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Generic uniqueness of a structured matrix
factorization and applications in blind source

separation
Ignat Domanov and Lieven De Lathauwer, Fellow, IEEE

Abstract—Algebraic geometry, although little explored in sig-
nal processing, provides tools that are very convenient for
investigating generic properties in a wide range of applications.
Generic properties are properties that hold “almost everywhere”.
We present a set of conditions that are sufficient for demon-
strating the generic uniqueness of a certain structured matrix
factorization. This set of conditions may be used as a checklist for
generic uniqueness in different settings. We discuss two particular
applications in detail. We provide a relaxed generic uniqueness
condition for joint matrix diagonalization that is relevant for
independent component analysis in the underdetermined case.
We present generic uniqueness conditions for a recently proposed
class of deterministic blind source separation methods that rely
on mild source models. For the interested reader we provide
some intuition on how the results are connected to their algebraic
geometric roots.

Index Terms—structured matrix factorization, structured rank
decomposition, blind source separation, direction of arrival,
uniqueness, algebraic geometry

I. INTRODUCTION

A. Blind source separation and uniqueness

The matrix factorization X = MST is well known in the
blind source separation (BSS) context: the rows of ST and X
represent unknown source signals and their observed linear
mixtures, respectively. The task of the BSS problem is to
estimate the source matrix S and the mixing matrix M from
X. If no prior information is available on the matrices M or
S, then they cannot be uniquely identified from X. Indeed, for
any nonsingular matrix T,

X = MST = (MT)(ST−T )T = MST . (1)

Applications may involve particular constraints on M and/or
S, so that in the resulting class of structured matrices the
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solution of (1) becomes unique. Commonly used constraints
include sparsity [1], constant modulus [2] and Vandermonde
structure [3].

Sufficient conditions for uniqueness can be deterministic or
generic. Deterministic conditions concern particular matrices
M and S. Generic conditions concern the situation that can
be expected in general; a generic property is a property that
holds everywhere except for a set of measure 0. (A formal
definition will be given in Subsection I-C below.)

To illustrate the meaning of deterministic and generic
uniqueness let us consider decomposition (1) in which X ∈
CK×N , M ∈ CK×R and the columns of S ∈ CN×R are
obtained by sampling the exponential signals zt−11 , . . . , zt−1R at
t = 1, . . . , N . Then (S)nr = (zn−1r ), i.e. S is a Vandermonde
matrix. A deterministic condition under which decomposition
(1) is unique (up to trivial indeterminacies) is [3]: (i) the
Vandermonde matrix S has strictly more rows than columns
and its generators zj are distinct and (ii) the matrix M has
full column rank. (In this paper we say that an K ×R matrix
has full column rank if its column rank is R, which implies
K ≥ R.) This deterministic condition can easily be verified for
any particular M and S. A generic variant is: (i) the Vander-
monde matrix S has N > R and (ii) the (unstructured) matrix
M has K ≥ R. Indeed, under these dimensionality conditions
the deterministic conditions are satisfied everywhere, except
in a set of measure 0 (which contains the particular cases of
coinciding generators zr and the cases in which the columns
of M are not linearly independent despite the fact that M is
square or even tall). Note that generic properties do not allow
one to make statements about specific matrices; they only show
the general picture.

As mentioned before, BSS has many variants, which dif-
fer in the types of constraints that are imposed. Different
constraints usually mean different deterministic uniqueness
conditions, and the derivation of these is work that is difficult
to automate. In this paper we focus on generic uniqueness
conditions. We propose a framework with which generic
uniqueness can be investigated in a broad range of cases.
Indeed, it will become clear that if we limit ourselves to
generic uniqueness, the derivation of conditions can to some
extent be automated. We discuss two concrete applications
which may serve as examples.

Our approach builds on results in algebraic geometry. Al-
gebraic geometry has so far been used in system theory in
[4], [5] and it also has direct applications in tensor-based BSS
via the generic uniqueness of tensor decompositions [6]–[8].
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Our paper makes a contribution in further connecting algebraic
geometry with applications in signal processing.

B. Notation

Throughout the paper F denotes the field of real or complex
numbers; bold lowercase letters denote vectors, while bold
uppercase letters represent matrices; a column of a matrix
A and an entry of a vector b are denoted by aj and bj ,
respectively; the superscripts ·∗, ·T and ·H are used for the
conjugate, transpose, and Hermitian transpose, respectively;
“⊗” denotes the Kronecker product.

C. Statement of the problem and organization of the paper

A structured matrix factorization. In this paper we consider
the following structured factorization of a K ×N matrix Y,

Y = A(z)B(z)T , z ∈ Ω (2)

where Ω is a subset of Fn and A(z) and B(z) are known
matrix-valued functions defined on Ω.

W.l.o.g. we can assume that the parameter vector z =
[z1 . . . zn]T is ordered such that B(z) depends on the last
s ≤ n entries, while A(z) depends on m ≥ 0 entries that are
not necessarily the first or the last. That is,

A(z) = A(zi1 , . . . , zim), B(z) = B(zn−s+1, . . . , zn)

for some 1 ≤ i1 < i2 < · · · < im ≤ n. In general, the entries
used to parameterize A and B are allowed to overlap so that
m + s ≥ n. The case where A and B depend on separated
parameter sets corresponds to m + s = n; in this case A
depends strictly on the first m of the entries of z.

Our study is limited to K×R matrices A(z) that generically
have full column rank. We do not make any other assump-
tions on the form of A(z). In particular, we do not impose
restrictions on how the entries depend on z. We are however
more explicit about the form of the N × R matrix B(z).
We assume that each of its columns br(z) is generated by
l parameters that are independent of the parameters used to
generate the other columns, i.e., B(z) = [b1(ζ1) . . . bR(ζR)]
with ζ1, . . . , ζR ∈ Fl. Note that the independence implies that
s = Rl and that [ζT1 . . . ζTR ]T and [zn−s+1 . . . zn]T are the
same up to index permutation.

For the sake of exposition, let us first consider a class of
matrices B(z) that is smaller than the class that we will be able
to handle in our derivation of generic uniqueness conditions.
Namely, let us first consider matrices Brat(z), of which the
n-th row is obtained by evaluating a known rational function
pn(·)
qn(·) at some points ζ1, . . . , ζR ∈ Fl, 1 ≤ n ≤ N :

Brat(z) =


p1(ζ1)
q1(ζ1)

. . . p1(ζR)
q1(ζR)

...
...

...
pN (ζ1)
qN (ζ1)

. . . pN (ζR)
qN (ζR)

 ,
where

p1, . . . , pN , q1, . . . , qN are polynomials in l variables.

Note that we model a column of Brat through the values taken
by N functions p1(·)

q1(·) , . . . ,
pN (·)
qN (·) at one particular point ζr. On

the other hand, a row of Brat is modeled as values taken by
one particular function pn(·)

qn(·) at R points ζ1, . . . , ζR.
The structure that we consider in our study for the N ×R

matrix B(z) is more general than the rational structure of
Brat(z) in the sense that we additionally allow (possibly
nonlinear) transformations of ζ1, . . . , ζR. Formally, we assume
that the columns of B(z) are sampled values of known vector
functions of the form

b(ζ) =

[
p1(f(ζ))

q1(f(ζ))
. . .

pN (f(ζ))

qN (f(ζ))

]T
, ζ ∈ Fl, (3)

at points ζ1, . . . , ζR ∈ Fl, such that

B(z) = [b(ζ1) . . .b(ζR)] =


p1(f(ζ1))
q1(f(ζ1))

. . . p1(f(ζR))
q1(f(ζR))

...
...

...
pN (f(ζ1))
qN (f(ζ1))

. . . pN (f(ζR))
qN (f(ζR))

 ,
where

f(ζ) = (f1(ζ), . . . , fl(ζ)) ∈ Fl,
f1, . . . , fl are scalar functions of l variables.

The functions f1, . . . , fl are subject to an analyticity assump-
tion that will be specified in Theorem 1 further. Although
our general result in Theorem 1 will be formulated in terms
of functions f1, . . . , fl in l variables, in the applications in
Sections III–IV we will only need entry-wise transformations:

f(ζ) = f(ζ1, . . . , ζl) = (f1(ζ1), . . . , fl(ζl)) (4)

with f1, . . . , fl analytic functions in one variable.
As an example of how the model for B(z) can be used,

consider R vectors that are obtained by sampling the expo-
nential signals eiζ1(t−1), . . . , eiζR(t−1) (with ζ1, . . . , ζR ∈ R)
at t = 1, . . . , N . In this case B(z) is an N ×R Vandermonde
matrix with unit norm generators; its rth column is b(ζr) =

[1 eiζr . . . eiζr(N−1)]T . We have eiζr(n−1) = pn(f(ζr))
qn(f(ζr))

, where
f(ζ) = eiζ , pn(x) = xn−1, and qn(x) = 1 for ζ ∈ R and
x ∈ C.

Generic uniqueness of the decomposition. We interpret
factorization (2) as a decomposition into a sum of structured
rank-1 matrices

Y = A(z)B(z)T =

R∑
r=1

ar(z)b(ζr)
T , z ∈ Ω, (5)

where ar(z) denotes the rth column of A(z). It is clear that
in (5) the rank-1 terms can be arbitrarily permuted. We say
that decomposition (5) is unique when it is only subject to
this trivial indeterminacy. We say that decomposition (5) is
generically unique if it is unique for a generic choice of z ∈ Ω,
that is

µn{z ∈ Ω : decomposition (5) is not unique} = 0, (6)

where µn is a measure that is absolutely continuous (a.c.) with
respect to the Lebesgue measure on Fn.

In this paper we present conditions on the polynomials
p1, . . . , pN , q1, . . . , qN , the function f and the set Ω which
guarantee that decomposition (5) is generically unique. As
a technical assumption, since in the case where µn(Ω) = 0
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condition (6) cannot be used to infer generic uniqueness from
a subset of Ω, we assume that µn(Ω) > 0.

Organization and results. In Section II we state the main re-
sult of this paper in general terms, namely, Theorem 1 presents
conditions that guarantee that the structured decomposition (5)
is generically unique. The proof of Theorem 1 is given in
Appendix A. Besides the technical derivation, Appendix A
provides some intuition behind the high-level reasoning and
makes the connection with the trisecant lemma in algebraic
geometry, for readers who are interested. In Sections III–IV
we use Theorem 1 to obtain new uniqueness results in the
context of two different applications. This is done by first
expressing the specific BSS problem as a decomposition of
the form (5), for which the list of conditions in Theorem 1
is checked. Section III concerns an application in independent
component analysis. More precisely, it concerns joint matrix
diagonalization in the underdetermined case (more sources
than observations) and presents a new, relaxed bound on the
number of sources under which the solution of this basic
subproblem is generically unique. This bound is a simple
expression in the number of matrices and their dimension.
Section IV presents generic uniqueness results for a recently
introduced class of deterministic blind source separation al-
gorithms that may be seen as a variant of sparse component
analysis which makes use of a non-discrete dictionary of basis
functions. Appendix B contains the short proof of a technical
lemma in Section IV. The paper is concluded in Section V.

II. MAIN RESULT

The following theorem is our main result on generic unique-
ness of decomposition (5). It states that, generically, the R
structured rank-1 terms of the K×N matrix Y can be uniquely
recovered if K ≥ R and R ≤ N̂ − l̂. Here, N̂ ≤ N is
a lower bound on the dimension of the linear vector space
span{r(x) : q1(x) · · · qN (x) 6= 0, x ∈ Fl} generated by
vectors of the form

r(x) =

[
p1(x)

q1(x)
. . .

pN (x)

qN (x)

]T
. (7)

(Note that the definition of r(x) does not involve a nonlinear
transformation f , even when such a nonlinear transformation
is used for modelling b(ζ).) On the other hand, the value
l̂ ≤ l is an upper bound on the number of “free parameters”
actually needed to parameterize a generic vector of the form
(7). (Indeed, although r(x) is generated by l independent
parameters, it may be possible to do it with less in particular
cases. For instance, let N = 3, q1(x) = q2(x) = q3(x) = 1
and p1(x) = x1+x3, p2(x) = x2−x3, p3(x) = x1+x2, so that

r(x) = Wx with W =

[
1 0 1
0 1 −1
1 1 0

]
. Since rank(W) = 2,

r(x) can be parameterized by 2 < 3 independent parameters.)
In the theorem and throughout the paper we use J(r,x) ∈

FN×l and J(f , ζ) ∈ Fl×l to denote the Jacobian matrices of
r and f , respectively,

(J(r,x))ij =
∂ piqi
∂xj

, (J(f , ζ))ij =
∂fi
∂ζj

.

Further,

Range(r) = {r(x) : q1(x) · · · qN (x) 6= 0, x ∈ Cl} ⊂ CN

denotes the set of all values of r(x) for x ∈ Cl. We say that
the set Range(r) is invariant under scaling if

Range(r) ⊇ λ · Range(r) for all λ ∈ C.

Theorem 1. Let Ω be a subset of Fn and µn(Ω) > 0. Assume
that

1) the matrix A(z) has full column rank for a generic choice
of z ∈ Ω, that is,

µn{z ∈ Ω : rank A(z) < R} = 0;

2) the coordinate functions f1, . . . , fl of f can be repre-
sented as

f1(ζ) =
f1,num(ζ)

f1,den(ζ)
, . . . , fl(ζ) =

fl,num(ζ)

fl,den(ζ)
,

where the functions

f1,num(ζ), f1,den(ζ), . . . , fl,num(ζ), fl,den(ζ)

are analytic on Cl;
3) there exists ζ0 ∈ Cl such that det J(f , ζ0) 6= 0;
4) the dimension of the subspace spanned by the vectors of

form (7) is at least N̂ ,

dim span{r(x) : q1(x) · · · qN (x) 6= 0, x ∈ Cl} ≥ N̂ ;

5) rank J(r,x) ≤ l̂ for a generic choice of x ∈ Cl;
6) R ≤ N̂ − l̂ or R ≤ N̂ − l̂− 1, depending on whether the

set Range(r) is invariant under scaling or not.
Then decomposition (5) is generically unique.

Proof. See Appendix A.

Assumptions 1–6 can be used as a checklist for demon-
strating the generic uniqueness of decompositions that can be
put in the form (2). We will discuss two application examples
in Sections III–IV. We comment on the following aspects of
assumptions 2–6.
• In this paper we will use Theorem 1 in the case where f(ζ)

is of the form (4). For such f the matrix J(f , ζ) is diagonal,
yielding that det J(f , ζ) = f ′1(ζ1) · · · f ′l (ζl). Moreover, in
this paper f1, . . . , fl are non-constant, so det J(f , ζ) is not
identically zero. Thus, assumption 3 in Theorem 1 will hold
automatically.
• For the reader who wishes to apply Theorem 1 in cases

where f is not of the form (4), we recall the definition of an
analytic (or holomorphic) function of several variables used
in assumption 2. A function f : Cl → C of l complex
variables is analytic [9, page 4] if it is analytic in each variable
separately, that is, if for each j = 1, . . . , l and accordingly
fixed ζ1, · · · ζj−1, ζj+1, . . . , ζl the function

z 7→ f(ζ1, · · · ζj−1, z, ζj+1, . . . , ζl)

is analytic on C in the classical one-variable sense. Examples
of analytic functions of several variables can be obtained by
taking compositions of multivariate polynomials and analytic
functions in one variables, e.g. f(ζ1, ζ2) = sin(cos(ζ1ζ2))+ζ1.
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• To check assumption 4 in Theorem 1 it is sufficient to
present (or prove the existence of) N̂ linearly independent
vectors {r(xi)}N̂i=1. It is clear that larger N̂ yield a better
bound on R in assumption 6. In all cases considered in this
paper N̂ = N . The situation N̂ < N may appear when the
N × 1 vector-function b(ζ) models a periodic, (locally) odd
or even function, etc.
• The goal of assumption 5 is to check whether generic

signals of the form (7) can be re-parameterized with fewer
(i.e. l̂ < l) parameters. In this case, the Jacobian J(r,x) has
indeed rank strictly less than l. It is clear that assumption 5 in
Theorem 1 holds trivially for l̂ = l and that smaller l̂ yield a
better bound on R in assumption 6. In this paper we set either
l̂ = l (namely in the proof of Theorem 5) or, in the case where
it is clear that J(r,x) does not have full column rank (namely
in the proof of Theorems 2 and 6), l̂ = l − 1.
• Although the Theorem holds both for F = C and F = R,

we formulated assumptions 3, 4 and 5 in Theorem 1 for ζ0 ∈
Cl and x ∈ Cl. In these assumptions Cl can also be replaced
by Rl. We presented the complex variants, even for the case
F = R, since they may be easier to verify than their real
counterparts, as ζ0 and x are allowed to take values in a larger
set. On the other hand, the analyticity on Cl in assumption 2
is a stronger assumption than analyticity on Rl and is needed
in the form it is given.

III. AN APPLICATION IN INDEPENDENT COMPONENT
ANALYSIS

We consider data described by the model x = Ms, where
x is the I-dimensional vector of observations, s is the R-
dimensional unknown source vector and M is the I-by-R
unknown mixing matrix. We assume that the sources are
mutually uncorrelated but individually correlated in time. It is
known that the spatial covariance matrices of the observations
satisfy [10]

C1 = E(xtx
H
t+τ1) = MD1M

H =

R∑
r=1

d1rmrm
H
r ,

... (8)

CP = E(xtx
H
t+τP ) = MDPMH =

R∑
r=1

dPrmrm
H
r ,

in which Dp = E(sts
H
t+τp) is the R-by-R diagonal matrix

with the elements of the vector (dp1, . . . , dpR) on the main
diagonal. The estimation of M from the set {Cp} is known as
Second-Order Blind Identification (SOBI) [10] or as Second-
Order Blind Identification of Underdetermined Mixtures (SO-
BIUM) [11] depending on whether the matrix M has full
column rank or not. Variants of this problem are discussed
in, e.g., [12], [13], [14], [15, Chapter 7]. It is clear that if the
matrices M and D1, . . . ,DP satisfy (8), then the matrices
M = MΛP and D1 = PTD1P, . . . ,DP = PTDPP also
satisfy (8) for any permutation matrix P and diagonal unitary
matrix Λ. We say that (8) has a unique solution when it is
only subject to this trivial indeterminacy.

Generic uniqueness of solutions of (8) has been studied 1) in
[16] and [8, Subsection 1.4.2] in the case where the superscript

“H” in (8) is replaced by the superscript “T ” (for quantities
x, M are s that can be either real valued or complex valued);
2) in [11], [17] (where x, M are s are complex valued). In
[8], [11], [17] the matrix equations in (8) were interpreted as
a so-called canonical polyadic decomposition of a (partially
symmetric) tensor. In the following theorems we interpret the
equations in (8) as matrix factorization problem (2). The new
interpretation only relies on elementary linear algebra; it does
not make use of advanced results on tensor decompositions
while it does lead to more relaxed bounds on R than in [11],
[17] for I ≥ 5. We consider the variants τp 6= 0, 1 ≤ p ≤ P ,
and τ1 = 0 in Theorems 2 and 3, respectively.

Theorem 2. Assume that τ1 6= 0 and

R ≤ min(2P, (I − 1)2). (9)

Then (8) has a unique solution for generic matrices M and
D1, . . . ,DP , i.e.,

µk{(vec(D), vec(M)) : solution of (8) is not unique} = 0,
(10)

where D denotes the P × R matrix with entries dpr, k =
IR+PR, and µk is a measure that is a.c. with respect to the
Lebesgue measure on Ck .

Proof. (i) First we rewrite the equations in (8) as matrix
decomposition (5)1. In step (ii) we will apply Theorem 1
to (5).

Since CH
p =

R∑
r=1

d∗prmrm
H
r , the pth equation in (8) is

equivalent to the following pair of equations

Re Cp =
Cp + CH

p

2
=

R∑
r=1

Re dprmrm
H
r ,

Im Cp =
Cp −CH

p

2i
=

R∑
r=1

Im dprmrm
H
r .

Since vec(mmH) = m∗ ⊗m, we further obtain that

vec(Re Cp)
T =

[Re dp1 . . .Re dpR][m∗1 ⊗m1 . . .m
∗
R ⊗mR]T ,

vec(Im Cp)
T =

[Im dp1 . . . Im dpR][m∗1 ⊗m1 . . .m
∗
R ⊗mR]T .

Hence, the P equations in (8) can be rewritten as Y = ABT ,
where

Y =

[vec(Re C1) . . . vec(Re CP ) vec(Im C1) . . . vec(Im CP )]T ,

A =

[
D+D∗

2
D−D∗

2i

]
∈ RK×R, K = 2P, and

B = [m∗1 ⊗m1 . . . m∗R ⊗mR] ∈ RN×R, N = I2.

Now we choose l, ζ, pn, qn, and f such that the columns of
B are of the form (3). Note that the trivial parameterization

1Our derivation of a matrix version of (8) is similar to the derivation in
[17, Subsection 5.2].
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b(ζ) = ζ∗⊗ ζ with ζ ∈ CI is not of the form (3) because of
the conjugation. However, since for m = Re m + i Im m,

m∗ ⊗m = (Re m− i Im m)⊗ (Re m + i Im m),

the parameterization

b(ζ) =([ζ1 . . . ζI ]
T − i[ζi+1 . . . ζ2I ]

T⊗
([ζ1 . . . ζI ]

T + i[ζi+1 . . . ζ2I ]
T ), ζ ∈ Rl

with l = 2I , is of the form (3). As a matter of fact, each
component of b(ζ) is a polynomial pn in ζ1, . . . , ζl, 1 ≤ n ≤
N , so we can set f(ζ) = ζ, and q1(ζ) = · · · = qN (ζ) = 1.

It is clear that the matrix A can be parameterized indepen-
dently of B by m = 2PR real parameters, namely, by the
entries of the P × R matrices D+D∗

2 and D−D∗

2i . Thus, the
equations in (8) can be rewritten as decomposition (5) with
z ∈ Ω = Rn, where n = m+ s = 2PR+ lR = 2PR+ 2IR.
Moreover, one can easily verify that (8) has a unique solution
if and only if decomposition (5) is unique. In turn, since,
obviously, (10) is equivalent to

µn {(vec((D + D∗)/2), vec((D−D∗)/2i),

Re m1, Im m1, . . . ,Re mR, Im mR) :

solution of (8) is not unique} = 0,

it follows that (10) can be rewritten as (6).
(ii) To prove (6) we check assumptions 1–6 in Theorem

1. Assumption 1: it is clear that if D is generic, then, by
the assumption 2P ≥ R, the matrix A has full column rank.
Assumptions 2–3 are trivial since f is the identity mapping.
Assumption 4: since the rank-1 matrices of the form mmH

span the whole space of I×I matrices and b(Re m, Im m) =
vec(mmH) it follows that assumption 4 holds for N̂ = I2.
Assumption 5: an elementary computation shows that for a
generic ζ, J(r,x)[xI+1 . . . x2I −x1 . . . −xI ] = 0, implying
that rank (J(r,x)) ≤ l − 1, so we set l̂ = l − 1. Assumption
6: since N̂ − l̂ = I2−2I+ 1, assumption 6 holds by (9) since
λr(ζ) = λb(ζ) = b(

√
λζ) = r(

√
λζ).

Now we consider the case τ1 = 0. The only difference with
the case τ1 6= 0 is that the diagonal matrix D1 = E(sts

H
t+τ1)

is real, yielding that (8) can be parameterized by R real and
IR+ (P − 1)R complex parameters, or equivalently, by n =
R+ 2IR+ 2(P − 1)R real parameters.

Theorem 3. Assume that τ1 = 0 and R ≤ min(2P − 1, (I −
1)2). Then (8) has a unique solution for generic real matrix
D1 and generic complex matrices M and D2, . . . ,DP , i.e.,

µn

{
d11, . . . , d1R,

(
vec((D + D

∗
)/2), vec((D−D

∗
)/2i),

Re m1, Im m1, . . . ,Re mR, Im mR) :

solution of (8) is not unique} = 0,

where D ∈ C(P−1)×R denotes a matrix with entries dpr (p >
1), n = (2I+2P −1)R, and µn is a measure that is a.c. with
respect to the Lebesgue measure on Rn .

Proof. The proof is essentially the same as that of Theorem
2.

TABLE I
UPPER BOUNDS ON THE NUMBER OF SOURCES IN SOBI

I 3 4 5 6 7 8 9

Theorem 2 F = C 4 9 16 25 36 49 64

[11, Eq. (15)] F = C 4 9 14 21 30 40 51

[8, Proposition 1.11] F = R* 3 6 10 15 21 28 36
*or F = C if the superscript “H” in (8) is replaced by the superscript “T ”

Assuming that R ≤ P , we check up to which value of
R condition (9) in Theorem 2 and conditions R(R − 1) ≤
I2(I − 1)2/2 in [11] and R ≤ (I2 − I)/2 in [8] hold. The
results are shown in Table I. Note that under the condition in
[11] the mixing matrix M can be found from an eigenvalue
decomposition in the exact case. Hence, it is not surprising
that this condition is more restrictive. The condition in [8]
is more restrictive since, if Dp is complex, the unsymmetric
matrix MDpM

H has more distinct entries than the complex
symmetric matrix MDpM

T .

IV. AN APPLICATION IN DETERMINISTIC SIGNAL
SEPARATION USING MILD SOURCE MODELS

A. Context and contribution

We have recently proposed tensor-based algorithms for the
deterministic blind separation of signals that can be modeled
as exponential polynomials (i.e., sums and/or products of
exponentials, sinusoids and/or polynomials) [18] or as rational
functions [19]. These signal models are meant to be little
restrictive; on the other hand, they enable a unique source
separation under certain conditions. The approach is somewhat
related to sparse modelling [1]. In sparse modelling, matrix
M in (1) is known but has typically more columns than rows
while most of the entries of S are zero. That is, the nonzero
entries of S make sparse combinations of the columns of M
(called the “dictionary”) to model X. The uniqueness of the
model depends on the degree of linear independence of the
columns of M and the degree of sparsity of the rows of S
[1]. In [18], [19] on the other hand, the basis vectors are
estimated as well, by optimization over continuous variables.
By way of example, in the case of sparse modelling of a
sine wave, the columns of M could be chosen as sampled
versions of sin((ω0 + k∆ω)t) for a number of values k (say
k = −K, . . . ,−1, 0, 1, . . . ,K so that R = 2K+1), and ω0 and
∆ω are fixed. On the other hand, in [18] one optimizes over
a continuous variable ω to determine the best representation
sin(ωt); in this way the accuracy is not bounded by ∆ω.

In [18], [19] deterministic uniqueness conditions are given
for exponential polynomial and rational source models. Here,
we propose generic uniqueness conditions for the case that the
mixing matrix has full column rank.

We actually consider a more general family of models,
namely we assume that the source signals s1(t), . . . , sR(t)
can be modeled as the composition of a known multivariate
rational function and functions of the type t, cos(ωt + φ),
sin(ωt+ φ), and at. We assume that the discrete-time signals
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are obtained by sampling at the points t = 1, . . . , N . The
observed data are a mixture of the sources:

X = M

s1(1) . . . s1(N)
...

...
...

sR(1) . . . sR(N)

 = MST . (11)

B. An example
To simplify the presentation we will consider the concrete

case where the source signals can be modelled as

sr(t) =
atr
t

+
br + t

cr + t
cos(αrt+φr) + cos(βrt), t ∈ R (12)

for a priori unknown parameters ar, br, cr, αr, φr and βr. That
is, sr(t) is the composition of the known rational function

R(x1, . . . , x6) =
x1
x2

+
x3 + x2
x4 + x2

x5 + x6

and the functions x1(t) = atr, x2(t) = t, x3(t) = br, x4(t) =
cr, x5(t) = cos(αrt+φr), and x6 = cosβrt. The general case
can be studied similarly.

In the remaining part of this subsection we show that if (i)
R ≤ N − 6, (ii) the parameters ar, br, cr, αr, φr, and βr are
generic, and (iii) the mixing matrix M has full column rank,
then the mixing matrix and the sources s1(t), . . . , sR(t) can
be uniquely recovered.

We rewrite (11) as matrix decomposition (5). We set Y = X
and A(z) = M. It is clear that the signals in (12) can be
parameterized as

s(t) =
ζt1
t

+
ζ2 + t

ζ3 + t
cos(ζ4t+ ζ5) + cos(ζ6t), t ∈ R, (13)

where ζ = [ζ1 . . . ζ6]T = [a b c α φ β]T , so we set b(ζ) =
[s(1) . . . s(N)]T . First, we bring b(ζ) into the form (3). Then
we will check assumptions 1–6 in Theorem 1.

The following identities are well-known:

cos ζ =
1− tan2 ζ

2

1 + tan2 ζ
2

, sin ζ =
2 tan ζ

2

1 + tan2 ζ
2

. (14)

We will need the following generalization of (14).

Lemma 4. There exist a polynomial Pn and rational functions
Qn and Rn such that

cos ζn = Pn(cos ζ) = Qn

(
tan

ζ

2

)
, (15)

sin ζn = Rn

(
tan

ζ

2

)
. (16)

Proof. See Appendix B.

From (13) and Lemma 4 it follows that

s(n) =
ζn1
n

+
ζ2 + n

ζ3 + n
cos(ζ4n+ ζ5) + cos(ζ6n) =

ζn1
n

+
ζ2 + n

ζ3 + n
(cos ζ4n cos ζ5 − sin ζ4n sin ζ5) + cos(ζ6n) =

ζn1
n

+
ζ2 + n

ζ3 + n

(
Qn

(
tan

ζ4
2

)
1− tan2 ζ5

2

1 + tan2 ζ5
2

−

Rn

(
tan

ζ4
2

)
2 tan ζ5

2

1 + tan2 ζ5
2

)
+ Pn(cos ζ6) =

pn(f(ζ))

qn(f(ζ))
,

where

pn(x)

qn(x)
=
xn1
n

+
x2 + n

x3 + n

(
Qn(x4)

1− x25
1 + x25

−

Rn(x4)
2x5

1 + x5

)
+ Pn(x6),

f(ζ1, ζ2, ζ3, ζ4, ζ5, ζ6) = [ζ1 ζ2 ζ3 tan
ζ4
2

tan
ζ5
2

cos ζ6]T .

Thus, b(ζ) = [s(1) . . . s(N)]T is of the form (3) and l =
6. Now we check assumptions 1–6 in Theorem 1: 1) holds
by our assumption (iii); 2) and 3) are trivial; 4) holds for
N̂ = N since the vectors b(ζ1, ζ2, . . . , ζ6)−b(0, ζ2, . . . , ζ6) =

[ ζ11 . . .
ζN1
N ]T span the entire space FN ; 5) holds for l̂ = l = 6;

6) holds by assumption (i).

C. Separation of exponential polynomials and separation of
rational functions

The cases where the sources in (11) can be expressed as
sampled exponential polynomials

s(n) =

F∑
f=1

(p0f + p1fn+ · · ·+ pdffn
df )anf =

F∑
f=1

Pf (n)anf , n = 1, . . . , N

(17)

and sampled rational functions

s(n) =
a0 + a1n+ · · ·+ apn

p

b0 + b1n+ · · ·+ bqnq
, n = 1, . . . , N (18)

were studied in [18] and [19], respectively.
The following two theorems complement results on generic

uniqueness from [18] and [19]. In contrast to papers [18] and
[19] we do not exploit specific properties of Hankel or Löwner
matrices in our derivation. We only use the source models
(17)–(18) for verifying the assumptions in Theorem 1.

Theorem 5. Assume that the mixing matrix M has full column
rank and that

R ≤ N − (d1 + . . . dF + 2F ), (19)

then M and R generic sources of form (17) can be uniquely
recovered from the observed data X = MST .

Proof. We set

ζ = [a1 p01 . . . pd11 . . . aF p0F . . . pdFF ]T ∈ Fl,
l = (2 + d1) + · · ·+ (2 + dF ) = d1 + · · ·+ dF + 2F

and check the assumptions in Theorem 1 for Y = X, A(z) =
M and b(ζ) = [s(1) . . . s(N)]T : 1)–3) are trivial; 4) since
the vectors b(ζ, 1, 0, . . . , 0) = [ζ . . . ζN ]T span the entire
space FN , we set N̂ = N ; 5) we set l̂ = l; 6) holds by (19)
since Range(r) is invariant under scaling.

Theorem 6. Assume that the mixing matrix M has full column
rank, q ≥ 1, and that

R ≤ N − (p+ q + 1), (20)
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then M and R generic sources of form (18) can be uniquely
recovered from the observed data X = MST .

Proof. We set

ζ = [a0 . . . ap b0 . . . bq]
T ∈ Fl, l = p+ q + 2

and check the assumptions in Theorem 1 for Y = X, A(z) =
M and r(ζ) = b(ζ) = [s(1) . . . s(N)]T : 1)–3) are trivial;
4) since an N × N matrix with (k + 1)th column (for k =
0, . . . , N − 1) given by

b(1, 0, . . . , 0︸ ︷︷ ︸
p+1

, k, 1, 0, . . . , 0) = [(k + 1)−1 . . . (k +N)−1]T ,

is nonsingular [20, p. 38], we set N̂ = N ; 5) an elementary
computation shows that for a generic x, J(r,x)x = 0,
implying that rank(J(r,x)) ≤ l − 1, so we set l̂ = l − 1; 6)
holds by (20) since Range(r) is invariant under scaling.

We assume that the matrix M is generic and compare the
bounds in Theorem 5 and Theorem 6 with the generic bounds
in [18] and [19], respectively. Since M is generic, it has
full column rank if and only if R ≤ K. Thus, we compare
the bound R ≤ min(N − (d1 + . . . dF + 2F ),K) with the
bound R(d1 + . . . dF + F ) ≤ bN+1

2 c, 2 ≤ K in [18], and
the bound R ≤ min(N − (p + q + 1),K) with the bound
R ≤ 1

max(p,q)b
N+1
2 c, 2 ≤ K in [19]. On one hand, the

bounds in [18] and [19] can be used in the undetermined case
(2 ≤ K), while our bounds work only in the overdetermined
case (R ≤ K). On the other hand, roughly speaking, our
bounds are of the form R ≤ N − c while the bounds in [18]
and [19] are of the form R ≤ N/c, where c is the number
of parameters that describe a generic signal. In this sense our
new uniqueness conditions are significantly more relaxed.

V. CONCLUSION

Borrowing insights from algebraic geometry, we have pre-
sented a theorem that can be used for investigating generic
uniqueness in BSS problems that can be formulated as a par-
ticular structured matrix factorization. We have used this tool
for deriving generic uniqueness conditions in (i) SOBIUM-
type independent component analysis and (ii) a class of
deterministic BSS approaches that rely on parametric source
models. In a companion paper we will use the tool to obtain
generic results for structured tensor and coupled matrix/tensor
factorizations.

APPENDIX A
PROOF OF THEOREM 1

In this appendix we consider the decomposition

Y = ABT =

R∑
r=1

arb
T
r , br ∈ S, (21)

where the matrix A has full column rank and S denotes a
known subset of FN .

In Theorem 7 below, we present two conditions that guar-
antee the uniqueness of decomposition (21). These conditions
will be checked in the proof of Theorem 1 for generic points

in S = {b(ζ) : q1(f(ζ)) · · · qN (f(ζ)) 6= 0}, where b(ζ) is
defined in (3). The latter proof is given in Subsection A-C. The
step from the deterministic formulation in Subsection A-A to
the generic result in Subsection A-C is taken in Subsection
A-B.

A. A deterministic uniqueness result

Theorem 7. Assume that
1) the matrix A has full column rank;
2) the columns b1, . . . ,bR of the matrix B satisfy the

following condition:

if at least two of the values λ1, . . . , λR ∈ F
are nonzero, then λ1b1 + · · ·+ λRbR 6∈ S.

(22)

Then decomposition (21) is unique.

Proof. We need to show that if there exist A and B such that

Y = ABT =

R∑
r=1

arb
T
r , br ∈ S (23)

then decompositions (21) and (23) coincide up to permutation
of the rank-1 terms.

First we show that assumption 2 implies that B has full
column rank. Assume that there exist λ1, . . . , λR for which
λ1b1 + · · ·+λRbR = 0, such that at least one of these values
being nonzero would imply that B does not have full column
rank.

Then for any µ 6∈ {0,−λ1}, λ1+µ
µ b1+ λ2

µ b2+· · ·+ λR

µ bR =
b1 ∈ S. Hence, by assumption 2, at most one of the values
λ1 + µ, λ2, . . . , λR is nonzero. Since µ 6= −λ1, we have that
λ2 = . . . λR = 0. Since λ1b1 = λ1b1 + · · · + λRbR = 0,
it follows that λ1 = 0 or b1 = 0. One can easily verify that
b1 = 0 is in contradiction to assumption 2. Hence λ1 = 0.
Thus the matrix B has full column rank.

Since the matrices A and B have full column rank, it
follows from the identity

Y = ABT = ABT (24)

that the matrices A and B also have full column rank. Hence,

A†ABT = BT (25)

where A† =
(
AHA

)−1
AH denotes the left inverse of A.

By assumption 2, each row of the matrix A†A contains at
most one nonzero entry. Since the matrices B and B have
full column rank, the square matrix A†A is nonsingular.
Thus, each row and each column of A†A contains exactly
one nonzero entry. Hence there exist an R × R nonsingular
diagonal matrix Λ and an R×R permutation matrix P such
that A†A = ΛP. From (25) it follows that

ΛPBT = A†AB = BT . (26)

Substituting (26) into (24) and taking into account that the
matrix B has full column rank we obtain

APTΛ−1 = A. (27)

Equations (26)–(27) imply that decompositions (21) and (23)
coincide up to permutation of the rank-1 terms.
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Theorem 7 has already been proved for the particular cases
where decomposition (21) represents the CPD of a third-order
tensor [21, Section IV], the CPD of a partially symmetric of
order higher than three [22, Theorem 4.1], the CPD of an
unstructured tensor of order higher than three [23, Theorem
4.2], and the decomposition in multilinear rank-(L,L, 1) terms
[18, Theorem 2.4].

B. A generic variant of assumption 2 in Theorem 7

Condition (22) means that the subspace span{b1, . . . ,bR}
has dimension R and may intersect the set S only at “trivial”
points λrbr, that is

the vectors b1, . . . ,bR are linearly independent and (28)
span{b1, . . . ,bR} ∩ S ⊆ {λbr : λ ∈ F, 1 ≤ r ≤ R}. (29)

Property (29) is the key to proving uniqueness of (21). We
can easily find span{b1, . . . ,bR} from the matrix Y if it
can be assumed that the matrix A has full column rank.
On the other hand, property (29) means that the only points
in span{b1, . . . ,bR} that have the hypothesized structure
(encoded in the definition of the set S), are the vectors br,
1 ≤ r ≤ R (up to trivial indeterminacies). However, conditions
(22) and (29) are most often hard to check for particular points
b1, . . . ,bR. The checking may become easier if we focus on
the generic case, and this is where algebraic geometry comes
in. More precisely, if S = V is an algebraic variety, then the
classical trisecant lemma states that if R is sufficiently small,
then (29) holds for “generic” b1, . . . ,bR ∈ S. A set V ⊆ CN
is an algebraic variety if it is the set of solutions of a system of
polynomial equations. It is clear that algebraic varieties form
an interesting class of subsets of CN ; however, is not easy to
verify whether a given subset of CN is a variety or not. On
the other hand, it is known that a set obtained by evaluating
a known rational vector-function (such as r(x) in (7)) can be
extended to a variety by taking the closure, i.e., by including
its boundary. This is indeed what we will do in the proof
of Lemma 9 below. First we give a formal statement of the
trisecant lemma.

Lemma 8. ( [24, Corollary 4.6.15], [25, Theorem 1.4]) Let
V ⊂ CN be an irreducible algebraic variety and R ≤
dim span{V } − dimV or R ≤ dim span{V } − dimV − 1
depending on whether V is invariant under scaling or not.
Let GV denote a set of points (v1, . . . ,vR) such that

span{v1, . . . ,vR} ∩ V 6⊂ {λvr : λ ∈ C, 1 ≤ r ≤ R}.

Then the Zariski closure of GV is a proper subvariety of
V × · · · × V (R times), that is, there exists a polynomial
h(v1, . . . ,vR) in RN variables whose zero set does not
contain V × · · · × V but does contain GV .

It is the last sentence in the trisecant lemma that makes it
a powerful tool for proving generic properties. Let us explain
in more detail how this works. We can use GV to denote a
set that poses problems in terms of uniqueness, in the sense
that span{v1, . . . ,vR} does not intersect V only in the points
that correspond to the pure sources. The trisecant lemma states
now that GV belongs to the zero set of a polynomial h that

is not identically zero and hence nonzero almost everywhere,
i.e. the problematic cases occur in a measure-zero situation.
In order to make the connection with Theorem 1 we will need
the following notations:

Range(b) :={b(ζ) : q1(f(ζ)) · · · qN (f(ζ)) 6= 0, ζ ∈ Fl},
Range(r) :={r(x) : q1(x) · · · qN (x) 6= 0, x ∈ Fl}.

Lemma 9. Let assumptions 2–6 in Theorem 1 hold. Then
assumption 2 in Theorem 7 holds for S = Range(b) and b1 =
b(ζ1), . . . ,bR = b(ζR) ∈ S, where the vectors ζ1, . . . , ζR ∈
Fl are generic.

Proof. Since (28)–(29) is equivalent to (22) it is sufficient to
show that µRl(Wb) = µRl(Gb)=0, where

Wb = {[ζT1 . . . ζTR ]T : b1 = b(ζ1), . . . ,bR = b(ζR)

are linearly dependent},
Gb = {[ζT1 . . . ζTR ]T : (29) does not hold for

b1 = b(ζ1), . . . ,bR = b(ζR)}.

It is a well-known fact that the zero set of a nonzero analytic
function on CRl has measure zero both on CRl and RRl. Thus,
to prove µRl(Wb) = µRl(Gb)=0, we will show that there exist
analytic functions w and g of Rl complex variables such that

w is not identically zero but vanishes on Wb, (30)
g is not identically zero but vanishes on Gb. (31)

We consider the following three cases: 1) F = C and f(ζ) = ζ;
2) F = C and f(ζ) is arbitrary; 3) F = R.

1) Case F = C and f(ζ) = ζ. In this case b(ζ) = r(ζ),
thus, the sets Wb and Gb take the following form:

Wb = Wr = {[ζT1 . . . ζTR ]T : b1 = r(ζ1), . . . ,bR = r(ζR)

are linearly dependent},
Gb = Gr = {[ζT1 . . . ζTR ]T : (29) does not hold for
S = Range(r) and b1 = r(ζ1), . . . ,bR = r(ζR)}.

Here we prove that there exist polynomials dnum and hnum
in Rl variables such that (30)–(31) hold for w = dnum and
g = hnum.

First we focus on Gr. Let V denote the Zariski closure of
Range(r) ⊂ CN . Since Range(r) is the image of the open
(hence irreducible) subset {ζ : q1(ζ) · · · qN (ζ) 6= 0, ζ ∈ Cl}
under the rational map

r : ζ 7→
[
p1(ζ)

q1(ζ)
, . . . ,

pN (ζ)

qN (ζ)

]T
,

it follows that Range(r) is also an irreducible set. Hence V ⊂
CN is an irreducible variety and the dimension of V is equal
to rank J(r, ζ) at a generic point ζ ∈ Cl [26, p. 186]. Hence,
by assumption 5 in Theorem 1,

dimV ≤ l̂. (32)

Since, by definition, Range(r) consists of all vectors of the
form (7), from assumption 4 in Theorem 1 it follows that

dim span Range(r) =

dim span{r(ζ) : q1(ζ) · · · qN (ζ) 6= 0, ζ ∈ Cl} ≥ N̂ .
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Since V ⊇ Range(r), it follows that

dim spanV ≥ dim span Range(r) ≥ N̂ . (33)

Thus, by assumption 6 in Theorem 1 and (32)–(33),

R ≤ N̂ − l̂ ≤ dim spanV − dimV.

Thus, we have shown that V satisfies the assumptions
in Lemma 8. Let now the set GV and the polynomial
h(v1, . . . ,vR) be as in Lemma 8. Since V is the Zariski
closure of Range(r), it follows that V × · · · × V is the
Zariski closure of Range(r) × · · · × Range(r). Since, by
Lemma 8, the zero set of h(v1, . . . ,vR) does not contain
V × · · · × V , it follows that the zero set of h(v1, . . . ,vR)
does not contain Range(r) × · · · × Range(r). Hence, there
exist ζ0

1 , . . . , ζ
0
R ∈ Cl such that h(r(ζ0

1), . . . , r(ζ0
R)) 6= 0. On

the other hand, since Range(r) is a subset of V , from the
definitions of Gr and GV it follows that

(r(ζ1), . . . , r(ζR)) ∈ GV for all [ζT1 . . . ζTR ]T ∈ Gr.

Hence, by Lemma 8,

h(r(ζ1), . . . , r(ζR)) = 0 for all [ζT1 . . . ζTR ]T ∈ Gr. (34)

Since the function h(r(ζ1), . . . , r(ζR)) is a composition of
the polynomial h in RN variables and RN rational functions
p1(ζ1)
q1(ζ1)

, . . . , pN (ζR)
qN (ζR) , it follows that h(r(ζ1), . . . , r(ζR)) can

be written as a ratio of two polynomials in the entries of
ζ1, . . . , ζR,

h(r(ζ1), . . . , r(ζR)) =
hnum(ζ1, . . . , ζR)

hden(ζ1, . . . , ζR)
. (35)

By (34)–(35), hnum vanishes on Gr and is not identically zero.
That is, (31) holds for g = hnum.

Now we focus on Wr. By assumption 6 in Theorem
1, N̂ ≥ R + l̂, so assumption 4 implies that there exist
ζ0
1 , . . . , ζ

0
R ∈ Cl such that the vectors r(ζ0

1), . . . , r(ζ0
R) are

linearly independent. Hence there exists an R ×R submatrix
Rsub(ζ1, . . . , ζR) of [r(ζ1) . . . r(ζR)] whose determinant
d(ζ1, . . . , ζR) is not zero at the point (ζ0

1 , . . . , ζ
0
R). On the

other hand, d(ζ1, . . . , ζR) vanishes on Wr by definition. Since
a determinant is a multivariate polynomial, and since the en-
tries of Rsub(ζ1, . . . , ζR) are rational functions of ζ1, . . . , ζR,
d(ζ1, . . . , ζR) can be written as a ratio of two polynomials
dnum and dden in the entries of ζ1, . . . , ζR. It is clear that
dnum(ζ0

1 , . . . , ζ
0
R) 6= 0 and that dnum vanishes on Wr. That

is, (30) holds for w = dnum.
2) Case F = C and f(ζ) is arbitrary. We restrict ourselves

to the case Gb. Namely, we use the polynomial hnum and
the function f to construct an analytic function g = unum in
Rl variables that satisfies (31). The function w that satisfies
(30) can be constructed in the same way as g but from the
polynomial dnum and the function f .

First we prove the existence and analyticity of g. From the
definitions of Gb and Gr it follows that if (ζ1, . . . , ζR) ∈ Gb,
then (f(ζ1), . . . , f(ζR)) ∈ Gr. Hence, by case 1 above and
assumption 2 in Theorem 1, the set Gb is contained in the
zero set of the function
u(ζ1, . . . , ζR) = hnum (f(ζ1), . . . , f(ζR)) =

hnum

(
f1,num(ζ1)

f1,den(ζ1)
, . . . ,

fl,num(ζR)

fl,den(ζR)

)
.

(36)

Since hnum is a polynomial, the function u can be represented
as a ratio u = unum/uden, where the functions unum and uden
are defined on the whole space CRl. Since both unum and
uden consist of the composition of some polynomials and 2Rl
functions f1,num(ζ1), f1,den(ζ1), . . . , fl,num(ζR), fl,den(ζR)
which are analytic on CRL, it follows that unum and uden
are analytic on CRL [27, p. 6]. We set g = unum. It is clear
that g vanishes on Gb.

Now we prove that g is not identically zero. Since u =
g/uden, it is sufficient to show that u is not zero at some point.
Let ζ0 be a point as in assumption 3 in Theorem 1. Then,
by the inverse function theorem, there exists a neighborhood
N (ζ0, ε) ⊂ Fl of the point ζ0 such that for any p ∈ N (ζ0, ε)
the equation f(ζ) = p has the solution ζ = f−1(p).
Hence the equation (f(ζ1), . . . , f(ζR)) = (p1, . . . ,pR)
has the solution (ζ1, . . . , ζR) = (f−1(p1), . . . , f−1(pR))
for all (p1, . . . ,pR) ∈ N (ζ0, ε) × · · · × N (ζ0, ε). Since
µRl(N (ζ0, ε) × · · · × N (ζ0, ε)) = µl(N (ζ0, ε))R > 0 [28,
Theorem B, p.144] and, by step 1), hnum is not identically
zero, there exists a point (p0

1, . . . ,p
0
R) ∈ N (ζ0, ε) × · · · ×

N (ζ0, ε) such that hnum(p0
1, . . . ,p

0
R) 6= 0. Hence, by (36),

u(f−1(p0
1), . . . , f−1(p0

R)) = hnum(p0
1, . . . ,p

0
R) 6= 0. That is,

(31) holds for g = unum.
3) Case F = R. To distinguish between the complex and the

real case we denote Gb and Wb in case 3 by Gb,R and Wb,R,
respectively. Similarly, the sets Gb and Wb considered in case
2, i.e. for F = C, are denoted by Gb,C and Wb,C, respectively.
Let gC = unum and wC = w denote the analytic functions
constructed in case 2. Then gC and wC are not identically
zero and gC vanishes on Gb,C and wC vanishes on Wb,C.

Since Wb,R is a subset of Wb,C, it follows that wC vanishes
on Wb,R. Thus, (30) holds for w = wC.

It has not been proven that set Gb,R is a subset of Gb,C
but in any case Gb,R = (Gb,R ∩Gb,C) ∪ (Gb,R \Gb,C). We
show that (31) holds for g = gC · wC. Indeed, by case 2,
gC and hence g = gCwC vanish on Gb,C ⊇ Gb,R ∩ Gb,C.
On the other hand, if [ζT1 . . . ζTR ]T ∈ Gb,R \ Gb,C, then
there exist λ1, . . . , λR ∈ R, λ ∈ C \ R and r ∈ {1, . . . , R}
such that λ1b(ζ1) + · · · + λRb(ζR) = λb(ζr), yielding that
[ζT1 . . . ζTR ]T ∈ Wb,C. Thus, Gb,R \ Gb,C ⊆ Wb,C and wC
vanishes on Gb,R \Gb,C as well. That is, (31) holds for g =
gCwC.

C. Proof of Theorem 1

We show that for a generic z ∈ Ω that satisfies the
conditions in Theorem 1, conditions 1–2 in Theorem 7 are
also satisfied for

A = A(z), S = {b(ζ) : q1(f(ζ)) · · · qN (f(ζ)) 6= 0}, and
b1 = b(ζ1), . . . ,bR = b(ζR),

where, by our notational convention from Subsection I-C, the
vectors ζ1, . . . , ζR are such that [ζT1 . . . ζTR ]T coincides with
the last s = Rl entries of z ∈ Ω. The generic uniqueness that
we want to prove in Theorem 1, then follows from Theorem
7. We have the following.

1) Condition 1 of Theorem 7 holds for generic z ∈ Ω by
assumption 1 in Theorem 1.



10

2) By Lemma 9, condition 2 of Theorem 7 holds for generic
ζ1, . . . , ζR ∈ Fl, or equivalently, for generic [ζT1 . . . ζTR ]T ∈
Fs. Hence, condition 2 of Theorem 7 holds for generic z ∈
Ω. (Indeed, if Ω̃ denotes a set of points z ∈ Ω such that
condition 2 of Theorem 7 does not hold and πs denotes the
projection onto the last s coordinates of Fn, then, by Lemma
9, µs{πs(Ω̃)} = 0, which implies [28, Theorem B, p.144] that
µn{Ω̃} = 0.)

APPENDIX B
PROOF OF LEMMA 4

We use the fact that cosnζ and sinnζ
sin ζ are polynomials in

cos ζ [29, p. 642]:

cosnζ =

bn/2c∑
k=0

C2k
n (cos2 ζ − 1)k cosn−2k ζ = Pn(cos ζ),

sinnζ

sin ζ
=

b(n−1)/2c∑
k=0

C2k+1
n (cos2 ζ − 1)k cosn−2k−1 ζ,

where bxc denotes the integer part of x. Substituting (14) into
these equations we obtain that there exist rational functions
Rn and Qn such that (15)–(16) hold.

ACKNOWLEDGMENT

The authors wish to thank Giorgio Ottaviani and Ed Dewey
for their assistance in algebraic geometry.

REFERENCES

[1] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of
systems of equations to sparse modeling of signals and images,” SIAM
Rev., vol. 51, no. 1, pp. 34–81, 2009.

[2] A.-J. van der Veen and A. Paulraj, “An analytical constant modulus
algorithm,” IEEE Trans. Signal Process., vol. 44, no. 5, pp. 1136–1155,
May 1996.

[3] R. Roy and T. Kailath, “ESPRIT—Estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, 1989.

[4] R. Hermann and C. F. Martin, “Applications of algebraic geometry to
systems theory–Part I,” IEEE Trans. Autom. Control, vol. 22, no. 1, pp.
19–25, 1977.

[5] C. Martin and R. Hermann, “Applications of algebraic geometry to sys-
tems theory, part ii: Feedback and pole placement for linear hamiltonian
systems,” Proc. IEEE, vol. 65, no. 6, pp. 841–848, June 1977.

[6] A. Cichocki, D. Mandic, C. Caiafa, A.-H. Phan, G. Zhou, Q. Zhao,
and L. De Lathauwer, “Tensor decompositions for signal processing
applications. From two-way to multiway component analysis,” IEEE
Signal Process. Mag., vol. 32, pp. 145–163, March 2015.

[7] P. Comon, “Tensors : A brief introduction,” IEEE Signal Process. Mag.,
vol. 31, no. 3, pp. 44–53, 2014.

[8] I. Domanov and L. De Lathauwer, “Generic uniqueness conditions for
the canonical polyadic decomposition and INDSCAL,” SIAM J. Matrix
Anal. Appl., vol. 36, no. 4, pp. 1567–1589, 2015.

[9] S. Krantz, Function Theory of Several Complex Variables.Reprint of the
1992 edition. AMS Chelsea Publishing, Providence, RI, 2001.

[10] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE
Trans. Signal Process., vol. 45, no. 2, pp. 434–444, Feb 1997.

[11] L. De Lathauwer and J. Castaing, “Blind identification of underdeter-
mined mixtures by simultaneous matrix diagonalization,” IEEE Trans.
Signal Process., vol. 56, no. 3, pp. 1096–1105, March 2008.

[12] D.-T. Pham and J.-F. Cardoso, “Blind separation of instantaneous
mixtures of nonstationary sources,” IEEE Trans. Signal Process., vol. 49,
no. 9, pp. 1837–1848, Sep 2001.

[13] A. Yeredor, “Non-orthogonal joint diagonalization in the least-squares
sense with application in blind source separation,” IEEE Trans. Signal
Process., vol. 50, no. 7, pp. 1545–1553, Jul 2002.

[14] ——, “Blind source separation via the second characteristic function,”
Signal Processing, vol. 80, no. 5, pp. 897–902, 2000.

[15] P. Comon and C. Jutten, Eds., Handbook of Blind Source Separation,
Independent Component Analysis and Applications. Academic Press,
Oxford, UK, 2010.

[16] A. Stegeman, J. Ten Berge, and L. De Lathauwer, “Sufficient conditions
for uniqueness in CANDECOMP/PARAFAC and INDSCAL with ran-
dom component matrices,” Psychometrika, vol. 71, no. 2, pp. 219–229,
June 2006.

[17] M. Sørensen and L. De Lathauwer, “New Uniqueness Conditions for
the Canonical Polyadic Decomposition of Third-Order Tensors,” SIAM
J. Matrix Anal. Appl., vol. 36, no. 4, pp. 1381–1403, 2015.

[18] L. De Lathauwer, “Blind Separation of Exponential Polynomials and
the Decomposition of a Tensor in Rank-(Lr, Lr, 1) Terms,” SIAM J.
Matrix Anal. Appl., vol. 32, no. 4, pp. 1451–1474, 2011.

[19] O. Debals, M. Van Barel, and L. De Lathauwer, “Löwner-based blind
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