Ak2ε̄∗(k1)ε̄∗(k2)

2(k2·p2)
+

iEL2EQ2δab(V ·ε̄∗(k1))(p2·ε̄∗(k2))
k2·p2

+
iEL2EQ2δab(p2·ε̄∗(k1))(V ·ε̄∗(k2))

k1·p2
+

iEL2EQ2δab(k1·V )(ε̄∗(k1)·ε̄∗(k2))
2(k1·p2)

+
iEL2EQ2δab(k2·V )(ε̄∗(k1)·ε̄∗(k2))

2(k2·p2)

where for convenience we chose to abbreviate vector and axial vector chains
as

V µ ≡ v̄(p2)γ
µu(p1), (38)

Aµ ≡ v̄(p2)γ
µγ5u(p1). (39)

If we are to expand the resulting expression in |q|/m, we must make the q-
dependence explicit in all parts of the amplitude. Since different components
of the 4-vectors and spinor chains that appear in the computation depend
on |q| in a different way, it now becomes necessary to break the covariant
notation. However, by doing so in a naive way, e.g. by writing something
like

V · k1 = V 0|k| −V · k, (40)

ǫµνρσk1µAνε
∗
ρ(k1)ε

∗
σ(k2) = ǫµ0ρσk1µA

0ε∗ρ(k1)ε
∗
σ(k2)−

ǫµiρσk1µA
iε∗ρ(k1)ε

∗
σ(k2) (41)

we introduce new objects that carry Cartesian indices and thus cannot be
handled by the built-in routines for working with Lorentz tensors (e.g. Con-
tract, ScalarProduct, ExpandScalarProduct etc.). Fortunately, it is pos-
sible to completely avoid introducing any Cartesian tensors or tensors with
mixed Lorentz and Cartesian indices by exploiting FeynCalc’s built-in
TensorFunction in a clever way.

This approach is based on [55], although we do not consider a boosted
QQ̄-system and assume that the quarkonium is at rest. To see how this
works, let us first define a symmetric tensor Eµν with

Eµν =

{

0 for µ = 0 or ν = 0,

δij for µ 6= 0 and ν 6= 0.
(42)
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With Eµν we can write any Cartesian scalar product xiyi as

xiyi = xiyjδij = Eµνxµyν ≡ E(x, y), (43)

where x0 and y0 can be anything, since they drop out by construction. If x
is a pure Cartesian vector, then we can choose xµ = (0, xi). Suppose that we
want to expand xiyi in |x| or |y|. Then we can write

E(x, y) = |x||y|E(x̂, ŷ), (44)

with xi = |x|x̂i and yi = |y|ŷi, where E(x̂, ŷ) does not depend on |x| and |y|.
Therefore, a Minkowski scalar product x · y can be rewritten as

xµyµ = x0y0 + |x||y|E(x̂, ŷ) (45)

and if x and y are external 4-momenta, then we have

xµyµ =
√

m2
x + |x|

2

√

m2
y + |y|

2 + |x||y|E(x̂, ŷ), (46)

so that the expansion in the scalar variables |x| or |y| can be carried out
without making any reference to 3-vectors. Some useful relations for dealing
with E-tensors are

Eµνgµν = −3, (47)

EµνEρσgµρ = −E
νσ (48)

In a similar manner we can also rewrite terms that involve 3-dimensional
epsilon tensors by introducing

Cµνρ =

{

0 for µ = 0 or ν = 0 or ρ = 0,

εijk for µ 6= 0 and ν 6= 0 and ρ 6= 0,
(49)

such that

εijkxiyjzk = −εijkx
iyjzk = −Cµνρx

µyνzρ ≡ −C(x, y, z). (50)

Then, it is easy to see that

εσµνρaσxµyνzρ = εijk(a0xiyjzk − x
0aiyjzk + y0aixjzk − z

0aixjyk)

= a0C(x, y, z)− x0C(a, y, z) + y0C(a, x, z)− z0C(a, x, y),
(51)
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from where we again can easily expand in the 3-momenta of a, x, y or z,
since

C(x, y, z) = |x||y||z|C(x̂, ŷ, ẑ), (52)

with C(x̂, ŷ, ẑ) being independent of |x|, |y| and |z|. The product of two C
tensors can be expressed through

CµνρCαβγ =

∣

∣

∣

∣

∣

∣

Eµα Eµβ Eµγ

Eνα Eνβ Eνγ

Eρα Eρβ Eργ

∣

∣

∣

∣

∣

∣

. (53)

The basic properties of Eµν (denoted as NRPair) and Cµνρ (denoted as NREps)
can be implemented in FeynCalc with a minimal amount of extra code.

In[7]:= SetAttributes[NRPairContract, Orderless];
TensorFunction[NREps, x, y, z];
TensorFunction[{NRPair, ”S”}, x, y];
NREps[a , x , b , x , c ] := 0;
NRPairContract /:
NRPairContract[LorentzIndex[x ], LorentzIndex[x ]] := −3;
NRPairContract /:
NRPairContract[LorentzIndex[x ], y ] ∗
NRPairContract[LorentzIndex[x ], z ] := − NRPairContract[y, z];
NRPairContract /:
NRPairContract[LorentzIndex[x ], y ] ∗
NREpsContract[a , LorentzIndex[x ], b ] := − NREpsContract[a, y, b];
NRPairContract /:
NRPairContract[LorentzIndex[x ], y ]ˆ2 := − NRPairContract[y, y];
NREpsContract /:
NREpsContract[x , y , z ]ˆ2 := − 6;
NREpsContract /:
NREpsContract[mu , nu , rho ] NREpsContract[al , be , ga ] :=

(Det[{{np[ mu, al ], np[ mu, be], np[ mu, ga]},
{np[ nu, al ], np[ nu, be ], np[nu, ga]},
{np[ rho, al ], np[ rho, be ], np[ rho, ga]}}] /.
np −> NRPairContract);

Contractions of Eµν and Cµνρ with each other or with the metric tensor are
simplified by NRContract, while NRExpand implements Eq. 51.

In[8]:= NRContract[expr ] :=
FixedPoint[(Expand2[Contract[#], {NRPair, NREps}] //. {NRPair −>
NRPairContract, NREps −> NREpsContract}) &, expr] /.
{NRPairContract −> NRPair, NREpsContract −> NREps};

In[9]:= NRExpand[expr ] :=
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FixedPoint[ReplaceRepeated[Expand2[#, {Eps, NREps}],
{Eps[a Momentum, x Momentum, y Momentum, z Momentum] :>
NREn[a] NREps[x, y, z] − NREn[x ] NREps[a, y, z] +
NREn[y] NREps[a, x, z] − NREn[z] NREps[a, x, y]}] &, expr];

Here we use NREn to denote the temporal components of 4-momenta. The
expansions of spinor chains given in Eqs. 34 - 37 are now straight-forward
to translate into FeynCalc notation.

In[10]:= repRuleExpandedChains = {
Pair[v : Momentum[V], x ] :> −NRPair[v, x],
Pair[a : Momentum[A], x ] :> NREn[a] NREn[x] − NRPair[a, x],
NREn[Momentum[A]] −> 1 − (qvecˆ2) /(2 MCˆ2),
NREn[Momentum[V]] −> 0,
NRPair[x , Momentum[V]] :> −((qvecˆ2 NRPair[Momentum[qhat],

Momentum[{S, I}]] NRPair[Momentum[qhat], x])/(2 MCˆ2)) +
NRPair[Momentum[{S, I}], x],
NRPair[x , Momentum[A]] :>
−((I qvec NREps[Momentum[qhat], Momentum[{S, I}], x])/MC),
NREps[x , a : Momentum[A], y ] :> (li =
LorentzIndex[Unique[]]; −NREps[x, li, y] NRPair[a, li ]) ,
NREps[x , v : Momentum[V], y ] :>
( li = LorentzIndex[Unique[]]; −NREps[x, li, y] NRPair[v, li ])

};

Simplifications that are specific to the kinematics of the process are also easy
to define.

In[11]:= NREn[Momentum[Polarization[k1 | k2, ]]] = 0;
NREn[Momentum[k1 | k2]] = kvec;
NREn[Momentum[p1 | p2]] = Sqrt[MCˆ2 + qvecˆ2];
NREn[Momentum[qhat | qhatp | {S, }]] = 0;
NREn[Momentum[k1hat]] = 1;
NRPair[Momentum[p1], x ] = qvec NRPair[Momentum[qhat], x];
NRPair[Momentum[p2], x ] = −qvec NRPair[Momentum[qhat], x];
NRPair[Momentum[p1p], x ] = qvec NRPair[Momentum[qhatp], x];
NRPair[Momentum[p2p], x ] = −qvec NRPair[Momentum[qhatp], x];
NRPair[Momentum[k1 | k2 | k1hat | k2hat],
Momentum[Polarization[k2 | k1, ]]] = 0;

NRPair[Momentum[x ], Momentum[x ]] :=
1 /; MemberQ[{qhat, qhatp, p1hat, p2hat, k1hat, k2hat}, x];
NRPair[Momentum[k1], x ] = kvec NRPair[Momentum[k1hat], x];
NRPair[Momentum[k2], x ] = −kvec NRPair[Momentum[k1hat], x];
kvec = Sqrt[MCˆ2 + qvecˆ2];

repRuleExpansion = {
FCI@SP[x , a : Polarization [ z , ]] /; MemberQ[{k1, k2}, z] :>
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−NRPair[Momentum[x], Momentum[a]],
FCI@SP[x , (y : p1 | p2 | k1 | k2 | {S, I} | {S, −I} | k1hat | qhat)] :>
NREn[Momentum[x]] NREn[Momentum[y]] −
NRPair[Momentum[x], Momentum[y]],

NREps[a , Momentum[k1], z ] :> kvec NREps[a, Momentum[k1hat], z],
NREps[a , Momentum[k2], z ] :> − kvec NREps[a, Momentum[k1hat],

z],
NREps[a , Momentum[p1], b ] :> qvec NREps[a, Momentum[qhat], b],
NREps[a , Momentum[p2], b ] :> −qvec NREps[a, Momentum[qhat], b

]
};

Finally, we can expand the amplitude up to second order in |q|/m.

In[12]:= amps3 = amps2 // NRExpand //
ReplaceRepeated[#, repRuleExpandedChains] & // NRContract //
ReplaceRepeated[#, repRuleExpansion] & // Series[#, {qvec, 0, 2}] & //
Normal // PowerExpand // NRContract;

To obtain 2 ImA (Q(p′1)Q̄(p
′
2)→ Q(p1)Q̄(p2)) from our expanded amplitude,

we need to multiply A (Q(p′1)Q̄(p
′
2) → γ(k1)γ(k2)) by A∗ (Q(p1)Q̄(p2) →

γ(k1)γ(k2)), sum over polarizations of the external photons and perform the
phase space integration. For the latter we can use that

∫

dΩk1 k̂
i1
1 . . . k̂

i2n+1

1 = 0, (54)
∫

dΩk1 k̂
i1
1 . . . k̂

i2n
1 =

4π

(n + 2)!!

(

δi1i2 . . . δi2n−1i2n + permutations
)

. (55)

To implement these relations we need an auxiliary function that uncontracts
the indices of k̂1

In[13]:= NRUncontract[expr , l List] :=
expr /. {Power[t NRPair, n ] :> times @@ Table[t, { i , 1, n}],

Power[t NREps, n ] :> times @@ Table[t, {i , 1, n}]} //. {
NRPair[y , x ] /; ! FreeQ2[y, l ] && Head[x] =!= LorentzIndex :>
( li = Unique[$AL]; −NRPair[y, LorentzIndex[li]] NRPair[x, LorentzIndex[li]]),
NREps[w , y , x ] /; ! FreeQ2[y, l ] :> ( li = Unique[$AL];
−NRPair[y, LorentzIndex[li]] NREps[w, LorentzIndex[li], x])
} /. times −> Times;

and a replacement rule that handles the angular integration

In[14]:= angularIntegration [hat ] := {
qHead[NRPair[i , Momentum[hat]]] /; FreeQ2[{i}, {hat, S}] :> 0,
qHead[a Times] :> qHead[(List @@ a) /. NRPair[Momentum[hat], b ] :>
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{hat, b /. LorentzIndex[c , ] :> c}],
qHead[a List ] :> (Tdec[a, {}, List −> False, FCE −> False,

Dimension −> 3] //. {(h : LorentzIndex | Momentum)[x , 3] :>
h[x ], Pair −> NRPair})

};

Then the left hand side of Eq. 22 is given by

In[15]:= res = (1/(16 Pi)) (Collect [(amps3 /. qhat −> qhatp)∗
ComplexConjugate[amps3] /. NRPair[x , y ] :>
−FCI@SP[x, y] + NREn[x] NREn[y], qvec] /. qvecˆ4 −> 0) //
DoPolarizationSums[#, k1, k2] & //
DoPolarizationSums[#, k2, k1] & //
ReplaceRepeated[#, repRuleExpansion] & // Cancel //
NRUncontract[#, {k1hat}] & //
FCLoopIsolate[#, {k1hat}, Head −> qHead] & //
ReplaceRepeated[#, angularIntegration[k1hat]] & // NRContract //
ReplaceAll[#, {ELˆ4 −> 16 Piˆ2 AlphaFS ˆ2}] & //
SelectNotFree[#, S] &

Out[15]:=
4πα2EQ4qvec2δ2

ab
NRPair(qhat,{S,i})NRPair(qhatp,{S,−i})

5MC4 +
22πα2EQ4qvec2δ2

ab
NRPair(qhat,{S,−i})NRPair(qhatp,{S,i})

15MC4 +
4πα2EQ4qvec2δ2

ab
NRPair(qhat,qhatp)NRPair({S,−i},{S,i})

5MC4

An explicit expression for the right hand side of Eq. 22 can be obtained by
using Fourier decompositions of the Pauli spinor fields (c.f. [56]), so that we
end up with

4α2Q4π

5m4
q · q′η†σξ ξ†ση +

4α2Q4π

5m4
η†q · σξ ξ†q′ · ση +

22α2Q4π

15m4
η†q′ · σξ ξ†q · ση

=
Imfem(

3P2)

m4
q · q′ η†σξ ξ†ση +

Imfem(
3P2)

m4
η†q · σξ ξ†q′ · ση

+
2

3

(Imfem(
3P0)− Imfem(

3P2))

m4
η†q′ · σξ ξ†q · ση, (56)

from which we can immediately read off the values of the matching coefficients

Imfem(
3P0) = 3α2Q4π, (57)

Imfem(
3P2) =

4

5
α2Q4π, (58)

that agree with the known results from the literature [18, 22, 52, 53, 54].
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5. Summary

We have presented new features and improvements in FeynCalc 9.0
and discussed cases in which FeynCalc can be used to obtain new results.
Although the very first version of FeynCalc appeared almost 25 years
ago, the development is still far from being complete. New developments
in theoretical particle physics show possible directions in which FeynCalc

can evolve. This includes better support for multi-loop calculations and
determination of matching coefficients in effective field theories, but also
built-in interfaces to other useful software tools and the ability to work with
non-relativistic theories.

Finally, we would like to observe that in the last two years some new
general-purpose packages [57, 58] for QFT calculations were released, which
follow the approach similar to that of FeynCalc and thus provide a compa-
rable level of flexibility. This development shows that even in the age of fully
automatic packages for 1-loop calculations, user-friendly, semi-automatic tools
like FeynCalc are still in demand and employed in many interesting re-
search projects.
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