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Abstract

Vacuum excitation by time-varying boundary conditions is not only of fundamental importance

but also has recently been confirmed in a laboratory experiment. In this paper, we study the vac-

uum excitation of a scalar field by the instantaneous appearance and disappearance of a both-sided

Dirichlet wall in the middle of a 1D cavity, as toy models of bifurcating and merging spacetimes,

respectively. It is shown that the energy flux emitted positively diverges on the null lines emanating

from the (dis-)appearance event, which is analogous to the result of Anderson and DeWitt. This

result suggests that the semiclassical effect prevents the spacetime both from bifurcating and merg-

ing. In addition, we argue that the diverging flux in the disappearance case plays an interesting role

to compensate for the lowness of ambient energy density after the disappearance, which is lower

than the zero-point level.

http://arxiv.org/abs/1601.01172v1


1 Introduction

There is general belief that quantum effects dominate in a final stage of some physical phenomena to

avoid undesired results predicted by classical theories. In the context of gravitational physics, one may

say that the chronology protection conjecture is a manifestation of such belief stated in a verifiable

form [1]. This conjecture asserts that the emergence of a closed timelike curve, which can be thought of

as a natural time machine and lead to paradoxes, would be prevented by the backreaction of explosive

particle creation.

A wormhole of spacetime has many interesting properties but is unfavorable in the sense that

its existence leads to the emergence of closed timelike curves [2]. It is not surprising if semiclassical

effects act in the direction of preventing the dynamical formation of wormholes, even if it is allowed

in classical frameworks.

The formation of a wormhole can happen in the merger of disconnected two spaces (see the right

panel of Fig. 1, and see Ref. [3] for a simple exact solution to the Einstein equation representing such

a wormhole formation). Quantum fields living in such a spacetime will undergo the drastic change of

their environments. For example, the spacetime merger gives rise to the sudden increase of spatial

volume and the sudden change of boundary conditions for the quantum fields near the merger point.

What we are concerned in this paper is whether or not these sudden changes excite the vacuum of

quantum fields and the backreactions to the spacetime play crucial roles.

Particle creation in the spacetime merger has not been studied extensively in the literature, as

far as the present authors know (but see [4]). On the other hand, the particle creation in some

situations analogous to the spacetime splitting (see the left panel of Fig. 1) has been investigated in

the literature. A pioneering work is that of Anderson and DeWitt [5]. They considered the dynamical

change of spatial topology, S1 → S1 + S1 (consider the cut of the boundary of splitting spacetime in

Fig. 1 by constant-time planes), and the vacuum excitation of a test scalar field in such a background.

They found that an explosive flux of created particles is emitted from the ‘crotch’, suggesting that the

backreaction prevents the spacetime from bifurcating. This conclusion was supported by [6].

In this paper, we consider a test scalar field in a 1D Dirichlet cavity. We assume that a both-sided

ti
m

e

Figure 1: Schematic pictures of spacetime splitting (left) and merger (right).
Quantum fields living in these spacetimes undergo the drastic change of environ-
ments such as boundary conditions.
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Dirichlet wall can appear and disappear instantaneously at the center of cavity, which mimics the

sudden splitting and merger of spacetime, respectively. As we will see, when the central wall suddenly

appears, the initial vacuum is highly excited to result in a strong flux in an almost same way as

the Anderson-DeWitt analysis. Namely, the flux contains a delta function squared multiplied by a

logarithmically diverging factor. On the other hand, when the central wall suddenly disappears, the

initial vacuum is also highly excited to result in a diverging flux, although it does not contain the

delta function squared.

As we will see, the total number of created particles diverges both in the appearance and disap-

pearance cases. This means that two ground states defined when the Dirichlet wall is absent and

present are orthogonal. Namely, the vacuum structures are completely different before and after the

appearance and disappearance. Therefore, we expect that the diverging flux appears in the both cases.

In fact, we will see that this is the case. We will discuss this point in Conclusion again.

Before starting our analysis, we note that the vacuum excitation by time-varying boundary con-

ditions, as those considered in this paper, is not only interesting from the gravitational physics point

of view, but also one of hot topics in the fundamental studies of relativistic quantum field theory.

As predicted by Moore in 1970 [7], the non-inertial motion of cavity boundary induces the emission

of photons, which is called the dynamic Casimir effect. Although the rapid acceleration of bound-

ary, of which speed has to be comparable with the speed of light, was experimental challenge, the

boundary motion turned out to be effectively realized by modulating the electromagnetic properties

of boundary with high frequencies. Then, the particle creation was recently observed in a laboratory

experiment using superconducting circuit [8]. It is beyond the scope of the present paper to list the

references before or after this experimental breakthrough. See, e.g. [9], and references therein for

recent developments and updated interests such as the quantum information theory and black-hole

firewall problem.

The organization of this paper is as follows. In Sec. 2, we investigate the vacuum excitation due to

the sudden appearance of the both-sided Dirichlet boundary. While the obtained result in this section

is up to our expectations, we can prepare for the succeeding investigations and test the validity of our

formulation. In Sec. 3, we investigate the vacuum excitation due to the sudden disappearance of the

Dirichlet boundary. Most parts of the analysis proceed in parallel with those in Sec. 2, but the results

are different. Section 4 is devoted to a conclusion. The proof and derivation of several equations

are given in Appendices. In particular, the vacuum expectation values of energy-momentum tensor

in both appearance and disappearance cases, which are main results of this paper, are reproduced in

Appendix C using the Green functions, rather than the Bogoliubov transformation used in the text.

We use the natural unit in which c = ~ = 1.
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Figure 2: The sudden appearance of a Dirichlet boundary in a 1D cavity. The
scalar field obeys the Dirichlet boundary conditions at the both ends (x = ±L

2 )
for −∞ < t <∞ and at the center (x = 0) for t > 0. The null lines z± := t±x =

0 (t > 0) and the spatial configurations of mode functions gm and f
(γ)
n (m,n ∈

N, γ ∈ {1, 2}) are schematically depicted.

2 Sudden appearance of a Dirichlet boundary

2.1 Classical behaviors of a massless scalar field

We consider a massless scalar field confined in a 1D cavity, which obeys the following equation of

motion

(−∂2t + ∂2x)φ(t, x) = 0, −∞ < t <∞, −L
2
≤ x ≤ L

2
. (2.1)

We impose the Dirichlet boundary conditions at the both ends

φ(t,±L
2
) = 0, −∞ < t <∞. (2.2)

In addition, we impose another Dirichlet boundary condition at the center after t = 0,

φ(t, 0) = 0, t > 0, (2.3)

in order to model the sudden appearance of a perfect mirror in the cavity (see Fig. 2).

Preparing for the quantization of the scalar field, we shall find appropriate positive-energy mode

functions before and after t = 0.

In the past asymptotic region t → −∞, the following {gm} (m ∈ N) constitute a set of positive-

energy mode functions,

gm(t, x) =
1√
mπ

e−iqmt ×







cos qmx (m : odd)

sin qmx (m : even)
, qm :=

mπ

L
, −L

2
≤ x ≤ L

2
, (2.4)
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which satisfy the orthonormal conditions

〈gm, gm′〉 = −〈g∗m, g∗m′〉 = δmm′ , 〈gm, g∗m′〉 = 0. (2.5)

Here, the asterisk denotes the complex conjugate and 〈φ,ψ〉 := i
∫ L/2
−L/2(φ

∗∂tψ−∂tφ∗ψ)dx is the Klein-

Gordon inner product, evaluated on a spacelike curve t = const. [10]. This inner product is conserved,

namely independent of time, whenever both φ and ψ are solutions to the equation of motion (2.1) and

vanish on every boundary. Note that the above expression of gm, Eq. (2.4), is valid only before the

appearance of the Dirichlet wall.

In the future asymptotic region t→ +∞, the following {f (γ)n } (γ ∈ {1, 2}, n ∈ N) constitute a set

of positive-energy mode functions,

f (1)n (t, x) =











0 (−L
2
≤ x < 0)

1√
nπ

e−ipnt sin pnx (0 ≤ x ≤ L

2
)

,

f (2)n (t, x) =











− 1√
nπ

e−ipnt sin pnx (−L
2
≤ x < 0)

0 (0 ≤ x ≤ L

2
)

, pn :=
2nπ

L
,

(2.6)

which satisfy the orthonormal conditions

〈f (γ)n , f
(γ′)
n′ 〉 = −〈f (γ)∗n , f

(γ′)∗
n′ 〉 = δγγ′δnn′ , 〈f (γ)n , f

(γ′)∗
n′ 〉 = 0. (2.7)

Noted that the above expression of f
(γ)
m , Eq. (2.6), is valid only after the appearance of the Dirichlet

wall.

We consider the expansion of gm by f
(γ)
n ,

gm =

2
∑

γ=1

∞
∑

n=1

(ρ(γ)mnf
(γ)
n + σ(γ)mnf

(γ)∗
n ), (2.8)

where the expansion coefficients, called the Bogoliubov coefficients, are evaluated as

ρ(γ)mn = 〈f (γ)n , gm〉, σ(γ)mn = −〈f (γ)∗n , gm〉. (2.9)

We take t = 0 as the spacelike curve on which the inner products in Eq. (2.9) are evaluated. Substi-

tuting Eqs. (2.4) and (2.6) into Eq. (2.9), we obtain

ρ(γ)mn =















2

(2n −m)π

√

n

m
(m : odd)

(−1)γ−1

√
2

δm,2n (m : even)

, σ(γ)mn =











2

(2n +m)π

√

n

m
(m : odd)

0 (m : even)

. (2.10)

Here, we note that the expansion (2.8) for odd m is valid everywhere except for x = 0 (namely,

almost everywhere in a mathematical sense). This is because the mode functions gm for oddm can take

non-zero values at x = 0 while the mode functions fn are always zero by the boundary conditions. We

will look into the implication of Eq. (2.8) in Conclusion, comparing with corresponding relation (3.2)

in the disappearance case.

4



2.2 Quantization of the scalar field

The canonical quantization of the scalar field is implemented by expanding the field operator φ by

two set of mode functions, {gm} or {f (γ)n }, as

φ =
∞
∑

m=1

(bmgm + b†mg
∗
m) (2.11)

=

2
∑

γ=1

∞
∑

n=1

(a(γ)
n f (γ)n + a(γ)†

n f (γ)∗n ), (2.12)

and imposing the commutation relations on the expansion coefficients

[bm, b
†
m′ ] = δmm′ , [bm, bm′ ] = 0, (2.13)

[a(γ)
n ,a

(γ′)†
n′ ] = δγγ′δnn′ , [a(γ)

n ,a
(γ′)
n′ ] = 0. (2.14)

Then, bm and a
(γ)
n are interpreted as annihilation operators, and b

†
m and a

(γ)†
n creation operators.

Substituting Eq. (2.8) into Eq. (2.11), and comparing it with Eq. (2.12), one obtains

a(γ)
n =

∞
∑

m=1

(ρ(γ)mnbm + σ(γ)∗mn b†m). (2.15)

Substituting Eq. (2.15) into Eq. (2.14), and using Eq. (2.13), one finds that the following conditions

must hold for the two quantizations, Eqs. (2.11) and (2.12), to be consistent.

∞
∑

m=1

(ρ(γ)mnρ
(γ′)∗
mn′ − σ(γ)∗mn σ

(γ′)
mn′) = δγγ′δnn′ , (2.16)

∞
∑

m=1

(ρ(γ)mnσ
(γ′)∗
mn′ − σ(γ)∗mn ρ

(γ′)
mn′) = 0. (2.17)

Hereafter, we call these relations unitarity relations. In Appendix A, we prove that the Bogoliubov

coefficients given by Eq. (2.10) satisfy these unitarity relations.

Since we are interested in the particle creation caused by the appearance of boundary, we assume

that the quantum field is in the vacuum state |0g〉 in which any particle corresponding to gm does not

exist. Such a vacuum is characterized by

bm|0g〉 = 0, 〈0g|0g〉 = 1, ∀m ∈ N. (2.18)

2.3 Spectrum and energy-momentum density

The vacuum |0g〉 contains no particle corresponding to gm but can contain particles corresponding to

f
(γ)
n . This is examined by calculating the vacuum expectation value of particle-number operator,

〈0g|a(γ)†
n a(γ)

n |0g〉 =
∞
∑

m=1

|σ(γ)mn|2 =
4n

π2

∞
∑

m=1
m:odd

1

m(m+ 2n)2
. (2.19)
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While this is finite, its summation over n and γ, i.e. the total number of created particles, diverges.

This implies that the Fock space representation associated with bm is unitarily inequivalent to that

associated with a
(γ)
n [11, 12].

In order to see directly what happens, we calculate the vacuum expectation value of the energy-

momentum tensorial operator, which is given for the massless scalar field by Tµν = ∂µφ∂νφ −
1
2ηµν(∂φ)

2. Here, ηµν = Diag. (−1, 1) is the two-dimensional Minkowski metric. If one introduces the

double null coordinates, the non-zero components of the energy-momentum operator are

T±± = (∂±φ)
2, z± := t± x. (2.20)

Note that the energy density and momentum density (or energy-flux density) in the original Cartesian

coordinates are given by T tt = T−− + T++ and T tx = T−− − T++, respectively.

Substituting Eq. (2.11) into Eq. (2.20), and using Eq. (2.4), we obtain the vacuum expectation

value before the appearance of the Dirichlet boundary,

〈0g|T±±|0g〉t<0 =
∞
∑

m=1

|∂±gm|2 = π

4L2

∞
∑

m=1

m. (2.21)

This is clearly divergent but can be renormalized by standard procedures [10]. If we remove the

ultraviolet divergence caused by the vacuum energy of the Minkowski space (namely L → ∞), then

we obtain well-known finite result as

〈0g|T±±|0g〉ren,t<0 = − π

48L2
. (2.22)

Such a negative energy is called the Casimir energy. In the ordinary 3D electromagnetic case, this

kind of negative energy gives rise to an attractive force between two parallel neutral plates put in

vacuum [13].

What we are most interested in is the same quantity after the appearance of the Dirichlet boundary.

Substituting Eq. (2.12) into Eq. (2.20), and then using Eq. (2.15), we obtain

〈0g|T±±|0g〉t>0

=

2
∑

γ=1

∞
∑

m=1
m:odd

∞
∑

n=1

∞
∑

n′=1

[(ρ(γ)mnσ
(γ)
mn′ + ρ

(γ)
mn′σ

(γ)
mn)Re(∂±f

(γ)
n ∂±f

(γ)
n′ ) + (ρ(γ)mnρ

(γ)
mn′ + σ(γ)mnσ

(γ)
mn′)Re(∂±f

(γ)
n ∂±f

(γ)∗
n′ )]

+

2
∑

γ=1

∞
∑

m=2
m:even

∞
∑

n=1

∞
∑

n′=1

ρ(γ)mnρ
(γ)
mn′Re(∂±f

(γ)
n ∂±f

(γ)∗
n′ ). (2.23)

To derive Eq. (2.23), we symmetrize the dummy indices n and n′. In addition, we use the facts that

σ
(γ)
mn vanishes for even m, and ∂±f

(1)
n and ∂±f

(2)
n′ have no common support, i.e. ∂±f

(γ)
n ∂±f

(γ′)
n′ ∝ δγγ′ .

Substituting explicit form of Bogoliubov coefficients (2.10) and mode functions (2.6) into Eq. (2.23),
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we obtain

〈0g|T±±|0g〉t>0

=
1

πL2

∞
∑

m=1
m:odd

(

1

4m
[4

∞
∑

n=1

cos(
2nπ

L
z±) +m2

∞
∑

n=1

cos(2nπL z±)

n2 − (m/2)2
]2 +m[

∞
∑

n=1

n sin(2nπL z±)

n2 − (m/2)2
]2

)

+
π

4L2

∞
∑

m=2
m:even

m.

(2.24)

This is an even function of z± with period L, as it is invariant under reflection z± → −z± and

translation z± → z± + L. Therefore, it is sufficient to calculate it in 0 ≤ z± < L, and then generalize

the obtained expression to the one valid in the entire domain appropriately.

The first and second summations over n in Eq. (2.24) can be calculated to give

〈0g|T±±|0g〉t>0

=
1

πL2

∞
∑

m=1
m:odd

(

1

4m
[4L2δ(z±)

2 +m2π2 sin2(
mπ

L
z±)] +m[

∞
∑

n=1

n sin(2nπL z±)

n2 − (m/2)2
]2

)

+
π

4L2

∞
∑

m=2
m:even

m, (2.25)

which is valid in 0 ≤ z± < L. Here, we have used the following formulas,

∞
∑

k=1

cos(
2kπ

a
y) = −1

2
+
a

2

∞
∑

ℓ=−∞

δ(y − ℓa), (−∞ < y <∞), (2.26)

∞
∑

k=1

cos ky

k2 − a2
= − π

2a
cos[a(π − y)]cosec(aπ) +

1

2a2
, (0 ≤ y ≤ 2π), (2.27)

where δ represents the Dirac delta function. See Ref. [14, p. 730] for the second formula.

For z± = 0, from Eq. (2.25), we have

〈0g|T±±|0g〉t>0 =
1

π

∞
∑

m=1
m:odd

δ(0)2

m
+

π

4L2

∞
∑

m=2
m:even

m, (z± = 0). (2.28)

For 0 < z± < L, the summation over n in Eq. (2.25) can be calculated to give

〈0g|T±±|0g〉t>0 =
π

4L2

∞
∑

m=1

m, (0 < z± < L), (2.29)

using the following formula [14, p. 730]

∞
∑

k=1

k sin ky

k2 − a2
=
π

2
sin[a(π − y)]cosec(aπ), (0 < y < 2π). (2.30)

Extending the domain of Eqs. (2.28) and (2.29) to the entire domain periodically, we obtain

〈0g|T±±|0g〉t>0 =
1

π

∞
∑

m=1
m:odd

1

m

∞
∑

ℓ=−∞

δ(z± − ℓL)2 +



























π

4L2

∞
∑

m=2
m:even

m (z± = ℓL, ℓ ∈ Z)

π

4L2

∞
∑

m=1

m (otherwise)

. (2.31)
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From the above result, we immediately see that an infinitely strong energy flux which behaves

as the delta function squared multiplied by a logarithmically divergent factor emanates from the

appearance point of the Dirichlet boundary. Note that the delta function squared means that not only

the energy density but also the total energy emitted diverge. Such a divergent flux suggests that its

backreaction to the spacetime and boundary is not ignorable. See Fig. 3 for 3D plots of the energy

density and momentum density with cutoff.

We have to pay attention also to the second term on the right-hand side of Eq. (2.31). Everywhere

except the null lines emanating from the appearance point, this divergent summation has the same

form as Eq. (2.21). Hence, by the same renormalization procedure, we obtain a finite result for t > 0

which is the same as Eq. (2.22) for t < 0. On the other hand, on the null lines, the summation is

different from the previous one. Such a different divergence may yield a non-renormalizable ultraviolet

divergence. Indeed, we present another derivation of Eq. (2.31) by the Green-function method in

Appendix C and evaluate “a renormalized energy-momentum tensor” by the point-splitting method.

The result gives Eq. (2.22) for t < 0 but the following for t > 0:

〈0g|T±±|0g〉ren,t>0 =
1

π

∞
∑

m=1
m:odd

1

m

∞
∑

ℓ=−∞

δ(z± − ℓL)2 +











− π

24L2
+ lim

∆z±→0

1

8π∆z2±
(z± = ℓL, ℓ ∈ Z)

− π

48L2
(otherwise)

.(2.32)

Thus, in the coincidence limit ∆z± → 0, an ultraviolet divergence like (∆z±)
−2 remains on the null

lines. The divergence like (∆z±)
−2 suggests that the contribution to the total energy from this term

also diverges.

Figure 3: The vacuum expectation values of energy density 〈0g|(T−−+T++)|0g〉t>0

(left) and momentum density 〈0g|(T−− − T++)|0g〉t>0 (right) with cutoff from
which the Casimir contribution is subtracted. We set L = 1 and summation over
modes in Eq. (2.24) is taken until n = m = 14. The exact results without cutoff
are given by Eq. (2.31).

8



3 Sudden disappearance of a Dirichlet boundary

In this section, we consider the sudden disappearance of the Dirichlet boundary (see Fig. 4). Since

the situation is a kind of time reversal of that in the previous section, most parts of calculation can

be reused in this section.

x

t

L/2-L/2
O

fn
(1)

fn
(2)

gm:even

gm:odd

z =0-z =0+

Figure 4: The sudden disappearance of a Dirichlet boundary in a 1D cavity.
The scalar field obeys the Dirichlet boundary conditions at the both ends (x =
±L

2 ) for −∞ < t < ∞ and at the center (x = 0) for t < 0. The null lines
z± := t± x = 0 (t > 0) and the spatial configurations of mode functions gm and

f
(γ)
n (m,n ∈ N, γ ∈ {1, 2}) are schematically depicted.

3.1 Classical behaviors and quantization of the massless scalar field

In addition to the Dirichlet boundary conditions at the both ends (2.2), the scalar field obeys the

Dirichlet boundary condition at the center before t = 0,

φ(t, 0) = 0, t < 0. (3.1)

Then, the positive-energy mode functions in the asymptotic regions t→ −∞ and t→ ∞ are given by

Eqs. (2.6) and (2.4), respectively.

We expand f
(γ)
n by gm,

f (γ)n =

∞
∑

m=1

(α(γ)
nmgm + β(γ)nmg

∗
m). (3.2)

Here, the expansion coefficients are given by

α(γ)
nm = 〈gm, f (γ)n 〉 = ρ(γ)∗mn , β(γ)nm = −〈g∗m, f (γ)n 〉 = −σ(γ)mn, (3.3)

where ρ
(γ)
mn and σ

(γ)
mn are given by Eq. (2.10).
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The quantization of the scalar field is again implemented by Eqs. (2.11)–(2.14). Substituting

Eq. (3.2) into Eq. (2.12) and comparing it with (2.11), we obtain

bm =

2
∑

γ=1

∞
∑

n=1

(α(γ)
nma(γ)

n + β(γ)∗nm a(γ)†
n ). (3.4)

Substituting Eq. (3.4) into Eq. (2.13), and using Eq. (2.14), one finds that the following conditions

must hold for the two quantizations, Eqs. (2.11) and (2.12), to be consistent.

2
∑

γ=1

∞
∑

n=1

(α(γ)
nmα

(γ)∗
nm′ − β(γ)∗nm β

(γ)
nm′) = δmm′ , (3.5)

2
∑

γ=1

∞
∑

n=1

(α(γ)
nmβ

(γ)∗
nm′ − β(γ)∗nm α

(γ)
nm′) = 0. (3.6)

It is shown in Appendix B that these unitarity relations indeed hold for the Bogoliubov coefficients

given by Eq. (3.3).

Since we are interested in the particle creation due to the disappearance of boundary, we assume

that the quantum field is in the vacuum state |0f 〉 in which any particle corresponding to f
(γ)
n does

not exist. Such a vacuum is characterized by

a(γ)
n |0f 〉 = 0, 〈0f |0f 〉 = 1, ∀γ ∈ {1, 2}, ∀n ∈ N. (3.7)

3.2 Spectrum and energy-momentum density

The vacuum |0f 〉 contains no particle corresponding to f
(γ)
n but can contain particles corresponding

to gm. This is examined by calculating the vacuum expectation value of particle-number operator,

〈0f |b†mbm|0f 〉 =
2
∑

γ=1

∞
∑

n=1

|β(γ)nm|2 =















2

mπ2

∞
∑

n=1

n

(n+m/2)2
(m : odd)

0 (m : even)

. (3.8)

This is logarithmically divergent for odd m. Therefore, the total number of created particles, i.e.

the summation over m ∈ N of Eq. (3.8), also diverges. This implies again that the Fock space

representation associated with a
(γ)
n is unitarily inequivalent to that associated with bm [11, 12].

Substituting Eq. (2.12) into Eq. (2.20), and using Eq. (2.6), we obtain the vacuum expectation

value of the energy-momentum tensor before the disappearance of the Dirichlet boundary,

〈0f |T±±|0f 〉t<0 =
2
∑

γ=1

∞
∑

n=1

|∂±f (γ)n |2 = π

L2

∞
∑

n=1

n. (3.9)

We can renormalize this by standard procedures again to obtain a finite result,

〈0f |T±±|0f 〉ren,t<0 = − π

12L2
. (3.10)
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What we are most interested in is the same quantity after the disappearance of the Dirichlet

boundary. Substituting Eq. (2.11) into Eq. (2.20), and then using Eq. (3.4), such a quantity is

obtained as

〈0f |T±±|0f 〉t>0

=

2
∑

γ=1

∞
∑

n=1

∞
∑

m=1
m:odd

∞
∑

m′=1
m′:odd

[(α(γ)
nmβ

(γ)
nm′ + α

(γ)
nm′β

(γ)
nm)Re(∂±gm∂±gm′) + (α(γ)

nmα
(γ)
nm′ + β

(γ)
nm′β

(γ)
nm)Re(∂±gm∂±g

∗
m′)]

+

2
∑

γ=1

∞
∑

n=1

∞
∑

m=2
m:even

∞
∑

m′=2
m′:even

α(γ)
nmα

(γ)
nm′Re(∂±gm∂±g

∗
m′). (3.11)

To derive Eq. (3.11), we symmetrize the dummy indices m and m′. In addition, we use the facts that

β
(γ)
nm vanishes for even m, and implicitly use a few properties of Bogoliubov coefficients (3.3) such as

the γ-dependence.

Using the explicit form of Bogoliubov coefficients and mode functions, Eqs. (3.3), (2.10), and (2.4),

equation (3.11) is written as

〈0f |T±±|0f 〉t>0 =
8

πL2

∞
∑

n=1






4n3[

∞
∑

m=1
m:odd

cos(mπ
L z±)

m2 − (2n)2
]2 + n[

∞
∑

m=1
m:odd

m sin(mπ
L z±)

m2 − (2n)2
]2






+

π

2L2

∞
∑

n=1

n. (3.12)

This is an even function of z± with period L, as it is invariant under reflection z± → −z± and

translation z± → z± + L. Therefore, it is sufficient to calculate it in 0 ≤ z± < L, and then generalize

the obtained expression to one valid in the entire domain appropriately.

The first summation over odd m in Eq. (3.12) can be calculated to give

〈0f |T±±|0f 〉t>0 =
8

πL2

∞
∑

n=1

n







π2

16
sin2(

2nπ

L
z±) + [

∞
∑

m=1
m:odd

m sin(mπ
L z±)

m2 − (2n)2
]2






+

π

2L2

∞
∑

n=1

n, (3.13)

which is valid in 0 ≤ z± < L. Here, we have used the following formula [14, p. 733],

∞
∑

k=0

cos[(2k + 1)y]

(2k + 1)2 − a2
=

π

4a
sin[

a

2
(π − 2y)] sec(

aπ

2
), (0 ≤ y ≤ π). (3.14)

It is noted here that there are typos in Ref. [14, p. 733] about formulas (3.14) and (3.17) (see below).

For z± = 0, from Eq. (3.13), we have

〈0f |T±±|0f 〉t>0 =
π

2L2

∞
∑

n=1

n, (z± = 0). (3.15)

For 0 < z± < L, we find that the summation over odd m in Eq. (3.13) can be calculated to give

〈0f |T±±|0f 〉t>0 =
π

L2

∞
∑

n=1

n, (0 < z± < L), (3.16)

11



using the following formula [14, p. 733],

∞
∑

k=0

(2k + 1) sin[(2k + 1)y]

(2k + 1)2 − a2
=
π

4
cos[

a

2
(π − 2y)] sec(

aπ

2
), (0 < y < π). (3.17)

Extending the domain of Eqs. (3.15) and (3.16) to the entire domain periodically, we obtain

〈0f |T±±|0f 〉t>0 =























π

2L2

∞
∑

n=1

n (z± = ℓL, ℓ ∈ Z)

π

L2

∞
∑

n=1

n (otherwise)

. (3.18)

Although we have no term proportional to the delta function squared in contrast to the appearance

case, we have to pay attention again to the diverging summations in Eq. (3.18). On the null lines,

the energy-momentum tensor (3.18) takes the different form from Eq. (3.9). Indeed, the renormalized

stress-energy tensor is given by Eq. (3.10) for t < 0 but by the following for t > 0:

〈0f |T±±|0f 〉ren,t>0 =











− π

24L2
+ lim

∆z±→0

1

8π∆z2±
(z± = ℓL, ℓ ∈ Z)

− π

12L2
(otherwise)

, (3.19)

which diverges on the null lines in the coincidence limit ∆z± → 0. (See Appendix C for the derivation

of this result using the Green functions.)

The above ultraviolet divergence on the null lines seems to play a physically significant role as

follows. After the Dirichlet wall disappears and the cavity size becomes L for t > 0, the ambient

Casimir energy density remains the same as the energy density with the cavity size L/2 for t < 0.

This means that the amount of energy for t > 0 would be lower than that of the ground state with

the cavity size L if the divergence on the null lines was not taken into account. Thus, it is expected

that this divergent flux would compensate for the shortage of energy in the cavity. This expectation

holds if the total energy radiated on the null lines diverges due to the term proportional to (∆z±)
−2.

4 Conclusion

We have investigated the vacuum excitation of a massless Klein-Gordon scalar field due to the sudden

appearance and disappearance of a both-sided Dirichlet wall in a 1D cavity. While both insertion and

removal of a wall in any realistic situations take finite lengths of time, we believe that the instantaneous

approximation in this paper catches the essential behaviors of quantum fields in various situations

involving relatively rapid merger and disconnection of spatial regions.

For the sudden appearance of the Dirichlet wall, we found that the vacuum is highly excited to

result in the infinitely strong flux given by Eq. (2.32). This result suggests that the backreaction to the

background spacetime and boundary cannot be ignored. In other words, the background spacetime

is forced to be dynamical and/or the instantaneous insertion of the Dirichlet wall itself is prohibited

12



by the quantum field. We note that the result is quite similar to those in the investigation of the

topology change [5, 6] and the strong curvature singularity [15], although the boundary condition in

the present work is different from those in the papers.

Also for the sudden disappearance of the Dirichlet wall, we found that the vacuum is highly

excited to result in the infinitely strong flux given by Eq. (3.19). In contrast to the appearance case,

the renormalized stress-energy tensor does not contain the term proportional to the delta function

squared, although it contains the diverging term proportional to (∆z±)
−2. The infinite flux is what

we expect from the viewpoint of the number of created particles as mentioned in Introduction, while

the lack of the delta function squared is not.

The asymmetry between the appearance and disappearance cases seems to stem from the difference

of behaviors of two sets of mode functions, {f (γ)n } and {gm}. First, let us see the behavior of f
(γ)
n .

While f
(γ)
n is given by Eq. (2.6) for t < 0, it is expressed as Eq. (3.2) for t > 0. Here, the point

is that f
(γ)
n given by Eqs. (2.6) and (3.2) coincide in the limit of t → 0, which implies that f

(γ)
n is

continuous at t = 0. Next, let us see the behavior of gm. While gm is given by Eq. (2.4) for t < 0, gm

is expressed as Eq. (2.8) for t > 0. In this case, gm given by Eqs. (2.4) and (2.8) do not coincide in

the limit of t → 0 at every point of [−L/2, L/2]. Namely, when m is odd, while limt→−0 gm(t, 0) 6= 0

from Eq. (2.4), limt→+0 gm(t, 0) = 0 from Eq. (2.8) (note that the right-hand side of Eq. (2.8) consists

only of sine functions), which implies the discontinuity of gm (m ∈ odd) at t = 0. We conjecture that

the existence of such a discontinuity of mode functions is the origin of the square of the delta function

in the appearance case.

Given the results in this paper, we have many things to examine. In particular, it is important to

prove (or disprove) that the present result is not an artifact of simplification and idealization adopted

in our analysis (i.e., the instantaneous approximation, equal lengths of left and right regions, low

dimensionality, scalar field, and so on). The generalizations of this work in this direction will be

indispensable to understand how much the semiclassical effects play crucial roles in the gravitational

phenomena such as the spacetime connection and disconnection.

Finally, let us mention about a problem concerning the divergence of the renormalized stress-

energy tensor in the appearance and disappearance cases. As we have shown, the standard procedure

of the point-splitting regularization gives a finite value of the renormalized stress-energy tensor at the

spacetime point not on the null lines which emanate from the transition point, while it is divergent

on the null lines. We interpret this result as the diverging flux on the null lines for t > 0. However,

the origin of this divergence is not clear within the current analysis. To study this further, we need to

regularize the renormalized stress-energy tensor by some means. One may think that the instantaneous

appearance or disappearance is responsible for the divergence. This possibility can be investigated

by introducing a tractable model with the finite-time change of the boundary condition. With this

approach we can also properly discuss the amount of total energy radiated on the null lines.
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A Proof of unitarity relations (2.16) and (2.17)

Substituting Eq. (2.10) into the left-hand side of Eq. (2.16), we obtain

∞
∑

m=1

(ρ(γ)mnρ
(γ′)∗
mn′ − σ(γ)∗mn σ

(γ′)
mn′) =

16
√
nn′(n+ n′)

π2

∞
∑

m=1
m:odd

1

[m2 − (2n)2][m2 − (2n′)2]
+

1

2
(−1)γ+γ′

δnn′ .

(A.1)

The summation over odd m in Eq. (A.1) can be evaluated to give

∞
∑

m=1
m:odd

1

[m2 − (2n)2][m2 − (2n′)2]
=

π2

16(2n)2
δnn′ , (A.2)

using the following formulas [14, pp. 688–689]

∞
∑

k=0

1

(2k + 1)2 − a2
=

π

4a
tan(

aπ

2
), (A.3)

∞
∑

k=0

1

[(2k + 1)2 − a2]2
= − π

8a3
tan(

aπ

2
) +

π2

16a2
sec2(

aπ

2
). (A.4)

Substituting Eq. (A.2) into Eq. (A.1), we see Eq. (2.16) to hold.

Substituting Eq. (2.10) into the left-hand side of Eq. (2.17), we obtain

∞
∑

m=1

(ρ(γ)mnσ
(γ′)∗
mn′ − σ(γ)∗mn ρ

(γ′)
mn′) = −16

√
nn′(n− n′)

π2

∞
∑

m=1
m:odd

1

[m2 − (2n)2][m2 − (2n′)2]
. (A.5)

Substituting Eq. (A.2) into Eq. (A.5), we see Eq. (2.17) to hold.

B Proof of unitarity relations (3.5) and (3.6)

We define

I
(γ)
mm′ :=

∞
∑

n=1

(α(γ)
nmα

(γ)∗
nm′ − β(γ)∗nm β

(γ)
nm′), J

(γ)
mm′ :=

∞
∑

n=1

(α(γ)
nmβ

(γ)∗
nm′ − β(γ)∗nm α

(γ)
nm′). (B.1)

Then, the unitarity relations (3.5) and (3.6) are rewritten as

2
∑

γ=1

I
(γ)
mm′ = δmm′ ,

2
∑

γ=1

J
(γ)
mm′ = 0. (B.2)
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We will show (B.2) to hold for every even-odd combination of (m,m′).

For (m,m′) ∈ (odd, odd), from Eqs. (3.3) and (2.10), we obtain

I
(γ)
mm′ =

m+m′

√
mm′π2

Kmm′ , J
(γ)
mm′ = − m−m′

√
mm′π2

Kmm′ , (B.3)

where

Kmm′ :=

∞
∑

n=1

n2

[n2 − (m/2)2][n2 − (m′/2)2]

=
∞
∑

n=1

1

n2 − (m′/2)2
+ (

m

2
)2

∞
∑

n=1

1

[n2 − (m/2)2][n2 − (m′/2)2]
. (B.4)

The summations over n in Eq. (B.4) are calculated to give

Kmm′ =
π2

4
δmm′ , (B.5)

using the following formulas [16, pp. 68–69]

∞
∑

k=1

1

y2 − k2
=

π

2y
cot(πy)− 1

2y2
, (B.6)

∞
∑

k=1

1

[(ky)2 − 1]2
=

π2

4y2
cosec2(

π

y
) +

π

4y
cot(

π

y
)− 1

2
. (B.7)

Substituting Eq. (B.5) into Eq. (B.3), we see Eq. (B.2) to hold in this case.

For (m,m′) ∈ (odd, even), using Eqs. (3.3) and (2.10) again, we obtain

I
(γ)
mm′ = − (−1)γ−1

(m−m′)π

√

m′

m
, J

(γ)
mm′ =

(−1)γ−1

(m+m′)π

√

m′

m
. (B.8)

From this, we see Eq. (B.2) to hold in this case.

Finally, for (m,m′) ∈ (even, even), using Eqs. (3.3) and (2.10) again, we obtain

I
(γ)
mm′ =

1

2
δmm′ , J

(γ)
mm′ = 0. (B.9)

From this, we see Eq. (B.2) to hold in this case.

C Green-function method

We show another derivation of the vacuum expectation values of energy-momentum tensor, Eqs. (2.21),

(2.31), (3.9), and (3.18) by the Green-function method (see, e.g., [10]).
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C.1 Green functions

The mode function gm, Eq. (2.4), is rewritten as

gm(z−, z+) =















1

2
√
mπ

(

e−imπ

L
z− + e−imπ

L
z+
)

(m : odd)

1

2i
√
mπ

(

e−imπ

L
z− − e−imπ

L
z+
)

(m : even)

. (C.1)

Then, Hadamard’s elementary function is computed as

Ḡ(z−, z+; z
′
−, z

′
+) := 〈0g|{φ(z−, z+), φ(z′−, z′+)}|0g〉 (C.2)

=

∞
∑

m=1

[gm(z−, z+)g
∗
m(z′−, z

′
+) + g∗m(z−, z+)gm(z′−, z

′
+)] (C.3)

=
1

4π

∞
∑

m=1

1

m

[

e−imπ

L
∆z− + e−imπ

L
∆z+ − e−imπ

L
(z−−z′++L) − e−imπ

L
(z+−z′

−
+L)
]

+ c.c. (C.4)

= − 1

4π
ln

[

sin2(π∆z−/2L) sin
2(π∆z+/2L)

cos2(π(z− − z′+)/2L) cos
2(π(z+ − z′−)/2L)

]

, (C.5)

where ∆z± := z± − z′± and c.c. denotes the complex conjugate. In the last line, we have performed

the summation over m after replacement ∆z± → ∆z±− iǫ, where ǫ is a real small parameter, in order

to make it converge. On the other hand, the Pauli–Jordan function is

iG(z−, z+; z
′
−, z

′
+) := 〈0g|[φ(z−, z+), φ(z′−, z′+)]|0g〉 (C.6)

=
∞
∑

m=1

[gm(z−, z+)g
∗
m(z′−, z

′
+)− g∗m(z−, z+)gm(z′−, z

′
+)] (C.7)

=
1

4π

∞
∑

m=1

1

m

[

e−imπ

L
∆z− + e−imπ

L
∆z+ − e−imπ

L
(z−−z′

+
+L) − e−imπ

L
(z+−z′

−
+L)
]

− c.c. (C.8)

= − i

2

∞
∑

m=−∞

[θ(∆z− − 2mL) + θ(∆z+ − 2mL)− θ(z− − z′+ − (2m− 1)L)− θ(z+ − z′− − (2m− 1)L)],

(C.9)

where θ denotes the step function. Here, we have used the following formulas,

∞
∑

n=1

e−in(x−iǫ)

n
= − ln[1− e−i(x−iǫ)], ln(−x+ iǫ)− ln(−x− iǫ) = 2πiθ(x),

sin(πx)

πx
=

∞
∏

n=1

(

1− x2

n2

)

.

(C.10)

The mode functions f
(γ)
n , Eq. (2.6), on each support is rewritten as















f (1)(z−, z+) =
1

2i
√
nπ

(

e−i 2nπ

L
z− − e−i 2nπ

L
z+
)

(0 ≤ x ≤ L/2)

f (2)(z−, z+) =− 1

2i
√
nπ

(

e−i 2nπ

L
z− − e−i 2nπ

L
z+
)

(−L/2 ≤ x ≤ 0)
. (C.11)
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Hadamard’s elementary function and Pauli-Jordan functions are given by

F̄ (z−, z+; z
′
−, z

′
+) := 〈0f |{φ(z−, z+), φ(z′−, z′+)}|0f 〉 =

2
∑

γ=1

F̄ (γ)(z−, z+; z
′
−, z

′
+), (C.12)

iF (z−, z+; z
′
−, z

′
+) := 〈0f |[φ(z−, z+), φ(z′−, z′+)]|0f 〉 =

2
∑

γ=1

iF (γ)(z−, z+; z
′
−, z

′
+), (C.13)

where

F̄ (γ)(z−, z+; z
′
−, z

′
+) :=

∞
∑

n=1

[f (γ)n (z−, z+)f
(γ)∗
n (z′−, z

′
+) + f (γ)∗n (z−, z+)f

(γ)
n (z′−, z

′
+)] (C.14)

=
1

4π

∞
∑

n=1

1

n

[

e−i 2nπ

L
∆z− + e−i 2nπ

L
∆z+ − e−i 2nπ

L
(z−−z′+) − e−i 2nπ

L
(z+−z′

−
)
]

+ c.c. (C.15)

= − 1

4π
ln

[

sin2(π∆z−/L) sin
2(π∆z+/L)

sin2(π(z− − z′+)/L) sin
2(π(z+ − z′−)/L)

]

, (C.16)

iF (γ)(z−, z+; z
′
−, z

′
+) :=

∞
∑

n=1

[f (γ)n (z−, z+)f
(γ)∗
n (z′−, z

′
+)− f (γ)∗n (z−, z+)f

(γ)
n (z′−, z

′
+)] (C.17)

=
1

4π

∞
∑

n=1

1

n

[

e−i 2nπ

L
∆z− + e−i 2nπ

L
∆z+ − e−i 2nπ

L
(z−−z′+) − e−i 2nπ

L
(z+−z′

−
)
]

− c.c. (C.18)

= − i

2

∞
∑

n=−∞

[θ(∆z− − nL) + θ(∆z+ − nL)− θ(z− − z′+ − nL)− θ(z+ − z′− − nL)]. (C.19)

Hereafter, we should keep in mind that F̄ (γ) and F (γ) are non-zero and given by the above expressions,

i.e., Eqs. (C.15), (C.16), (C.18), and (C.19), only on each support of f (γ) (γ = 1, 2). For example,

F̄ (1) = 0 in −L/2 ≤ x ≤ 0 and F̄ (2) = 0 in 0 ≤ x ≤ L/2.

C.2 Appearance of the Dirichlet wall

For t < 0, the energy-momentum tensor is given by

〈0g|T±±|0g〉t<0 =
1

2
lim

z′
±
→z±

∂±∂
′
±Ḡ(z−, z+; z

′
−, z

′
+) (C.20)

=
π

8L2
lim

∆z±→0

∞
∑

m=1

m
(

e−imπ

L
∆z± + ei

mπ

L
∆z±

)

(C.21)

= − π

16L2
lim

∆z±→0

1

sin2(π∆z±/2L)
= − π

48L2
− lim

∆z±→0

1

4π∆z2±
, (C.22)

where the last divergent term, which is independent of the cavity size L, can be subtracted as the zero-

point energy with the cavity size L = ∞. Thus, we have reproduced Eq. (2.21) by the Green-function

method.

For t > 0, the energy-momentum tensor is given by

〈0g|T±±|0g〉t>0 =
1

2
lim
A→B

∂±∂
′
±[(iFAC)(iFBD)ḠCD], (C.23)
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where A := (z−, z+) and B := (z′−, z
′
+). In abbreviated notation, a capital Latin index denotes

one point on the spacetime and the same indices denote the Klein-Gordon product, such as FAB =

F (z−, z+; z
′
−, z

′
+) and φAψA = 〈φ,ψ〉.

For t > 0, we can also obtain the energy-momentum tensor from a Green function. However, since

the boundary condition has changed for t > 0, the Green function for t > 0 will differ from one defined

by (C.2). In order to obtain the Green function for t > 0, we should propagate Ḡ at t = 0, by using

F . For example, if a scalar field is given by φ0(z−, z+) and ∂tφ0(z−, z+) at t = 0 as initial data, then

for t > 0 we have

φt>0(z−, z+) = 〈iF (z−, z+; z′−, z′+), φ0(z′−, z′+)〉|t′=0 =

∫

dx′(F∂t′φ0 − φ0∂t′F )

∣

∣

∣

∣

t′=0

. (C.24)

Using

∂±F (z−, z+; z
′
−, z

′
+) = −1

2

∞
∑

n=−∞

[δ(∆z± − nL)− δ(z± − z′∓ − nL)], (C.25)

∂±∂t′F (z−, z+; z
′
−, z

′
+) = ∓1

2

∞
∑

n=−∞

∂x′ [δ(∆z± − nL) + δ(z± − z′∓ − nL)], (C.26)

we have for 0 ≤ x ≤ L/2,

∂±〈iF (1)(z−, z+; z
′
−, z

′
+), gm(z′−, z

′
+)〉|t′=0 =

∫ L/2

0
dx′[∂±F

(1)∂t′gm − gm∂±∂t′F
(1)] (C.27)

= −
∞
∑

n=−∞

∫ L/2

0
dx′[δ(z± ∓ x′ − nL)∂′±gm − δ(z± ± x′ − nL)∂′∓gm]

± 1

2

∞
∑

n=−∞

[δ(z± ∓ x′ − nL) + δ(z± ± x′ − nL)]gm

∣

∣

∣

∣

∣

x′=L/2

x′=0

. (C.28)

We evaluate them respectively as

∂+〈iF (1), gm〉|t′=0 = −
∞
∑

n=−∞

∫ L/2

0
dx′[δ(z+ − x′ − nL)∂′+gm − δ(z+ + x′ − nL)∂′−gm]

+
1

2

∞
∑

n=−∞

[δ(z+ − x′ − nL) + δ(z+ + x′ − nL)]gm

∣

∣

∣

∣

∣

x′=L/2

x′=0

(C.29)

= −
∞
∑

n=−∞

[Π
L/2
0 (z+ − nL)∂′+gm|x′=z+−nL −Π0

−L/2(z+ − nL)∂′−gm|x′=−z++nL]−
∞
∑

n=−∞

δ(z+ − nL)gm|x′=0

(C.30)

=























−
∞
∑

n=−∞

{

δ(z+ − nL)√
mπ

+ i

√
mπ

2L
e−imπ

L
z+(−1)n[Π0

−L/2(z+ − nL)−Π
L/2
0 (z+ − nL)]

}

(m : odd)

−
√
mπ

2L
e−imπ

L
z+

∞
∑

n=−∞

Π
L/2
−L/2(z+ − nL) (m : even)

,

(C.31)
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and

∂−〈iF (1), gm〉|t′=0 = −
∞
∑

n=−∞

∫ L/2

0
dx′[δ(z− + x′ − nL)∂′−gm − δ(z− − x′ − nL)∂′+gm]

− 1

2

∞
∑

n=−∞

[δ(z− + x′ − nL) + δ(z− − x′ − nL)]gm

∣

∣

∣

∣

∣

x′=L/2

x′=0

(C.32)

=
∞
∑

n=−∞

[Π
L/2
0 (z− − nL)∂′+gm|x′=z−−nL −Π0

−L/2(z− − nL)∂′−gm|x′=−z−+nL] +
∞
∑

n=−∞

δ(z− − nL)gm|x′=0

(C.33)

=























∞
∑

n=−∞

{

δ(z− − nL)√
mπ

+ i

√
mπ

2L
e−imπ

L
z−(−1)n[Π0

−L/2(z− − nL)−Π
L/2
0 (z− − nL)]

}

(m : odd)

√
mπ

2L
e−imπ

L
z−

∞
∑

n=−∞

Π
L/2
−L/2(z− − nL) (m : even)

.

(C.34)

The last two results of calculation are written in the following short form

∂±〈iF (1)(z−, z+; z
′
−, z

′
+), gm(z′−, z

′
+)〉|t′=0

=



















∓
∞
∑

n=−∞

[

1√
mπ

δ(z± − nL) + i

√
mπ

2L
e−imπ

L
z±(−1)n+1ΠL

0 (z± − nL)

]

(m : odd)

∓
√
mπ

2L
e−imπ

L
z± (m : even)

.
(C.35)

Here, Πb
a(x) (a < b) denotes a rectangle function defined by

Πb
a(x) :=

∫ b

a
δ(x − y)dy =



















0 (x > b, x < a)

1 (a < x < b)

1

2
(x = a, b)

. (C.36)
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As a result, for t > 0 the energy-momentum tensor is given by

〈0g|T±±|0g〉t>0 =
1

2
lim

∆z±→0

∞
∑

m=1

∂±〈iF (1)(z−, z+;U, V ), gm(U, V )〉∂′±〈iF (1)(z′−, z
′
+;U

′, V ′), gm(U ′, V ′)〉∗ + c.c.

=



























∞
∑

m=1
m:odd

1

mπ
δ(z± − nL)2 +

1

2
lim

∆z±→0

∞
∑

m=2
m:even

mπ

4L2

(

e−imπ

L
∆z± + ei

mπ

L
∆z±

)

(z± = nL)

1

2
lim

∆z±→0

∞
∑

m=1

mπ

4L2

(

e−imπ

L
∆z± + ei

mπ

L
∆z±

)

(z± 6= nL)

=























∞
∑

m=1
m:odd

1

mπ
δ(z± − nL)2 − π

24L2
− lim

∆z±→0

1

8π∆z2±
(z± = nL)

− π

48L2
− lim

∆z±→0

1

4π∆z2±
(z± 6= nL)

,

(C.37)

where n is a non-negative integer. Note that, while we have focused on the domain 0 ≤ x ≤ L/2

using F (1), the energy-momentum tensor as well as (C.37) can be obtained by using F (2) also for

−L/2 ≤ x ≤ 0. Thus, we reproduce Eq. (2.31) by the Green-function method.

We can implement the regularization of the stress-energy tensor following the standard procedure.

We subtract the divergent term which exists even in the flat spacetime with Dirichlet walls at x = ±L/2
in the limit L→ ∞. Then, the renormalized stress-energy tensor is then given by

〈0g|T±±|0g〉ren,t<0 = − π

48L2
, (C.38)

〈0g|T±±|0g〉ren,t>0 =



















∞
∑

m=1
m:odd

1

mπ
δ(z± − nL)2 − π

24L2
+ lim

∆z±→0

1

8π∆z2±
(z± = nL)

− π

48L2
(z± 6= nL)

. (C.39)

We can see that the energy-momentum tensor is still divergent on the null lines for t > 0.

C.3 Disappearance of the Dirichlet wall

For t < 0, the energy-momentum tensor is given by

〈0f |T±±|0f 〉t<0 =
1

2
lim

z′
±
→z±

∂±∂
′
±F̄ (z−, z+; z

′
−, z

′
+) (C.40)

=
π

2L2
lim

∆z±→0

∞
∑

n=1

n
(

e−i 2nπ

L
∆z± + ei

2nπ

L
∆z±

)

= − π

12L2
− lim

∆z±→0

1

4π∆z2±
. (C.41)

Thus, we reproduce Eq. (3.9) after subtracting the last diverging term.

For t > 0, the energy-momentum tensor is given by

〈0f |T±±|0f 〉t>0 =
1

2
lim
A→B

∂±∂
′
±[(iGAC)(iGBD)F̄CD], (C.42)
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where A = (z−, z+) and B = (z′−, z
′
+) again.

Using

∂±G(z−, z+; z
′
−, z

′
+) =− 1

2

∞
∑

m=−∞

[δ(∆z± − 2mL)− δ(z± − z′∓ − (2m− 1)L)], (C.43)

∂±∂t′G(z−, z+; z
′
−, z

′
+) =∓ 1

2

∞
∑

m=−∞

∂x′ [δ(∆z± − 2mL) + δ(z± − z′∓ − (2m− 1)L)], (C.44)

we have

∂±〈iG(z−, z+; z′−, z′+), f (1)n (z′−, z
′
+)〉|t′=0 =

∫ L/2

0
dx′[∂±G∂t′f

(1)
n − f (1)n ∂±∂t′G] (C.45)

= −
∞
∑

m=−∞

∫ L/2

0
dx′
[

δ(z± ∓ x′ − 2mL)∂′±f
(1)
n − δ(z± ± x′ − (2m− 1)L)∂′∓f

(1)
n

]

± 1

2

∞
∑

m=−∞

[δ(z± ∓ x′ − 2mL) + δ(z± ± x′ − (2m− 1)L)]f (1)n

∣

∣

∣

∣

∣

x′=L/2

x′=0

(C.46)

= ∓
√
nπ

L
e−i 2nπ

L
z±

∞
∑

m=−∞

ΠL
0 (±z± − 2mL) (C.47)

and

∂±〈iG(z−, z+; z′−, z′+), f (2)n (z′−, z
′
+)〉|t′=0 =

∫ 0

−L/2
dx′[∂±G∂t′f

(2)
n − f (2)n ∂±∂t′G] (C.48)

=±
√
nπ

L
e−i 2nπ

L
z±

∞
∑

m=−∞

Π0
−L(±z± − 2mL). (C.49)

As a result, for t > 0 the energy-momentum tensor is given by

〈0f |T±±|0f 〉t>0

=
1

2
lim

∆z±→0

2
∑

γ=1

∞
∑

n=1

∂±〈iG(z−, z+;U, V ), f (γ)n (U, V )〉∂′±〈iG(z′−, z′+;U ′, V ′), f (γ)n (U ′, V ′)〉∗ + c.c. (C.50)

=























1

4
lim

∆z±→0

∞
∑

n=1

nπ

L2
(e−i 2nπ

L
∆z± + ei

2nπ

L
∆z±) (z± = mL)

1

2
lim

∆z±→0

∞
∑

n=1

nπ

L2
(e−i 2nπ

L
∆z± + ei

2nπ

L
∆z±) (z± 6= mL)

(C.51)

=















− π

24L2
− lim

∆z±→0

1

8π∆z2±
(z± = mL)

− π

12L2
− lim

∆z±→0

1

4π∆z2±
(z± 6= mL)

, (C.52)
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where m is a non-negative integer. Thus, we have reproduced Eq. (3.18) with the Green-function

method. The renormalized stress-energy tensor is given by

〈0f |T±±|0f 〉ren,t<0 = − π

12L2
, (C.53)

〈0f |T±±|0f 〉ren,t>0 =











− π

24L2
+ lim

∆z±→0

1

8π∆z2±
(z± = nL)

− π

12L2
(z± 6= nL)

. (C.54)

We can see that the stress-energy tensor is still divergent on the null lines for t > 0.
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