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THE SUPPORTING HALFSPACE - QUADRATIC

PROGRAMMING STRATEGY FOR THE DUAL OF

THE BEST APPROXIMATION PROBLEM

C.H. JEFFREY PANG

Abstract. We consider the best approximation problem (BAP) of projecting
a point onto the intersection of a number of convex sets. It is known that Dyk-
stra’s algorithm is alternating minimization on the dual problem. We extend
Dykstra’s algorithm so that it can be enhanced by the SHQP strategy of using
quadratic programming to project onto the intersection of supporting halfs-
paces generated by earlier projection operations. By looking at a structured
alternating minimization problem, we show the convergence rate of Dykstra’s
algorithm when reasonable conditions are imposed to guarantee a dual mini-
mizer. We also establish convergence of using a warmstart iterate for Dykstra’s
algorithm, show how all the results for the Dykstra’s algorithm can be carried
over to the simultaneous Dykstra’s algorithm, and discuss a different way of
incorporating the SHQP strategy. Lastly, we show that the dual of the best
approximation problem can have an O(1/k2) accelerated algorithm that also
incorporates the SHQP strategy.
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1. Introduction

We consider the following problem, known as the best approximation problem
(BAP).
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(BAP ) min f(x) :=
1

2
‖x− d‖2 (1.1)

s.t. x ∈ C := C1 ∩ · · · ∩ Cm,

where d is a given point and Ci, i = 1, . . . , m, are closed convex sets in a Hilbert
space X . The BAP is equivalent to projecting d onto C. We shall assume through-
out that C 6= ∅.

We now recall some background on first order methods, alternating minimization,
and algorithms for the best approximation problem.

1.1. First order methods and alternating minimization. When presented
with a problem with a large number of variables, first order methods (which use
gradient descent and avoid computationally expensive operations like solving linear
systems) and other methods that decompose the large problems into smaller pieces
to be solved may be the only practical alternative.

For these algorithms, the nonasymptotic or absolute rate of convergence of the
function values to the optimal objective value hold right from the very first iteration
of the algorithm, and are more useful than the asymptotic rates. These rates are
typically sublinear, like O(1/k) for example. Classical references on first order
methods include [NY83], and newer references include [Nes04, JN11a, JN11b].

As explained in [NY83, Nes04], the nonasymptotic rates of convergence of first
order algorithms for smooth convex functions is at best O(1/k2). Nesterov proposed
various O(1/k2) nonasymptotic methods (which are thus optimal) for such problems
(first method [Nes83], second method [Nes88] and third method [Nes05]), and other
optimal methods were studied in [AT06, BT09, LLM11]. The paper [BT09] also
described an O(1/k2) algorithm for solving the sum of a smooth convex function
and a structured nonsmooth function. These optimal methods are also known as
accelerated proximal gradient (APG) methods, and their design and analysis are
unified in the paper [Tse08] (who also dealt with convex-concave minimization).

An optimization problem with a large number of variables can have its variables
divided into a number of blocks so that each subproblem has fewer variables. These
subproblems are solved in some order (often in a cyclic manner) while the variables
in other blocks are kept fixed. See the formula (2.3) for an elaboration. This is
referred to as alternating minimization (AM), and sometimes referred to Cyclic
Coordinate Minimization (CCM). Another alternative is to perform only gradient
descent on each block, which would reduce to what is described as Cyclic Coordinate
Descent, CCD.

Methods like AM and CCD are quite old. If a function to be minimized were
nonsmooth, then it is possible for the AM and CCD to be stuck at a non-optimal
solution. A O(1/k) rate of convergence for AM of a two block problem was es-
tablished in [Bec15] without any assumption of strong convexity. As mentioned in
[Bec15], AM is also known in the literature as block-nonlinear Gauss–Seidel method
or the block coordinate descent method (see for example [Ber99]). They also state
the other contributions of [Aus76, BT13, Ber99, GS99, LT93].

There has been much recent research on stochastic/ randomized CD. Since we
are not dealing with stochastic CD in this paper, we shall only mention the papers
[Nes12, FR15], and defer to the introduction and tables in [FR15] for a summary
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of stochastic CD. A recent work [CP15] also identifies some cases where the deter-
ministic CD scheme can have an O(1/k2) acceleration.

1.2. The best approximation problem and the method of alternating pro-

jections. The BAP is often associated with the set intersection problem (SIP)

(SIP ) Find x ∈ C := C1 ∩ · · · ∩ Cm.

A well studied method for the SIP is the method of alternating projections (MAP).
We recall material from [BC11, Deu01a, Deu01b, ER11] on material on the MAP.
As its name suggests, the MAP projects the iterates in a cyclic or some other
manner so that the iterates converge to a point in the intersection of these sets.

One acceleration of the MAP for convex problems is the supporting halfspace
and quadratic programming strategy (SHQP): The projection process generates
supporting halfspaces of each Ci, and the set C is a subset of the polyhedron
obtained by intersecting these halfspaces. Projecting onto the polyhedron can ac-
celerate the convergence of the MAP, and may lead to superlinear convergence in
small problems. The SHQP strategy was discussed in [Pan15c]. See Figure 4.1
for an illustration. This idea was discussed in less generality in [BCK06] and other
papers. Other methods of accelerating the MAP include [GPR67, GK89, BDHP03].

As remarked by several authors, the MAP does not converge to the solution
of the BAP. Dykstra’s algorithm [Dyk83] solves the best approximation problem
through a sequence of projections onto each of the sets in a manner similar to
the MAP, but correction vectors are added before every projection. The proof
of convergence to PC(d) was established in [BD85] and sometimes referred to as
the Boyle-Dykstra theorem. Dykstra’s algorithm was rediscovered by [Han88], who
showed that Dykstra’s algorithm is equivalent to AM on the dual problem. See also
[GM89]. When the sets Ci are halfspaces, the convergence is asymptotically linear
[DH94]. A nonasymptotic O(1/k) convergence rate of Dykstra’s algorithm was ob-
tained in [CP15] using the methods similar to [BT13, Bec15] when a dual minimizer
exists. (This does not diminish the significance of the Boyle-Dykstra theorem. In
our opinion, a quick glance at the respective proofs shows that the Boyle-Dykstra
theorem, which proves the convergence to the primal optimal PC(d) even when
a dual minimizer does not exist, is technically more sophisticated than the proof
of the O(1/k) convergence rate of Dykstra’s algorithm when a dual minimizer ex-
ists.) Dykstra’s algorithm is quite old, so we refer the reader to the commentary in
[Deu01b, ER11] for more on previous work on Dykstra’s algorithm.

In contrast to the situation for the MAP, not much has been done on accelerating
Dykstra’s algorithm for the BAP. The question of how to accelerate Dykstra’s
algorithm has been explicitly posed as an open problem in [Deu01b, Deu01a, ER11].
A method was proposed in [LR15]. The only property of Dykstra’s algorithm needed
for their acceleration is that Dykstra’s algorithm generates a sequence converging
to PC(d), so there is still be room for improving Dykstra’s algorithm. See also
[HS15].

A variant of Dykstra’s algorithm that is more suitable for parallel computations
is the simultaneous Dykstra’s algorithm proposed in [IP91] using the product space
formulation of [Pie84].

Some specific best approximation problems can be solved with specialized meth-
ods. The projection of a point into the intersection of halfspaces can be solved by
classical methods of quadratic programming. Other sets for which the projection
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onto the intersection is easy include the intersection of an affine space and the
semidefinite cone [QS06, Mal04].

The subgradient algorithm can be used to solve a convex constrained optimiza-
tion problem with a convergence rate of O(1/

√
k). Hence the BAP can be solved

at a rate of O(1/
√

k). See [Nes04]. In [Pan15b], we obtained a convergence rate
of O(1/k) in the case when the objective function is a strongly convex quadratic
function by adapting a Haugazeau’s algorithm [Hau68] (see also [BC11]), which
is another known method for solving the BAP. We note however that the rate of
O(1/k) in Haugazeau’s algorithm is typical, even when solving a BAP involving
only two halfspaces.

1.3. Contributions of this paper. The main contribution of this paper is to
extend Dykstra’s algorithm so that the SHQP strategy can be incorporated into
Dykstra’s algorithm. (We try to reserve the use of the word “acceleration” to mean
an O(1/k2) algorithm.) See Algorithm 3.1 for our extension of Dykstra’s algorithm.
Recall that the Boyle-Dykstra theorem proves the convergence of Dykstra’s algo-
rithm to the primal solution of the BAP. We prove that the extended Dykstra’s
algorithm also converges to the primal solution of the BAP (even when there is no
dual minimizer).

Next, we show that a commonly occurring regularity assumption guarantees the
existence of a dual minimizer. The existence of such a dual minimizer would, by
the results in [CP15], imply that Dykstra’s algorithm converges at a O(1/k) rate.
This analysis also carries over to our extended Dykstra’s algorithm.

We point out that it is useful to use warmstart solutions for Dykstra’s algorithm
and our extension. While it is recognized that Dykstra’s algorithm is the alter-
nating minimization algorithm on the dual, it appears that every description and
proof of convergence of Dykstra’s algorithm in the literature starts with the de-
fault zero vector. See further discussions in Subsection 2.1. We answer the natural
question of whether Dykstra’s algorithm and our extension converge to the optimal
primal solution with a warmstart iterate by adapting the proof of the Boyle-Dykstra
Theorem [BD85]. See Appendix A.

We show how all these ideas mentioned earlier can be implemented for the si-
multaneous Dykstra’s Algorithm in Section 5. We also explain another way to
incorporate the SHQP strategy on the BAP in Subsection 4.3 that works when a
minimizer to the dual problem exists and is more natural to augment to the APG.
While this strategy is more natural than our extended Dyktra’s algorithm, we were
not able to prove its global convergence using the framework of the Boyle-Dykstra
theorem.

1.4. Notation. Our notation is fairly standard. For a closed convex set D, we let
PD(·) denote the projection onto D. The normal cone of D at a point x ∈ D in the
usual sense of convex analysis is denoted by ND(x). We will let ỹ = (y1, . . . , ym).
When we discuss the extended Dykstra’s algorithm in Section 3, we will need ỹ =
(y1, . . . , ym, ym+1), but this shouldn’t cause too much confusion.

2. Preliminaries: Dykstra’s algorithm

In this section, we recall Dykstra’s algorithm and some results. We also give a
discussion of warmstarting Dykstra’s algorithm.
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Algorithm 2.1. (Warmstart Dykstra’s algorithm) Let X be a Hilbert space. Con-
sider the problem of projecting a point d ∈ X onto C ⊂ X, where C = ∩m

i=1Ci and

Ci are closed convex sets. Choose starting y
(0)
i ∈ X for all i ∈ {1, . . . , m}, and let

x
(0)
m = d− (y

(0)
1 + · · ·+ y

(0)
m ).

01 For k = 1, 2, . . .

02 x
(k)
0 = x

(k−1)
m

03 For i = 1, 2, . . . , m

04 z
(k)
i := x

(k)
i−1 + y

(k−1)
i

05 x
(k)
i := PCi

(z
(k)
i )

06 y
(k)
i := z

(k)
i − x

(k)
i

07 End for
08 End for

Let the vector ỹ ∈ Xm be (y1, . . . , ym), where each yi ∈ X . For each closed
convex set D ⊂ X , let δ∗(·, D) : X → R be defined by δ∗(y, D) = maxx∈D〈y, x〉.
(The function δ∗(·, D) is also the conjugate of the indicator function δ(·, D), thus
explaining our notation.) Define the dual problem (D′) by

(D′) infy1,...,ym
h(y1, . . . , ym) := f(y1 + · · ·+ ym) +

m∑

i=1

δ∗(yi, Ci), (2.1)

where yi ∈ X and the f : X → R is as in (1.1).
We review some easy results on (D′).

Proposition 2.2. Let X be a Hilbert space. Let Ci be closed convex sets in X
for i ∈ {1, . . . , m}, and let C = ∩m

i=1Ci. Let d ∈ X and x̄ = PC(d). Let ỹ =
(y1, . . . , ym). We have the following:

(1) infy1,...,ym
h(y1, . . . , ym) = 1

2‖d‖2 − 1
2‖d− x̄‖2.

(2) Let v : Xm → R be defined by

v(y1, . . . , ym) = 1
2‖d− (y1 + · · ·+ ym)− x̄‖2 +

m∑

i=1
δ∗(yi, Ci − x̄). (2.2)

Then v(ỹ) = h(ỹ)− 〈d, x̄〉+ 1
2‖x̄‖2, and inf ỹ v(ỹ) = 0.

(3) We have v(y1, . . . , ym) ≥ 1
2‖d− (y1 + · · ·+ ym)− x̄‖2.

(4) If (y1, . . . , ym) is a minimizer of v(·) (or equivalently, h(·)), then x̄ = d −
(y1 + · · ·+ ym).

(5) If m = 1, then y1 = d− x̄ is a minimizer of v(·) (or equivalently, h(·)).
Proof. Statement (1) can be obtained from [GM89, pages 32–33]. For Statement
(2), note that

v(ỹ) = 1
2‖d− (y1 + · · ·+ ym)− x̄‖2 +

m∑

i=1

δ∗(yi, Ci − x̄)

= 1
2‖d− (y1 + · · ·+ ym)‖2 − 〈d− (y1 + · · ·+ ym), x̄〉+ 1

2‖x̄‖2

+

[
m∑

i=1

δ∗(yi, Ci)

]

− 〈y1 + · · ·+ ym, x̄〉

= 1
2‖d− (y1 + · · ·+ ym)‖2 − 〈d, x̄〉+ 1

2‖x̄‖2 +

[
m∑

i=1

δ∗(yi, Ci)

]

= h(ỹ)− 〈d, x̄〉+ 1
2‖x̄‖2.
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The rest of Statement (2) is elementary. Statements (3) and (4) follow easily from
the fact 0 ∈ Ci − x̄, which gives δ∗(yi, Ci − x̄) ≥ 〈yi, 0〉 = 0. Statement (5) is
easy. �

As explained in [Han88, GM89] and perhaps other sources, alternating mini-
mization in the order

y
(k)
1 = arg min

y
h(y, y

(k−1)
2 , y

(k−1)
3 , . . . , y(k−1)

m ) (2.3)

y
(k)
2 = arg min

y
h(y

(k)
1 , y, y

(k−1)
3 , . . . , y(k−1)

m )

...

y(k)
m = arg min

y
h(y

(k)
1 , y

(k)
2 , . . . , y

(k)
m−1, y),

leads to the Dykstra’s algorithm as presented in Algorithm 2.1 through Proposition
2.2(5). We also have the following easily verifiable facts:

x
(k)
i = d− y

(k)
1 − · · · − y

(k)
i−1 − y

(k)
i − y

(k−1)
i+1 − · · · − y(k−1)

m (2.4)

and z
(k)
i = d− y

(k)
1 − · · · − y

(k)
i−1 − y

(k−1)
i+1 − · · · − y(k−1)

m (2.5)

2.1. Warmstart Dykstra’s algorithm. It appears that all descriptions and proofs

of convergence of Dykstra’s algorithm use the default starting point y
(0)
i = 0 for

all i ∈ {1, . . . , m}. We saw earlier that Dykstra’s algorithm is alternating mini-
mization on the dual problem with starting point ỹ(0). In particular, the iterates
ỹ(k) are such that {h(ỹ(k))}k is a non-increasing sequence of real numbers to the
dual objective value. One may then choose a starting point ỹ(0) such that h(ỹ(0)) is
closer to the dual objective value than the default starting point of all zeros. There
are several ways to obtain a different starting point.

(1) One can use greedy algorithms (that may not guarantee global convergence
to the optimal solution) to decrease the dual objective values. A plausible
strategy is to use the greedy algorithms till they do not appear to achieve
good decrease in the value h(·), then switch to the warmstart Dykstra’s
algorithm, or our extended algorithm in Algorithm 3.1, to guarantee con-
vergence to the optimal primal solution.

(2) A warmstart solution may be available after solving a nearby problem. For
example, one might want to resolve a problem after a set has been added or
removed, or after a perturbation of parameters. Alternatively, there may
be a nearby structured problem that can be solved approximately with less
effort than the original problem.

The proof of convergence of Dykstra’s algorithm with a different starting point is
not too different from the Boyle-Dykstra theorem. We defer the proof to Appendix
A, where we also prove the convergence of our extended Dykstra’s algorithm to be
introduced in Section 3.

3. Extended Dykstra’s algorithm

As mentioned in Subsection 1.2, the SHQP strategy (of collecting halfspaces con-
taining C generated by earlier projections and then projecting onto the intersection
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of the halfspaces by QP) can enhance the convergence of the method of alternating
projections for the set intersection problem. In this section, we present our exten-
sion of Dykstra’s algorithm in Algorithm 3.1 and how it can incorporate the SHQP
strategy. In order to extend the proof of the Boyle-Dykstra theorem to establish the
primal convergence of our extended Dykstra’s algorithm, we need Theorem 3.4(2).
The proof of Theorem 3.4(2) illustrates why lines 8 and 12 of Algorithm 3.1 were
designed as such. The other parts of the Boyle-Dykstra theorem follow with little
modifications, so we defer the rest of the convergence proof to Appendix A. We
now present our extended Dykstra’s algorithm.

Algorithm 3.1. (Extended Dykstra’s algorithm) Consider the BAP (1.1). Let

y
(0)
i ∈ X be the starting dual variables for each component i ∈ {1, . . . , m}. We also

introduce a variable y
(k)
m+1 ∈ X, with starting value y

(0)
m+1 being 0, in our calculations.

Let H0
m+1 = X. Set x

(0)
m+1 = d−∑m+1

i=1 y
(0)
i .

01 For k = 1, 2, . . .

02 x
(k)
0 = x

(k−1)
m+1

03 For i = 1, 2, . . . , m

04 z
(k)
i := x

(k)
i−1 + y

(k−1)
i

05 x
(k)
i := PCi

(z
(k)
i )

06 y
(k)
i := z

(k)
i − x

(k)
i

07 End for
08 Let Ck

m+1 ⊂ X be such that C ⊂ Ck
m+1 ⊂ Hk−1

m+1.

09 z
(k)
m+1 := x

(k)
m + y

(k−1)
m+1

10 x
(k)
m+1 = PCk

m+1
(z

(k)
m+1)

11 y
(k)
m+1 = z

(k)
m+1 − x

(k)
m+1

12 Let Hk
m+1 be the halfspace with normal y

(k)
m+1 passing through x

(k)
m+1, i.e.,

Hk
m+1 = {x : 〈y(k)

m+1, x− x
(k)
m+1〉 ≤ 0}.

13 End for

Remark 3.2. (Designing Ck
m+1) In line 8 of Algorithm 3.1, the set Ck

m+1 can be

chosen to be the intersection of Hk−1
m+1 and the halfspaces generated through earlier

projections. The projection PCk
m+1

(·) can then be calculated easily using methods

of quadratic programming if the number of halfspaces defining Ck
m+1 is small. It is

clear to see that Algorithm 3.1 reduces to the original Dykstra’s algorithm if we had
kept Hk

m+1 = Ck
m+1 = X for all k ∈ {1, 2, . . .}. The choice of storing halfspaces for

Hk
m+1 in line 12 simplifies computations involved.

Remark 3.3. (Positioning sets of type Ck
m+1) If the number m is large, then one

can introduce more than just one additional set of the type Ck
m+1 at the end of

all the original sets in an implementation of Algorithm 3.1. For example, one can
introduce the additional set after every fixed number of original sets so that the
quadratic programs formed will have a manageable number of halfspaces.

Theorem 3.4 below will be crucial in proving that the iterates {x(k)
i } of Algorithm

3.1 converges to the optimal primal solution. The proof of the Theorem 3.4 explains
how the sets Ck

m+1 and Hk
m+1 were designed in order to maintain the conclusion in

Theorem 3.4(2).
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Theorem 3.4. (Properties of Algorithm 3.1) In Algorithm 3.1, define the dual
function hk : Xm+1 → R at the kth iteration and h̄ : Xm+1 → R by

hk(ỹ) = 1
2‖d− (y1 + · · ·+ ym+1)‖2 +

[
m∑

i=1

δ∗(yi, Ci)

]

+ δ∗(ym+1, Hk
m+1)

h̄(ỹ) = 1
2‖d− (y1 + · · ·+ ym+1)‖2 +

[
m∑

i=1

δ∗(yi, Ci)

]

+ δ∗(ym+1, C).

(3.1)

Let ỹ(k) = (y
(k)
1 , . . . , y

(k)
m , y

(k)
m+1). The following hold:

(1) hk−1(ỹ(k−1)) ≥ hk(ỹ(k)) + 1
2

∑m+1
i=1 ‖y

(k)
i − y

(k−1)
i ‖2.

(2) The sum
∑∞

j=1

∑m+1
i=1 ‖y

(j)
i − y

(j−1)
i ‖2 is finite.

Proof. We have the following chain of inequalities:

1
2‖d− (y

(k)
1 + · · ·+ y

(k)
m )− y

(k−1)
m+1 ‖2 + δ∗(y

(k−1)
m+1 , Hk−1

m+1)

≥ 1
2‖d− (y

(k)
1 + · · ·+ y

(k)
m )− y

(k−1)
m+1 ‖2 + δ∗(y

(k−1)
m+1 , Ck

m+1)

≥ 1
2‖d− (y

(k)
1 + · · ·+ y

(k)
m )− y

(k)
m+1‖2 + δ∗(y

(k)
m+1, Ck

m+1) + 1
2‖y

(k)
m+1 − y

(k−1)
m+1 ‖2

= 1
2‖d− (y

(k)
1 + · · ·+ y

(k)
m )− y

(k)
m+1‖2 + δ∗(y

(k)
m+1, Hk

m+1) + 1
2‖y

(k)
m+1 − y

(k−1)
m+1 ‖2.

(3.2)

The first inequality comes from the fact that Ck
m+1 ⊂ Hk−1

m+1, which implies that

δ∗(·, Hk−1
m+1) ≥ δ∗(·, Ck

m+1). The second inequality comes from the fact that y
(k)
m+1

is the minimizer of the strongly convex function with modulus 1 defined by

y 7→ 1
2‖d− (y

(k)
1 + · · ·+ y

(k)
m )− y‖2 + δ∗(y, Ck

m+1).

The final equation follows readily from the definition of Hk
m+1. We can apply the

same principle in (3.2) to show that for all i ∈ {1, . . . , m}, we have

1
2‖d− y

(k)
1 − · · · y(k)

i−1 − y
(k−1)
i − y

(k−1)
i+1 − · · · − y

(k−1)
m+1 ‖2 + δ∗(y

(k−1)
i , Ci)

≥ 1
2‖d− y

(k)
1 − · · · y(k)

i−1 − y
(k)
i − y

(k−1)
i+1 − · · · − y

(k−1)
m+1 ‖2

+δ∗(y
(k)
i , Ci) + 1

2‖y
(k)
i − y

(k−1)
i ‖2.

(3.3)
Combining (3.2) and (3.3) gives (1).

From the fact that Hk
m+1 ⊃ C, we have δ∗(·, Hk

m+1) ≥ δ∗(·, C), which in turn

implies that hk(y) ≥ h̄(y). Moreover, for each k, we make use of the observation in
Proposition 2.2(1) to get

inf
y∈Xm+1

hk(y) = min
y∈Xm+1

h̄(y).

Hence

1
2

k∑

j=1

m+1∑

i=1

‖y(j)
i − y

(j−1)
i ‖2 ≤ h0(ỹ(0))− hk(ỹ(k))

≤ h0(ỹ(0))− h̄(ỹ(k))

≤ h0(ỹ(0))−miny h̄(y).

Thus (2) follows. �

The rest of the proof of the primal convergence of Algorithm 3.1 is not too
different from the Boyle-Dykstra theorem, so we will prove the convergence result
in Appendix A.
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4. Convergence rate of alternating minimization and Dykstra’s

algorithm

In this section, we first recall the proof of the O(1/k) convergence rate of al-
ternating minimization under the assumption of strong convexity of subproblems
and bounded level sets. This will then give us the convergence rate of the function
h(·) in the dual of Dykstra’s algorithm. We also discuss how this analysis can be
carried over to our extended Dykstra’s algorithm. In Subsection 4.3, we introduce
another more natural way to incorporate the SHQP heuristic into Dykstra’s algo-
rithm and attains the nonasymptotic O(1/k) convergence rate when there is a dual
minimizer. But we note that we are unable to prove the global convergence to the
primal optimal solution for this new strategy.

4.1. General convergence rate result on alternating minimization. In this
subsection, we recall that under certain conditions, alternating minimization has a
nonasymptotic convergence rate of O(1/k). We need the following result proved in
[BT13] and [Bec15].

Lemma 4.1. (Sequence convergence rate) Let α > 0. Suppose the sequence of
nonnegative numbers {ak}∞

k=0 is such that

ak ≥ ak+1 + αa2
k+1 for all k ∈ {1, 2, . . .}.

(1) [BT13, Lemma 6.2] If furthermore, a1 ≤ 1.5
α and a2 ≤ 1.5

2α , then

ak ≤ 1.5
αk for all k ∈ {1, 2, . . .}.

(2) [Bec15, Lemma 3.8] For any k ≥ 2,

ak ≤ max
{(

1
2

)(k−1)/2
a0, 4

α(k−1)

}

.

In addition, for any ǫ > 0, if

k ≥ max
{

2
ln(2) [ln(a0) + ln(1/ǫ)], 4

αǫ

}

+ 1,

then an ≤ ǫ.

The second formula refines the first by reducing the dependence of ak on the first
few terms of {ai}i.

We now prove our general convergence rate result for alternating minimization.
The following result was discussed in [CP15] and its ideas appeared in [BT13,
Bec15].

Theorem 4.2. (O(1/k) Convergence rate of alternating minimization) Let f :
Xm → R be a smooth convex function, and gi : X → R be (not necessarily smooth)
convex functions for i ∈ {1, . . . , m}, Define h : Xm → R by

h(y1, y2, . . . , ym) = f(y1, y2, . . . , ym) +
m∑

i=1
gi(yi).

such that

(1) The gradient f ′ : Xm → Xm is Lipschitz continuous with modulus L, and
(2) There is a number µ > 0 such that for all i ∈ {1, . . . , m} and fixed variables

y1, y2, . . . , yi−1, yi+1, . . . , ym, the map

y 7→ f(y1, y2, . . . , yi−1, y, yi+1, . . . , ym)

is strongly convex with modulus µ > 0.
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(3) A minimizer ỹ∗ = (y∗
1 , y∗

2 , . . . , y∗
m) of h(·) exists. Moreover, Mi defined by

Mi = sup{‖y(k)
i − y∗

i ‖ : k ≥ 0} is finite for all i ∈ {1, . . . , m− 1}.
Suppose two successive iterates ỹ(k−1) = (y

(k−1)
1 , y

(k−1)
2 , . . . , y

(k−1)
m ) and ỹ(k) defined

similarly are produced by alternating minimization described in (2.3). Let M =
maxi∈{1,...,m−1} Mi. Then

h(ỹ(k−1))− h(ỹ∗) ≥ h(ỹ(k))− h(ỹ∗) + µ
2(m−1)3M2L2 [h(ỹ(k))− h(ỹ∗)]2. (4.1)

Applying Lemma 4.1 to ak := h(ỹ(k))− h(ỹ∗) gives

h(ỹ(k))− h(ỹ∗) ≤ 1
k max{ 3(m−1)3M2L2

µ , h(ỹ(1))− h(ỹ∗), 2[h(ỹ(2))− h(ỹ∗)]},
and

h(ỹ(k))− h(ỹ∗) ≤ max
{(

1
2

)(k−1)/2
[h(ỹ(0))− h(ỹ∗)], 8(m−1)3M2L2

µ(k−1)

}

.

Proof. The proof of this result follows similar ideas as those in [CP15], which in
turn appeared in [BT13, Bec15]. Since we will use elements of this proof for the
proof of Theorem 4.5, we now give a self contained proof. For each i, let hi : X → R

be defined by

hi(y) = h(y
(k)
1 , y

(k)
2 , . . . , y

(k)
i−1, y, y

(k−1)
i+1 , . . . , y(k−1)

m ).

In other words, hi(·) is the ith block of h : Xm → R. The mapping hi(·) has

minimizer y
(k)
i , and is strongly convex with modulus µ from assumption (2). Hence

hi(y
(k−1)
i ) ≥ hi(y

(k)
i ) + µ

2 ‖y
(k)
i − y

(k−1)
i ‖2.

Hence

h(ỹ(k−1))− h(ỹ∗) ≥ h(ỹ(k))− h(ỹ∗) +
m∑

i=1

µ
2 ‖y

(k)
i − y

(k−1)
i ‖2. (4.2)

Next, we try to find a subgradient in ∂h(ỹ(k)) by looking at the components ∂hi(ỹ).

It is clear that 0 ∈ ∂hm(y
(k)
m ). We then look at the ith component of f ′(·), which we

denote by f ′
i(·). For each i ∈ {1, . . . , m}, the optimality conditions of each iteration

of alternating minimization implies that

0 ∈ f ′
i(y

(k)
1 , y

(k)
2 , . . . , y

(k)
i−1, y

(k)
i , y

(k−1)
i+1 , . . . , y(k−1)

m ) + ∂gi(y
(k)
i ).

Thus

f ′
i(ỹ

(k))− f ′
i(y

(k)
1 , y

(k)
2 , . . . , y

(k)
i−1, y

(k)
i , y

(k−1)
i+1 , . . . , y(k−1)

m ) ∈ f ′
i(ỹ

(k)) + ∂gi(y
(k)
i ).

Choose a subgradient s ∈ ∂h(ỹ(k)), with s ∈ Xm such that

si = f ′
i(ỹ

(k))− f ′
i(y

(k)
1 , y

(k)
2 , . . . , y

(k)
i−1, y

(k)
i , y

(k−1)
i+1 , . . . , y(k−1)

m ).

We have

‖si‖ ≤ ‖f ′
i(ỹ

(k))− f ′
i(y

(k)
1 , y

(k)
2 , . . . , y

(k)
i−1, y

(k)
i , y

(k−1)
i+1 , . . . , y

(k−1)
m )‖

≤ L
m∑

j=i+1

‖y(k)
j − y

(k−1)
j ‖

≤ L
m∑

j=2

‖y(k)
j − y

(k−1)
j ‖.

(4.3)
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The above derivation also reminds us that ‖sm‖ = 0. Thus, making use of condition
(3), we have

h(ỹ∗) ≥ h(ỹ(k)) + 〈s, ỹ∗ − ỹ(k)〉
⇒ h(ỹ(k))− h(ỹ∗) ≤ −〈s, ỹ∗ − ỹ(k)〉

≤
m−1∑

i=1

‖si‖‖y∗
i − y

(k)
i ‖

≤ L

[
m∑

j=2

‖y(k)
j − y

(k−1)
j ‖

][
m−1∑

i=1

‖y∗
i − y

(k)
i ‖

]

≤ (m− 1)ML

[
m∑

j=2

‖y(k)
j − y

(k−1)
j ‖

]

.

(4.4)

Applying (4.4) on (4.2) gives

h(ỹ(k−1))− h(ỹ∗) ≥ h(ỹ(k))− h(ỹ∗) +
m∑

i=1

µ
2 ‖y

(k)
i − y

(k−1)
i ‖2

≥ h(ỹ(k))− h(ỹ∗) +
m∑

i=2

µ
2 ‖y

(k)
i − y

(k−1)
i ‖2

≥ h(ỹ(k))− h(ỹ∗) + µ
2(m−1)

[
m∑

i=2

‖y(k)
i − y

(k−1)
i ‖

]2

≥ h(ỹ(k))− h(ỹ∗) + µ
2(m−1)3M2L2 [h(ỹ(k))− h(ỹ∗)]2.

(4.5)

Let ak = h(ỹ(k)) − h(ỹ∗). Applying Lemma 4.1 gives us our conclusion. (For the
first formula, α = min{ µ

2(m−1)3M2L2 , 1.5
a1

, 0.75
a2
}.) �

It is clear to see that condition (3) in Theorem 4.2 is satisfied when the level sets
of h(·) are bounded. Condition (3) can be easily amended to having all but one of
the Mi for i ∈ {1, . . . , m} being finite.

4.2. Convergence rate of extended Dykstra’s algorithm. In Dykstra’s algo-
rithm, the function f(·) in (1.1) is quadratic, and therefore its gradient is linear.
Furthermore, each block fi(·) is strongly convex with modulus 1. Thus conditions
(1) and (2) of Theorem 4.2 are satisfied. We make some remarks condition (3) of
Theorem 4.2.

Remark 4.3. (Condition (3) of Theorem 4.2 for Dykstra’s algorithm) As pointed
out in [Han88], there may not exist a minimizer ỹ∗ of the dual problem (D′).
Consider for example the problem of projecting onto the intersection of two circles
in R

2 intersecting at only one point. Furthermore, Gaffke and Mathar [GM89,
Lemma 2] showed that for Dykstra’s algorithm, if there is a λ > 2 such that

‖x(k)
m − x̄‖2 ∈ O(1/kλ), then y∗

i = limk→∞ yk
i exists with δ∗(y∗

i , Ci) finite, and
ỹ∗ = (y∗

1 , . . . , y∗
m) minimizing the function h(·) of (2.1). This result can somewhat

be seen as a converse of Theorem 4.2.

Remark 4.4. (Finiteness of the Mi’s) In our analysis of Dykstra’s algorithm, suppose
all but one of the Mi’s in Theorem 4.2(3) are finite for i ∈ {1, . . . , m}. The Boyle-
Dykstra theorem implies that the limit

lim
k→∞

[d− y
(k)
1 − · · · − y(k)

m ] = lim
k→∞

x(k)
m

exists. This would imply that all the Mi’s are finite.

We now provide the additional details to show that Algorithm 3.1 (the extended
Dykstra’s algorithm) also converges at an O(1/k) rate.
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Theorem 4.5. (Convergence rate of extended Dykstra’s algorithm) Consider Al-
gorithm 3.1. Recall the definition of h(·) in (2.1). Suppose the following holds:

(3′) A minimizer ỹ∗ = (y∗
1 , y∗

2 , . . . , y∗
m) of h(·) exists. Moreover, Mi defined by

Mi = sup{‖y(k)
i − y∗

i ‖ : k ≥ 0} is finite for all i ∈ {1, . . . , m + 1}.
(Compare this to condition (3) of Theorem 4.2.) Recall the definition of hk(·) in

(3.1). Then the sequence {hk(y
(k)
1 , . . . , y

(k)
m+1)}k, converges to h(ỹ∗) at a rate of

O(1/k).

Proof. We highlight the differences this proof has with that of Theorem 4.2. The-
orem 3.4(1) shows that

hk−1(ỹ(k−1)) ≥ hk(ỹ(k)) + 1
2

m+1∑

i=1

‖y(k)
i − y

(k−1)
i ‖2,

which plays the role of (4.2). Next, if ỹ∗ = (y∗
1 , . . . , y∗

m) is a minimizer of h(·), then
(y∗

1 , . . . , y∗
m, 0) is a minimizer of hk(·) for all k. Moreover,

hk(y∗
1 , . . . , y∗

m, 0) = h(ỹ∗).

Next, we can prove an analogous result to (4.3) with L = 1. The analogous result
to (4.4) is

hk(ỹ(k))− h(ỹ∗) ≤ mML

[
m+1∑

j=2

‖y(k)
j − y

(k−1)
j ‖

]

. (4.6)

The analogous result to (4.5) is

hk−1(ỹ(k−1))− h(ỹ∗) ≥ hk(ỹ(k))− h(ỹ∗) + µ
2m3M2L2 [hk(ỹ(k))− h(ỹ∗)]2. (4.7)

The conclusion follows with steps similar to the proof of Theorem 4.2. �

An indicator of whether an O(1/k) convergence rate is achieved would be whether
condition (3) in Theorem 4.2 is satisfied. The next result gives sufficient conditions.

Theorem 4.6. (Condition for bounded dual iterates) Suppose X = R
n, and con-

sider the BAP (1.1).

(1) Suppose at the primal optimal solution x∗ = PC(d), we have
m∑

i=1

vi = 0 and vi ∈ NCi
(x∗) for all i ∈ {1, . . . , m}

implies vi = 0 for all i ∈ {1, . . . , m}.
(4.8)

Then the iterates {ỹ(k)} of Dykstra’s algorithm are bounded. Moreover, an
accumulation point exists, and is an optimal solution for (D′), so condition
(3) of Theorem 4.2 holds.

(2) Suppose at the primal optimal solution x∗ = PC(d), we have

m+1∑

i=1

vi = 0, vm+1 ∈ NC(x∗) and vi ∈ NCi
(x∗) for all i ∈ {1, . . . , m}

implies vi = 0 for all i ∈ {1, . . . , m + 1}.
(4.9)

Then the iterates {ỹ(k)} of the extended Dykstra’s algorithm are bounded.
Moreover, an accumulation point exists, and is a minimizer of h̄ : (Rn)m+1 →
R defined in (3.1), so condition (3′) of Theorem 4.5 holds.

(3) Suppose NCi
(x∗) does not contain a line for all i ∈ {1, . . . , m}. In other

words, the cones NCi
(x∗) are pointed for all i. Then (4.8) and (4.9) are

equivalent.
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Proof. For (1), we prove the boundedness of the iterates for Dykstra’s algorithm.
The other parts of the result are straightforward. Seeking a contradiction, suppose
the iterates {ỹ(k)} are not bounded. Then

m∑

i=1

y
(k)
i = d− x(k)

m

1

maxi ‖y(k)
i ‖

m∑

i=1

y
(k)
i =

1

maxi ‖y(k)
i ‖

[d− x(k)
m ]. (4.10)

By the convergence of Dykstra’s algorithm, limk→∞[d − x
(k)
m ] exists. Moreover,

lim supk→∞ maxi ‖y(k)
i ‖ = ∞, so by taking a subsequence if necessary (we do not

relabel), the limit of the RHS of (4.10) is zero. Let ŷ
(k)
i =

y
(k)

i

maxj ‖y
(k)
j

‖
. We thus

have
m∑

i=1

ŷ
(k)
i = 0.

The sequence {(ŷ(k)
1 , . . . , ŷ

(k)
m )}k has a convergent subsequence. Let an accumula-

tion point be (ŷ∗
1 , . . . , ŷ∗

m). Note that ŷ
(k)
i ∈ NCi

(x
(k)
i ), so ŷ∗

i ∈ NCi
(x∗). But not

all the ŷ∗
i are zero. This gives us the contradiction to (4.8).

We now show how to amend the proof of (1) to prove (2). For the extended
Dykstra’s algorithm, we can obtain the formula

1

maxi ‖y
(k)
i

‖

m+1∑

i=1

y
(k)
i = 1

maxi ‖y
(k)
i

‖
[d− x

(k)
m+1],

which is similar to (4.10). The sequence {(ŷ(k)
1 , . . . , ŷ

(k)
m+1)}k is defined similarly

by ŷ
(k)
i =

y
(k)
i

maxj ‖y
(k)

j
‖
, and has a convergent subsequence with accumulation point

(ŷ∗
1 , . . . , ŷ∗

m). For any c ∈ C, we have

〈ŷ(k)
m+1, c− x

(k)
m+1〉 ≤ 0.

As we take limits, we have

〈ŷ∗
m+1, c− x∗〉 ≤ 0,

so ŷ∗
m+1 ∈ NC(x∗). The same steps would imply that (4.9) is violated, hence a

contradiction.
Lastly, we prove (3). It is obvious that (4.9) implies (4.8) (just take the particular

case when vm+1 = 0). We now prove that (4.8) implies (4.9). If (4.8) holds, then
the formula for intersection of normal cones of convex sets (see [RW98, Theorem
6.42]) implies that

NC(x∗) =
m∑

i=1

NCi
(x∗).

Suppose
∑m+1

i=1 vi = 0, where vm+1 ∈ NC(x∗) and vi ∈ NCi
(x∗) for all i ∈

{1, . . . , m}. We can write vm+1 =
∑m+1

i=1 ṽi, where ṽi ∈ NCi
(x∗) for all i ∈

{1, . . . , m}. Then
∑m

i=1(vi + ṽi) = 0, and (vi + ṽi) ∈ NCi
(x∗). Condition (4.8)

would imply that vi + ṽi = 0 for all i ∈ {1, . . . , m}. Since NCi
(x∗) contains no lines

for all i ∈ {1, . . . , m}, we have vi = ṽi = 0 for all i ∈ {1, . . . , m}. This implies that
(4.9) holds. �

Remark 4.7. We make a few remarks on Theorems 4.6 and 4.2.
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(1) A simple example of a line and a halfspace shows that (4.8) and (4.9)
cannot be equivalent if the conditions in (3) were omitted. Even so, we
can check that in this simple example, the extended Dykstra’s algorithm
should perform better than the Dykstra’s algorithm in general, even when
(4.9) fails. See Figure 4.1.

(2) Even if condition (1) in Theorem 4.6 is not satisfied, condition (3) of Theo-
rem 4.2 can hold. For example, consider the case of two (one dimensional)
lines intersecting only at the origin in R

3.
(3) The condition (4.8) is well known to be equivalent to the stability of the

sets {Ci}m
i=1 under perturbations. See [Kru06] for example. Condition

(4.8) is also important for establishing linear convergence of the method of
alternating projections for convex sets. See [BB96].

2

d

1

C

C

2

d

1

C

C

Figure 4.1. In the diagram on the left, the line shows the path
Dykstra’s algorithm takes. But for both the extended Dykstra’s
algorithm in Algorithm 3.1 (even if (4.9) is not satisfied) and Al-
gorithm 4.8, we have convergence to PC(d) in a small number of
steps. The diagram on the right shows that Algorithms 3.1 and
4.8 are also advantageous for nonpolyhedral problems.

4.3. SHQP strategy for Dykstra’s algorithm. We now show that in the case
where a minimizer exists for h(·) as defined in (2.1), the SHQP strategy can be
incorporated into Dykstra’s algorithm. We present the following additional step.

Algorithm 4.8. (SHQP strategy for Dykstra’s algorithm) Consider the original
warmstart Dykstra’s algorithm (Algorithm 2.1). Between lines 7 and 8, we can add
as many copies of the following code segment as needed.

01 Choose J ⊂ {1, . . . , m}
02 Update y

(k)
1 , . . . , y

(k)
m by solving the following optimization problem

(y
(k)
1 , . . . , y(k)

m )← arg min
y1,...,ym

f(y1 + · · ·+ ym) +
m∑

i=1
δ∗(yi, Hi) (4.11)

s.t. yi = y
(k)
i if i /∈ J.

To illustrate the effectiveness of the step in Algorithm 4.8, let us for now assume

that J = {1, . . . , m}. Let y
(k),◦
1 , . . . , y

(k),◦
m ∈ X be the values of y

(k)
i before line 2 was

performed in Algorithm 4.8, and let y
(k),+
1 , . . . , y

(k),+
m be the respective values after

line 2 was performed. Note that in Dykstra’s algorithm, line 5 (x
(k)
i = PCi

(z
(k)
i )) is

obtained by projecting onto the set Ci, and this projection produces a supporting

halfspace Hi at x
(k)
i so that Hi ⊃ Ci. Moreover, the halfspace Hi also satisfies

δ∗(y
(k),◦
i , Ci) = δ∗(y

(k),◦
i , Hi). (4.12)
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The intersection ∩m
i=1Hi would be a polyhedral outer approximate of C = ∩m

i=1Ci.
Since Hi ⊃ Ci, we have δ∗(·, Hi) ≥ δ∗(·, Ci). We therefore have

f(y
(k),◦
1 + · · ·+ y

(k),◦
m ) +

m∑

i=1

δ∗(y
(k),◦
i , Ci)

(4.12)
= f(y

(k),◦
1 + · · ·+ y

(k),◦
m ) +

m∑

i=1

δ∗(y
(k),◦
i , Hi)

(4.11)

≥ f(y
(k),+
1 + · · ·+ y

(k),+
m ) +

m∑

i=1
δ∗(y

(k),+
i , Hi)

≥ f(y
(k),+
1 + · · ·+ y

(k),+
m ) +

m∑

i=1

δ∗(y
(k),+
i , Ci).

Thus performing the step in line 2 of Algorithm 4.8 improves the dual objective
h(·). Note that the minimization problem (4.11) is the dual of the problem of
projecting a point onto the polyhedron ∩i∈J Hi, which can be solved effectively
by quadratic programming if the number of halfspaces is small. If the number of
halfspaces is large, then line 1 of Algorithm 4.8 gives the flexibility of solving a
quadratic program of manageable size instead. In general, Hi can be chosen to be
the intersection of halfspaces such that (4.12) is valid.

If the boundary of Ci is smooth, then Hi approximates Ci at x
(k)
i , and the

algorithm reduces to sequential quadratic programming. This gives a reason why
the additional step in Algorithm 4.8 can be effective in practice.

The step explained here gives a similar kind of enhancement to what we saw
earlier for the extended Dykstra’s algorithm. It is clear to see that the recurrence
(4.1) is not affected by the additional step in Algorithm 4.8. Thus the convergence
analysis given in Subsection 4.1 remains valid. But when h(·) does not have a
minimizer, we were not able to extend the Boyle-Dykstra Theorem (specifically,
Lemma A.4 below) for the proof of global convergence of the extension of Dykstra’s
algorithm using Algorithm 4.8.

5. Simultaneous Dykstra’s algorithm

Recall that Dykstra’s algorithm reduces the best approximation problem to a
series of projections. A variant of Dykstra’s algorithm which is more suitable for
parallel computations is the simultaneous Dykstra’s algorithm proposed and stud-
ied in [IP91]. In this section, we give some details on deriving the simultaneous
Dykstra’s algorithm, and then show how the principles described in extending Dyk-
stra’s algorithm can be applied for the simultaneous Dykstra’s algorithm.

Consider the BAP (1.1), where we want to find the projection of d onto C =
∩m

i=1Ci. We now recall the product space formulation of [Pie84]. Define C ⊂ Xm

and D ⊂ Xm by

C := C1 × · · · × Cm (5.1)

and D := {(x, . . . , x) ∈ Xm : x ∈ X}.
Let λ1, . . . , λm be m positive numbers that sum to one, and let the inner product
〈·, ·〉Q̄ in Xm be defined by

〈(u1, . . . , um), (v1, . . . vm)〉Q̄ :=

m∑

i=1

λi〈ui, vi〉.
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The projection of the point (d, . . . , d) ∈ Xm onto C ∩ D can easily be seen to
be (PC(d), . . . , PC(d)). Dykstra’s algorithm can be applied onto the product space
formulation. This gives the simultaneous Dykstra’s algorithm proposed and studied
in [IP91], which we present below.

Algorithm 5.1. [IP91](Simultaneous Dykstra’s algorithm) Consider the BAP (1.1).

Let y
(0)
i ∈ X be the starting dual variables for each component i ∈ {1, . . . , m}. Set

x(0) = d−∑m
i=1 λiy

(0)
i .

01 For k = 1, 2, . . .
02 For i = 1, 2, . . . , m (Parallel projection)

03 z
(k)
i := x(k−1) + y

(k−1)
i

04 x
(k)
i = PCi

(z
(k)
i )

05 y
(k)
i = z

(k)
i − x

(k)
i

06 end for

07 x(k) =
∑m

i=1 λix
(k)
i

08 end for

We give a brief explanation of the simultaneous Dykstra’s algorithm. Lines 3
to 5 correspond to the projection onto C. Line 7 corresponds to projection of

(x
(k)
1 , . . . , x

(k)
m ) onto D, i.e., (x(k), . . . , x(k)) = PD(x

(k)
1 , . . . , x

(k)
m ). The advantage

of the simultaneous Dykstra’s algorithm is that lines 3 to 5 can be performed in
parallel.

We now discuss the convergence rate of the simultaneous Dykstra’s algorithm.
We saw in Section 4 that the regularity condition (4.8) is a sufficient condition
for O(1/k) convergence. We now show that this regularity condition holds for the
original problem if and only if it holds for the product space formulation.

Proposition 5.2. (Equivalence of constraint qualification) Let Ci be closed convex
sets for i ∈ {1, . . . , m}, and let C = ∩m

i=1Ci. Let C and D be as defined in (5.1).
At a point x∗ ∈ C, the conditions

m∑

i=1

vi = 0 and vi ∈ NCi
(x∗) for all i ∈ {1, . . . , m}

implies vi = 0 for all i ∈ {1, . . . , m}
(5.2)

and

(v1, . . . , vm) + (w1, . . . , wm) = 0, (v1, . . . , vm) ∈ NC(x∗, . . . , x∗) (5.3)

and (w1, . . . , wm) ∈ ND(x∗, . . . , x∗)

implies (v1, . . . , vm) = (w1, . . . , wm) = 0

are equivalent.

Proof. Note that (v1, . . . , vm) ∈ NC(x∗, . . . , x∗) if and only if vi ∈ NCi
(x∗) for all

i. Next, since D is a linear subspace, we have (w1, . . . , wm) ∈ ND(x∗, . . . , x∗) if
and only if (w1, . . . , wm) ∈ D⊥. Proposition 5.3 gives the equivalent condition
∑

λiwi = 0. So in other words,

(v1, . . . , vm) + (w1, . . . , wm) = 0, (v1, . . . , vm) ∈ NC(x∗, . . . , x∗)

and (w1, . . . , wm) ∈ ND(x∗, . . . , x∗)



SHQP STRATEGY FOR THE BAP 17

is equivalent to

vi ∈ NCi
(x∗) and wi = −vi for all i ∈ {1, . . . , m}, and

m∑

i=1

λivi = 0.

Conditions (5.2) and (5.3) are now easily seen to be equivalent. �

As is well known in the study of Dykstra’s algorithm, no correction vectors for D
are necessary since D is an affine space. But we need to elaborate on the correction
vector to D before we show the derivation of x(0). Let this correction vector be
w̃(k) = (w

(k)
1 , . . . , w

(k)
m ). We have w̃(k) ∈ ND(x(k), . . . , x(k)). But since D is a linear

subspace, we have w̃(k) ∈ D⊥. We have the following easy result.

Proposition 5.3. Let w̃ = (w1, . . . , wm) be a vector in Xm. Then w̃ ∈ D⊥ if and
only if

∑
λiwi = 0.

Proof. This follows easily from the following chain:

w̃ ∈ D⊥

⇐⇒ 〈w̃, v〉 = 0 for all v ∈ D
⇐⇒ 〈∑λiwi, v〉 = 0 for all v ∈ X
⇐⇒ ∑

λiwi = 0.

�

Let ỹ(k) = (y
(k)
1 , . . . , y

(k)
m ). The default starting vector for the simultaneous

Dykstra’s algorithm in [IP91] is ỹ(0) = 0 ∈ Xm, but we can warmstart Dykstra’s

algorithm as explained in Subsection 2.1. We now show that x(0) = d−∑λiy
(0)
i is

indeed the formula to warmstart the simultaneous Dykstra’s algorithm.

Proposition 5.4. (Formula for x(0)) In Algorithm 5.1, for the starting dual vector

ỹ(k) = (y
(k)
1 , . . . , y

(k)
m ) ∈ Xm, the starting iterate for x(0) is x(0) = d−∑λiy

(0)
i .

Proof. Let w̃(k) = (w
(k)
1 , . . . , w

(k)
m ) be the correction vector corresponding to D.

The iterates (x(k), . . . , x(k)) ∈ Xm lie in D for all k, and (d, . . . , d) ∈ D. From our
study of Dykstra’s algorithm earlier, we have

(w
(k)
1 , . . . , w(k)

m ) = (d, . . . , d)− (x(k), . . . , x(k))− (y
(k)
1 , . . . , y(k)

m ).

Moreover, we have
∑

λiw
(k)
i = 0 from Proposition 5.3, so

∑
λi(d−x(k)−y

(k)
i ) = 0.

Together with the fact that
∑

λi = 1, we get the needed formula for x(0). �

We now look at how to improve Algorithm 5.1. Line 7 can be improved by

projecting (x
(k)
1 , . . . , x

(k)
m ) onto a set better than D. Recall that line 4 produces

supporting halfspaces of the set Ci. Consider the set Ck
m+1 defined as the intersec-

tion of the supporting halfspaces produced in line 4, and let Ck ⊂ Xm be defined by
Ck = Ck

m+1×· · ·×Ck
m+1 (m copies). We can add the set Ck to play the role of Ck

m+1

in the extended Dykstra’s algorithm (Algorithm 3.1) to enhance the algorithm.

5.1. A two-level Dykstra’s algorithm. If we want to apply the SHQP strategy
to enhance the simultaneous Dykstra’s algorithm, then we might want to cut up
the problem into smaller blocks so that the quadratic programs formed are defined
by a manageable number of halfspaces. It is reasonable to assume that information
about the sets Ci communicate upwards from the leaves to the root of a tree (in
the sense of graph theory). We illustrate with an example with m = 4 where we
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break down the size of the quadratic programs to be at most 2. Let the sets D1

and D2 be defined by

D1 = {(x1, x2, x3, x4) ∈ X4 : x1 = x2}
and D2 = {(x1, x2, x3, x4) ∈ X4 : x3 = x4}.

We present a two level Dykstra’s algorithm.

Algorithm 5.5. (Two level Dykstra’s algorithm) Consider the BAP (1.1) where

m = 4. Let y
(0)
i ∈ X be the starting dual variables for each component i ∈

{1, . . . , 4}. Set x(0) = d−∑4
i=1 λiy

(0)
i .

01 For k = 1, 2, . . .
02 For i ∈ {1, 2, 3, 4}
03 z

(k)
i := x(k−1) + y

(k−1)
i

04 x
(k)
i = PCi

(z
(k)
i )

05 y
(k)
i = z

(k)
i − x

(k)
i

06 end for

07 x
(k)
(1,2) = λ1

λ1+λ2
x

(k)
1 + λ2

λ1+λ2
x

(k)
2

08 x
(k)
(3,4) = λ3

λ3+λ4
x

(k)
3 + λ4

λ3+λ4
x

(k)
4

09 x(k) = (λ1 + λ2)x
(k)
(1,2) + (λ3 + λ4)x

(k)
(3,4)

10 end for

Lines 2 to 6 describe the operation involved in projecting onto C, which is not dif-
ferent from the simultaneous Dykstra’s algorithm (Algorithm 5.1). Line 7 describes
the operation in projecting ontoD1, line 8 describes the operation in projecting onto
D2, and line 9 describes the operation in projecting onto D.

The agent that collects information on x
(k)
1 and x

(k)
2 to obtain x

(k)
(1,2) can also

collect the halfspaces generated by the projection operation used to obtain x
(k)
1 and

x
(k)
2 . We can make use of these halfspaces to form a superset of C that plays the

role of Ck
m+1 in the extended Dykstra’s algorithm (Algorithm 3.1). In other words,

the operations in lines 8 to 12 of Algorithm 3.1 can be inserted between lines 7
and 8 of Algorithm 5.5. We can also insert these same lines between lines 8 and 9
and between lines 9 and 10 to enhance Algorithm 5.5. It is now easy to extend the
principles highlighted here for problems involving m > 4 sets and with more than
2 levels.

6. Using the APG for (D′)

In this section, we depart from the dual alternating minimization strategy treated
in the rest of the paper, and discuss using the accelerated proximal gradient (APG)
algorithm to solve (D′) in (2.1) in order to get a O(1/k2) convergence rate. We
remark that the APG can be augmented by the strategy described in Subsection
4.3.

We recall the APG as presented in [Tse08, Section 3], which traces its roots to
Nesterov’s second optimal method [Nes88]. We decide that it is best to adopt the
notation of [Tse08] even though it conflicts with some of the notation we have used
in the rest of the paper.
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Algorithm 6.1. [Tse08, Algorithm 1] Consider the problem of minimizing

h(x) = f(x) + P (x),

where f : X → R is a smooth convex function whose gradient ∇f : X → X is
Lipschitz with constant L, and P : X → R is a (not necessarily smooth) convex
function. For each y ∈ X, define lf (·; y) : X → R (a linearization of h(·) at y) by

lf(x; y) = f(y) + 〈∇f(y), x− y〉+ P (x).

Choose θ0 ∈ (0, 1], x0, z0 ∈ dom(P ). k ← 0. Go to 1.

(1) Choose a nonempty closed convex set Xk ⊂ X with Xk ∩ dom(P ) 6= ∅. Let

yk = (1− θk)xk + θkzk , (6.1)

zk+1 = arg minx∈Xk
{lf(x; yk) + θkL

2 ‖x− zk‖2}, (6.2)

x̂k+1 = (1− θk)xk + θkzk+1. (6.3)

Choose xk+1 such that

h(xk+1) ≤ lf (x̂k+1; yk) + L
2 ‖x̂k+1 − yk‖2. (6.4)

Choose θk+1 ∈ (0, 1] satisfying

1−θk+1

θ2
k+1

≤ 1
θ2

k

. (6.5)

k ← k + 1, and go to 1.

The following is the convergence result of Algorithm 6.1. We simplify their result
by taking Xk = X for all k.

Theorem 6.2. [Tse08, Corollary 1(a)] Let {(xk, yk, zk, θk, Xk)} be generated by
Algorithm 6.1 with θ0 = 1. Fix any ǫ > 0. Suppose θk ≤ 2

k+2 (which is the case

when θ0 = 1 and θk+1 is determined from θk by setting (6.5) to an equation), and
Xk = X for all k. Then for any x ∈ dom(P ) with h(x) ≤ inf(h) + ǫ, we have

min
i=0,1,...,k+1

{h(xi)} ≤ h(x) + ǫ whenever k ≥
√

4L
ǫ ‖x− z0‖ − 2.

Even though the line (6.4) is different from that in [Tse08, (14)], it is easy to
check that the inequality [Tse08, (23)] remains valid with this change.

Theorem 6.2 shows that the infimum of {h(xk)}k produced by Algorithm 6.1
would converge to the infimum of h(·). Furthermore, if a minimizer of h(·) exists,
then the convergence rate of {h(xk)− inf(h)}k is of O(1/k2).

For the BAP (1.1) of projecting a point onto the intersection of m sets, the
function h(·) was described in (2.1). For ỹ ∈ Xm, the mapping

ỹ 7→ ‖d−
∑

yi‖2 = f(y1 + · · ·+ ym) (6.6)

has Hessian 






I I · · · I
I I I
...

. . .
...

I I · · · I








(i.e., there are m2 blocks in an m×m block square matrix), and the gradient of the
map in (6.6) is Lipschitz with constant L = m. The step (6.2) can now be easily
carried out using Proposition 2.2(5) to obtain all m components of the minimizer
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zi+1. We can use the strategy described in Subsection 4.3 to get a better iterate
xk+1 satisfying (6.4) than x̂k+1.

7. Conclusion

In this paper, we showed ways to incorporate the SHQP heuristic to improve
Dykstra’s algorithm. For the case when Ci are hyperplanes, the numerical experi-
ments in [Pan15a] shows the effectiveness of the strategies explained in this paper.
We defer further numerical experiments to future work.

Appendix A. Proof of convergence of Algorithm 3.1

In this appendix, we present the proof of convergence of Algorithm 3.1, the
extended Dykstra’s algorithm. We already saw that if Hk

m+1 = Ck
m+1 = X for all

k ≥ 0, then Algorithm 3.1 reduces to the original Dykstra’s algorithm. Apart from
Theorem 3.4, our proof is mostly the same as the Boyle-Dykstra theorem [BD85] as
presented in [Deu01b]. Note that the proof here also includes the warmstart case.

Throughout this section, we follow the notation of Algorithm 3.1. We need to
follow the notation in [Deu01b] and define the sequences {ei}∞

i=−m and {x̃i}∞
i=0 by

e(m+1)(k−1)+i = y
(k)
i (A.1)

x̃(m+1)(k−1)+i = x
(k)
i . (A.2)

The statement of Lemma A.6 makes the new notation more natural. We denote [i]
to be the integer in {1, . . . , m + 1} such that m + 1 divides i− [i].

Lemma A.1. In Algorithm 3.1, for each i ≥ 1, such that [i] ∈ {1, . . . , m}.
δ∗(ei, C[i] − y) = 〈x̃i − y, ei〉 ≥ 0 for all y ∈ C[i]. (A.3)

Furthermore, if [i] = m + 1, then

δ∗(ei, C
i/(m+1)
m+1 − y) = 〈x̃i − y, ei〉 ≥ 0 for all y ∈ C. (A.4)

Proof. The proof of inequality (A.3) is exactly the same as [Deu01b, Lemma 9.17],
but our statement is now only valid for all n ≥ 1. We have

〈x̃i − y, ei〉
=

〈
PC[i]

(x̃i−1 + ei−(m+1))− y, x̃i−1 + ei−(m+1) − PK[i]
(x̃i−1 + ei−(m+1))

〉
≥ 0,

where the inequality is an immediate consequence from the properties of projections.
The second inequality in (A.4) is also clear. The equations in both (A.3) and (A.4)
are straightforward from the definition of δ∗(·, ·). �

Lemma A.2. In Algorithm 3.1, for each i ≥ 0,

d− x̃i = ei−m + ei−(m−1) + · · ·+ ei−1 + ei. (A.5)

Proof. This is easily seen from lines 4 and 9 of Algorithm 3.1 and the formula for

z
(k)
i in (2.5). �

Lemma A.3. In Algorithm 3.1, {x̃i} is a bounded sequence, and
∞∑

i=1

‖x̃i−1 − x̃i‖2 <∞. (A.6)

In particular,
‖x̃i−1 − x̃i‖ → 0 as i→∞. (A.7)
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Proof. Formula (A.6) is just a rephrasing of Theorem 3.4(2). Formula (A.7) follows
easily.

We now show the boundedness of {x̃i}. For i, let k = ⌊ i
m+1⌋. Define vi as

vi :=
1

2
‖x̃i − PC(d)‖2 +

i∑

l=i−m

〈el, x̃l − PC(d)〉. (A.8)

Recall the definition of hk(·) in (3.1). We have

vi =
1

2
‖x̃i − PC(d)‖2 +

i∑

l=i−m

〈el, x̃l − PC(d)〉

=
1

2
‖x(k)

i−k(m+1) − PC(d)‖2 +

i−k(m+1)
∑

l=1

δ∗(y
(k)
l , C[l] − PC(d))

+δ∗(y
(k−1)
m+1 , Ck−1

m+1 − PC(d)) +

m∑

l=i−k(m+1)+1

δ∗(y
(k−1)
l , C[l] − PC(d))

= hk−1(y
(k)
1 , y

(k)
2 , . . . , y

(k)
i−k(m+1), y

(k−1)
i−k(m+1)+1, . . . , y

(k−1)
m+1 )

−〈d, PC(d)〉+
1

2
‖PC(d)‖2.

The proof of Theorem 3.4 shows that vi is non-increasing.Since 0 ∈ Ck−1
m+1 − PC(d)

and 0 ∈ C[l]−PC(d), we have vi ≥ 1
2‖x̃i−PC(d)‖2 (just like in Proposition 2.2(3)),

which shows that {x̃i} is a bounded sequence. �

Lemma A.4. In Algorithm 3.1, for any i ∈ N,

‖ei‖ ≤
i∑

k=1

‖x̃k−1 − x̃k‖+ max
1≤l≤m+1

‖el−(m+1)‖. (A.9)

Proof. The proof is adjusted from [Deu01b, Lemma 9.21]. We induct on i. It is
clear to see that (A.9) holds for all i ∈ {−m, . . . , 0}. Suppose (A.9) holds for all
r ≤ i. Let M1 = max1≤l≤m+1 ‖el−(m+1)‖. Then

‖ei+1‖ = ‖x̃i − x̃i+1 + ei+1−(m+1)‖ ≤ ‖x̃i − x̃i+1‖+ ‖ei+1−(m+1)‖

≤ ‖x̃i − x̃i+1‖+
i+1−(m+1)∑

k=1

‖x̃k−1 − x̃k‖+ M1 ≤
i+1∑

k=1

‖x̃k−1 − x̃k‖+ M1,

which implies that (A.9) holds for r = i + 1. �

Lemma A.5. In Algorithm 3.1,

lim infi

i∑

k=i−m

| 〈x̃k − x̃i, ek〉 | = 0. (A.10)
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Proof. The proof needs to be adjusted from [Deu01b, Lemma 9.22]. Let M1 =
max1≤l≤m+1 ‖el−(m+1)‖. Using Schwarz’s inequality and Lemma A.4, we get

i∑

k=i−m

| 〈x̃k − x̃i, ek〉 |

≤
i∑

k=i−m

‖ek‖‖x̃k − x̃i‖

≤
i∑

k=i−m

[(

M1 +
k∑

j=1

‖x̃j−1 − x̃j‖
)

‖x̃k − x̃i‖
]

≤
i∑

k=i−m

[(
k∑

j=1

‖x̃j−1 − x̃j‖
)(

i∑

l=k+1

‖x̃l−1 − x̃l‖
)]

+ M1

i∑

k=i−m

‖x̃k − x̃i‖

≤ (m + 1)





i∑

j=1

‖x̃j−1 − x̃j‖









i∑

l=i−(m−1)

‖x̃l−1 − x̃l‖





︸ ︷︷ ︸

(1)

+ M1

i∑

k=i−m

‖x̃k − x̃i‖
︸ ︷︷ ︸

(2)

.

Term (2) converges to zero by Lemma A.3. Let ai = ‖xi−1 − xi‖. To show our
result, it suffices to show that

lim inf i

[(
i∑

j=1

aj

)(
i∑

l=i−(m−1)

al

)]

= 0

given that
∑∞

j=1 a2
j is finite. We refer the reader to the proof in [Deu01b, Lemma

9.22] for the proof of this fact. �

Lemma A.6. In Algorithm 3.1, there exists a subsequence {x̃ij
} of {x̃i} such that

lim sup
j
〈y − x̃ij

, d− x̃ij
〉 ≤ 0 for each y ∈ C, and (A.11)

limj

ij∑

k=ij −m

|〈x̃k − x̃ij
, ek〉| = 0. (A.12)

Proof. The proof is almost exactly the same as [Deu01b, Lemma 9.23]. Using
Lemma A.2, we have for all y ∈ C, i ≥ m that

〈y − x̃i, d− x̃i〉 = 〈y − x̃i, ei−m + ei−m+1 + · · ·+ ei〉
=

i∑

k=i−m

〈y − x̃i, ek〉

=
i∑

k=i−m

〈y − x̃k, ek〉+
i∑

k=i−m

〈x̃k − x̃i, ek〉.

By Lemma A.1, the first sum is no more than 0. Hence

〈y − x̃i, d− x̃i〉 ≤
i∑

k=i−m

〈x̃k − x̃i, ek〉. (A.13)

By Lemma A.5, we deduce that there is a subsequence {ij}j such that (A.12) holds.
Note that the right hand side of (A.13) does not depend on y. In view of (A.13),
it follows that (A.11) also holds. �
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Theorem A.7. (Warmstart Boyle-Dykstra Theorem) Consider Algorithm 3.1. De-
fine the sequence {x̃n} as in Step 2 of Algorithm 3.1 and (A.2). Then

lim
i
‖x̃i − PC(d)‖ = 0.

Proof. The proof of this result is mostly the same as [Deu01b, Lemma 9.23]. By
Lemma A.6, there exists a subsequence {x̃ij

} such that

lim sup
j
〈y − x̃ij

, d− x̃ij
〉 ≤ 0 for each y ∈ C. (A.14)

Since {x̃i} is bounded by Lemma A.3, it follows by [Deu01b, Theorem 9.12] (by
passing to a further subsequence if necessary), that there is a y0 ∈ X such that

x̃ij

w−→ y0, (A.15)

and

lim
j
‖x̃ij
‖ exists. (A.16)

By another property of Hilbert spaces ([Deu01b, Theorem 9.13]),

‖y0‖ ≤ lim inf
j
‖x̃ij
‖ = lim

j
‖x̃ij
‖. (A.17)

Since [i] takes on only m + 1 possibilities, an infinite number of the ij ’s must be
of the same value. If this value is in {1, . . . , m}, say i0, then an infinite number of
the x̃ij

’s lie in Ci0 . Since Ci0 is closed and convex, it is weakly closed by [Deu01b,
Theorem 9.16], and hence y0 ∈ Ci0 . By (A.7), x̃i − x̃i−1 → 0. By a repeated
application of this fact, we see that all the sequences {x̃ij+1}, {x̃ij +2}, . . . converge
weakly to y0, and hence y0 ∈ Cj for every j. That is,

y0 ∈ C.

For any y ∈ C, (A.17) and (A.14) imply that

〈y − y0, d− y0〉 = 〈y, d〉 − 〈y, y0〉 − 〈y0, d〉+ ‖y0‖2 (A.18)

≤ lim
j

[〈y, d〉 − 〈y, x̃ij
〉 − 〈xij

, d〉+ ‖x̃ij
‖2]

= lim
j
〈y − x̃ij

, d− x̃ij
〉 ≤ 0.

Hence y0 = PC(d). Moreover, putting y = y0 in (A.18), we get equality in the chain
of inequalities, and hence

lim
j
‖x̃ij
‖2 = ‖y0‖2 (A.19)

and

lim
j
〈y0 − x̃ij

, d− x̃ij
〉 = 0.

By (A.15) and (A.19), it follows from [Deu01b, Theorem 9.10(2)] that ‖x̃ij
−y0‖ →

0. Hence

‖x̃ij
− PC(d)‖ = ‖x̃ij

− y0‖ → 0. (A.20)
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We now show an alternative strategy different from what was presented in [Deu01b,
Theorem 9.24]. Recall the definition of vi in (A.8). We have

vi = 1
2‖x̃i − PC(d)‖2 +

i∑

l=i−m

〈el, x̃l − PC(d)〉

= 1
2‖x̃i − PC(d)‖2 + 〈d− x̃i, x̃i − PC(d)〉 +

i∑

l=i−m

〈el, x̃l − x̃i〉

≤ 1
2‖x̃i − PC(d)‖2 + ‖d− x̃i‖‖x̃i − PC(d)‖+

i∑

l=i−m

〈el, x̃l − x̃i〉.

From (A.20) and (A.12), and the fact that vi ≥ 0, we have lim inf i→∞ vi =
limj→∞ vij

= 0. Since {vi} is nonincreasing, we have limi→∞ vi = 0. Moreover,

recall back in the proof of Lemma A.3 that vi ≥ 1
2‖x̃i − y0‖2. These facts combine

to show us that x̃i → y0, which is what we seek. �
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