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Topological grounds for challenging behavior of the heavy-fermion metal β − YbAlB4

under the application of magnetic field and pressure
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We analyze the thermodynamic properties of β−YbAlB4, explain their scaling behavior, the NFL
behavior and its frailness with respect to the application of magnetic field B, and demonstrate a
good elucidation of experimental facts within the framework of the fermion condensation theory.
Then, we explain the ability of the thermodynamic properties and the anomalous temperature T
dependence of the electrical resistivity ρ ∝ T 3/2 to cope with the application of pressure P . To
illuminate the observed behavior, we construct the schematic T −B and T − P phase diagrams.

PACS numbers: 71.27.+a, 71.10.Hf, 72.15.Eb

Recently, the striking measurements under the appli-
cation of both magnetic field B and hydrostatic pressure
P on the heavy-fermion (HF) metal β − YbAlB4 have
been performed and theoretically analyzed, see e.g.1–11

The measurements of the magnetization M(B) at differ-
ent temperatures T show that the magnetic susceptibility
χ = M/B ∝ T−1/2 demonstrates the non-Fermi liquid
(NFL) behavior, and diverges at temperature T → 0,
implying that the quasi-particles effective mass M∗ di-
verges as M∗ ∝ B−1/2 ∝ T−1/2 at the quantum critical
point (QCP).2 Such a quantum criticality is commonly
attributed to the scattering of electrons off quantum crit-
ical fluctuations related to a magnetic instability. In a
single crystal of β − YbAlB4, QCP is well located away
from a possible magnetic instability.2 Furthermore, it is
observed that QCP is robust against P , that is under
the application of P the divergent T and B dependences
of χ is conserved and accompanied by anomalous T 3/2

dependence of the electrical resistivity ρ. 6 In contrast,
under the application of a tiny magnetic field B the di-
vergences are suppressed, resulting in the Landau-Fermi
liquid (LFL) behavior at low temperatures.1,2 As a result,
we have to deal with a challenging problem including on
one hand an explanation of the fragile NFL behavior in
magnetic fields, and on the other hand, the robustness of
the NFL behavior against the application of pressure P
in zero magnetic field.

In this communication we analyze the thermodynamic
properties of β−YbAlB4, explain their scaling behavior,
the NFL behavior and its frailness with respect to the ap-
plication of magnetic field B||c, and demonstrate a good
elucidation of experimental facts within the framework
of the fermion condensation (FC) theory. Then, we ex-
plain the ability of the thermodynamic properties and
anomalous T 3/2 dependence of the electrical resistivity ρ
to cope with the application of the pressure. To illumi-

nate the observed behavior, we construct the schematic
T −B and T − P phase diagrams.
We start with elucidation of the scaling behavior of

the thermodynamic functions of HF compounds within
the framework of HF homogeneous liquid.12–14 The Lan-
dau functional E(n) depends on the quasiparticle distri-
bution function nσ(p), where p is the momentum. Near
the fermion condensation quantum phase transition (FC-
QPT), the effective mass M∗ is governed by the Landau
equation12,13,15

1

M∗(T,B)
=

1

M∗(T = 0, B = 0)
(1)

+
1

p2F

∑

σ1

∫

pFp1

pF
Fσ,σ1

(pF,p1)
∂δnσ1

(T,B,p1)

∂p1

dp1

(2π)3
,

Here we have rewritten the quasiparticle distribution
function as δnσ(p) ≡ nσ(p, T, B)− nσ(p, T = 0, B = 0).
The sole role of the Landau interaction F (p1,p2) =
δ2E/δn(p1)δn(p2) is to bring the system to FCQPT
point, where M∗ → ∞ at T = 0, and the Fermi surface
alters its topology so that the effective mass acquires tem-
perature and field dependences, while the proportionality
of the specific heat C/T and the magnetic susceptibility
χ to M∗ holds: C/T ∼ χ ∼ M∗(T,B). Near FCQPT
the effective mass M∗(T = 0, B = 0) → ∞, and Eq. (1)
becomes homogeneous with M∗(T = 0, B) ∝ B−z and
M∗(T,B = 0) ∝ T−z, with the exponent z depending
on the analytical properties of F .12–14,16 On the ordered
side of FCQPT at T = 0, the single particle spectrum
ε(p) acquires a flat part at the Fermi surface pF

ε(p) = µ (2)

over the region pi < pF < pf , with µ being the chemi-
cal potential. At FCQPT the flat part shrinks, so that
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pi → pF → pf , and ε(p) possesses an inflection point
at pF . As a result, ε(p ≃ pF)− µ ≃ (p− pF )

3. Another
inflection point emerges in the case of non-analytical Lan-
dau interaction F :

ε−µ ≃ −(pF−p)2, p < pF ; ε−µ ≃ (p−pF )
2, p > pF . (3)

Accordingly, at the inflection point (3) the effective mass
diverges as M∗(T → 0) ∝ T−1/2. These specific features
of ε can be used to separate the solutions of Eq. (1), cor-
responding to specific experimental situation. Namely,
the experiment on β − YbAlB4 shows that near QCP
at B ≃ 0, the magnetization M(B) ∝ B−1/2, 1–11 and
such a behavior of the magnetization corresponds to the
spectrum ε(p) given by Eq. (3) with (pf − pi)/pF ≪ 1.
At finite B and T near FCQPT, the solutions of Eq.
(1), defining the T and B dependents of M∗(T,B), can
be well approximated by a simple universal interpolating
function.12–14 The interpolation occurs between the LFL
(M∗ ∝ a + bT 2) and NFL (M∗ ∝ T−1/2) regimes, sep-
arated by the crossover region at which M∗ reaches its
maximum value M∗

M at temperature TM , and represents
the universal scaling behavior of M∗

N(TN )

M∗

N (TN) =
M∗(T,B)

M∗
M

=
1 + c2
1 + c1

1 + c1T
2
N

1 + c2T
5/2
N

, (4)

where c1 and c2 are fitting parameters, and TN = T/TM

is the normalized temperature. Here,

M∗

M ∝ B−1/2, (5)

while

TM ∝ B1/2 and TM ∝ B. (6)

It follows from Eqs. (4), (5) and (6) that the effective
mass exhibits the universal scaling behavior

M∗(T,B) = c3
1√
B
M∗

N (T/B), (7)

with c3 is a constant.12–14 Below Eqs. (4), (5), (6), and
(7) are used along with Eq. (1) to describe the experi-
ment in β−YbAlB4. We note, that the scaling behavior
takes place at temperatures T . Tf , where Tf is the tem-
perature at which the influence of QCP vanishes.12,13

Taking into account Eq. (7), we conclude the magne-
tization M exhibits the scaling behavior, for it is given
by

M(T,B) =

∫

χ(T,B1)dB1 ∝
∫

M∗
N(T/B1)√

B1

dB1. (8)

We obtain that at T < B the system demonstrates the
LFL behavior, at which M(B) ∝ B−1/2. At T > B, the
system enters NFL region and M(T ) ∝ T−1/2. While
dM(T,B)/dT again exhibits the scaling behavior, with
dM(T,B)/dT ∝ T at T < B, and dM(T,B)/dT ∝
T−3/2 at T > B. Our analytical calculations are in ac-
cordance with the experimental facts2,4,5, and free from
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FIG. 1: (color online). The scaling behavior of the dimen-

sionless normalized magnetization (B1/2dM(T, B)/dT )N ver-
sus the dimensionless normalized (T/B)N at different mag-
netic fields B, shown in the legend. The data are extracted
from measurements.6 The LFL behavior, crossover and NFL
as shown by the arrows. The theory is represented by the
single scaling function.

fitting parameters and empirical functions. To confirm
our analysis of the scaling behavior, we display in Fig. 1
our calculations of the dimensionless normalized magne-
tization (B1/2dM(T,B)/dT )N versus the dimensionless
normalized (T/B)N . The normalization is carried out
by dividing B1/2dM(T,B)/dT and T/B by the max-
imum value of (B1/2dM(T,B)/dT )M and by (B/T )M
at which the maximum value takes place. It is seen
that the calculated single scaling function of the ratio
(T/B)N follows the data over four decades of the normal-
ized (B1/2dM(T,B)/dT )N , while the ratio itself varies
over five decades. It also follows from Eq. (8) that
(B1/2dM(T,B)/dT )N exhibits the scaling behavior as a
function of (B/T )N . Figure 2 reports the scaling behav-
ior (B1/2dM(T,B)/dT )N of the archetypical HF metal
YbRhSi2. The solid curve representing the theoretical
calculations is adopted from that depicted in Fig. 1.
Thus, we see that the scaling behavior of β − YbAlB4,
extracted from measurements17,18 and shown in Fig. 1,
is not unique, and demonstrates the same crossover un-
der the application of magnetic field in the wide range of
the applied pressure, shown in the legend.

Under the application of magnetic fields B > Bc2 ≃ 30
mT and at sufficiently low temperatures, β−YbAlB4 can
be driven to the LFL state with its resistivity ρ(T ) =
ρ0 + AT 2 with the coefficient A of the T 2 dependence.
Measurements of the coefficient A produce information
on its B-field dependence.1 The A(B) coefficient, being
proportional to the quasiparticle–quasiparticle scattering
cross-section, is found to be A ∝ (M∗(B))2. 19,20 This
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FIG. 2: (color online). The scaling behavior

(B1/2dM(T,B)/dT )N versus (B/T )N of the archetypi-
cal HF metal YbRhSi2. The data are extracted from
measurements of dM/dT versus B at fixed temperatures17,18

The solid curve show the theoretical calculations, and is
adopted from that depicted in Fig. 1. The applied pressures
and temperatures are shown in the legends.

implies in accordance with Eq. (5), that

A(B) ≃ A0 +
D

B
, (9)

where A0 and D are fitting parameters.12,13 We rewrite
Eq. (9) in the reduced variable A/A0

A(B)

A0

≃ 1 +
D1

B
, (10)

where D1 = D/A0 is a constant. From Eq. (10) it is
seen that A(B) is reduced to a function depending on the
single variable B. Figure 3 reports the fit of A(B) to the
experimental data1, and displays good coincidence of the
theoretical dependence (10) with the experimental facts.
This means that the physics underlying the field-induced
reentrance into the LFL behavior, is the same for classes
of HF metals. We note, that deviations of the theoretical
curve from the experimental points at B > 2.5 T are due
to violation of the scaling at QCP.5

In Fig. 4, our calculations of χ(B) ∝ M∗ and
C/T = γ(B) ∝ M∗ are shown by the solid curve. Tak-
ing into account Eq. (5), that A(B) ∝ (M∗)2, and
good description of χ and γ shown in Fig. 4, we ver-
ify Eq. (10), and conclude that the Kadowaki-Woods
ratio A/γ2 ∝ A/χ2 ≃ const is conserved in the case of
β −YbAlB4, being similar to that found in other heavy-
fermion compounds.1,3,12,21

The above scaling properties permit to construct the
schematic T − B phase diagram of β − YbAlB4, shown
in Fig. 5, with the magnetic field B serving as control
parameter. At B = 0, the system acquires the flat band,
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FIG. 3: (color online). Normalized coefficient A(B)/A0 given
by Eq. (10) as a function of magnetic field B shown by circles.
DN is the only fitting parameter. The experimental facts are
extracted from measurements of A(B). 1 Our calculations are
shown by the solid curve.
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FIG. 4: (color online). The magnetic susceptibility χ =
dM/dB = a1M

∗

N , the left axis, and the electronic specific
heat coefficient C/T = γ = a2M

∗

N , the right axis, versus
magnetic field B. 5 Our calculations are depicted by the solid
curve tracing the scaling behavior of M∗

N with a1 and a2 are
fitting parameters.

given by Eq. (2) and corresponding to a strongly degen-
erate state, that is eliminated by the superconducting
state.12,22 The NFL regime reigns at elevated tempera-
tures and fixed magnetic field. The magnetic-field-tuned
QCP is indicated by the arrow and located at the origin
of the phase diagram, since application of any magnetic
field destroys the flat band and shifts the system into the
LFL state, provided that the superconducting state were
absent.12,13,23 The hatched area denoting the crossover
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that separates the NFL state from the LFL state, and
contains the dashed line TM (B) ≃ B, as it is shown in
Fig. 1.
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NFL

NFL

 

Magnetic field B

T
e

m
p

e
ra

tu
re

 T

QCP

T
M
(B)

crossover

SC

FIG. 5: Schematic T − B phase diagram. The vertical and
horizontal arrows show LFL-NFL and NFL-LFL transitions
at fixed B and T , respectively. The hatched area separates
the NFL phase and the weakly polarized LFL phase and rep-
resents the transition region. The dashed line in the hatched
area represents the function TM ∝ B, see Eq. (6). The QCP
located at the origin and indicated by the arrow denotes the
quantum critical point at which the effective mass M∗ di-
verges. QCP is covered by the superconducting phase labeled
by SC.

The heavy-fermion metal β − YbAlB4 is a supercon-
ductor on the ordered side of the corresponding phase
transition. When analyzing the NFL behavior of ρ(T )
on the disordered side of this transition, one should have
in mind that several bands simultaneously intersect the
Fermi surface so that the HF band never covers the en-
tire Fermi surface. Hence, it follows that quasiparticles
that do not belong to the HF make the main contribu-
tion to the conductivity. Thus, the resistivity takes form
ρ(T ) = M∗

normγ(T ), where M∗
norm is the averaged ef-

fective mass of normal quasiparticles and γ(T ) is their
damping. The main contribution to γ(T ) can be esti-
mated as γ ∝ T 2M∗(M∗

norm)2. 24–27 Taking into account
Eqs. (3) and (6), we obtain ρ(T ) ∝ T 3/2. 27 On the
other hand, one would expect that at T → 0 the flat
band (2) comes into play, making ρ(T ) ∝ A1T whose
magnitude A1 is proportional to the flat band range
(pf − pi)/pF ≪ 1. Such a behavior is not seen, for this
aria is captured by the superconductivity, as it is seen
from Fig. 5. The low-T resistivity ρ(T, P = 0) ∝ T 3/2

found experimentally for the normal state of β−YbAlB4

is consistent with this behavior.6 When the pressure P
is raised to a critical value Pc, it is found that around Pc

the HF metal β−YbAlB4 exhibits a crossover to Landau-
like behavior ρ(T ) = ρ0 + A2T

2. Assuming that P ∝ x,
with x being the doping or the HF number density28,
we conclude that such behavior closely resembles the

QCP
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e
m

p
e
r
a

tu
r
e
 T
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c
 , x/x

c

LFL

NFL

10 2

System Location

FC &
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FIG. 6: Schematic T − x phase diagram of system with FC.
Pressure P/Pc and the number density x/xc are taken as the
control parameter. At P/Pc < 1 the system is shifted beyond
QCP, and develops the flat band induced by FC. This location
of the system is shown by the short dash arrow. At P/Pc < 1
and finite T < Tf the system exhibits the NFL behavior. At
P/Pc > 1 and sufficiently low temperatures, the system is in
the LFL state as shown by the shadowed area. This location
of the system is depicted by the arrows. The vertical arrow
illustrates the system moving in the LFL-NFL direction along
T at fixed control parameters.

NFL behavior ρ(T ) ∝ T 1.5±0.1 revealed in measurements
of the resistivity in electron-doped high-Tc superconduc-
tors La2−xCexCuO4.

29,30 In that case the effective mass
M∗(x) diverges when x → xc or P → Pc

29,30

(M∗(x))2 ∝ A ≃
(

a1 +
a2

x/xc − 1

)2

, (11)

where a1 and a2 are constants, and xc is the critical dop-
ing at which the NFL behavior changes to LFL, for FC is
decayed at xc and the system transits to the disordered
side of FCQPT. 12,13,27

The schematic T − x phase diagram of β − YbAlB4,
tuned by pressure P or by the number density x, is re-
ported in Fig. 6. As seen from Fig. 6, at P/Pc < 1
(or x/xc < 1) the system is located on the ordered
side of topological phase transition, represented by FC-
QPT, and demonstrates the NFL behavior at T . Tf .
Thus, the NFL behavior, induced by FC that persists
at P < Pc, is robust against application of pressure
P/Pc < 1. 13,31 We note that such a behavior is observed
in quasicrystals.14,32 At low temperatures the FC state
with flat band, shown by the arrow, is strongly degen-
erate. The degeneracy stimulates the emergence of dif-
ferent phase transitions, lifting it. The NFL state can
be captured by different states such as superconduct-
ing (like that in β −YbAlB4), or antiferromagnetic (like
that in YbRh2Si2). At rising pressure, as it is shown
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by the arrows, the system enters the region P/Pc ≥ 1.
At P/Pc > 1 the system is located before FCQPT, and
demonstrates the LFL behavior at low temperatures. As
a result, the system remains in the LFL region at suffi-
ciently low temperatures, as it is shown by the shadowed
area. The temperature range of this region shrinks as
P/Pc → 1, and M∗ diverges as it follows from Eq. (11).
These observations are in good agrement with experi-
mental facts.6

In summary, we have analyzed the thermodynamic
properties of β − YbAlB4, and explained their scaling
behavior. We have shown that NFL behavior is de-
stroyed by the application of magnetic field. On the
other hand, as we have explained, the thermodynamic

properties and anomalous T 3/2 dependence of the electri-
cal resistivity remain unchanged under the application of
pressure P < Pc. We have also constructed the schematic
T −B and T −P phase diagrams that are in good agree-
ment with experimental facts.
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