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Numerical simulation is an important non-perturbative tool to study quantum field theories de-
fined in non-commutative spaces. In this contribution, a selection of results from Monte Carlo
calculations for non-commutative models is presented, and their implications are reviewed. In ad-
dition, we also discuss how related numerical techniques have been recently applied in computer
simulations of dimensionally reduced supersymmetric theories.
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1. Introduction

The idea that the geometry of spacetime becomes non-commutative at the Planck scale is a
central feature of quantum gravity theories [1]: it arises naturally in a string theory context [2]
and entails far-reaching consequences for quantum field theory (QFT), including a variety of sur-
prising phenomenological implications [3, 4]; a well-known example of the latter is the mixing of
ultraviolet and infrared (UV/IR) degrees of freedom [5].

Typically, analytical studies of QFT in non-commutative spaces (NC QFT) involve some form
of approximation—be it a truncated perturbative expansion, or some large-N limit, et c. In order
to test the robustness of results obtained under these approximations, it is desirable to check them
against some other ab initio formulation of the theory. For a generic NC QFT, a possible way to do
this is by numerical evaluation of correlation functions, in a Feynman path-integral formulation of
the theory [6]. During the past fifteen years, this approach has been successfully pursued in several
works, in which various types of field theories in non-commutative spaces of different dimensions
have been mapped to appropriately defined finite-dimensional matrix models, and investigated by
Monte Carlo integration. More recently, the numerical technology developed in these works has
also found applications in computer simulations of dimensionally reduced supersymmetric theo-
ries, paving the way to the non-perturbative study of many open theoretical issues—including, in
particular, problems related to the gauge/gravity duality [7, 8, 9].

2. Implementation

In the Feynman path-integral formalism, expectation values in a generic QFT (defined in ordi-
nary, commutative Minkowski spacetime) are given by

〈O (M)
1 . . .O (M)

n 〉=
∫

Dφ O (M)
1 . . .O (M)

n exp(iS(M))∫
Dφ exp(iS(M))

. (2.1)

In a Euclidean formulation, the previous expression is replaced by

〈O1 . . .On〉=
∫

Dφ O1 . . .On exp(−S)∫
Dφ exp(−S)

, (2.2)

where S denotes the Euclidean action, a functional of the fields φ . The similarity between eq. (2.2)
and the expression for correlation functions in a statistical system suggests that the functional
integrals appearing on the r.h.s. of eq. (2.2) could be evaluated using techniques analogous to the
computational tools of statistical mechanics, including low- or high-temperature expansions, or
numerical integration by Monte Carlo methods.

The latter approach requires the definition of a measure for the fields, that is both (i) math-
ematically well-defined, and (ii) suitable for numerical calculations. In practice, this means that
the fields in the original theory have to be traded for a finite number of degrees of freedom, often
defined in terms of matrix variables. This procedure is straightforward for bosonic fields, which
are represented by ordinary, commuting c-numbers in the Feynman path-integral formalism. To
enforce the correct statistics for fermionic fields, on the other hand, they have to be represented
by Graßmann numbers; even though a direct computer evaluation of “ensemble averages” of prod-
ucts of Graßmann variables is not possible, the integration over these quantities can be carried out
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exactly for a Euclidean action which depends bilinearly on the fermionic fields. This fermionic
Gaußian integral results into the determinant of the large, but finite-dimensional, matrix (a dis-
cretized version of the Dirac operator in the original theory), while fermionic operators appearing
in a generic observable O are associated with elements of the inverse of such matrix [10, 11]. Note
that, in general, both the determinant and the inverse matrix elements are highly non-local, yet
completely well-defined functions of the bosonic degrees of freedom to which the fermionic fields
are coupled. Thus, as long as the purely bosonic contribution to the Euclidean action is a real
quantity bounded from below, and the fermionic matrix determinant is positive (a requirement that
holds under certain conditions), each possible set of values of the bosonic degrees of freedom (a
configuration) is associated with a properly normalized, real positive Boltzmann weight, and the
“discretized” version of eq. (2.2) describes a completely well-defined statistical-mechanics model,
with a finite number of degrees of freedom. Typically, the Boltzmann weight is a strongly peaked
function in configuration space, so the high-dimensional integrals defining the correlation func-
tions can be evaluated numerically, by Monte Carlo sampling. Note that the “discretization” of the
original theory to a finite number of degrees of freedom introduces an intrinsic cutoff; the original
theory is then recovered in the limit in which the “matrix size” (or, more generally, the number of
degrees of freedom of the discretized version of the system) is taken to infinity. More precisely,
in this limit the original theory arises as a good low-energy effective description of the discretized
model—where “low-energy” means “at scales that are well-separated from the cutoff scale”.

Let us now see how this can be done for path integrals in NC QFT. In general, the details of
the regularization in terms of finite matrices depend on the model under consideration: the simplest
examples are provided by NC scalar field theory in two dimensions. If one defines this theory on
a fuzzy sphere [12], then the scalar field can be directly mapped to a Hermitian matrix Φ of finite
size N, and the Euclidean action takes the form

S =
4π

N
Tr
(
Φ [Li, [Li,Φ]]+ rR2

Φ
2 +λR2

Φ
4) , (2.3)

where R is the sphere radius, Li (with i = 1, 2, 3) denotes a generator of the su(2) algebra, in the
representation of spin j = (N− 1)/2, while r and λ are the rescaled coefficients of the quadratic
and quartic terms in the potential, respectively. The computation of correlation functions is then
expressed in terms of integrals over the entries of the Φ matrix

〈O1 . . .On〉=
∫

∏
N
i, j=1 dΦi j O1 . . .One−S∫

∏
N
i, j=1 dΦi je−S

. (2.4)

This type of calculation has been carried out by Monte Carlo methods in a number of works [13,
14, 15, 16, 17] (including a very recent study of the entanglement entropy [18]).

A different way to map NC scalar field theory in two dimensions to a finite-dimensional matrix
model was introduced in ref. [19], following an approach which is related to large-N volume re-
duction in the twisted Eguchi-Kawai model [20, 21] (see also ref. [22, subsection 4.7] for a detailed
discussion). In this case, the Euclidean action of the discretized model reads

S = Tr

[
1
2

2

∑
µ=1

(
ΓµΦΓ

†
µ −Φ

)2
+

m̄2

2
Φ

2 +
λ̄

4
Φ

4

]
, (2.5)
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where the kinetic term involves the “twist eaters” Γµ , which are N×N unitary matrices satisfying
the ’t Hooft-Weyl algebra, ΓµΓν = zνµΓνΓµ , with z12 = z?21 =−eiπ/N . Also this formulation of NC
scalar field theory in two dimensions has been studied numerically in various works [23, 24, 25].

Before moving on to a selection of results from numerical studies of NC QFT, we conclude
this section comparing these types of discretization with the regularization of QFT on a spacetime
grid that is performed in lattice field theory [26]. As it was suggested in the literature [27, 28],
the discretization of NC QFT in terms of matrix models could provide an interesting and viable
alternative to computations based on the lattice regularization (even for theories defined in ordinary,
commutative spaces, if the non-commutativity parameter can be made sufficiently small, so that
results can be eventually extrapolated to the commutative limit): it is therefore important to assess
similarities and differences between the two approaches.

• Perhaps the most striking difference with the lattice regularization is that matrix-model dis-
cretizations of NC field theories can often be formulated in a way that preserves the space-
time symmetries exactly at every value of the cutoff. A very clear example is provided by the
action for the scalar theory on the fuzzy sphere defined in eq. (2.3), which is explicitly in-
variant under continuum SO(3) rotations at every value of N. By contrast, the lattice breaks
the group of Euclidean rotations down to a discrete subgroup—typically, the dihedral (in
D = 2 spacetime dimensions), octahedral (in D = 3) or hyperoctahedral (in D = 4) group, if
the lattice is a regular square, cubic or hypercubic grid. Similarly, the lattice also breaks the
group of continuum translations down to the subgroup of translations by integer multiples
of the lattice spacing a in each direction. This implies that, on the lattice, the spacetime
symmetries of the continuum theory are explicitly broken by discretization artifacts, and get
restored only in the continuum limit a→ 0.

• The treatment of fermionic fields (especially as it concerns chirality and anomalies) is some-
what simpler in matrix-model formulations of NC field theories [29, 30, 31, 32, 33], whereas
all ultralocal, chirally symmetric lattice formulations of the Dirac operator lead to unphysical
doubler modes [34, 35], which can be removed at the cost of sacrificing either exact chiral
symmetry at finite lattice spacing [36] or the ultralocality of the Dirac operator [37, 38, 39].

• Also the construction of supersymmetric models is usually simpler [40, 41], while a “direct”
implementation of supersymmetry on the lattice requires fine-tuning [42], and more sophisti-
cated formulations of lattice supersymmetry, which involve twisted formulations or orbifold
constructions, are actually closer to matrix-model formulations of NC field theory [43].

• The typical computational costs of present NC field theory simulations are not prohibitive.
Most state-of-the-art lattice QCD calculations, instead, require supercomputing resources.

• The reason for the latter difference is not in intrinsic limitations of the lattice formulation, but
rather in the fact that the primary focus of numerical studies of NC models is on qualitative
features of theories beyond the Standard Model, typically at energy scales far from the reach
of present experiments, whereas lattice calculations are now in a precision era, and aim at
accurate quantitative results for QCD phenomenology [44]—while topics beyond QCD (e.g.
large-N gauge theories [45, 46], strongly coupled gauge theories for dynamical electro-weak
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Figure 1: The phase structure (left-hand-side panel) and the scaling of the specific heat at the disorder/non-
uniform order transition with the matrix size N, and its comparison with analytical expectations in the large-
N limit (right-hand-side panel) of NC φ 4 theory in two dimensions, from the simulations on a fuzzy sphere
reported in ref. [16].

symmetry breaking [47, 48], et c.) are covered in a sizable, but much smaller, fraction of the
lattice literature.

3. Examples of results

In this section, we review a (limited) selection of results from recent numerical studies of NC
models. We start from the results obtained in simulations of scalar field theories in subsection 3.1,
before moving to those for non-supersymmetric gauge theories in subsection 3.2, and finally dis-
cussing those for supersymmetric models in subsection 3.3.

3.1 Results for NC scalar field theory

Several works [13, 14, 15, 16, 25, 49] studied the phase structure of NC φ 4 theory in two
dimensions, finding numerical evidence for a striped phase [50] characterized by non-uniform
order. As an example, fig. 1 shows the phases and the specific heat obtained in ref. [16].

Another recent numerical study of this theory was presented in ref. [25], in which the per-
sistence of the striped phase in the continuum limit was confirmed by accurate extrapolations; as
shown in fig. 2, taken from that article, this exotic phase is true to its name, with typical configura-
tions exhibiting a characteristic striped pattern.

Related numerical studies have also been carried out on the fuzzy disc [51] (based on the
construction presented in ref. [52]), in a tridimensional version of the model [53, 54], at finite
temperature [55], in a multi-trace formulation [56, 57], et c.1 The results of these numerical sim-
ulations can be compared with several analytical studies, including refs. [5, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76].

1A different type of study, in which Monte Carlo simulations were used to probe a space of random fuzzy geome-
tries, was recently presented in ref. [58].
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Figure 2: A typical configuration in the striped phase obtained in a numerical study of the NC φ 4 theory
in two dimensions in ref. [25] using the mapping to a matrix model defined in ref. [19].
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Figure 3: The photon dispersion relation obtained in numerical simulations of NC QED [104] reveals
non-linear behavior at small momenta, in agreement with one-loop perturbative predictions [109, 110, 111].

3.2 Results for NC gauge theories

Analytical studies of gauge theories in NC spaces cover a huge body of literature: historically,
the first example dates back to the first half of the past century [77]. During the past quarter-
century, a major research line in these works has been the generalization of the Standard Model
of particle physics to a NC framework—although this is only one of the motivations to study NC
gauge theories. A very incomplete list of articles addressing problems in this research area includes
refs. [78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99].

Numerical studies of gauge theories in NC spaces, on the other hand, have a relatively recent
history [100, 101, 102, 103, 104, 105, 106, 107, 108]. An example of results of these studies is
shown in fig. 3, taken from ref. [104], in which the photon dispersion relation obtained from nu-
merical simulations of NC QED is displayed: the deviations from linear behavior (which are com-
patible with expectations derived analytically [109, 110, 111]) encode an interesting New Physics
signature, which, as discussed in refs. [112, 113], could be potentially observable in ultra-high-
energy cosmic rays.
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3.3 Results for supersymmetric models

An interesting recent development in the research on NC theories regularized by means of fi-
nite matrices (and in numerical studies thereof) is based on the observation that closely related tech-
niques can be applied for numerical simulations of dimensionally reduced N = 4 supersymmetric
Yang-Mills theory [114], which describes the dynamics of N D0-branes in type IIA superstring
theory [115]:

S =
N
2λ

∫
β

0
dτ Tr

{
(DτXi)

2− 1
2
[Xi,X j]

2 +ΨαDτΨα −Ψα (γi)αβ

[
Xi,Ψβ

]}
. (3.1)

The extension to three or four spacetime dimensions can be achieved, by invoking arguments of
large-N volume independence [116].

This approach has been successfully pursued in a number of studies [117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 128, 129, 130]. As an example of results, the left-hand-side panel of
fig. 4 shows the dependence of the energy on the temperature T in dimensionally reduced, maxi-
mally supersymmetric Yang-Mills theory, obtained in the Monte Carlo study reported in ref. [122]:
at high temperature, the numerical results are in agreement with the expectations from an analyti-
cal expansion presented in ref. [131], while at low temperatures they can be successfully compared
with the classical-supergravity prediction derived in ref. [132]. The right-hand-side panel of fig. 4,
instead, shows the numerical results, obtained in ref. [133] using the same formulation of the the-
ory, for the logarithm of Wilson-Polyakov loop introduced in ref. [134]: this quantity is plotted
against the temperature (to the power −3/5) and is compared with the high-temperature expansion
derived in ref. [131] and with the classical-supergravity prediction, which is given by

〈lnW 〉= 5

√
120π2

49

(
T
3
√

λ

)−3/5

+ . . . . (3.2)

4. Summary and outlook

Numerical simulations provide a controlled and systematically improvable tool to study NC
QFT from first principles. Not only can they be used to cross-check exact analytical results, but
also (more importantly) to determine the validity range of analytical calculations that involve some
form of approximation, or to provide guidance to understand problems which are harder to tackle
analytically.

As we discussed above, typical Monte Carlo simulations of NC field theories can be suc-
cessfully performed with modest computational resources, and the studies of this type that several
groups have been carrying out during the past few years have led to many interesting results, for
various NC theories.

Interestingly, some techniques devised for simulations of NC QFT can also be applied to field
theories defined in ordinary, commutative spaces. For certain problems, the numerical implementa-
tion of matrix-model regularization methods inspired by NC field theories proves competitive with
respect to more conventional (e.g. lattice) approaches: one striking example is provided by the
investigation of dimensionally reduced supersymmetric gauge theories, that we briefly reviewed in
subsection 3.3.
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Figure 4: Examples of results from numerical simulations of supersymmetric matrix models. The left-
hand-side panel shows the energy (normalized by N2) in dimensionally-reduced N = 4 supersymmetric
Yang-Mills theory, against the temperature T [122], in comparison with a high-temperature expansion [131]
and with the classical-supergravity prediction [132]. The right-hand-side panel shows the logarithm of
Wilson-Polyakov loop [134] in dimensionally-reduced N = 4 supersymmetric Yang-Mills theory, against
T−3/5 [133] in comparison with analytical predictions from a high-temperature expansion [131] and with
the expectation in the classical-supergravity limit given by eq. (3.2).

Finally, it is worthwhile noting that some numerical challenges in Monte Carlo studies of NC
field theories are common to lattice QCD, and any progress toward their solution in one research
area could potentially lead to very fruitful developments in the other, too. For example, the authors
of refs. [135, 136] devised a novel factorization method to cope with the numerical “sign prob-
lem” affecting their model: as is well-known, this notorious computational problem also hinders
simulations of lattice QCD at finite baryon density [137] and of condensed-matter systems [138].

For all of these reasons, a closer interaction of the two communities would be highly desirable.
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[85] B. Jurčo, P. Schupp and J. Wess, NonAbelian noncommutative gauge theory via noncommutative
extra dimensions, Nucl. Phys. B604 (2001) 148–180, [hep-th/0102129].

[86] M. Chaichian, P. Prešnajder, M. M. Sheikh-Jabbari and A. Tureanu, Noncommutative standard
model: Model building, Eur. Phys. J. C29 (2003) 413–432, [hep-th/0107055].

12

http://xxx.lanl.gov/abs/1206.0574
http://xxx.lanl.gov/abs/1306.6645
http://xxx.lanl.gov/abs/1301.2154
http://xxx.lanl.gov/abs/1412.6255
http://xxx.lanl.gov/abs/1407.4061
http://xxx.lanl.gov/abs/1507.05978
http://xxx.lanl.gov/abs/1509.03572
http://xxx.lanl.gov/abs/1509.03605
http://xxx.lanl.gov/abs/1510.07496
http://xxx.lanl.gov/abs/1512.00689
http://xxx.lanl.gov/abs/hep-ph/9209224
http://xxx.lanl.gov/abs/hep-th/9801195
http://xxx.lanl.gov/abs/hep-th/9903077
http://xxx.lanl.gov/abs/hep-th/0001203
http://xxx.lanl.gov/abs/hep-th/0002075
http://xxx.lanl.gov/abs/hep-th/0101102
http://xxx.lanl.gov/abs/hep-th/0102129
http://xxx.lanl.gov/abs/hep-th/0107055


The numerical approach to quantum field theory in a non-commutative space Marco Panero
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[96] M. Burić, V. Radovanović and J. Trampetić, The One-loop renormalization of the gauge sector in the
noncommutative standard model, JHEP 03 (2007) 030, [hep-th/0609073].

[97] H. Steinacker and G. Zoupanos, Fermions on spontaneously generated spherical extra dimensions,
JHEP 09 (2007) 017, [arXiv:0706.0398].

[98] A. H. Chamseddine and A. Connes, Why the Standard Model, J. Geom. Phys. 58 (2008) 38–47,
[arXiv:0706.3688].

[99] H. Grosse, H. Steinacker and M. Wohlgenannt, Emergent Gravity, Matrix Models and UV/IR
Mixing, JHEP 04 (2008) 023, [arXiv:0802.0973].

[100] W. Bietenholz, F. Hofheinz and J. Nishimura, The Renormalizability of 2-D Yang-Mills theory on a
noncommutative geometry, JHEP 0209 (2002) 009, [hep-th/0203151].

[101] T. Azuma, S. Bal, K. Nagao and J. Nishimura, Nonperturbative studies of fuzzy spheres in a matrix
model with the Chern-Simons term, JHEP 05 (2004) 005, [hep-th/0401038].

[102] P. Castro-Villarreal, R. Delgadillo-Blando and B. Ydri, A Gauge-invariant UV-IR mixing and the
corresponding phase transition for U(1) fields on the fuzzy sphere, Nucl. Phys. B704 (2005)
111–153, [hep-th/0405201].

[103] D. O’Connor and B. Ydri, Monte Carlo Simulation of a NC Gauge Theory on The Fuzzy Sphere,
JHEP 11 (2006) 016, [hep-lat/0606013].

[104] W. Bietenholz, J. Nishimura, Y. Susaki and J. Volkholz, A Non-perturbative study of 4-D U(1)
non-commutative gauge theory: The Fate of one-loop instability, JHEP 0610 (2006) 042,
[hep-th/0608072].

13

http://xxx.lanl.gov/abs/hep-th/0104153
http://xxx.lanl.gov/abs/hep-ph/0111115
http://xxx.lanl.gov/abs/hep-th/0205214
http://xxx.lanl.gov/abs/hep-ph/0202121
http://xxx.lanl.gov/abs/hep-ph/0205040
http://xxx.lanl.gov/abs/hep-th/0307075
http://xxx.lanl.gov/abs/hep-th/0407089
http://xxx.lanl.gov/abs/hep-th/0502222
http://xxx.lanl.gov/abs/hep-th/0606021
http://xxx.lanl.gov/abs/hep-th/0609073
http://xxx.lanl.gov/abs/0706.0398
http://xxx.lanl.gov/abs/0706.3688
http://xxx.lanl.gov/abs/0802.0973
http://xxx.lanl.gov/abs/hep-th/0203151
http://xxx.lanl.gov/abs/hep-th/0401038
http://xxx.lanl.gov/abs/hep-th/0405201
http://xxx.lanl.gov/abs/hep-lat/0606013
http://xxx.lanl.gov/abs/hep-th/0608072


The numerical approach to quantum field theory in a non-commutative space Marco Panero

[105] R. Delgadillo-Blando, D. O’Connor and B. Ydri, Geometry in Transition: A Model of Emergent
Geometry, Phys. Rev. Lett. 100 (2008) 201601, [arXiv:0712.3011].

[106] T. Azeyanagi, M. Hanada and T. Hirata, On Matrix Model Formulations of Noncommutative
Yang-Mills Theories, Phys. Rev. D78 (2008) 105017, [arXiv:0806.3252].

[107] B. Spisso and R. Wulkenhaar, A numerical approach to harmonic non-commutative spectral field
theory, Int. J. Mod. Phys. A27 (2012) 1250075, [arXiv:1111.3050].

[108] D. O’Connor, B. P. Dolan and M. Vachovski, Critical Behaviour of the Fuzzy Sphere, JHEP 12
(2013) 085, [arXiv:1308.6512].

[109] M. Hayakawa, Perturbative analysis on infrared aspects of noncommutative QED on R4, Phys. Lett.
B478 (2000) 394–400, [hep-th/9912094].

[110] C. P. Martín and F. Ruiz Ruiz, Paramagnetic dominance, the sign of the beta function and UV / IR
mixing in noncommutative U(1), Nucl. Phys. B597 (2001) 197–227, [hep-th/0007131].

[111] M. Van Raamsdonk, The Meaning of infrared singularities in noncommutative gauge theories, JHEP
11 (2001) 006, [hep-th/0110093].

[112] J. Blümer, R. Engel and J. R. Hörandel, Cosmic Rays from the Knee to the Highest Energies, Prog.
Part. Nucl. Phys. 63 (2009) 293–338, [arXiv:0904.0725].

[113] R. J. Szabo, Quantum Gravity, Field Theory and Signatures of Noncommutative Spacetime, Gen.
Rel. Grav. 42 (2010) 1–29, [arXiv:0906.2913].

[114] T. Banks, W. Fischler, S. H. Shenker and L. Susskind, M theory as a matrix model: A Conjecture,
Phys. Rev. D55 (1997) 5112–5128, [hep-th/9610043].

[115] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B443 (1995) 85–126,
[hep-th/9503124].

[116] G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Deconfinement phase transition in N = 4
super Yang-Mills theory on R×S3 from supersymmetric matrix quantum mechanics, Phys. Rev. Lett.
102 (2009) 111601, [arXiv:0810.2884].

[117] J. Ambjørn, K. N. Anagnostopoulos, W. Bietenholz, T. Hotta, and J. Nishimura, Large N dynamics
of dimensionally reduced 4-D SU(N) superYang-Mills theory, JHEP 07 (2000) 013,
[hep-th/0003208].

[118] J. Ambjørn, K. N. Anagnostopoulos, W. Bietenholz, T. Hotta, and J. Nishimura, Monte Carlo studies
of the IIB matrix model at large N, JHEP 07 (2000) 011, [hep-th/0005147].

[119] J. Ambjørn, K. N. Anagnostopoulos, W. Bietenholz, F. Hofheinz, and J. Nishimura, On the
spontaneous breakdown of Lorentz symmetry in matrix models of superstrings, Phys. Rev. D65
(2002) 086001, [hep-th/0104260].

[120] K. N. Anagnostopoulos, T. Azuma, K. Nagao and J. Nishimura, Impact of supersymmetry on the
nonperturbative dynamics of fuzzy spheres, JHEP 09 (2005) 046, [hep-th/0506062].

[121] M. Hanada, J. Nishimura and S. Takeuchi, Non-lattice simulation for supersymmetric gauge theories
in one dimension, Phys. Rev. Lett. 99 (2007) 161602, [arXiv:0706.1647].

[122] K. N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of
supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys.
Rev. Lett. 100 (2008) 021601, [arXiv:0707.4454].

14

http://xxx.lanl.gov/abs/0712.3011
http://xxx.lanl.gov/abs/0806.3252
http://xxx.lanl.gov/abs/1111.3050
http://xxx.lanl.gov/abs/1308.6512
http://xxx.lanl.gov/abs/hep-th/9912094
http://xxx.lanl.gov/abs/hep-th/0007131
http://xxx.lanl.gov/abs/hep-th/0110093
http://xxx.lanl.gov/abs/0904.0725
http://xxx.lanl.gov/abs/0906.2913
http://xxx.lanl.gov/abs/hep-th/9610043
http://xxx.lanl.gov/abs/hep-th/9503124
http://xxx.lanl.gov/abs/0810.2884
http://xxx.lanl.gov/abs/hep-th/0003208
http://xxx.lanl.gov/abs/hep-th/0005147
http://xxx.lanl.gov/abs/hep-th/0104260
http://xxx.lanl.gov/abs/hep-th/0506062
http://xxx.lanl.gov/abs/0706.1647
http://xxx.lanl.gov/abs/0707.4454


The numerical approach to quantum field theory in a non-commutative space Marco Panero

[123] N. Kawahara, J. Nishimura and A. Yamaguchi, Monte Carlo approach to nonperturbative strings -
Demonstration in noncritical string theory, JHEP 06 (2007) 076, [hep-th/0703209].

[124] S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills
theory, Phys. Rev. D78 (2008) 041502, [arXiv:0803.4273].

[125] M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Monte Carlo studies of Matrix theory
correlation functions, Phys. Rev. Lett. 104 (2010) 151601, [arXiv:0911.1623].

[126] M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba and Y. Yoshida, Numerical studies of the
ABJM theory for arbitrary N at arbitrary coupling constant, JHEP 05 (2012) 121,
[arXiv:1202.5300].

[127] K. N. Anagnostopoulos, T. Azuma and J. Nishimura, Monte Carlo studies of the spontaneous
rotational symmetry breaking in dimensionally reduced super Yang-Mills models, JHEP 11 (2013)
009, [arXiv:1306.6135].

[128] M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Holographic description of quantum black
hole on a computer, Science 344 (2014) 882–885, [arXiv:1311.5607].

[129] V. G. Filev and D. O’Connor, The BFSS model on the lattice, arXiv:1506.01366.

[130] V. G. Filev and D. O’Connor, A Computer Test of Holographic Flavour Dynamics,
arXiv:1512.02536.

[131] N. Kawahara, J. Nishimura and S. Takeuchi, High temperature expansion in supersymmetric matrix
quantum mechanics, JHEP 12 (2007) 103, [arXiv:0710.2188].

[132] I. R. Klebanov and A. A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B475
(1996) 164–178, [hep-th/9604089].

[133] M. Hanada, A. Miwa, J. Nishimura and S. Takeuchi, Schwarzschild radius from Monte Carlo
calculation of the Wilson loop in supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102
(2009) 181602, [arXiv:0811.2081].

[134] S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de
Sitter supergravity, Eur. Phys. J. C22 (2001) 379–394, [hep-th/9803001].

[135] K. N. Anagnostopoulos and J. Nishimura, New approach to the complex-action problem and its
application to a nonperturbative study of superstring theory, Phys.Rev. D66 (2002) 106008,
[hep-th/0108041].

[136] K. N. Anagnostopoulos, T. Azuma and J. Nishimura, A General approach to the sign problem: The
Factorization method with multiple observables, Phys. Rev. D83 (2011) 054504,
[arXiv:1009.4504].

[137] P. de Forcrand, Simulating QCD at finite density, PoS Lattice 2009 (2009) 010,
[arXiv:1005.0539].

[138] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino, and R. L. Sugar, Sign
problem in the numerical simulation of many-electron systems, Phys.Rev. B41 (1990) 9301.

15

http://xxx.lanl.gov/abs/hep-th/0703209
http://xxx.lanl.gov/abs/0803.4273
http://xxx.lanl.gov/abs/0911.1623
http://xxx.lanl.gov/abs/1202.5300
http://xxx.lanl.gov/abs/1306.6135
http://xxx.lanl.gov/abs/1311.5607
http://xxx.lanl.gov/abs/1506.01366
http://xxx.lanl.gov/abs/1512.02536
http://xxx.lanl.gov/abs/0710.2188
http://xxx.lanl.gov/abs/hep-th/9604089
http://xxx.lanl.gov/abs/0811.2081
http://xxx.lanl.gov/abs/hep-th/9803001
http://xxx.lanl.gov/abs/hep-th/0108041
http://xxx.lanl.gov/abs/1009.4504
http://xxx.lanl.gov/abs/1005.0539

