
Mean distribution approach to spin and gauge theories

Oscar Akerlund1 and Philippe de Forcrand1, 2

1Institut für Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland
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We formulate self-consistency equations for the distribution of links in spin models and of pla-
quettes in gauge theories. This improves upon known mean-field, mean-link, and mean-plaquette
approximations in such that we self-consistently determine all moments of the considered variable
instead of just the first. We give examples in both Abelian and non-Abelian cases.

I. INTRODUCTION

CERN-PH-TH/2015-291

It is always of interest to think about methods that allow easy extraction of approximate results, even though the
computer power available for exact simulations is growing at an ever increasing pace. Mean-field methods are often
qualitatively reliable in their self-consistent determination of the long-distance physics, and have a wide range of
applications, with spin models as typical examples. For a gauge theory, formulated in terms of the gauge links,
however, it is questionable what a mean link would mean, because of the local nature of the symmetry. This
can be addressed by fixing the gauge, but the mean-field solution will then in general depend on the gauge-fixing
parameter. Nevertheless, Drouffe and Zuber developed techniques for a mean field treatment of general Lattice
Gauge Theories in [1] and showed that for fixed βd, where β is the inverse gauge coupling and d the dimension,
the mean-field approximation can be considered the first term in a 1/d expansion. They established that the mean
field approximation can be thought of as a resummation of the weak coupling expansion in a particular gauge and
that there is a first order transition to a strong coupling phase at a critical value of β. Since it becomes exact in
the d→∞ limit, this mean field approximation can be used with some confidence in high-dimensional models [2].

The crucial problem of gauge invariance was tackled and solved by Batrouni in a series of papers [3, 4], where he
first changed variables from gauge-variant links to gauge-invariant plaquettes. The associated Jacobian is a product
of lattice Bianchi identities, which enforce that the product of the plaquette variables around an elementary cube
is the identity element. In the Abelian case this is easily understood, since each link occurs twice (in opposite
directions) and cancels in this product, leaving the identity element. In the non-Abelian case the plaquettes in
each cube have to be parallel transported to a common reference point in order for the cancellation to work. It is
worth noting that in two dimensions there are no cubes so the Jacobian of the transformation is trivial and the new
degrees of freedom completely decouple (up to global constraints).

This kind of change of variables can be performed for any gauge or spin model whose variables are elements
of some group. Apart from gauge theories, examples include ZN -spin models, O(2)- and O(4)-spin models and
matrix-valued spin models. In spin models, the change of variables is from spins to links and the Bianchi constraint
dictates that the product of the links around an elementary plaquette is the identity element. A visualization of
the transformation and the Bianchi constraint for a 2d spin model is given in Fig. 1.

FIG. 1. The change of variables from spins si (left panel) to links lij (right panel) that leads to the Bianchi identity
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Let us review the change of variables for a gauge theory [4]. The original variables are links. The new ones are
plaquettes. Under the action of the original symmetry of the model, the new variables transform within equivalence
classes and it is possible to employ a mean field analysis to determine the “mean equivalence class”. As usual we
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first choose a set of live variables, which keep their original dynamics and interact with an external bath of mean-
valued fields. Interactions are generated through the Jacobian, which is a product of Bianchi identities represented
by δ-functions

δ

( ∏

P∈∂C

UP − 1

)
, (1)

where P denotes a plaquette and ∂C denotes the oriented boundary of the elementary cube C. The δ-functions
can be represented by a character expansion in which we can replace the characters at the external sites by their
expectation, or mean, values. Upon truncating the number of representations, this yields a closed set of equations in
the expectation values which can be solved numerically. The method can be systematically improved by increasing
the number of representations used and the size of the live domain.

While this method works surprisingly well, even at low truncation, it determines the expectation value of the
plaquette in only a few representations. Here, we propose a method that self-consistently determines the complete
distribution of the plaquettes (or links) and thus the expectation value in all representations. This is due to an exact
treatment of the lattice Bianchi identities which does not rely on a character expansion. The only approximation
then lies in the size of the live domain which can be systematically enlarged, as in any mean field method. It is
worth noting that our method works best for small β and low dimensions: it does not become exact in the infinite
dimension limit. In this way it can be seen as complementary to the mean field approach of [1]. We will also see
that the mean distribution approach proposed here actually works rather well for both small and large β.

The paper is organized as follows. In section II we describe the method in general terms and compare it to the
mean field, mean link and mean plaquette methods before describing more detailed treatments of spin models and
gauge theories in sections III and IV respectively. Finally, we draw conclusions in section V.

II. METHOD

A. Mean Field Theory

Let us for completeness give a very brief reminder of standard mean field theory. Consider for definiteness a lattice
model with a single type of variables s which live on the lattice sites. The lattice action is assumed to be translation
invariant and of the form

S = −1

2

∑

i,j

J|i−j|s
†
isj +

∑

i

V (si), (2)

where i, j labels the lattice sites and V (s) is some local potential. Let us now split the original lattice into a live
domain D and an external bath Dc. The variables {si | i ∈ Dc} all take a constant “mean” value s. The mean field
action then becomes (up to a constant)

SMF = −1

2

∑

i,j∈D
J|i−j|s

†
isj +

∑

i∈D


V (si)−

∑

j∈Dc
J|i−j|s

†
is


 , (3)

where s is determined by the self-consistency condition that the average value of s in the domain D is equal to the
average value in the external bath,

〈s〉 =

∫ ∏

i∈D
dsi sie

−SMF

∫ ∏

i∈D
dsi e

−SMF

!
= s. (4)

Once s has been determined the mean field action (3) can be used to measure other observables local to the domain
D.
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B. Mean Distribution Theory

To generalize the mean field approach we relax the condition that the fields at the live sites interact only with the
mean value of the external bath. Instead, the fields in the external bath are allowed to vary and take different
values distributed according to a mean distribution. The self-consistency condition is thus that the distribution of
the variables in the live domain equals the distribution in the bath.

Consider a real scalar theory for illustration purposes. Starting from the action

S = −2κ
∑

〈i,j〉

φiφj +
∑

i

V (φi) , (5)

with nearest neighbor coupling κ and a general on-site potential V , we expand the field φ ≡ δφ+φ around its mean
value φ and integrate out all the fields except the field at the origin φ0 =φ+ δφ0 and its nearest neighbors, denoted
φi, i = 1, . . . , z, where z is the coordination number of the lattice. The partition function can then be written

Z =

∫
dφ0 e

−V (φ0)+2zκφ̄δφ0

∫ z∏

i=1

dδφi pJ(δφ1, . . . , δφz)e
2κδφ0

∑z
i=1 δφi , (6)

where pJ(δφ1, . . . , δφz) is a joint distribution function for the fields around the origin and absorbs everything not
explicitly depending of δφ0 into its normalization. So far everything is exact and, given a way to compute pJ , we
could obtain all local observables, for example 〈φn0 〉. Now, pJ is in general not known, so we will have to make
some ansatz and determine the best distribution compatible with this ansatz. In standard mean field theory the
ansatz is pJ(δφ1, . . . , δφz) =

∏z
i=1 δ(δφi) and only φ is left to be determined as explained above. In the mean

distribution approach we will assume that the distribution is a product distribution pJ(δφ1, . . . , δφz) =
∏z
i=1 p(δφi)

and determine p self-consistently to be equal to the distribution of δφ0, i.e.

p(δφ0) =
1

Z
e−V (δφ0+φ̄)+2zκφ̄δφ0

(〈
e2κδφ0δφi

〉
p(δφi)

)z
, (7)

where 〈f(φ)〉p(φ) =
∫

dφ p(φ)f(φ). The mean value φ has to be adjusted such that the distribution p has zero mean.

After p and φ have been determined any observable, even observables extending outside the live domain, can be
extracted under the assumption that every plaquette is distributed according to p. Local observables are given by
simple expectation values with respect to the distribution p.

This strategy can also be applied to spin and gauge models, taking as variables the links and plaquettes re-
spectively, as discussed in the introduction. For a gauge theory, the starting point is the partition function in the
plaquette formulation

Z =

∫ ∏

P

dUP
∏

C

δ

( ∏

P∈∂C

UP − 1

)
e−S[UP ], (8)

where S[Up] is any action which is a sum over the individual plaquettes, for example the Wilson action S[UP ] =
β
∑
P (1 − ReTrUP ), or a topological action [5, 6] where the action is constant but the traces of the plaquette

variables are limited to a compact region around the identity.
The difference to the mean plaquette method is that it is not assumed that the external plaquettes take some

average value, but rather that they are distributed according to a mean distribution. More specifically, we assume
that there exists a mean distribution for the real part of the trace of the plaquettes and that the other degrees of
freedom are uniformly distributed with respect to the Haar measure. Such a distribution must exist and it can
be measured for example by Monte Carlo simulations. For definiteness let us consider compact U(1) gauge theory
with a single plaquette P0 as the live domain. The plaquette variables UP = eiθP ∈ U(1) can be represented with
a single real parameter θP ∈ [0, 2π] and the real part of the trace is cos θP . Our goal is to obtain an approximation
to the distribution p (cos θP0

), or equivalently p (θP0
) = Z (θP0

) /Z, where

Z(θP0) = e−S[UP0
]

∫ ∏

P 6=P0

dUP e
−S[UP ]

∏

C

δ


 ∏

P ′∈∂C

U ′P − 1


 , (9)

Z =

∫
dUP0

Z(θP0
). (10)

To obtain a finite number of integrals we now make the approximation that all plaquettes which do not share a cube
with P0 are independently distributed according to some distribution p(θ). Clearly this neglects some correlations
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among the plaquettes but this can be improved by taking a larger live domain. Again, let C denote an elementary
cube with boundary ∂C and P denote a plaquette. We define

UC ≡
∏

P∈∂C

UP , (11)

C0 ≡ {C | P0 ∈ ∂C}, (12)

PC ≡ {P | ∃C ∈ C0 : P ∈ ∂C, P 6= P0}, (13)

i.e. C0 is the set of all cubes containing P0, and PC is the set of plaquettes, excluding P0, making up C0. The sought
distribution is then determined by the self-consistency equation

p (θP0
) =

e−S[UP0 ]
∫ ∏

P∈PC

dUP p (θP )
∏

C∈C0

δ (UC − 1)

∫
dUP0

e−S[UP0 ]
∫ ∏

P∈PC

dUP p (θP )
∏

C∈C0

δ (UC − 1)

. (14)

This self-consistency equation is solved by iterative substitution: given an initial guess for the distribution p(0) (θP0
),

it is a straightforward task to integrate out the external plaquettes and obtain the next iterate p(1) (θP0
) from eq. (14),

and to iterate the procedure until a fixed point is reached, i.e. p(n+1) (θP0
) = p(n) (θP0

). This is a functional equation,
which is solved numerically by replacing the distribution p by a set of values on a fine grid in θP or by a truncated
expansion in a functional basis. In this paper we have chosen to discretize the distribution on a grid. As mentioned
above, this can be done in a completely analogous way also for spin models and for different types of actions. In
Fig. 2 we compare the distributions of plaquettes in the 4d U(1) lattice gauge theory with the Wilson action close to
the critical coupling (left panel) and with the topological action at the critical restriction δc (right panel), obtained
by Monte Carlo on an 84 lattice and by the mean distribution approach with the normalized action eβ cos θP . Below
we give more details for a selection of models along with numerical results.

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

p
(θ
P
)

θP

β = 0.9

Monte Carlo, 〈cos θP 〉 = 0.507
Mean distribution, 〈cos θP 〉 = 0.485

Haar measure, eβ cos θP /I0(β)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

p
(θ

P
)

θP

δ = δc ≈ 0.6202

Monte Carlo, 〈cos θP 〉 = 0.593
Mean distribution, 〈cos θP 〉 = 0.549
Haar measure, 1

FIG. 2. The distribution of plaquettes angles p(θP ) in the 4d U(1) lattice gauge theory with the Wilson action close to the
critical coupling (left panel) and with the topological action at the critical restriction δc (right panel) obtained by Monte
Carlo on an 84 lattice and by the mean distribution approach, together with the Haar measure.

III. SPIN MODELS

We will start by applying the method to a few spin models, namely Z2, Z4 and the U(1) symmetric XY -model
and we will explain the procedure as we go along. Afterwards, only minor adjustments are needed in order to
treat gauge theories. We will derive the self-consistency equations in an unspecified number of dimensions although
graphical illustrations will be given in two dimensions for obvious reasons.

Let us start with an Abelian spin model with a global ZN symmetry. The partition function is given by

Z =
∑

{s}

exp


β

∑

〈i,j〉

Re sis
†
j


 , (15)
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where si = ei
2π
N ni , ni ∈ {1, · · · , N}(∈ ZN ). In the usual mean field approach we would self-consistently determine

the mean value of si by letting one or more live sites fluctuate in an external bath of mean valued spins. However,
Batrouni [3, 7] noticed that by self-consistently determining the mean value of the links, or internal energy, Uij ≡
sis
†
j , much better estimates of for example the critical temperature could be obtained for a given live domain. Thus,

we first change variables from spins to links. The Jacobian of this change of variables is a product of lattice Bianchi
identities, δ (UP − 1), one for each plaquette [8]. This can be verified by introducing the link variables Uij via∫

dUij δ
(
Uijsjs

†
i − 1

)
and integrating out the spins in a pedestrian manner. Since the Boltzmann weight factorizes

over the link variables, all link interactions are induced by the Bianchi identities and hence the transformation
trivially solves the one dimensional spin chain where there are no plaquettes [9].

As mentioned above, each δ-function can be represented by a sum over the characters of all the irreducible

representations of the group. For ZN this is merely a geometric series, δ (UP − 1) = 1
N

∑N−1
n=0 U

n
P . Since only the

real part enters in the action it is convenient to reshuffle the sum so that we sum only over real combinations of the
variables,

δ (UP − 1) ∝ 1 + U
N/2
P δNeven +

bN−1
2 c∑

n=1

(
UnP + U−nP

)
, (16)

where δNeven is 1 if N is even and 0 otherwise.
The next step is to choose a domain of live links. In this step, imagination is the limiting factor; for a given

number of live links there can be many different choices and it is not known to us if there is a way to decide which
is the optimal one. The simplest choice is of course to keep only one link alive but in our 2d examples we will
make use also of a nine-link domain [7] to see how the results improve with larger domains. These two domains are
shown in the left (one link) and right (nine links) panels of Fig. 3. In the case of a single live link, there are 2(d−1)
plaquettes and thus there are 2(d− 1) δ-functions of the type in eq. (16).

FIG. 3. Two choices of domains of live links for 2d spin models. The live links are denoted by the solid lines, whereas the
dashed lines denote links which are assumed to take mean values or to be distributed according to the mean distribution.
The left panel shows the unique domain with one live link and the right panel shows one of many domains with nine live
links.

A. Mean link approach

Let us for simplicity consider the case of one live link, denoted U0. The external links, denoted Uk by some
enumeration ij → k, are fixed to the mean value by demanding that Unk = U−nk = 〈U〉n , ∀k 6= 0. Each plaquette
containing the live link also contains three external links, and the δ-function eq. (16) becomes

δ (UP − 1) ∝ 1 + 〈U〉3N/2 (−1)n0δNeven + 2

bN−1
2 c∑

n=1

〈U〉3n cos
2πn0n

N
. (17)
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For large N it is best to perform the sum analytically to obtain (for N = 2M)

δ (UP − 1) ∝ 1− (−1)n0 〈U〉3M

1 + 〈U〉6 − 2 〈U〉3 cos πn0

M

. (18)

For U(1) we define πn0

M = θ0 as M →∞ and since 〈U〉 < 1 we get

δ (UP − 1) ∝
(

1 + 〈U〉6 − 2 〈U〉3 cos θ0

)−1

, (19)

which can efficiently be dealt with by numerical integration. The partition functions for the single live link for Z2,
Z4 and U(1) [10] spin models then become

ZZ2
∝

∑

U0=±1

eβU0

(
1 + 〈U〉3 U0

)2(d−1)

, (20)

ZZ4
∝

3∑

n0=0

eβ cos
πn0
2

(
1 + 〈U〉6 (−1)n0 + 2 〈U〉3 cos

πn0

2

)2(d−1)

, (21)

ZU(1) ∝
δ∫

−δ

dθ eβ cos θ
(

1 + 〈U〉6 − 2 〈U〉3 cos θ
)−2(d−1)

. (22)

In the U(1) case, eq. (22) applies both to the standard action (β ≥ 0, δ = π) and to the topological action
(β = 0, δ ≤ π).

B. Mean distribution approach

In the mean distribution approach we sum over the external links assuming they each obey a mean distribution
p(U), for which a one-to-one mapping to the set of moments {〈Un〉} exists. The difference between the two methods
becomes apparent when expressed in terms of the moments, which are obtained by integrating the distributions of
the external links against the δ-function given by the Bianchi constraint in eq. (16)

∑

{U1,U2,U3}

p(U1)p(U2)p(U3)δ(UP − 1) = 1 +
〈
UN/2

〉3

U
N/2
0 δNeven + 2

bN−1
2 c∑

n=1

〈Un〉3 cos
2πn0n

N
. (23)

Comparing to eq (17), we see that for N ≤ 3 there is only one moment and the two methods are thus equivalent,
but for larger N the mean link approach makes the approximation 〈Un〉 = 〈U〉n whereas the mean distribution
approach treats all moments correctly.

Thus, for small N we do not expect much difference between the two approaches, and this is indeed confirmed
by explicit calculations. For U(1), however, there are infinitely many moments which are treated incorrectly by the
mean link approach and this renders the mean distribution approach conceptually more appealing.

By using the Bianchi identities, one link per plaquette can be integrated out, giving

ZU(1) =

δ∫

−δ

dθ eβ cos θ




δ∫

−δ

dθ1dθ2 p(θ1)p(θ2)

2∑

n=−2

p(2πn− θ − θ1 − θ2)




2(d−1)

. (24)

It is often convenient not to work solely with distributions of single links, but also of multiple links, which are
defined in the obvious way,

pN (Θ) ≡
∫ N∏

i=1

dθi p(θi)δ

(
N∑

i=1

θi −Θ

)
, (25)

and can efficiently be calculated recursively. The above partition function then simplifies slightly to

ZU(1) =

δ∫

−δ

dθ eβ cos θ




2δ∫

−2δ

dΘ p2(Θ)

2∑

n=−2

p(2πn− θ −Θ)




2(d−1)

. (26)
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In Figs. 4 and 5 we show results for 2d Z2, Z4 and U(1) spin models, the latter for the Wilson action S =

β
∑
〈ij〉Re sis

†
j and the topological action eS =

∏
〈ij〉Θ (δ − |θi − θj |). Note the remarkable accuracy of the mean

distribution approach in the latter case, even when there is only one live link.
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FIG. 4. (left) Mean-field and mean-link approximation in the 2d Ising model for two choices of live domains. (Right)
Mean-link and mean-distribution in the 2d Z4 model. In the Ising case, mean-link and mean-distribution are equivalent.
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FIG. 5. The mean link in the 2d XY spin model as a function of the Wilson coupling β (left panel) and of the restriction δ
(right panel) from Monte Carlo, from the mean link and from the mean distribution methods.

IV. GAUGE THEORIES

To extend the formalism from spin models to gauge theories, we merely have to change from links and plaquettes
to plaquettes and cubes. The partition function for a U(1) gauge theory analogous to eq.(22) becomes

ZU(1) =

δ∫

−δ

dθ eβ cos θ
(

1 + 〈U〉10 − 2 〈U〉5 cos θ
)−2(d−2)

(27)

in the mean plaquette approach and

ZU(1) =

δ∫

−δ

dθ eβ cos θ




4δ∫

−4δ

dΘ p4(Θ)

3∑

n=−3

p(2πn− θ −Θ)




2(d−2)

(28)
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in the mean distribution approach. Results for d = 4 are shown in Fig. 6 for the Wilson action (left panel) and for
the topological action (right panel).
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FIG. 6. The mean plaquette in the 4d U(1) gauge theory as a function of the Wilson coupling β (left panel) and the restriction
δ (right panel) from Monte Carlo, and from the mean plaquette and the mean distribution methods.

Another nice feature of the mean distribution approach is that other observables become available, like for instance
the monopole density in the U(1) gauge theory, under the assumption that each plaquette is distributed according
to the mean distribution p. A cube is said to contain q monopoles if the sum of its outward oriented plaquette
angles sums up to 2πq. Given the distribution p(θ) of plaquette angles the (unnormalized) probability pq of finding
q monopoles in a cube is given by

pq =

∫ 6∏

i=1

dθi p(θi)δ

(
6∑

i=1

θi − 2qπ

)
, q ∈ {−2,−1, 0, 1, 2} (29)

and the monopole density nmonop is given by

nmonop =
2p1 + 4p2

p0 + 2p1 + 2p2
. (30)

In Fig. 7 we show the monopole densities for 4d U(1) gauge theory as obtained by Monte Carlo simulations and by
the mean distribution approach. Note that the monopole extends outside of the domain of a single live plaquette,
which was used to determine the mean distribution p. The left panel shows results for the Wilson action and in the
right panel the topological action is used.
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FIG. 7. The monopole density in the 4d U(1) gauge theory as a function of the Wilson coupling β (left panel) and the
restriction δ (right panel) from Monte Carlo and the mean distribution method.
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We can also treat SU(2) Yang-Mills theory without much difficulty. For the mean plaquette approach we need
the character expansion of the δ-function

δ (UC − 1) ∝
∞∑

n=0

(n+ 1)
sin(n+ 1)θC

sin θC
, (31)

where θC is related to the trace of the cube matrix UC through TrUC = 2 cos θC .
In the mean plaquette approach we again make the substitution UC → U0 〈U〉5 in the case of a single live

plaquette. The above delta function then becomes

δ
(
U0 〈U〉5 − 1

)
∝
∞∑

n=0

〈U〉5n (n+ 1)
sin(n+ 1)θ0

sin θ0

∝
(

1 + 〈U〉10 − 2 cos θ0 〈U〉5
)−2

. (32)

For SU(2), the analogue of a restriction δ on the plaquette angle is a restriction on the trace of the plaquette matrix
to the domain [2α, 2], where −1 ≤ α < 1. If we define a0 ≡ 1

2 TrU0 = cos θ0 the approximate SU(2) partition
function can be written [11] in a way very similar to the U(1) partition function (27)

ZSU(2) =

1∫

α

da0

√
1− a2

0 e
βa0
(

1 + 〈U〉10 − 2 〈U〉5 a0

)−4(d−2)

, (33)

from which 〈U〉 can be easily obtained as a function of α and β.
The mean distribution approach works in a completely analogous way as for U(1), but let us go through the

details anyway, since there are now extra angular variables to be integrated out. The starting point is again an
elementary cube on the lattice. Five of the cubes faces have their trace distributed according to the distribution
p(a0) and we want to calculate the distribution of the sixth face compatible with the Bianchi identity UC = 1. In
other words, taking U6 as the live plaquette, we want to evaluate

p̃(a0,6) ∝
∫

dΩ6

∫ 5∏

i=1



dUi

p(a0,i)√
1− a2

0,i



 δ

(
6∏

i=1

Ui − 1

)∣∣∣∣∣∣
TrU6=2a0,6

, (34)

where we have decomposed U6 = Ω6Û6Ω†6 with Û6 a diagonal SU(2) matrix with trace 2a0,6, i.e. Ω6 is the angular

part of U6. The choice to include the measure factor
√

1− a2
0 in the distribution is arbitrary but convenient. To

facilitate the calculation we recursively combine the product of four of the plaquette matrices into one matrix,
U1U2U3U4 → Ũ , by pairwise convolution of distributions (with p1(a0) ≡ p(a0))

p2i(ã0) ∝
∫

dΩ̃dU1dU2
pi(a0,1)√
1− a2

0,1

pi(a0,2)√
1− a2

0,2

δ
(
U1U2Ũ

† − 1
)
∣∣∣∣∣∣
TrŨ=2ã0

∝
1∫

αi

da0,1da0,2 pi(a0,1)pi(a0,2)

1∫

−1

d cos θ12 δ
(
ã0 − a0,1a0,2 −

√
1− a2

0,1

√
1− a2

0,2 cos θ12

)
(35)

=

1∫

αi

da0,1da0,2
pi(a0,1)pi(a0,2)√
1− a2

0,1

√
1− a2

0,2

χ|ã0−a0,1a0,2|≤
√

1−a20,1
√

1−a20,2
,

where α1 ≡ α, α2i = max(2αi − 1,−1) and χA is the characteristic function on the domain A. The domain
of integration in the (a0,1, a0,2)-plane is simply connected with parametrizable boundaries and comes from the
condition that the argument of the delta function has a zero for some cos θ12 ∈ [−1, 1]. We then obtain for the
sought distribution

p̃(a0,6) ∝
∫

dΩ6

∫
dU5

p(a0,5)√
1− a2

0,5

∫
dŨ

p4(ã0)√
1− ã2

0

δ
(
ŨU5U6 − 1

)
∣∣∣∣∣∣
TrU6=2a0,6

, (36)
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where it is now easy to integrate out Ũ = U†6U
†
5 . If we denote by θ56 the angle between U5 and U6, the angular

integral over Ω6 contributes just a multiplicative constant and we obtain

p̃(a0,6) ∝
∫

da0,5d cos θ56 p(a0,5)
p4

(
a0,5a0,6 −

√
1− a2

0,5

√
1− a2

0,6 cos θ56

)

√
a0,5a0,6 −

√
1− a2

0,5

√
1− a2

0,6 cos θ56

, (37)

which can be evaluated numerically in a straightforward manner. In the end, since there are 2(d− 2) cubes sharing

the plaquette P0, and since the a priori probability for P0 to have trace 2a0 is
√

1− a2
0e
βa0 , with respect to the

uniform measure, we obtain for one live plaquette

ZSU(2) =

1∫

α

da0 p(a0) =

1∫

α

da0

√
1− a2

0e
βa0 p̃(a0)2(d−2)

=

1∫

α

da0

√
1− a2

0e
βa0




1∫

α

dx p(x)d cos θ
p4

(
a0x−

√
1− a2

0

√
1− x2 cos θ

)

√
a0x−

√
1− a2

0

√
1− x2 cos θ




2(d−2)

, (38)

which also defines the functional self-consistency equation for p(a0).
Results for the Wilson and topological actions can be seen in Fig. 8 in the left and right panels, respectively [12].
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FIG. 8. The average plaquette for the SU(2) gauge theory as a function of the Wilson coupling β (left panel) and the
restriction α (right panel) from Monte Carlo simulation, the mean plaquette method and the mean distribution method. For
comparison the mean link result obtained with the formalism in [1] is also shown in the left panel.

For SU(3) one can proceed in an analogous manner, only the angular integrals are now more involved and the
trace of the plaquette depends on two diagonal generators so the resulting distribution function needs to be two
dimensional.

V. CONCLUSIONS

It has been shown before [7] that determining a self-consistent mean-link gives a much better approximation than
the traditional mean-field. Furthermore, the symmetry-invariant mean link can be generalized to a mean plaquette
in gauge theories [3]. Here, we have shown that the approximation can be further improved by determining the
self-consistent mean distribution of links or plaquettes. The extension from a self-consistent determination of the
symmetry invariant mean link or plaquette to a self-consistent determination of the entire distribution of links and
plaquettes is shown to improve upon the results obtained by Batrouni in his seminal work [3, 4]. Especially appealing
is the fact that the mean distribution approach yields a non-trivial result for the whole range of couplings and not
just in the strong coupling regime, which is sometimes the case for the mean link/plaquette approach, or just in the
weak coupling regime which is accessible to the mean field treatment of [1]. Indeed, the mean distribution approach
gives a nearly correct answer when the correlation length is not too large, and by enlarging the live domain the
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exact result is approached systematically for any value of the coupling. As the domain of live variables is enlarged,
the mean link/plaquette and the mean distribution results tend to approach each other but since determining the
full mean distribution does not require much additional computer time it should always be desirable to do so.

Furthermore, another appealing feature of the mean distribution approach is that once the distribution has been
self-consistently determined, other local observables, like the vortex or monopole densities become readily available.
Finally, the whole approach applies to non-Abelian models as well.
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