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Abstract

We use Hamiltonian reduction to simplify Falqui and Mencattini’s recent proof

of Sklyanin’s expression providing spectral Darboux coordinates of the rational

Calogero-Moser system. This viewpoint enables us to verify a conjecture of Falqui

and Mencattini, and to obtain Sklyanin’s formula as a corollary.
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1 Introduction

Integrable many-body systems in one spatial dimension form an important class of exactly
solvable Hamiltonian systems with their diverse mathematical structure and widespread
applicability in physics [1, 2, 3]. Among these many-body systems, one of the most
widely known is the rational Calogero-Moser model of equally massive interacting particles
moving along a line with a pair potential inversely proportional to the square of the
distance. The model was introduced and solved at the quantum level by Calogero [4]. The
complete integrability of its classical version was established by Moser [5], who employed
the Lax formalism to identify a complete set of commuting integrals as coefficients of the
characteristic polynomial of a certain Hermitian matrix function, called the Lax matrix.

These developments might prompt one to consider the Poisson commuting eigenvalues
of the Lax matrix and be interested in searching for an expression of conjugate variables.
Such an expression was indeed formulated by Sklyanin [6] in his work on bispectrality,
and worked out in detail for the open Toda chain [7]. Sklyanin’s formula for the rational
Calogero-Moser model was recently confirmed within the framework of bi-Hamiltonian
geometry by Falqui and Mencattini [8] in a somewhat circuitous way, although a short-
cut was pointed out in the form of a conjecture. The purpose of this paper is to prove
this conjecture and offer an alternative simple proof of Sklyanin’s formula using results of
Hamiltonian reduction.

Section 2 is a recap of complete integrability and action-angle duality for the rational
Calogero-Moser system in the context of Hamiltonian reduction. In Section 3 we put these
ideas into practice when we identify the canonical variables of [8] in terms of the reduction
picture, and prove the relation conjectured in that paper. We attain Sklyanin’s formula
as a corollary. Section 4 contains our concluding remarks on possible generalizations.

2 The rational Calogero-Moser system via reduction

We begin by describing the rational Calogero-Moser system and recalling how it originates
from Hamiltonian reduction [9]. The content of this section is standard and only included
for the sake of self-consistency.

For n particles, let the n-tuples q = (q1, . . . , qn) and p = (p1, . . . , pn) collect their
coordinates and momenta, respectively. Then the Hamiltonian of the model reads

H(q, p) =
1

2

n
∑

j=1

p2j + g2
n

∑

j,k=1
(j<k)

1

(qj − qk)2
, (1)

where g is a real coupling constant tuning the strength of particle interaction. The pair
potential is singular at qj = qk (j 6= k), hence any initial ordering of the particles remains
unchanged during time-evolution. The configuration space is chosen to be the domain
C = {q ∈ Rn | q1 > · · · > qn}, and the phase space is its cotangent bundle

T ∗C = {(q, p) | q ∈ C, p ∈ R
n}, (2)

endowed with the standard symplectic form

ω =

n
∑

j=1

dqj ∧ dpj. (3)
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The Hamiltonian system (T ∗C, ω,H), called the rational Calogero-Moser system, can be
obtained as an appropriate Marsden-Weinstein reduction of the free particle moving in
the space of n× n Hermitian matrices as follows.

Consider the manifold of pairs of n× n Hermitian matrices

M = {(X,P ) | X,P ∈ gl(n,C), X† = X, P † = P}, (4)

equipped with the symplectic form

Ω = tr(dX ∧ dP ). (5)

The Hamiltonian of the analogue of a free particle reads

H(X,P ) =
1

2
tr(P 2). (6)

The equations of motion can be solved explicitly for this Hamiltonian system (M,Ω,H),
and the general solution is given by X(t) = tP0+X0, P (t) = P0. Moreover, the functions
Hk(X,P ) = 1

k
tr(P k), k = 1, . . . , n form an independent set of commuting first integrals.

The group of n× n unitary matrices U(n) acts on M (4) by conjugation

(X,P ) → (UXU †, UPU †), U ∈ U(n), (7)

leaves both the symplectic form Ω (5) and the Hamiltonians Hk invariant, and the matrix
commutator (X,P ) → [X,P ] is a momentum map for this U(n)-action. Consider the
Hamiltonian reduction performed by factorizing the momentum constraint surface

[X,P ] = ig(vv† − 1n) =: µ, v = (1 . . . 1)† ∈ R
n, g ∈ R, (8)

with the stabilizer subgroup Gµ ⊂ U(n) of µ, e.g. by diagonalization of the X component.
This yields the gauge slice S = {(Q(q, p), L(q, p)) | q ∈ C, p ∈ R

n}, where

Qjk = (UXU †)jk = qjδjk, Ljk = (UPU †)jk = pjδjk + ig
1− δjk

qj − qk
, j, k = 1, . . . , n. (9)

This S is symplectomorphic to the reduced phase space and to T ∗C (2) since it inherits
the reduced symplectic form ω (3). The unreduced Hamiltonians project to a commuting
set of independent integrals Hk =

1
k
tr(Lk), k = 1, . . . , n, such that H2 = H (1) and what’s

more, the completeness of Hamiltonian flows follows automatically from the reduction.
Therefore the rational Calogero-Moser system is completely integrable.

The similar role of matrices X and P in the derivation above can be exploited to
construct action-angle variables for the rational Calogero-Moser system. This is done by
switching to the gauge, where the P component is diagonalized by some matrix Ũ ∈ Gµ,
and it boils down to the gauge slice S̃ = {(Q̃(φ, λ), L̃(φ, λ)) | φ ∈ Rn, λ ∈ C}, where

Q̃jk = (ŨXŨ †)jk = φjδjk− ig
1− δjk

λj − λk

, L̃jk = (ŨP Ũ †)jk = λjδjk, j, k = 1, . . . , n. (10)

By construction, S̃ with the symplectic form ω̃ =
∑n

j=1 dφj∧dλj is also symplectomorphic
to the reduced phase space, thus a canonical transformation (q, p) → (φ, λ) is obtained,
where the reduced Hamiltonians depend only on λ, viz. Hk =

1
k
(λk

1+· · ·+λk
n), k = 1, . . . , n.
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3 Sklyanin’s formula

Now, we turn to the question of variables conjugate to the Poisson commuting eigenvalues
λ1, . . . , λn of L (9), i.e. such functions θ1, . . . , θn in involution that

{θj , λk} = δjk, j, k = 1, . . . , n. (11)

At the end of Section 2 we saw that the variables φ1, . . . , φn are such functions. These
action-angle variables λ, φ were already obtained by Moser [5] using scattering theory,
and also appear in Ruijsenaars’ proof of the self-duality of the rational Calogero-Moser
system [10].

Let us define the following functions over the phase space T ∗C (2) with dependence
on an additional variable z:

A(z) = det(z1n−L), C(z) = tr(Q adj(z1n−L)vv†), D(z) = tr(Q adj(z1n−L)), (12)

where Q and L are given by (9), v = (1 . . . 1)† ∈ Rn and adj denotes the adjugate matrix,
i.e. the transpose of the cofactor matrix. Sklyanin’s formula [6] for θ1, . . . , θn then reads

θk =
C(λk)

A′(λk)
, k = 1, . . . , n. (13)

In [8] Falqui and Mencattini have shown that

µk =
D(λk)

A′(λk)
, k = 1, . . . , n (14)

are conjugate variables to λ1, . . . , λn, and

θk = µk + fk(λ1, . . . , λn), k = 1, . . . , n, (15)

with such λ-dependent functions f1, . . . , fn that

∂fj

∂λk

=
∂fk

∂λj

, j, k = 1, . . . , n (16)

thus θ1, . . . , θn given by Sklyanin’s formula (13) are conjugate to λ1, . . . , λn. This was
done in a roundabout way, although the explicit form of relation (15) was conjectured.

Here we take a different route by making use of the reduction viewpoint of Section 2.
From this perspective, the problem becomes transparent and can be solved effortlessly.
First, we show that µ1, . . . , µn (14) are nothing else than the angle variables φ1, . . . , φn.

Lemma. The variables µ1, . . . , µn defined in (14) are the angle variables φ1, . . . , φn of the
rational Calogero-Moser system.

Proof. Notice that, by definition, µ1, . . . , µn are gauge invariant, thus by working in the
gauge, where the P component is diagonal, that is with the matrices Q̃, L̃ (10), we get

D(z)

A′(z)
=

∑n

j=1 φj

∏n
ℓ=1
(ℓ 6=j)

(z − λℓ)
∑n

j=1

∏n
ℓ=1
(ℓ 6=j)

(z − λℓ)
. (17)

Substituting z = λk into (17) yields µk = φk, for each k = 1, . . . , n.
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Next, we prove the relation of functions A, C, D (12), that was conjectured in [8].

Theorem. For any n ∈ N, (q, p) ∈ T ∗C (2), and z ∈ C we have

C(z) = D(z) +
ig

2
A′′(z). (18)

Proof. Pick any point (q, p) in the phase space T ∗C and consider the corresponding point
(λ, φ) in the space of action-angle variables. Since A(z) = (z − λ1) . . . (z − λn) we have

ig

2
A′′(z) = ig

n
∑

j,k=1
(j<k)

n
∏

ℓ=1
(ℓ 6=j,k)

(z − λℓ). (19)

The difference of functions C and D (12) reads

C(z)−D(z) = tr
(

Q adj(z1n − L)(vv† − 1n)
)

. (20)

Due to gauge invariance, we are allowed to work with Q̃, L̃ (10) instead of Q,L (9).
Therefore (20) can be written as the sum of all off-diagonal components of Q̃ adj(z1n−L̃),
that is

C(z)−D(z) = ig
n

∑

j,k=1
(j 6=k)

−1

λj − λk

n
∏

ℓ=1
(ℓ 6=k)

(z − λℓ) = ig
n

∑

j,k=1
(j<k)

n
∏

ℓ=1
(ℓ 6=j,k)

(z − λℓ). (21)

This concludes the proof.

Our Theorem confirms that indeed relation (15) is valid with

fk(λ1, . . . , λn) =
ig

2

A′′(λk)

A′(λk)
= ig

n
∑

ℓ=1
(ℓ 6=k)

1

λk − λℓ

, k = 1, . . . , n, (22)

for which (16) clearly holds. An immediate consequence, as we indicated before, is that
θ1, . . . , θn (13) are conjugate variables to λ1, . . . , λn, thus Sklyanin’s formula is verified.

Corollary (Sklyanin’s formula). The variables θ1, . . . , θn defined by

θk =
C(λk)

A′(λk)
, k = 1, . . . , n (23)

are conjugate to the eigenvalues λ1, . . . , λn of the Lax matrix L.

4 Discussion

There seem to be several ways for generalization. For example, one might consider rational
Calogero-Moser models associated to root systems other than type An−1. The hyperbolic
Calogero-Moser systems as well as, the ‘relativistic’ Calogero-Moser systems, also known
as Ruijsenaars-Schneider systems, are also of considerable interest.
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