
On the initial condition of inflationary
fluctuations

Hongliang Jiang , Yi Wang∗ and Siyi Zhou

Department of Physics, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, P.R.China

E-mail: phyw@ust.hk

Abstract. It is usually assumed that the inflationary fluctuations start from the Bunch-
Davies (BD) vacuum and the iε prescription is used when interactions are calculated. We
show that those assumptions can be verified explicitly by calculating the loop corrections to
the inflationary two-point and three-point correlation functions. Those loop corrections can
be resumed to exponential factors, which suppress non-BD coefficients and behave as the
iε factor for the case of the BD initial condition. A new technique of loop chain diagram
resummation is developed for this purpose. For the non-BD initial conditions which is setup
at finite time and has not fully decayed, explicit correction to the two-point and three-
point correlation functions are calculated. Especially, non-Gaussianity in the folded limit is
regularized due to the interactions.
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1 Introduction and Summary

Inflation is the leading paradigm of the early universe cosmology. The fluctuations
generated during inflation provide seeds for the cosmic microwave background (CMB) and
the large scale structure (LSS) formation [1] . The standard calculation of those primordial
fluctuations follows from the quantum theoretical in-in formalism following two assumptions,
namely the standard vacuum initial condition (known as the Bunch-Davies vacuum [2], or
BD vacuum for short) and the iε prescription. Those assumptions are inherited from the flat
space quantum field theory, but have to be reconsidered in cosmology.

• The BD vacuum initial condition. This is the simplest choice of initial state in the
simplest models of inflation, because inflation is an attractor solution. However, it has
been debated for long because of the following issues:
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– Beyond the attractor stage of inflation. Scale dependent features during inflation
can override the BD vacuum initial conditions . For example, inflation may be
just enough and the start of observable inflation may be close to the absolute
start of inflation [3]. As another example, there may be features on the inflationary
potential such that the inflationary fluctuations after the features are in an excited
state before horizon crossing [4].

– Beyond the simplest theory of fluctuations. In cosmology it is convenient to fol-
low the time evolution of a comoving perturbation mode. The comoving mode
originates from scales much smaller than the inflationary Hubble scale, and its
physical wavelength expands with the cosmological expansion. During the expan-
sion of its physical wavelength, the dynamics of the mode may be governed by
different effective field theories, or no effective field theory at all when its physical
wavelength is shorter than the Planck scale (the trans-Planckian problem [5]).

– Beyond the leading order calculation of gravitational fluctuations. Practically, the
BD vacuum is selected as the lowest energy state. However, when gravitational
fluctuations are concerned, energy is a gauge dependent quantity. Different gauge
can have different definition of time, and thus different definition of energy. This
is similar to the case that in the Minkowski vacuum, accelerating observer sees
Unruh radiation [6], which appears to be no longer the lowest energy state. In
the literature in each gauge people choose the lowest energy state as the physical
“vacuum” state. This cannot be right. Only the vacuum state of one gauge should
be physical and the vacuum in other gauges should be the gauge transformation
of the same physical vacuum.

• The iε prescription. This prescription is not relevant in the tree level power spectrum
calculation, but become important for the non-trivial in-in calculation for higher point
correlation functions or loop diagrams. In flat space in-out formalism, the iε prescrip-
tion is proposed to project the physical interacting vacuum onto the vacuum of the
free theory, because only the vacuum of the free theory is operationally defined by the
free quantum fields (or the interacting picture fields) and can be practically used in
the perturbative calculation. One can relate the free vacuum |0〉 and the interacting
vacuum |Ω〉 by

e−iHT |0〉 = e−iE0T 〈Ω|0〉|Ω〉+
∑
n>0

e−iEnT 〈n|0〉|n〉 , (1.1)

where T is the duration of the interaction, H is the full Hamiltonian, E0 is the energy
of the ground state defined by E0 ≡ 〈Ω|H|Ω〉, and En ≡ 〈n|H|n〉 for non-perturbative
states |n〉 with higher energies. One can then send T to ∞ by T → ∞(1 − iε). Then
all but the first term in the RHS of (1.1) vanishes, and we obtain a relation between
|0〉 and |Ω〉. The following assumptions are involved in this prescription:

– One can adiabatically turn off the interactions. This assumption works fine in flat
space calculation of the S-matrix because we are preparing the initial states in the
far past with large spatial separation. Following cluster decomposition [7], or any
explicit law of forces, the states can indeed be considered to be non-interacting.
Actually, under some mild assumptions, the validness of relating interacting vac-
uum to the free vacuum in this way can be rigorously proved in quantum field
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theory, known as Gell-Mann and Low theorem [8]. However, in cosmology, we are
interested in considering the time evolution of the initial vacuum state. The state
is initially of sub-Hubble size and all (virtual) particles stay close to each other.
Thus we are no longer sure about the validity of turning off interactions in the
calculation of cosmological perturbations.

– There exists enough time duration T for the iε prescription. This assumption is
again tricky in cosmology, because this statement is again coordinate dependent.
For inflation, one can use conformal time or proper time. When the conformal
time is used, one indeed have nearly infinite (though still not really infinite because
inflation cannot be eternal to the past) amount of conformal time in the past.
However, when using proper time, the amount of time duration gets shortened
exponentially. One can indeed argue that before horizon crossing, the conformal
time is more relevant. But explicit calculation is needed to verify the argument.
Even we use the conformal time, a mathematically infinitesimal iε does not work
because of the finiteness of conformal time, even if the duration is exponentially
long.

In this work, we aim to provide a systematic method towards resolving the above puzzles.
This is an extension of our previous work [9]. We show that interaction is the key to the
vacuum and the iε problems.

Interaction exists in the early universe. The theory of gravity is nonlinear. The gravita-
tional nonlinearity provides a lower bound on the interaction of perturbations during inflation.
In terms of the non-Gaussianity estimator fNL, the minimal gravitational nonlinearity cor-
responds to fNL ∼ O(0.01). Large non-Gaussianities are predicted in some inflation models
and the current observational bound is fNL of order 10 or 100, depending on the shapes of
non-Gaussianity.

For this purpose, in our previous work, we calculate the one loop correction of the
two point function with non-BD initial conditions. We have shown that, with the help of
interactions, the non-BD initial conditions dissipates exponentially fast towards large scales.
The one loop correction of the non-BD coefficients can be classified into two types, namely
the correction to the amplitude and phase of the non-BD coefficient. The correction to the
amplitude of non-BD coefficients corresponds to the contributions close to the folded limit
of the interaction vertex. This amplitude correction is negative and can be resumed onto
the exponent by dynamical RG method [10–12]. As a result, for sub-horizon fluctuations, we
have

ceff
k = ck exp [−Γ(τ − τ0)] , Γ ∼ f2

NLPζk
5τ4

0 , (1.2)

where ck is the absolute value of the tree level non-BD coefficient, ceff
k is that with dynamical-

RG-resumed one loop corrections, and τ0 is the initial time where the non-BD initial condition
is setup. For fNL ∼ O(1), the characteristic scale on the exponent is between kτ0 ∼ 4,
indicating that non-BD initial conditions which are setup at sub-Horizon scales as deep as
4 e-folds start to decay exponentially. For larger non-Gaussianities, the decay of non-BD
initial conditions become significantly faster. As a result, smaller non-Gaussianities, which
seem not great for the purpose of probing interactions during inflation, have the advantage
of better preserving the initial state of inflation.
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In this work, we solidify the previous calculation by an explicit loop calculation, fixing
the previously undetermined order one coefficient. For (∂tζ)3 interaction, the result is

ceff
k (τ) = ck exp

(
− 19683π

20000
Pζf

2
NLk

5(τ5 − τ5
0 )
)
. (1.3)

The dynamical RG resummation method which has been used in our previous work is also
checked explicitly using a direct resummation of one particle reducible multi-loop diagrams.
We show that the two results agree up to a two-loop contribution, which is under control
when proper scale of renormalization is chosen.

There are model dependent and model independent components in (1.3). The numerical
factor is of course model dependent. The 5th power in τ is also model dependent. If the
interaction were marginal (i.e. dimension 4 after canonically normalize ζ), then one expects
linear dependence in τ , because the total amount of interaction should be proportional to
the length of interaction time. Here, the operator under our consideration has dimension 6.
Thus for each interaction vertex there arises two additional powers of τ due to UV sensitivity.
As a result the exponent scales as τ5. For inflation with standard kinetic term and Einstein
gravity, the interactions have dimension 5 and we should expect the exponent scaling as τ3.
The dependence on Pζ , fNL and the exponential structure of the decay, on the other hand,
should be model independent. Also, the interaction scales linearly in τ − τ0 when τ − τ0 is
small. This is model independent from the physical interpretation of a decay rate.

Technically, it is interesting to note that, in the sub-horizon limit, the reducible multi-
loop diagrams (as a chain of one loop diagrams) dominate over the irreducible ones. The
reason is as follows. We hope to pick up the highest power of |kτ0| in the calculation. The
highest power comes from the diagrams where the largest number of vertices can freely take
values from τ ∼ τ0 to |kτ |∼ 1, which is a large range. In the reducible diagrams, the vertices
group into freely moving pairs, each pair represent a loop and the relative time difference is
constrained by the uncertainty principle. However, for diagrams which contain irreducible
multi-loop parts, more vertices are constrained by the uncertainty principle and thus do not
show up at leading power of |kτ0|. This further assures the validity of the dynamical RG
method.

We then study the one loop correction of the three point correlation function. In the
case of the three point function, the three external legs can carry different momenta and thus
the dynamical RG method becomes no longer accurate. We can nevertheless still calculate
the multi-loop reducible diagrams and sum them up explicitly. The result corresponds to
adding a decaying factor to the propagator:

G(τa, τb) → G(τa, τb) exp
(
−#k5(τ5

b − τ5
a )
)

(1.4)

With the help of the resumed propagator, the folded limit of non-Gaussianity no longer
diverges. The folded contribution of non-Gaussianity vanishes if taking τ0 → −∞. Once
a finite initial time τ0 is given, explicit loop-corrected shapes of non-Gaussianities can be
obtained. For example, if the non-BD modes are set up at relatively early time, the non-
Gaussianity may show some nontrivial shape like Figure 1. One of the underlying reason is
that the large k modes decay faster, while small k modes decay relatively slowly and thus
leave more prominent non-BD initial information on the observations.

Also, it is known that once given an initial time τ0, one can no longer use the iε terms
to suppress the boundary terms in the UV. As a result, the tree level result depends on τ0
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Figure 1. A typical plot for non-BD non-Gaussianity shape after including loop corrections with
sharp initial time cut-off.

strongly and oscillations are present if the cutoff is sharp. Such dependence presents also
for the BD initial condition. We show here that those τ0 dependent terms also decay with
a similar exponent. In other words, the interactions practically serve as the iε, and indeed
pick up the physical initial state.

The rest of the paper is organized as follows: In Section 2, we write down a simple
interaction model and review the basic formalism. In Section 3, we calculate the two point
correlation function. After recapitulating the one-loop folded limit cut-off result as given in
our previous work, we come up with the new technique: loop chain diagram resummation.
The dynamical RG method is also used to double check the result. In Section 4, we calculate
the loop corrected three point function. The decay of both the non-BD terms and the non-iε
suppressed terms are manifest.

2 Our Model

We start from general single field inflation with L = P (φ,X) [13, 14]. The second and
third order action up to the first order in slow parameter ε can be derived as

S2 =

∫
dtd3x

[
a3 ε

c2
s

ζ̇2 − aε(∂ζ)2
]
, (2.1)

S3 =

∫
dtd3x a3

{
−
[
Σ
(

1− 1

c2
s

)
+ 2λ

] ζ̇3

H3
− 3ε

c4
s

(1− c2
s)ζζ̇

2 +
1

a2c2
s

(1− c2
s)ζ(∂ζ)2

}
,(2.2)

where the dot “ ˙ ” denotes the derivative with respect to time t and the prime “ ′ ”
denotes the derivative with respect to conformal time τ . Also we set the reduced Planck
mass Mp = 1.

The relevant quantities of this model are

Σ =
H2ε

c2
s

, Pζ =
H2

8π2csε
. (2.3)
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From non-interacting S2, we can quantize the field ζ:

ζIk(τ) = uk(τ)ak + u∗k(τ)a†−k , (2.4)

with superscript “I” for interacting picture. The mode function is given by

uk(τ) =
H√

4εcsk3

[
C+(k)(1 + ikcsτ)e−ikcsτ + C−(k)(1− ikcsτ)eikcsτ

]
. (2.5)

As our motivation is to see the effects of interactions, we can use the sub-horizon limit
approximation |cskτ |� 1. The reason is that after horizon crossing, the modes are nearly
frozen and can not evolve anymore. So, interactions can play no role in the super-horizon
case.

In such limit, the mode function and its derivative have the following approximate
behaviors

uk ∝ kcsτe±ikcsτ , u̇k ∝
1

a
k2c2

sτe
±ikcsτ . (2.6)

For ζ field, the leading order time dependence is similar and note that the real space
derivative corresponds to momentum multiplication in momentum space ∂ζ ↔ kζk. So, we
have the following relation

1

cs
ζ̇ ∼ 1

a
∂ζ ∼ 1

a
k2csτ ∼

k

a
ζ . (2.7)

In the 3rd order action S3 for interaction, the ratios of different terms are

2nd term

3rd term
= −3

(ζ̇/cs)
2

(∂ζ/a)2
∼ −3 , (2.8)

1st term

2nd term
=

1

3H

[ 2λc4
s

ε(1− c2
s)H

2
− 1
] ζ̇
ζ
∼ −1

3

[ 2λc4
s

ε(1− c2
s)H

2
− 1
]
cskτ . (2.9)

We can easily see that in the sub-horizon limit, usually the first term is much larger than other
two terms. So, one can just consider the first term and discard other two. This is because
the highest dimensional operator is the most sensitive to the UV physics. Furthermore, for
simplicity, we set sound speed cs to be 1.

Based on these arguments, we can consider a simple model of inflation described by

S =

∫
dtd3x

[
εa3ζ̇2 − εa(∂iζ)2 − 2a3 λ

H3
ζ̇3
]

= S2 +

∫
dτd3x

[
− 2a

λ

H3
ζ ′3
]
, (2.10)

The Hamiltonian for interaction is

HI(τ) = −
∫
d3x
[
− 2a

λ

H3
ζ ′3
]

=

∫
d3x
[
− 2

λ

H4

1

τ
ζ ′3
]
, (2.11)

where the scale factor a(τ) ≈ − 1
Hτ for quasi de-Sitter space during inflaton.

In this simplified model, the mode function is given by

uk(τ) =
H

2
√
εk3

[
C+(k)(1 + ikτ)e−ikτ + C−(k)(1− ikτ)eikτ

]
, (2.12)

where the coefficients C+, C− are subject to the following constraint required by the consi-
tency of quantization

|C+|2−|C−|2= 1 . (2.13)
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In the usual case, the requirement of the vacuum state as a minimal energy state or the
matching of de-Sitter space-time in the sub-horizon limit with Minkowski space-time will
give rise to another condition C− = 0. This is the so called Bunch-Davies vacuum [2]. But,
here we consider small C− , corresponding to non-Bunch-Davies case. To the first order, we
have C+(k) ≈ 1, C−(k) ≈ ckeiθk . So the mode function and its derivative are given by

uk(τ) ≈ H

2
√
ε
k−3/2

[
(1 + ikτ)e−ikτ + cke

iθk(1− ikτ)eikτ
]

(2.14)

≈ H

2
√
ε
ik−1/2τ

[
e−ikτ − ckeiθkeikτ

]
(−kτ � 1) , (2.15)

u′k(τ) ≈ H

2
√
ε
k1/2τ

(
e−ikτ + cke

iθkeikτ
)
. (2.16)

In order to make the story simple and clear in some sense, in the following calculations,
we assume that the mode functions do not depend on the directions of momentum. Namely,
we require uk = uk, θk = θk. The calculations and conclusions are expected to be more
general independent of these assumptions except possible complications.

3 Two-point function

3.1 General consideration: tree level and one-loop level

The interaction Hamiltonian in interaction picture is

HI(τ) =

∫
d3x
[
−2

λ

H4

1

τ
ζI
′3]

=

∫ 3∏
j=1

d3pj
(2π)3

[
−2

λ

H4

1

τ
ζIp1

′
(τ)ζIp2

′
(τ)ζIp3

′
(τ)
]
(2π)3δ3

( 3∑
j=1

pj

)
.

(3.1)
The two-point correlation function can be calculated by using the in-in formalism (see

Appendix A):

〈ζk1(τ)ζk2(τ)〉 =
〈
0
∣∣ζIk1

(τ)ζIk2
(τ)
∣∣0〉+ 2 Im

∫ τ

τ0

dτ1

〈
0
∣∣ζIk1

(τ)ζIk2
(τ)HI(τ1)

∣∣0〉
+

∫ τ

τ0

dτ1

∫ τ

τ0

dτ2

〈
0
∣∣HI(τ1)ζIk1

(τ)ζIk2
(τ)HI(τ2)

∣∣0〉
−2 Re

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

〈
0
∣∣ζIk1

(τ)ζIk2
(τ)HI(τ1)HI(τ2)

∣∣0〉+ · · · (3.2)

The zeroth order of two-point correlation function is given by (note our notation k = k1):〈
0
∣∣ζIk1

(τ)ζIk2
(τ)
∣∣0〉 = (2π)3δ3(k1 + k2)uk(τ)u∗k(τ)

≈ (2π)3δ3(k1 + k2)
H2

4ε
k−1τ2

[
1− 2ck cos(2kτ + θk)

]
, (3.3)

where we consider the sub-horizon limit −kτ � 1 and only keep terms up to the first order
in ck.

The first order correction of two-point correlation function vanishes due to odd number
of operators or imbalance of creation and annihilation creators.

Next, we consider the second order loop corrections. There are two types of corrections:
non-BD mode in the loop and non-BD mode in the external line. When the non-BD modes
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are in the external line, the physical meaning is very obvious if we cut the loop. This process
can be thought as the decay of non-BD mode in the external line into two BD modes in the
loop. Furthermore, in order to match with tree level result as will be elaborated later 1, we
need to have something like ck which also implies a non-BD mode in the external leg. Thus,
for simplicity, we can just consider this case by setting cp, cq = 0.

We are interested in the sub-horizon limit which means that |kτ |� 1. Usually, this
doesn’t imply |(p + q − k)τ |� 1 in the folded limit. But, for simplicity, let’s first consider
the unfolded case. In such a case, when evaluating the above equations, we only keep those
terms which have highest power in τ and zeroth and first order in ck. Then we can use the
following integration formula

∫
τneiQτdτ ≈ τn

iQe
iQτ + · · ·.

The second order symmetric part is:∫ τ

τ0

dτ1

∫ τ

τ0

dτ2

〈
0
∣∣HI(τ1)ζIk1

(τ)ζIk2
(τ)HI(τ2)

∣∣0〉
=
(
− 2

λ

H4

)2
∫ τ

τ0

dτ1

τ1

∫ τ

τ0

dτ2

τ2

∫ ∏
i

d3pi
(2π)3

(2π)3δ3(
∑
i

pi)

∫ ∏
i

d3qi
(2π)3

(2π)3δ3(
∑
i

qi)×[
〈ζIp1

(τ1)ζIk1
(τ)〉0〈ζIp2

(τ1)ζIq1(τ)〉0〈ζIp3
(τ1)ζIq2(τ)〉0〈ζIk2

(τ1)ζIq3(τ)〉0 + different contractions
]

=
(
− 2

λ

H4

)2[
3× 3× 2× 2

]
(2π)3δ3(k1 + k2)u∗k(τ)uk(τ)

∫
d3q

(2π)3
kpq
( H

2
√
ε

)6
fS , (3.4)

where

fS =
( H

2
√
ε

)−6 1

kpq

∫ τ

τ0

dτ1

τ1

∫ τ

τ0

dτ2

τ2
u′k(τ1)u′p(τ1)u′q(τ1)u′k

∗(τ2)u′p
∗(τ2)u′q

∗(τ2)

=
τ4

(k + p+ q)2
+

τ4
0

(k + p+ q)2
− 2τ2

0 τ
2 cos[(k + p+ q)(τ − τ0)]

(k + p+ q)2
+[

2ck

(τ4 cos(θk + 2kτ) + τ4
0 cos(θk + 2kτ0)− 2τ2

0 τ
2 cos[θk + k(τ + τ0)] cos[(τ − τ0)(p+ q)]

(−k + p+ q)(k + p+ q)

)
+2 permutations of k,p, q

]
, (3.5)

where we have defined k = k1,p = k + q.
The second order asymmetric part is:

−2 Re

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

〈
0
∣∣ζIk1

(τ)ζIk2
(τ)HI(τ1)HI(τ2)

∣∣0〉
=
(
− 2

λ

H4

)2[
3× 3× 2× 2

]
(2π)3δ3(k1 + k2)u∗k(τ)uk(τ)

∫
d3q

(2π)3
kpq
( H

2
√
ε

)6
fA ,(3.6)

1The physical meaning of matching the tree level result is that, the contributions coming from cp and cq
correspond to processes where two long modes fuse into a short mode. When the short mode is far away
from vacuum and the long mode is nearer to the vacuum (considering more time of decay), this is unlikely
to happen. However, there is an important exception: Near thermal equilibrium, the detailed balance makes
sure that the decay of the short mode is indeed balanced by the fusion of the long mode. Our calculation thus
does not apply for such near equilibrium cases. An approach of Boltzmann equation would help and we hope
to explore this possibility in the future.
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where

fA/(−2) = Re

[( H

2
√
ε

)−6 1

kpq

uk(τ)

u∗k(τ)

∫ τ

τ0

dτ1

τ1

∫ τ1

τ0

dτ2

τ2
u′k
∗(τ1)u′p(τ1)u′q(τ1)u′k

∗(τ2)u′p
∗(τ2)u′q

∗(τ2)

]

=
τ4

0 cos(2kτ − 2kτ0)

2k(k − p− q) +
τ4

2k(k + p+ q)
− τ2

0 τ
2 cos[(k + p+ q)(τ − τ0)]

(k − p− q)(k + p+ q)

+

[
2(τ5 − τ5

0 )(p+ q)ck sin (θk + 2kτ)

5(p+ q − k)(k + p+ q)
+O(τ4, τ4

0 , τ
2τ2

0 )

]
. (3.7)

where we use the approximation uk(τ)
u∗k(τ) = −e−2ikτ [1− 2ick sin(2kτ + θk)]. It should be noted

that we have τ5 terms now. This is because the exponential parts of mode functions cancel
and the power of τ increases after integration. So, the final result is

〈ζk1(τ)ζk2(τ)〉 = (2π)3δ3(k1 + k2)u∗k(τ)uk(τ)
[
1 +

9λ2

4H2ε3

∫
d3q

(2π)3
kpq(fS + fA)

]
≈ (2π)3δ3(k1 + k2)

( H

2
√
ε

)2
k−1τ2

×
[
1− 2ck cos(2kτ + θk) +

9λ2

4H2ε3

∫
d3q

(2π)3
kpq(fS + fA) + · · ·

]
. (3.8)

Because we are considering the sub-horizon limit, τ5 terms dominate. Note that in Eq. (3.7),
the oscillation is sine function form while the tree level result in Eq. (3.3) is cosine function
form. This means that the unfolded part can not modify the amplitude of effective non-BD
coefficient at leading order.

3.2 Folded limit momentum cut-off

In the previous calculations, we focus on the unfolded case and thus have the approx-
imations

∫
τneiQτdτ ≈ τn

iQe
iQτ + · · · for |Qτ |� 1. While in the folded limit, |Qτ |� 1 with

Q = p+q−k, so the appropriate way is to expand eiQτ = 1+iQτ+ i2

2 Q
2τ2+· · ·. Thus, the in-

tegral can only be approximated as
∫
dττneiQτ =

∫
dττn(1+iQτ+ i2

2 Q
2τ2 +· · ·) ≈ τn+1

n+1 +· · ·.
It should be noted that the leading term of the integral at small Q case is real now.

With this in mind, we need to reexamine the asymmetric part:

fA/(−2) = Re

[( H

2
√
ε

)−6 1

kpq

uk(τ)

u∗k(τ)

∫ τ

τ0

dτ1

τ1

∫ τ1

τ0

dτ2

τ2
u′k
∗(τ1)u′p(τ1)u′q(τ1)u′k

∗(τ2)u′p
∗(τ2)u′q

∗(τ2)

]

= Re

[
− e−2ikτ

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2 τ
2
1 τ

2
2

(
cke
−iθkei(p+q+k)(τ2−τ1) + cke

−iθkei(p+q−k)(τ2−τ1) + · · ·
)]

,

(3.9)

where the ellipsis denotes the relatively irrelevant terms.
Now that the tree level result has different function form with unfolded loop correction,

we may expect the dominant loop correction comes from the folded limit. So, we can Taylor
expand the integrand and perform time integration, yielding

fA = −2 Re

[
− e−2ikτ

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2 τ
2
1 τ

2
2 cke

−iθk · 1
]

= −ck cos(2kτ + θk)
2(τ3 − τ3

0 )2

18
.

(3.10)
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As we expect, the tree level function form emerges which would be the dominant loop con-
tributions. After that, loop momentum integration can be performed as follows by choosing
a momentum cut-off near the folded limit (p+ q − k) ≤ Λ,∫

d3q

(2π)3
kpqfA ∼

∫
0≤(p+q−k)≤Λ

d3q

(2π)3
kpqck cos(2kτ + θk)

2

18
(τ3 − τ3

0 )2

=

∫ 1+Λ/k

1
dµ

∫ 1

−1
dν
πk3

4
(µ2 − ν2)

1

(2π)3

µ2 − ν2

4
k3ck cos(2kτ + θk)

2

18
(τ3 − τ3

0 )2

= ck cos(2kτ + θk)(τ3 − τ3
0 )2 k5Λ

1080π2
. (3.11)

When evaluating the above momentum integral, we use the elliptical coordinate system (see

Appendix B). While for the unfolded part, we can use Eq. (3.7), so
∫
p+q−k>Λ

d3q
(2π)3

kpqfA ∝
ck sin(2kτ + θk). Naively, the coefficient is infinity due to non-bounded momentum integra-
tion. But physically, if we take the renormalization counter term into considerations, the
coefficient should be finite. Nevertheless, its dependence on non-BD coefficients are different
from the folded limit one and tree level result.

Note that in order for the expansion to be valid, we require |(p + q − k)(τ2 − τ1)|� 1
which leads to the condition Λ(τ−τ0) . 1. A reasonable choice of cut-off is Λ ≈ 1/(τ−τ0) in
spite of an order one discrepancy. Collecting all the facts, we get final two-point correlation
function under one-loop correlation,

〈ζk1(τ)ζk2(τ)〉 = (2π)3δ3(k1 + k2)
H2

4ε
k−1τ2

[
1− 2ck cos(2kτ + θk)

×
(

1− λ2k5

480π2H2ε3
(τ2 + ττ0 + τ2

0 )2(τ − τ0)
)

+ · · ·
]
. (3.12)

where the ellipsis includes the loop corrections of BD modes and higher order corrections
to non-BD modes. It is very interesting to see that the loop corrections to the non-BD
coefficients are negative, implying the decay of non-BD modes.

3.3 Rigorous treatment of momentum integral

From previous calculations, in the sub-horizon limit, by power counting, the τ5 terms
are the dominant one. From Eq. (3.8), after loop correction,

− 2ck cos(2kτ + θk)→ −2ck cos(2kτ + θk) +
9λ2

4H2ε3

∫
d3q

(2π)3
kpq(fS + fA) . (3.13)

In our sub-horizon limit approximations, fS + fA actually is given by Eq. (3.9). We can
regard the right hand side as non-BD contribution with effective parameters running with
time, so

− 2
(
ceff
k cos(2kτ + θeff

k )− ck cos(2kτ + θk)
)

= 2
9λ2

4H2ε3
ck

(
cos(2kτ + θk) Re I − sin(2kτ + θk) Im I

)
,

(3.14)

The effective one can be written as

−2ceff
k cos(2kτ +θeff

k ) = −2
(
ck cos(2kτ+θk)+δck cos(2kτ +θk)−ck sin(2kτ+θk)δθk

)
+ · · · ,
(3.15)
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where δck = ceff
k −ck, δθk = θeff

k −θk are very small when τ and τ0 are very close. By matching
the form, we can get

ceff
k − ck = δck = −ck

9λ2

4H2ε3
Re I, ckδθk = ck

9λ2

4H2ε3
Im I . (3.16)

The integral I can be simplified by using elliptical coordinate system (see Appendix B)

I =

∫
d3q

(2π)3
kpq

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2 τ
2
1 τ

2
2

(
ei(p+q−k)(τ2−τ1) + ei(p+q+k)(τ2−τ1)

)
=

k6

128π2

∫ ∞
1

dµ

∫ 1

−1
dν(µ2 − ν2)2

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2 τ
2
1 τ

2
2

(
ei(µ−1)k(τ2−τ1) + ei(µ+1)k(τ2−τ1)

)
=

k6

128π2
(I− + I+) .

Let’s focus on the integral I− first. We define z = µ− 1 and find that

S(z) =

∫ 1

−1
dν(µ2 − ν2)2

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2 τ
2
1 τ

2
2 e

i(µ−1)k(τ2−τ1)

= polynomial terms of z +
1

z

[(
− 16iτ5

75k
+

8τ4

3k2
+

64iτ3

9k3
+

16iτ5
0

75k
+

8τ4
0

3k2
− 64iτ3

0

9k3

)
+e−ikz(τ−τ0)

(
− 16τ2

0 τ
2

3k2
− 64iτ0τ

2

3k3
+

16τ2

k4
+

64iτ2
0 τ

3k3
− 32τ0τ

k4
− 8iτ

k5
+

16τ2
0

k4
+

8iτ0

k5

)]
+fractional terms like { 1

z2
,
e−ikz(τ−τ0)

z2
,

1

z3
, · · · , 1

z6
,
e−ikz(τ−τ0)

z6
} . (3.17)

Then, we need to integrate over µ or z. From the expression for S(z), we can write it
as the following general form

S(z) =
6∑

n=1

ane
−ikz(τ−τ0) − bn

zn
+ polynomial of z . (3.18)

The polynomial part of S(z) implies the power divergence if we integrate over z. They can
be discarded if we choose to believe that these terms can be canceled by the the local counter
terms. So, we only need to care the fractional part Sf . In the UV region and sub-horizon
limit, intuitively, the most relevant contributions come from those terms with lowest power

in 1/z and highest power in τ , i.e.
16i(τ50−τ5)

75kz for the current problem. But, this navie choice
is a little problematic due to the divergence near z ∼ 0. Fortunately, we can simplify this
problem by introducing a new basis functions Tn(z) (see Appendix C)

Sf (z) =
6∑

n=1

ane
izu − bn
zn

=

6∑
n=1

AnTn(z) , with u = −k(τ − τ0) . (3.19)

We can easily solve the above equation to obtain An. In particular, A1 is given by

A1 = −64iτ3

9k3
+

64iτ3
0

9k3
− 8τ4

3k2
− 8τ4

0

3k2
+

16iτ5

75k
− 16iτ5

0

75k
. (3.20)
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Thus we have A1 = b1 as emphasized in Appendix C. So,

I− =

∫ ∞
1

dµ

∫ 1

−1
dν(µ2 − ν2)2

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2 τ
2
1 τ

2
2 e

i(µ−1)k(τ2−τ1) (3.21)

→
∫ ∞

0
dzSf (z) =

6∑
n=1

An

∫ ∞
0

dzTn(z) . (3.22)

As mentioned in Appendix C, T1 is not integrable and thus, we need to choose a momentum
cut off on z,

6∑
n=2

An

∫ ∞
0

dzTn(z) =
136iτ5

375k
− 16iτ0τ

4

75k
− 8iτ2

0 τ
3

75k
+

8iτ3
0 τ

2

75k
+

16iτ4
0 τ

75k
− 136iτ5

0

375k
+O(τ4, τ4

0 , · · ·) ,

(3.23)

A1

∫ Λ

0
dzT1(z) = A1

(
Ci(kΛ(τ − τ0))− iSi(kΛ(τ − τ0))− log(kΛ(τ − τ0))− γE

)
. (3.24)

In the sub-horizon limit, we only need to keep the highest power term in τ , i.e. τ5 terms.
Then, I− can be approximated as

I− =
8i(τ − τ0)(17τ4 + 7τ0τ

3 + 2τ2
0 τ

2 + 7τ3
0 τ + 17τ4

0 )

375k

+
16i(τ5 − τ5

0 )

75k

(
Ci(kΛ(τ − τ0))− iSi(kΛ(τ − τ0))− log(kΛ(τ − τ0))− γE

)
.(3.25)

It’s interesting to note that

Re I− =
16(τ5 − τ5

0 )

75k
Si(kΛ(τ − τ0))→ 8π(τ5 − τ5

0 )

75k
when kΛ(τ − τ0)→ +∞ . (3.26)

Similarly, we can get

Re I+ =
16(τ5 − τ5

0 )

75k

(
Si(kΛ(τ − τ0))− Si(2k(τ − τ0))

)
kΛ(τ−τ0)→+∞−−−−−−−−−−→ 8π(τ5 − τ5

0 )

75k

(
1− 2

π
Si(2k(τ − τ0))

)
. (3.27)

When k(τ − τ0) & 1,Re I+ ∼ 0.

I =
k6

128π2
(I− + I+)→ Re I =

k6

128π2

8π(τ5 − τ5
0 )

75k
=

1

1200π
k5(τ5 − τ5

0 ) , (3.28)

so

ceff
k = ck − ck

9λ2

4H2ε3
Re I = ck

(
1− 3λ2

1600πH2ε3
k5(τ5 − τ5

0 )
)
. (3.29)

Compared with the folded limit cut-off result (3.12), they only differ by a decay factor, i.e.
3(τ4 +τ3τ0 +τ2τ2

0 +τ1τ3
0 +τ4

0 )/1600 and (τ4 +2τ3τ0 +3τ2τ2
0 +2τ1τ3

0 +τ4
0 )/(480π), which is of

order O(1). Another important observation is that τ5 terms appear in unfolded case, folded
limit cut-off result and present rigorous treatment with universal power. So, our strategy
can be like this: analyze the unfolded case first, extract the highest power terms and then
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transform back to the folded limit. Very amazingly, the transformations can be simplified by
just changing 1/z to T1(z) with exactly the same coefficients (remember b1 = A1).

The one loop correction is small as long as the initial time and final time are close
enough. Once the time difference becomes large, the one loop perturbation is not valid any
more. We need to try to cure the secular growth with time, either through the dynamical
renormalization group method or by turning to higher order loop analysis.

3.4 Dynamical Renormalization Group method

The one loop corrections of effective parameters are

δck = −ck
9λ2

4H2ε3
Re I, δθk =

9λ2

4H2ε3
Im I . (3.30)

Once we come to realize that ck should be ceff
k and running, the ck above should be replaced

with ceff
k (τ) . This yields

ceff
k (τ)− ck
ceff
k (τ)

= − 9λ2

4H2ε3
Re I , (3.31)

with initial condition ceff
k (τ0) = ck. It is easy to get

ceff
k (τ) = ck exp

(
− 3λ2

1600πH2ε3
k5(τ5 − τ5

0 )
)
. (3.32)

The idea essentially is the dynamical renormalization group method [10–12]. The effects
of early time modes to later time modes through loop corrections can be viewed as the
modifications of effective parameters, yielding the running effective parameters with time.
For DRG method, the physical picture is very clear and enlightened. In the next section, we
are going to provide another way which is more rigorous in mathematics.

3.5 Multi-loop analysis and loop chain diagram resummation

In the following, we are going to consider the higher loop corrections to the non-BD co-
efficients. In principle, there are infinite ways to draw the corresponding Feynman diagrams,
nested or non-nested. As we see before, all the modes which run in the loop are BD modes.
Non-BD modes in the loop will not affect the effective non-BD coefficients ck and thus are
not considered. Furthermore, we only consider the non-nested loop-chain diagram which
consists of loops connected in series. Due to the time sequence of interacting vertices, there
are still lots of diagrams which have the loop-chain topology but differ in the time ordering.
Thanks to the sub-horizon limit, we only need to keep the highest power term in τ . In such
a limit, we are going to show that only those V-shaped diagrams dominate.

Let us analyze the basic component of the diagram first. For each loop, there are three
possibilities of time sequence as shown in Figure 2.

In Figure 2(a), suppose τU > τ1 > τ2 > τL (τU , τL are upper and lower limit of integra-
tion and τ1, τ2 are time of two interacting vertices of the loop) and note that loop modes are
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(a) BD loop (b) Non-BD loop (c) Non-BD loop

l

⌧

(d) V-shaped loop chain di-
agram

Figure 2. Basic building bricks of two-point function Feynman diagrams. All the modes running in
the loop are BD modes. The red arrow indicates possible non-BD modes which can yield τ5 terms.
Non-BD loop means that one of the two modes which connect loop and other components of the
whole diagram is non-BD mode (We only consider the first order in ck), while BD loop means that
all the six modes which run in the loop and connect loop with other components are BD modes. For
any loop, the possible time ordering has three possibilities (a), (b) and (c). If we want to get τ5 term,
we require (a) to be BD loop and (b),(c) to be non-BD loop with non-BD modes indicated by the red
arrow. After some considerations, only the V-shaped diagrams are dominant as shown in (d).

BD-modes, we have the following integral

Ia ∝
∫

d3q

(2π)3
kpq

∫ τU

τL

dτ1

τ1

∫ τ1

τL

dτ2

τ2
u′p(τ1)u′p

∗(τ2)u′q(τ1)u′q
∗(τ2)u′k

∗(τ1)u′k(τ2)

∝
∫

d3q

(2π)3
kpq

∫ τU

τL

dτ1

∫ τ1

τL

dτ2τ
2
1 τ

2
2 e
i(p+q)(τ2−τ1)

(
eikτ1 + cke

−iθke−ikτ1
)(
e−ikτ2 + cke

iθkeikτ2
)

∝
∫

d3q

(2π)3
kpq

∫ τU

τL

dτ1

∫ τ1

τL

dτ2τ
2
1 τ

2
2

(
ei(p+q−k)(τ2−τ1) + cke

−iθkei(p+q)(τ2−τ1)e−ik(τ1+τ2) + · · ·
)

∝
∫

d3q

(2π)3
kpq
(
− i τ5

U − τ5
L

5(p+ q − k)
+O(τ4)

)
, (3.33)

where the τ5 terms are contributed by ei(p+q−k)∆τ , while O(τ4) are contributed by other
terms. In the sub-horizon limit, only τ5 terms are most relevant, so in the original expression,
we only need to keep ei(p+q−k)∆τ like terms. In particular, in such case, all the related modes
are BD modes.

In Figure 2(b), suppose τU > τ1 > τ2 > τL, similarly we get

Ib ∝
∫

d3q

(2π)3
kpq

∫ τU

τL

dτ1

τ1

∫ τ1

τL

dτ2

τ2
u′p(τ1)u′p

∗(τ2)u′q(τ1)u′q
∗(τ2)u′k

∗(τ1)u′k
∗(τ2)

∝
∫

d3q

(2π)3
kpq

∫ τU

τL

dτ1

∫ τ1

τL

dτ2τ
2
1 τ

2
2 e
i(p+q)(τ2−τ1)

(
eikτ1 + cke

−iθke−ikτ1
)(
eikτ2 + cke

−iθke−ikτ2
)

∝
∫

d3q

(2π)3
kpq

∫ τU

τL

dτ1

∫ τ1

τL

dτ2τ
2
1 τ

2
2

(
cke
−iθkei(p+q−k)(τ2−τ1) + cke

−iθkei(p+q+k)(τ2−τ1) + · · ·
)

∝
∫

d3q

(2π)3
kpq
(
− i τ5

U − τ5
L

5(p+ q − k)
cke
−iθk − i τ5

U − τ5
L

5(p+ q + k)
cke
−iθk +O(τ4)

)
, (3.34)

Similarly τ5 terms are contributed by ei(p+q±k)∆τ . Now, we have two such terms. The first one
corresponds to the folded limit case, while the second one vanishes when k(τU − τL) & O(1)
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according to the previous one-loop analysis. Thus, we only need to keep ei(p+q−k)∆τ terms
and now, the late time τ2 external mode is non-BD mode.

For Figure 2(c), the analysis is nearly identical to that in Figure 2(b).
Besides the behavior of building components mentioned above, there are several other

interesting properties for the whole diagram:

• The time sequence of these interacting vertices should be all time-ordered or anti-time-
ordered. There is no mixing. In another word, in the in-in formalism, the relevant
contribution comes from ζ2H...H and H...Hζ2 which are related by some complex
conjugation.

〈ζk1(τ)ζk2(τ)〉 =

∞∑
m=0

im
∫ τ

τ0

dτ̃m

∫ τ̃m

τ0

dτ̃m−1...

∫ τ̃2

τ0

dτ̃1〈HI(τ̃1)...HI(τ̃m)ζIk1
(τ)ζIk2

(τ)〉0

+
∞∑
n=0

(−i)n
∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2...

∫ τn−1

τ0

dτn〈ζIk1
(τ)ζIk2

(τ)HI(τ1)...HI(τn)〉0

= 2 Re
∞∑
n=0

(−i)n
∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2...

∫ τn−1

τ0

dτn〈ζIk1
(τ)ζIk2

(τ)HI(τ1)...HI(τn)〉0 .

(3.35)

The reason is that when we go along the loop chain, we start from time τ and finally go
back to time τ . So, there must be some turning and extremal loops. These loops should
be non-BD loops if we require the τ5 terms. While we only keep terms up to first order
in non-BD coefficients ck, there can only be one non-BD loop and the only possible
configurations are V-shaped with all time-ordered or anti-time-ordered interaction time
sequence.

• The two time of vertex at each loop should be consecutive. The reason is not to disturb
the time integration and get as high power as possible.

All these conditions are verified by explicit calculations.
Remember that we only keep the lowest order term in ck, which means that we can only

have one non-BD mode in whole diagram. In order to get as high order terms as possible,
the diagram can only be composed of lots of BD loops (as shown in Figure 2(a)) and one
non-BD loop (as shown in Figure 2(b)). The final dominant diagram is V-shaped loop chain
diagram (as shown in Figure 2(d)) where the tip of V is the non-BD loop (see Figure 2(b)).
The non-BD mode has the earliest time and connects the non-BD loop with other BD loop.

So, the final contribution is of the form (The time ordering is τ2L−1 > τ2L > τ2L−3 >
... > τ3 > τ4 > τ1 > τ2)

IL(k; τ0, τ2L+2) =
L∏
j=1

∫
d3qj
(2π)3

kpjqj

∫ τ2j+2

τ0

dτ2j−1

∫ τ2j−1

τ0

dτ2j τ
2
2j−1τ

2
2j e

i(pj+qj−k)(τ2j−τ2j−1)

=

∫
d3qL
(2π)3

kpLqL

∫ τ2L+2

τ0

dτ2L−1

∫ τ2L−1

τ0

dτ2L τ
2
2L−1τ

2
2L

×ei(pL+qL−k)(τ2L−τ2L−1)IL−1(k; τ0, τ2L) . (3.36)
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Here, we make an assumption or approximation:

Re IL(k; τ0, τ2L+2) = Re
[ ∫ d3qL

(2π)3
kpLqL

∫ τ2L+2

τ0

dτ2L−1

∫ τ2L−1

τ0

dτ2L τ
2
2L−1τ

2
2L

×ei(pL+qL−k)(τ2L−τ2L−1) Re IL−1(k; τ0, τ2L)
]
. (3.37)

Mathematically, it will give rise to very easy and interesting result. The other part starts
from two-loop. We drop this two-loop contribution for the reason that shall be explained at
the end of this subsection.

As we calculated before (I0 = 1),

I1 =

∫
d3q1

(2π)3
kp1q1

∫ τ4

τ0

dτ1

∫ τ1

τ0

dτ2 τ
2
1 τ

2
2 e

i(p1+q1−k)(τ2−τ1)I0 → Re I1 =
k5(τ5

4 − τ5
0 )

1200π
.

(3.38)

By mathematical induction, we can show that under the previous approximation

Re IL(k; τ0, τ2L+2) =
1

L!

(k5(τ5
2L+2 − τ5

0 )

1200π

)L
. (3.39)

Proof : Suppose it holds for IL−1, then

Re IL = Re

∫
d3qL
(2π)3

kpLqL

∫ τ2L+2

τ0

dτ2L−1

∫ τ2L−1

τ0

dτ2L τ
2
2L−1τ

2
2L e

i(pL+qL−k)(τ2L−τ2L−1)

× 1

(L− 1)!

(k5(τ5
2L − τ5

0 )

1200π

)L−1

= Re

∫
d3qL
(2π)3

kpLqL
1

(L− 1)!

( k5

1200π

)L−1
· −i(τ

5
2L+2 − τ5

0 )L

5L(pL + qL − k)
+ · · ·

=
1

L!

(k5(τ5
2L+2 − τ5

0 )

1200π

)L
, (3.40)

where the momentum integral can be obtained from the following:∫
d3q kpq

1

p+ q − k + · · · =
πk3

4

∫ ∞
1

dµ

∫ 1

−1
dν (µ2 − ν2)k3 (µ+ ν)(µ− ν)

4

1

(µ− 1)k
+ · · ·

=
πk5

16

∫ ∞
0

dz
16

15

1

z
+ · · · (3.41)

where we substitute z = µ − 1 after integrating ν and + · · · represents all possible terms
which can not be be written as 1/(p+ q − k) or 1/(µ− 1) or 1/z.

Using the basis function in Appendix C and note that b1 = A1, we have

→ πk5

16

∫ ∞
0

dz
−16

15
T1(z) + · · · → πk5

16

−16

15

−iπ
2

+ · · · = i
π2k5

30
+ · · · . (3.42)

Next, we need to do combinatorial counting for V-shaped diagrams and restore the
coefficient factors. For L loop diagram, each loop can be on the left or the right leg of
V except the loop at the tip of V, so there are 2L/2 diagrams. In addition, in the series
expansion of in-in formalism (3.35), we have a factor 2(−i)2L. And we should notice that
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Figure 3. After including loop correction, essentially, the effect is renormalizing the tree level prop-
agators by a exponential factor exp(−#k5(τ5b − τ5a )). This property has nothing to do with non-BD.
Actually, it is the general result of loop corrections.

there are three mode functions at each interacting vertex which are symmetric, implying a
factor (3×3×2)L. Finally, the coupling factor of interaction and the numeric factor of mode
functions should also be included. After taking all of these into considerations, we are led to
a factor

2(−i)2L · (3× 3× 2)L · 2L/2 ·
( H

2
√
ε

)6L(−2λ

H4

)2L
=
(
− 9λ2

4ε3H2

)L
. (3.43)

So, the final result for the effective non-BD coefficient is

ceff
k (τ)

ck
=
∞∑
L=0

(
− 9λ2

4ε3H2

)L 1

L!

(k5(τ5 − τ5
0 )

1200π

)L
= exp

(
− 3λ2k5(τ5 − τ5

0 )

1600πε3H2

)
. (3.44)

Remarks on the approximation: The real part of one loop result (3.26) is exact. The calcula-
tions above show that higher loop corrections can be thought as the power of one loop result
in some sense. But the even power of the imaginary part of one loop is real, which means
that the imaginary part of one loop result is very important in higher loops. But anyway,
we can regard them as the phase factor corrections eiγ with γ ∼ O(τ5

0 , τ
5). The rigorous

treatment of this phase factor is beyond our capability due to the log term in Eq. (3.24)
which may require involved and subtle regularization and renormalization procedure [15, 16].
But we can justify the log term from a physical perspective.

In one loop calculation Eq. (3.25), the cut-off divergence related part is Ci(kΛ(τ −
τ0))− log(kΛ(τ − τ0)). When τ − τ0 → 0, it vanishes. Otherwise, the cosine integral function
contribute nothing and we can just consider the log part. The divergence is expected to
be canceled by the counter term which has the form .... log(Λphy/µ) where µ is the physical
renormalization scale and the coefficient is exactly as that of our loop result if the divergence
is indeed canceled. Note that Λphy = Λk/a(τmid) with τ0 < τmid < τ . So, the final result
should be of the form − log(Λphya(τmid)(τ − τ0)) + log(Λphy/µ) = log(Hµ

τ−τ0
−τmid

). In order

for the one loop level perturbation result to be valid, k5(τ5 − τ5
0 ) can not be too large

and thus τ/τ0 ∼ O(1) in the sub-horizon limit |kτ |, |kτ0|� 1. After realizing this fact,
the log term can only contribute finitely. So, the imaginary part of Eq. (3.25) is Im I− ∼
(τ−τ0)O(τ4

0 , τ
3
0 τ, ...τ

4) ∼ O(τ5−τ5
0 ). After applying the arguments to each loop of multi-loop

calculation, we can conclude that the final contribution of one loop imaginary part is a phase
factor correction eiγ with γ ∼ O(τ5

0 , τ
5). The exact form or coefficient is complicated, for

simplicity, we ignore the phase factor correction and only consider the amplitude suppression.
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k1k2 k3

(a) ei(k1+k2+k3)τV +
ck1e

i(−k1+k2+k3)τV

k1k2 k3

(b) JBD(L1, L2, L3) (c) ei(−k1+k2+k3)τV +
ck1e

i(k1+k2+k3)τV

k1 k2 k3

(d)

JNon-BD(L̃1, L1, L2, L3)

Figure 4. Three-point function. For BD three point function (3pt function unrelated with ck), (a)
is the tree level diagram and (b) is the loop correction to 3pt function where each propagator in tree
diagram is replaced by a chain of loops. For non-BD three point function (3pt function proportional to
ck), both (a) and (c) can contribute a factor ei(k2+k3−k1)τV . Loop diagrams of non-BD 3pt functions
(b) and (d) can be constructed from (a) and (c). The red arrow indicates the possible non-BD mode.
It is interesting to note that when earlier time loop number in (d) is taken to be 0, its value is just

(b), i.e. mathematically, JNon-BD(L̃1 = 0, L1, L2, L3) = JBD(L1, L2, L3).

4 Three-point function

4.1 Tree-level result

Following the standard in-in formalism, we can easily obtain the tree level three-point
function

〈ζk1(τ)ζk2(τ)ζk3(τ)〉Tree = 〈ζIk1
(τ)ζIk2

(τ)ζIk3
(τ)〉0 + 2 Im

∫ τ

τ0

dτV 〈ζIk1
(τ)ζIk2

(τ)ζIk3
(τ)HI(τV )〉0

= (2π)3δ(k1 + k2 + k3)2 Im

∫ τ

τ0

dτV
−2λ

H4τV

[
3× 2

]∏
j

ukj (τ)u′∗kj (τV )

= (2π)3δ(k1 + k2 + k3)2 Im
[
uk1(τ)uk2(τ)uk3(τ)

∫ τ

τ0

dτV
−3λ

2Hε3/2
τ2
V

×
√
k1k2k3

(
ei(k1+k2+k3)τV + ck1e

−iθk1ei(k2+k3−k1)τV + 2 perm.
)]

(4.1)

4.2 Loop correction

It is well known that when the non-BD initial condition is assumed, the folded limit
non-Gaussianity will blow up. From the two point function calculation, we know that the
effective non-BD coefficient will decay with time due to the loop correction. We expect that
when we include loop corrections to 3pt function, the divergence will be cured.

For the three point functions, there are three external momenta. If we only consider
the loop chain diagrams which modify three legs separately, namely those diagrams where
three legs only meet at the original tree level interacting vertex with time τV , things will
become very easy. Other diagrams, either nested or connecting different legs, are thought to
only result in small corrections because their contributions are lower orders in τ , which can
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(a) Tree (b) one-loop with τV < τL (c) one-loop with τV > τL

Figure 5. Tree level and one-loop level non-BD 3pt function. There are two possible two one-loop
diagrams corresponding to non-BD 3pt function (b)(c).

be estimated from the uncertainly principle and number counting of the unconstrained time
integrations.

For loop chain diagrams, we need to consider loop corrections on each leg. This means
that even the BD three point functions will be corrected by loops. We first consider this case
because it is easier to deal with due to the symmetry of three legs.

4.2.1 Loop correction to BD three point function

Explicit case studies show that the dominant diagrams have the following properties:

• Similar to the previous case, time sequence are all time-ordered or anti-time-ordered,
i.e. dominant contributions are H...Hζ3 or ζ3H...H terms in in-in formalism. Because
these two differ by some complex conjugation, we only need to analyze time-ordered
one ζ3H.....H.

〈ζ3〉 = 2 Re
∞∑
n=0

(−i)n
∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2...

∫ τn−1

τ0

dτn〈ζ3HI(τ1)...HI(τn)〉0

= 2 Re
∞∑
n=1

n∑
m=1

(−i)n
(∫ τ

τ0

dτm

)(∫ τ

τm

dτ1

∫ τ1

τm

dτ2...

∫ τm−2

τm

dτm−1

)
·
(∫ τm

τ0

dτm+1...

∫ τn−1

τ0

dτn

)
〈ζ3HI(τ1)...HI(τm)...HI(τn)〉0

= 2 Re
∞∑

n>=0

∞∑
n<=0

(−i)n>+n<+1
(∫ τ

τ0

dτV

)(∫ τ

τV

dτ1

∫ τ1

τV

dτ2...

∫ τn>−1

τV

dτn>

)
·
(∫ τV

τ0

dτ̄1

∫ τ̄1

τ0

dτ̄2...

∫ τ̄n<−1

τ̄0

dτ̄n<

)
〈ζ3HI(τ1)...HI(τn>)HI(τV )HI(τ̄1)...HI(τ̄n<)〉0

= 2 Im

∫ τ

τ0

dτV

〈
ζ3 ·
[( ∞∑

n>=0

(−i)n>
∫ τ

τV

dτ1

∫ τ1

τV

dτ2...

∫ τn>−1

τV

dτn>

)
HI(τ1)...HI(τn>)

]

·HI(τV ) ·
[( ∞∑

n<=0

(−i)n<
∫ τV

τ0

dτ̄1

∫ τ̄1

τ0

dτ̄2...

∫ τ̄n<−1

τ̄0

dτ̄n<

)
HI(τ̄1)...HI(τ̄n<)

]〉
0

(4.2)
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where we use the tricks presented in the Appendix A and τm = τV is the 3pt-tree level
interacting vertex.

• All loop vertices time are later than three point function interacting vertex τV < τL.
This implies n< = 0.

• For each leg, the loop chain has similar properties as those stated before including
consecutive loop time.

So, the loop corrected three point function can be written as

〈ζk1(τ)ζk2(τ)ζk3(τ)〉Loop
BD = (2π)3δ(k1 + k2 + k3)2 Im

[
uk1(τ)uk2(τ)uk3(τ)

×
∫ τ

τ0

dτV
−3λ

2Hε3/2
τ2
V

√
k1k2k3e

i(k1+k2+k3)τV ZLoop
BD

]
, (4.3)

where ZLoop
BD ∼

[(∑∞
n>=0(−i)n>

∫ τ
τV
dτ1

∫ τ1
τV
dτ2...

∫ τn>−1

τV
dτn>

)
HI(τ1)...HI(τn>)

]
is the loop

contribution, essentially the product of mode functions of each loop and momentum integral.
For diagram with L1, L2, L3 loops at each leg respectively, the result contains the following
term

JBD(L1, L2, L3) = IL1(k1; τV , τ)IL2(k2; τV , τ)IL3(k3; τV , τ) . (4.4)

Recall IL(k; τa, τb) = 1
L!

(
k5(τ5b−τ

5
a )

1200π

)L
. Next, we need to include coupling constants and do

combinatoric counting. For each leg, the result is

(±i)2Lj (3× 3× 2)Lj
(−2λ

H4

)2Lj( H

2
√
ε

)6Lj
=
(
− 9

8

λ2

H2ε3

)Lj
. (4.5)

So, the loop contribution factor with specific number of loops is

(ZLoop
BD )L1,L2,L3 =

(
− 9

8

λ2

H2ε3

)L1+L2+L3

JBD(L1, L2, L3)

=

3∏
j=1

(
− 9

8

λ2

H2ε3

)Lj 1

Lj !

(k5
j (τ

5 − τ5
V )

1200π

)Lj
=

3∏
j=1

1

Lj !

(
−

3λ2k5
j (τ

5 − τ5
V )

3200πH2ε3

)Lj
.

(4.6)

And finally, we need to sum over all possible loops, yielding

ZLoop
BD =

∞∑
L1,L2,L3=0

(ZLoop
BD )L1,L2,L3 = exp

(
− 3λ2

3200πH2ε3
(k5

1 + k5
2 + k5

3)(τ5 − τ5
V )
)
. (4.7)

This is just the philosophy presented in Figure 3, i.e. replacing “1” with some exponen-
tial suppression factor and then you get the loop corrected results.

4.2.2 Loop correction to non-BD three point function

If there is one non-BD mode in the diagram, things are very similar to BD one but a
little more complicated due to different behaviour of non-BD mode.

For illustration, we consider the one-loop case first. This loop is in the non-BD leg.
If we denote the loop time as τ1, τ2 (τ1 > τ2), there are two diagrams with τ1,2 > τV or
τ1,2 < τV . Diagrams with τ1 > τV > τ2 means that the loop time are not consecutive and
can not contribute highest power terms from previous analysis.

For three point function, there are two types of diagrams:
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• Type 1 (Figure 5(b)): If τV < τ2 < τ1 < τ , the non-BD mode is at τV and this case is
similar to BD one.

J (1) =

∫ τ

τ0

dτV ck1e
−iθk1 τ2

V

√
k1k2k3e

i(k2+k3−k1)τV

∫ τ

τV

dτ1

∫ τ1

τV

dτ2 τ
2
1 τ

2
2 e
i(p+q−k1)(τ2−τ1) .

(4.8)

• Type 2 (Figure 5(c)): If τ2 < τ1 < τV < τ , the non-BD mode is at τ2 which is the
earliest time.

J (2) =

∫ τ

τ0

dτV τ2
V

√
k1k2k3e

i(k2+k3−k1)τV

∫ τV

τ0

dτ1

∫ τ1

τ0

dτ2 τ
2
1 τ

2
2 e
i(p+q)(τ2−τ1)ck1e

−iθk1eik1(τ1−τ2) .

(4.9)

We can see that the structure of these equations are the same as the previous ones. The
only difference is the upper and lower limit of time integration. It is not hard to generalize
to the case where there are L1 loops later than τV and L̃1 loops earlier than τV as shown in
Figure 4(d).

Although there are two types of diagrams, actually they are unified with the same
structure. The diagram in Figure 4(b) is a special case of Figure 4(d) by setting L̃1 = 0.
And we have JNon-BD(L̃1 = 0, L1, L2, L3) = JBD(L1, L2, L3). Thus, the loop contribution in
general is

JNon-BD(L̃1, L1, L2, L3) = I
L̃1

(k1; τ0, τV )IL1(k1; τV , τ)IL2(k2; τV , τ)IL3(k3; τV , τ) . (4.10)

The coefficient is the product of the previous BD one and those contributed by L̃1 loops
between time τ0 and τV ,(

− 9

8

λ2

H2ε3

)L1+L2+L3 × (±i)2L̃12L̃1(3× 3× 2)L̃1

(−2λ

H4

)2L̃1
( H

2
√
ε

)6L̃1

=
(
− 9

8

λ2

H2ε3

)L1+L2+L3
(
− 9

4

λ2

H2ε3

)L̃1

. (4.11)

So, the final loop corrected non-BD three-point correlation function is

〈ζk1(τ)ζk2(τ)ζk3(τ)〉Loop
Non-BD = (2π)3δ(k1 + k2 + k3)2 Im

[
uk1(τ)uk2(τ)uk3(τ)

∫ τ

τ0

dτV
−3λ

2Hε3/2

×τ2
V

√
k1k2k3

(
ck1e

−iθk1ei(k2+k3−k1)τV ZLoop
Non-BD + 2 perm.

)]
,

(4.12)

with the loop correction given by

ZLoop
Non-BD =

∞∑
L̃1,L1,L2,L3=0

(
− 9

8

λ2

H2ε3

)L1+L2+L3
(
− 9

4

λ2

H2ε3

)L̃1

JNon-BD(L̃1, L1, L2, L3)

= exp
[
− 3λ2

3200πH2ε3

(
2k5

1(τ5
V − τ5

0 ) + (k5
1 + k5

2 + k5
3)(τ5 − τ5

V )
)]

. (4.13)
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It is very interesting to notice that

ZLoop
Non-BD(τV )

ZLoop
BD (τV )

=
ceff
k (τV )

1
=
ceff

Non-BD(τV )

ceff
BD(τV )

, (4.14)

where “1” essentially is just the effective BD coefficients to the lowest order (2.13). So, the
ratio between non-BD and BD effects in different sectors are the same.

The relevant integrals of 3pt function are:∫ τ

τ0

dτV τ2
V e
−B
(

(k51+k52+k53)(τ5−τ5V )

)
ei(k1+k2+k3)τV , (4.15)

for BD one and ∫ τ

τ0

dτV τ2
V e
−B
(

2k51(τ5V −τ
5
0 )+(k51+k52+k53)(τ5−τ5V )

)
ei(k2+k3−k1)τV , (4.16)

for non-BD one, where B ≡ 3λ2

3200πε3H2 .
There are exponential oscillation terms in the integrals. In order to find a characteristic

scale of initial time, we switch to consider the simpler case by neglecting the exponential
oscillations and study the following two integrals

R(k1, k2, k3, τ0, τ) =

∫ τ

τ0

dτV τ2
V e
−B
(

(k51+k52+k53)(τ5−τ5V )

)
, (4.17)

Q(k1, k2, k3, τ0, τ) =

∫ τ

τ0

dτV τ2
V e
−B
(

2k51(τ5V −τ
5
0 )+(k51+k52+k53)(τ5−τ5V )

)
. (4.18)

As for function Q, when τ0 → −∞ the function in the integral is highly suppressed by
the exponential factor. It makes no sense to choose the infinitely past initial time because Q
will vanish in that case. Instead, we try to find the conditions for maximal 3pt function. We
expect that there exists one initial time τ0m which can maximize the integral Q.

So far our discussions are based on sub-horizon limit approximations |kτ |, |kτ0|� 1, but
mathematically, it is still meaningful to set τ = 0. This can be justified from the fact that the
function Q is very insensitive to the final time τ if |τ0|� |τ | as well as from Figure 6 where two
curves with different initial time are compared. For concreteness, we choose k1 = k2 = k3 = k
and τ = 0, then we get the function of τ0

Q(k, k, k, τ0, 0) =
e2Bk5τ50

(
Γ(3

5)− Γ(3
5 ,−Bk5τ5

0 )
)

5(Bk5)3/5
. (4.19)

We need to find dQ
dτ0

∣∣∣
τ0=τ0m

= 0. Numerically, we can find that the integral is maximized

when −k5τ5
0mB ≈ 0.255055 with maximum value

Q(k, k, k, τ0m, 0) =
0.0803601

B3/5k
. (4.20)

This roughly calibrates the initial time for maximal non-Gaussianity and its corresponding
amplitude. The weak dependence on the final time τ and different shape (k2/k1, k3/k1) is
shown in the Figure 6.

While for function R, it will saturate for early enough initial time (see Figure 6).
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Figure 6. The integral value Q or R (representing non-Gaussianity) as a function of initial time.
Function Q (corresponding to non-BD non-Gaussianity) peaks at one specific time τ0m and is very
insensitive to the final time τ as well as the ratio of k1,2,3. Function R (corresponding to BD non-
Gaussianity) approaches a constant value when the initial time is early enough. Three vertical lines
mark the initial time eτ0m, τ0m, τ0m/e. (Here B = 1.5459× 10−9 corresponding to fNL = 1, k1τ0m =
−44.0038)

4.3 Observational non-Gaussianity

4.3.1 Standard result on non-Gaussianity

Before showing the non-Gaussianity under loop corrections, we first review the standard
non-Gaussianity, i.e. the tree level result. In the standard procedure, the initial time is
chosen to be past infinity. This will cause divergence of the integral. In order to regulate
the divergence, we need to adopt the so-called iε prescription which is well understood in
standard quantum field theory, but a little problematic in cosmology.

In standard QFT, iε prescription is valid and vital from both mathematics and physics.
It not only cures the divergent problems in mathematics, but also ensures that physically the
quantum system can evolve from the non-interacting vacuum state in the infinitely past to
the true vacuum state with interaction at present.

However, in cosmology, our universe may start from a finite initial time. What’s more,
de-Sitter inflation has some different non-trivial properties compared to flat space case. The
most well-known and serious problem for this iε prescription is the folded limit divergence
of non-BD non-Gaussianity. Even for the BD case, iε prescription comes from the scattering
problem where particles are initially far away from each other. This is not the case for
inflation because the inflation originates from the sub-horizon scales.

Let us first present the result of standard non-Gaussianity. The BD non-Gaussianity
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can be obtained from the tree level 3pt function calculations by setting τ = 0:

〈ζk1ζk2ζk3〉Tree
BD

′ = 2 Im
[
uk1(0)uk2(0)uk3(0)

∫ τ=0

−∞
dτV

−3λ

2Hε3/2
τ2
V

√
k1k2k3e

i(k1+k2+k3)τV
]

= 2 Im
[( H

2
√
ε

)3
(k1k2k3)−3/2

∫ 0

−∞(1−i0+)
dτV
−3λτ2

V

√
k1k2k3

2Hε3/2
ei(k1+k2+k3)τV

]
=
( H

2
√
ε

)6−24λ

H4

1

k1k2k3
Im
[ 2i

(k1 + k2 + k3)3

]
=
−3H2λ

4ε3
1

(k1 + k2 + k3)3k1k2k3
(4.21)

where prime denotes that (2π)3δ(k1 +k2 +k3) is stripped, while the non-BD non-Gaussianity
is given by

〈ζk1ζk2ζk3〉Tree
Non-BD

′ = 2 Im
[( H

2
√
ε

)3
(k1k2k3)−3/2

∫ 0

−∞(1−i0+)
dτV

−3λ

2Hε3/2

×τ2
V

√
k1k2k3ck1e

−iθk1ei(−k1+k2+k3)τV + 2 perm.
]

=
−3H2λ

4ε3
1

k1k2k3

( ck1 cos(θk1)

(−k1 + k2 + k3)3
+ 2 perm.

)
(4.22)

Note that for external line, we only consider the BD modes. Non-BD modes in the ex-
ternal lines essentially are just effectively renormalizing the BD part by contributing term∑

i ReC−(ki)〈ζk1ζk2ζk3〉BD. So, we are not going to consider them anymore and alway as-
sume the BD external modes.

The non-Gaussianity can be characterized by the non-Gaussianity shape function F
which is defined as

〈ζk1ζk2ζk3〉 = (2π)7δ(k1 + k2 + k3)
P 2
ζ

k2
1k

2
2k

2
3

F(k2/k1, k3/k1) . (4.23)

where the scale invariance of the correlation functions has been used to show that F only
depends on the ratios of different momenta.

So, for the standard non-Guassianty, the shape functions for BD and non-BD are given
by

F(k2/k1, k3/k1)STD
BD =

−3λ

H2ε

k1k2k3

(k1 + k2 + k3)3
,

F(k2/k1, k3/k1)STD
Non-BD =

−3λ

H2ε
k1k2k3

( ck1 cos(θk1)

(−k1 + k2 + k3)3
+ 2 perm.

)
. (4.24)

The corresponding shapes can be seen from Figure 7. Evidently, non-Gaussianity di-
verges in the folded limit. But this divergence is unphysical. As we will show later, the decay
of non-BD modes cures the divergence.

4.3.2 Non-Gaussianity with loop correction

Next, we need to consider the loop corrections. The non-BD non-Gaussianity is maxi-
mized roughly when non-BD modes are generated or excited at τ0m instead of the infinitely
past.
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(a) Standard BD non-Gaussianity (b) Standard non-BD non-Gaussianity

Figure 7. Standard non-Gaussianity in literature obtained through iε prescription. Note that the
non-BD non-Gaussianities in the folded limit are actually divergent (b).

(a) Tree level τ0 = eτ0m (b) Loop corrected τ0 = eτ0m

Figure 8. BD non-Gaussianity shape function at tree level (left) and loop level (right) for initial
time τ0 = eτ0m. At tree level, the sharp initial time cut-off will give rise to a fast oscillating non-
Gaussianity shape. After including loop correction, the oscillating behavior is suppressed to nearly
vanishing value and we nearly recover the usual BD non-Gaussianity shape.

Previously, we only handle the effective value under the sub-horizon approximations,
i.e. |kτ |� 1. But physically we expect that in the super-horizon case, the decay is quite slow
due to the frozen of modes. So, super-horizon and sub-horizon admit completely different
behaviors. Tentatively, we can find an intermediate time τint (|kτint|& 1) to connect these
two pieces. When |τV |> |τint|, previous sub-horizon approximated results are reliable. While
for |τV |< |τint|, we can just simply ignore possible loop corrections (which are expected to
be very small due to limited time integrations as well as nearly frozen super-horizon modes)
and only consider the tree level results with different initial conditions—the renormalized
non-BD coefficients at τint or more explicitly, ck → ceff

k (τint). So, the loop corrections can be

– 25 –



(a) Tree level τ0 = eτ0m (b) Loop corrected τ0 = eτ0m

Figure 9. Non-BD non-Gaussianity shape function at tree level (left) and loop level (right) for
initial time τ0 = eτ0m (without Guassian smearing initial time). By including the loop correction, the
amplitude is suppressed to very small value.

evaluated in the following way∫ 0

τ0

dτV ck · · · →
∫ τint

τ0

dτV ckZ
loop
Non-BD · · ·+

∫ 0

τint

dτV ceff
k (τint) · · · , (4.25)

where · · · denotes the tree level relevant terms. It is very interesting to note that ceff
k (τV ) ≈

ckZ
loop
Non-BD(τV ) for |τ0|� |τ |, |τV |. This suggests that mathematically, the formula for Z loop

Non-BD

can also be used in the super-horizon limit due to its similar behavior. Similar consideration
also holds for the BD non-Gaussianities.

Based on these arguments, we can still use our previous result derived in the sub-horizon
limit to calculate the observable super-horizon non-Gaussianities simply by setting τ = 0:

〈ζk1ζk2ζk3〉Loop
BD

′ =
( H

2
√
ε

)6−24λ

H4

1

k1k2k3
Im
[ ∫ 0

τ0

dτV τ2
V e

i(k1+k2+k3)τV Z loop
BD (τV )

]
,

〈ζk1ζk2ζk3〉Loop
Non-BD

′ =
( H

2
√
ε

)6−24λ

H4

1

k1k2k3
Im
[ ∫ 0

τ0

dτV τ2
V ck1e

−iθk1

×ei(−k1+k2+k3)τV Z loop
Non-BD(τV ) + 2 perm.

]
. (4.26)

where Z loop
Non-BD(τV ) = exp

[
− B

(
2k5

1(τ5
V − τ5

0 ) + (k5
1 + k5

2 + k5
3)(05 − τ5

V )
)]
, Z loop

BD (τV ) =

exp
[
− B

(
(k5

1 + k5
2 + k5

3)(05 − τ5
V )
)]

. They can be regarded as the loop corrections or the

renormalization factors to the tree diagram. Especially, note that they don’t show decay
behavior when τV is pretty small, consistent with our previous physical picture for super-
horizon modes.

As we stated before, the loop corrections, in principle, also contain a phase factor exp(iγ)
with γ ∼ Bk5τ5

V . We don’t consider them because the exact expression is unknown and may
be very complicated. The above rough form can be understood from the DRG method. What
we want to emphasize is that the amplitude decay is sufficient to suppress the divergence and
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the fast oscillating phase factor can only be more beneficial due to the dramatic cancellations
between positive and negative parts.

Finally, we obtain the BD and non-BD non-Gaussianity shape functions with loop
corrections:

F(k2/k1, k3/k1, τ0)Loop
BD =

−3λ

2H2ε
k1k2k3

[ ∫ 0

τ0

dτV τ2
V e
−B
(

(k51+k52+k53)(05−τ5V )

)
sin
(

(k1 + k2 + k3)τV

)]
F(k2/k1, k3/k1, τ0)Loop

Non-BD =
−3λ

2H2ε
k1k2k3

[ ∫ 0

τ0

dτV τ2
V ck1e

−B
(

2k51(τ5V −τ
5
0 )+(k51+k52+k53)(05−τ5V )

)

× sin
(

(k2 + k3 − k1)τV − θk1

)
+ 2 perm.

]
(4.27)

Next, we give some plots for non-Gaussianity. Recall that in general single field inflation,
the power spectrum Pζ = H2

8π2ε
and Σ = H2ε (cs = 1 in our model). The non-Gaussianity

estimator fNL = −10
81

λ
Σ = −10

81
λ
H2ε

[13]. So, we can express the exponential decay factor in
terms of observable quantities as

B =
3λ2

3200πε3H2
=

19683π

40000
Pζf

2
NL ≈ 1.55Pζf

2
NL . (4.28)

We choose parameters Pζ = 10−9, fNL = 1 [17]. For non-BD parameters, we use ck =
0.1, θk = 0. The shape for BD and non-BD non-Gaussianity are shown in Fig. 8 and Fig. 9,
Fig. 10.
BD non-Gaussianity shape: The non-Gaussianity shape for BD part is shown in Fig. 8.
For BD non-Gaussianity, if we choose one initial time sharp cut-off, at tree level the non-
Gaussianity shape function shows oscillating behavior due to the oscillating term in the
integral. But at loop level, as long as the initial time is not too late which is always the case
because the BD starts from very very early time and in principle from nearly past infinity, the
oscillating behavior disappears and we nearly recover the usual BD non-Gaussianity shape.
Non-BD non-Gaussianity shape: For non-BD non-Gaussianity, it peaks at one specific
initial time roughly. Earlier or later initial time can only generate smaller observational
non-Gaussianity. What’s more, loop corrections cure the folded divergence behavior of non-
Gaussianity as we emphasize before. If the initial time is much earlier, which means sub-
stantial time for non-BD state to decay, it may be very difficult to observe the remnants of
the non-BD information experimentally.

Due to the highly sensitive dependence on initial time, the final shape of non-Gaussianity
may show some oscillating features which is not generic and depends on the details of
ck, θk, τ0(k) and so on. We expect that in reality, these highly sensitive dependence is frag-
ile and will be averaged or smoothed due to complicated behavior of these functions. The
important and generic part is the non-oscillating part with relatively weak dependence on
initial time. Note that for BD part, we do not need to use this smoothing functions. Because,
in principle, the BD exists from the very early beginning, almost infinitely past. And our
exponential correction term is enough to suppress the oscillating parts to get the standard
BD non-Gaussianity shape. Nevertheless, for completeness, we provide a typical plot for the
non-BD non-Gaussianity shape without smearing initial time.

Therefore, we choose to filter the slowly varying non-oscillating parts by averaging the
initial time with a Gaussian distribution centered at τ0c with width τ0w:

W (τ0, τ0c, τ0w) =
1√

2πτ0w

exp
(
−(τ0 − τ0c)

2

2τ2
0w

)
(4.29)
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With this smoothing function, the observable non-Gaussianity shape function is

Fave(k2/k1, k3/k1, τ0c, τ0w)Loop
Non-BD =

∫ 0

−∞
dτ0 W (τ0, τ0c, τ0w)F(k2/k1, k3/k1, τ0c, τ0w)Loop

Non-BD

(4.30)
Under Gaussian smoothing, the exponential function ei(k−k0)τ0 will be transformed into

a smooth and non-oscillating Guassian function of k centering at k0 with width 1/τ0w.
The non-Gaussianity shape of non-BD part (see Fig. 10) includes two features: folded

shape peak and squeezed limit shape. The folded shape is mainly contributed by the ck1 :
when k2 + k3 − k1 ∼ 0 or |(k2 + k3 − k1)τ0|. π, the sine function in the integral will
contribute coherently with oscillations. If we only consider the tree level result, the folded
shape value will blow up for very early initial time. But if we include the loop corrected
exponential term, its value will be suppressed to nearly vanishing. While the off-diagonal
corner (k2 ∼ 0 part and k3 ∼ 0 part) shape is contributed by the second and third term in
the non-BD non-Gaussianity shape function, namely ck2 , ck3 term. When k2 ∼ 0 and thus
k1 +k2−k3 ∼ k2 ∼ 0, the sine function ck3 sin((k1 +k2−k3)τV ) in the integral will contribute
coherently as long as |(k1 + k2 − k3)τ0|. π and thus give rise to large value. The arguments
are similar to the folded shape one. Similar arguments apply for k3 ∼ 0.

At tree level, the earlier the initial time, the larger the folded shape peak value. While
at loop level, the folded peak will be suppressed to very small value.

4.4 Non-interacting limit

In the following part, we are going to consider the non-interacting limit λ→ 0 and show
that standard results for BD non-Gaussianity can be recovered.

For BD non-Gaussianity,

FBD =
−3λ

2H2ε
k1k2k3

[ ∫ 0

τ0

dτV τ2
V e
−B
(

(k51+k52+k53)(05−τ5V )

)
sin
(

(k1 + k2 + k3)τV

)]
=
−3λ

2H2ε

−k1k2k3

(k1 + k2 + k3)3

[ ∫ x0

0
dx x2e−Dx

5
sinx

]
, (4.31)

where we define x = −(k1 + k2 + k3)τV , x0 = −(k1 + k2 + k3)τ0, D = B(k5
1 + k5

2 + k5
3)/(k1 +

k2 + k3)5 . The integral can be evaluated in the following way through integration by parts∫ x0

0
x2e−Dx

5
sinx dx = x2e−Dx

5
(− cosx)

∣∣∣x0
0
−
∫ x0

0
e−Dx

5
(− cosx)(2x− 5Dx6) dx

= −x2e−Dx
5

cosx
∣∣∣x0
0

+

∫ x0

0
2xe−Dx

5
cosx dx+D × · · ·

= (−x2e−Dx
5

cosx+ 2xe−Dx
5

sinx)
∣∣∣x0
0
−
∫ x0

0
2e−Dx

5
sinx dx+D × · · ·

= (−x2e−Dx
5

cosx+ 2xe−Dx
5

sinx+ 2e−Dx
5

cosx)
∣∣∣x0
0

+D × · · · . (4.32)

In the non-interacting limit, D → 0, x0 → ∞, the above integral gives rise to a factor
−2. Thus, we do recover the standard BD non-Gaussianity. Previously, the standard non-
Gaussianity is obtained by iε prescription. Here the interaction coupling constant plays the
role of ε and regulates the divergence problem. In this sense, we give a natural explanation
to the problem of introducing iε in cosmology.
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For non-BD non-Guassianity, things are a little more complicated due to the interplay
of folded limit and non-interacting limit. Physically, the correct order of taking limits should
be like this: fix the coupling strength B first and then examine the non-Gaussianity at folded
limit, finally turn off the interactions gradually. After fixing the coupling strength, the initial
time is roughly given by τ0m instead of −∞ in the iε prescription, which can only give a trivial
vanishing result in our case. Near the folded limit, we can perform Taylor expansion for δk,
then this integral is a normal one and vanishes when δk → 0. So, for a fix coupling strength,
the exact folded limit non-Gaussianity vanishes. Then, we take the non-interacting limit,
which by continuity also gives rise to a vanishing folded limit non-Guassianity. However for a
fixed given coupling strength, globally the amplitude will increase if we let coupling strength
goes to zero and choose proper initial time. More specifically, if the shape is not too folded
(B(k/δk)5 is still very small with δk = k2 + k3 − k1 or other permutations), the method for
BD one can be applied here. Then, we recover the 1/δk3 factor in FNon-BD. While the other
integral factor (which is −2 for BD one) is highly sentive to the intial time. The scale of
amplitude is roughly given by Eq. (4.20), scaling like B−3/5. This amplitude decreases very
quickly once a different initial time is chosen and will vanish if we start from past infinity.

In particular, if we tune the coupling constant λ to be pretty small, for example equiv-
alently let fNL = 10−6 which is mathematically meaningful nevertheless, we can get non-BD
non-Gaussianity which is nearly divergent at the folded limit provided that the proper initial
time is chosen. Actually, the amplitude of the folded limit non-Gaussianity is proportional

to f
−6/5
NL (4.20). However, once the initial time is slightly different, the amplitude decreases

dramatically.
The conclusion is that the loop corrections is vital for non-BD three point functions.

Even in the extremely weak interacting limit and we can fine tune the initial time delicately
to get the ordinary divergent folded non-Guassianity, this apparent divergence breaks down
once a little bit different initial time are considered. This is not the feature of previous non-
BD three point functions in literature. From this aspect, it is very challenging to observe the
imprints of initial non-BD state at present, especially for large k modes.
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(a) Tree level τ0c = τ0m/e, τ0w = |τ0c|/3 (b) Loop corrected τ0c = τ0m/e, τ0w = |τ0c|/3

(c) Tree level τ0c = τ0m, τ0w = |τ0c|/3 (d) Loop corrected τ0c = τ0m, τ0w = |τ0c|/3

(e) Tree level τ0c = eτ0m, τ0w = |τ0c|/3 (f) Loop corrected τ0c = eτ0m, τ0w = |τ0c|/3

Figure 10. Non-BD non-Gaussianity shape function at tree level (left) and loop level (right) for
different initial time τ0m/e (upper), τ0m (middle) and eτ0m (down), filtered by a Gaussian weight
function (4.29) for the initial time. Note two prominent features: folded shape peak at k2 + k3 ∼ k1
and squeezed limit shape at k2 ∼ 0 or k3 ∼ 0. For folded shape, if we only consider the tree level,
the peak value will blows up with earlier initial time and finally diverges for past infinity initial time.
But, if we consider the loop corrections, the folded shape peak will be suppressed.
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5 Conclusion

In this paper, we develop the techniques of calculating one loop diagrams. And we
discover a recursion relation which enables us to deal with infinite loop calculations and do
resummations. By using these techniques, we show that the decay of non-BD coefficients are
consistent with the previous cut-off result except an order one decay factor difference. Our
method is enlightening and may shed light on the future loop calculations and resummations
in the general context.

Furthermore, we analyze the non-Gaussianity under loop corrections. As we expect
from the decay of effective non-BD coefficients, the usual divergent non-BD non-Gaussianity
at folded limit gets smoothed. What’s more, the loop corrected non-BD non-Gaussianities
peak at specific initial time and are very sensitive to these initial time. Once we deviate a
little bit, these non-Gaussianities will decrease dramatically. So, we conclude that the non-
BD non-Gaussianities are very fragile to loop interactions and initial time. Thus, as long as
the non-BD state is set up at early enough time, the imprints of these non-Gaussianties on
observations may be difficult. These are very different from the previous results in literature
where folded limit non-Gaussianities are dominated by the non-BD one due to the divergent
behavior.

Besides, we also show that even for BD non-Gaussianity, the loop corrections can have
significant influence, playing the role of infinitesimal regulator like iε prescription. The loop
correction can not only regulate the divergence problem but also recover the usual result in
literature. Thus, loop corrections provide a natural way of introducing iε in cosmology in a
more natural and physical way.

Our results are derived based on sub-horizon limit approximations. It is well known that
the sub-horizon modes do not feel the presence of gravity much and their behaviour resemble
the flat Minkowski space case. So are the loop corrections. One may wonder whether the
same properties that we have discussed already exist in flat space quantum field theory. The
answer is yes or no. On the one hand, the UV limit of the cosmological perturbations indeed
return to flat space quantum field theory. But on the other hand, in usual treatment of flat
space quantum field theory, we are interested in the in-out amplitude. Interactions are shut off
at the asymptotic past and future. However, in our case, the fluctuations keep on interacting
in the asymptotic past. Also, the expansion of the universe exposes anything odd in the
UV, if not diluted by the expansion of the universe, to observables at macroscopic scales.
Finally, inflation needs a start and may have features, so asymptotic Lorentz symmetry or de
Sitter symmetry may not help to determine the vacuum. Those reasons explain the difference
between our work and a conventional treatment of flat space quantum field theory.

Although we only consider the general single field inflation and rely on some approxi-
mations, the conclusions are expected to apply in more general cases.
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A Basics of in-in formalism

We can use the in-in formalism to compute the correlation function [16, 18, 19]. The
basic formula is

〈Q(τ)〉 =
〈

0
∣∣∣[T̄ exp

(
i

∫ τ

τ0

HI(τ̃
′)dτ̃ ′

)]
QI(τ)

[
T exp

(
− i
∫ τ

τ0

HI(τ
′)dτ ′

)]∣∣∣0〉
=

∞∑
n,m=0

im(−i)n
∫ τ

τ0

dτ̃1

∫ τ

τ̃1

dτ̃2...

∫ τ

τ̃m−1

dτ̃m

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2...

∫ τn−1

τ0

dτn

×
〈

0
∣∣∣HI(τ̃1)...HI(τ̃m)QI(τ)HI(τ1)...HI(τn)

∣∣∣0〉
=

∞∑
n,m=0

im(−i)n
∫ τ

τ0

dτ̃m

∫ τ̃m

τ0

dτ̃m−1...

∫ τ̃2

τ0

dτ̃1

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2...

∫ τn−1

τ0

dτn

×〈HI(τ̃1)...HI(τ̃m)QI(τ)HI(τ1)...HI(τn)〉0 . (A.1)

Note that the factor n!m! has been canceled by the time-orderings.
At a specific order of expansion, there are lots of terms due to different ways to connect

the diagrams and different time sequences. We can represent them in different Feynman
diagrams, where the time sequences can be seen from the relative positions of interacting
vertices along the time axis, while the connecting ways can be understood as usual Feynman
diagrams in QFT.

The basic type of integral has the following equivalent form (τ > τ1 > τ2 > ... > τn−1 >
τn > τ0)∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2...

∫ τn−1

τ0

dτn f(τ1, ..., τn) =

∫ τ

τ0

dτn

∫ τ

τn

dτn−1...

∫ τ

τ2

dτ1 f(τ1, ..., τn) .

(A.2)
Another very useful formula is to leave one time τm at last. (τ > τ1 > τ2 > ... > τm >

... > τn−1 > τn > τ0)∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2...

∫ τn−1

τ0

dτn f(τ1, ..., τn)

=
(∫ τ

τ0

dτm

)(∫ τ

τm

dτ1

∫ τ1

τm

dτ2...

∫ τm−2

τm

dτm−1

)(∫ τm

τ0

dτm+1...

∫ τn−1

τ0

dτn

)
f(τ1, ..., τn) .

(A.3)

Usually, f is the product of some mode functions and can be factorized into different
parts: f(τ1, ..., τn) =

∏
j fj(τj). So, this formula is so convenient that we can deal with

different parts separately. For example, when calculating the loop diagrams of three point
function, the interacting vertex for three external leg is special and we can leave it to the
last integration.

The basic idea of the proof is that we swap τm and τ1 first, then swap τm and τ2...
Repeat this process until τm is between τm−1 and τm+1 which recover the standard form.
The basic formula is

∫ τp
τ0
dτm

∫ τp
τm
dτj · · · =

∫ τp
τ0
dτj
∫ τj
τ0
dτm · · · .
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Figure 11. Elliptical coordinate system

B Elliptical coordinate system

Consider two fixed points A, B separated by distance R, and P is the moving point.
The distance between A,B,O (the origin) and P is rA, rB, r. Also, assume the angle between
OA and OP is θ.

Define

µ =
rA + rB

R
, ν =

rA − rB
R

, (B.1)

then, we have

r =
R

2

√
µ2 + ν2 − 1 , (B.2)

z = r cos θ = −R
2
µν , (B.3)

ρ = r sin θ =
R

2

√
µ2 + ν2 − 1− µ2ν2 . (B.4)

The Jacobi matrix is

J =
∂(r, z)

∂(µ, ν)
=

(
R
2

µ√
µ2+ν2−1

R
2

ν√
µ2+ν2−1

−R
2 ν −R

2 µ

)
, (B.5)

so,

det J =
R2

4

−µ2 + ν2√
µ2 + ν2 − 1

→ −R
3

8

1

r
(µ2 − ν2) . (B.6)

In 3D, the volume element is

dV = r2 sin θdrdθdφ = −rdrd(r cos θ)dφ = −2πrdrdz

→ 2πr
R3

8

1

r
(µ2 − ν2)dµdν = 2π

R3

8
(µ2 − ν2)dµdν . (B.7)
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In general, in n-dimensional space, the volume element (after integrating out the angular
part) is

dV =
2π(
√
π)n−3

Γ(n−1
2 )

(R
2

)n(
µ2 + ν2 − 1− µ2ν2

)n−3
2

(µ2 − ν2)dµdν , (B.8)

So, if we want to integrate the function f(k, p, q), the calculation is transformed to

I =

∫
dnq

∫
dnp δ(n)(p + q − k)f(k, p, q)

=
2π(
√
π)n−3

Γ(n−1
2 )

(k
2

)n ∫ ∞
1

dµ

∫ 1

−1
dν
(
µ2 + ν2 − 1− µ2ν2

)n−3
2

(µ2 − ν2)f(k,
µ+ ν

2
k,
µ− ν

2
k) .

(B.9)

In three dimension, it simplifies as

I =
πk3

4

∫ ∞
1

dµ

∫ 1

−1
dν (µ2 − ν2)f(k,

µ+ ν

2
k,
µ− ν

2
k) . (B.10)

C New basis functions

We introduce a set of basis function Tn:

T1(z) =
eizu − 1

z
, (C.1)

Tn(z) =
1

zn

(
1− izu

n− 1

)(
eizu − 1− izu− ...(izu)n−1

(n− 1)!

)
− (iu)n

(n− 1)(n− 1)!
n > 1 .(C.2)

There are some good properties for Tn:

1. They are regular near z ∼ 0.

2. For n > 1, Tn decreases very rapidly at +∞ and is integrable without divergence∫ +∞

0
Tn(z)dz = finite . (C.3)

3. For n = 1, the integration of T1 from 0 to +∞ will result in logarithmic divergence.
We can introduce a cut-off on z which yields∫ Λ

0
T1(z)dz = Ci(|Λu|)− γE − log(|Λu|) + i sgn(u) · Si(|Λu|) , (C.4)

where Si,Ci are Sine and Cosine integral function.

Suppose we have a function with the following form

K =

N∑
n=1

ane
izu − bn
zn

, (C.5)

where an, bn are coefficients independent of z. Also, we require the above function is regular
near z ∼ 0 which means that an, bn are not totally independent. There must be some relations
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among them to ensure the regularity of the function. There are 2N coefficients an, bn, but
the regularity near z = 0 will lead to N constraint equations corresponding to each order of
Taylor expansion of K in 1/zn. This implies that actually there are only N free parameters.

So, we can decompose the above function in terms of the basis functions Tn∑
n

ane
izu − bn
zn

=
∑
n

AnTn(z) , (C.6)

We can express An in terms of an, bn by solving the above equation. Also, note that in the
basis functions Tn, 1

z only appears in T1, so we can get a very important relation

A1 = b1 . (C.7)
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