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We study the mean-field BCS-BEC evolution of a uniform Fermi gas on a single-band triangular lattice, and
construct its ground-state phase diagrams, showing a wealth of topological quantum phase transitions between
gapped and gapless superfluids that are induced by the interplay of an out-of-plane Zeeman field and a generic
non-Abelian gauge field.
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I. INTRODUCTION

The intriguing possibility of superfluid (SF) phase transi-
tions from topology in momentum (k) space has long been of
interest not only to the condensed-matter but also to the cold
atom and molecular physics communities in the broad con-
texts of nodal superconductors (d-wave symmetry for high-Tc
materials), nodal SFs (p-wave symmetries for liquid 3He and
single-component Fermi gases), and population-imbalanced
SFs (s-wave symmetry for two-component Fermi gases) [1].
Analogous to the Lifshitz transition in metals [2], these topo-
logical phase transitions are solely associated with the appear-
ance or disappearance of k-space regions with zero excitation
energies, where the symmetry of the SF order parameter re-
mains unchanged in sharp contrast to the Landau’s classifica-
tion of ordinary phase transitions. Not only such changes nat-
urally cause a dramatic rearrangement of particles in k space,
and therefore, are readily seen in their k-resolved distribution
and/or spectral function, but they also leave non-analytic sig-
natures in the thermodynamic properties of the system [3].

To observe and study topological phase transitions, one re-
quires to have a reliable knob over either the density of par-
ticles or both the strength and symmetry of the inter-particle
interactions [4]. Since such controls are either very limited or
not yet possible in condensed-matter systems, the cold-atom
systems initially thought to offer an ideal platform for real-
izing these transitions, thanks in particular to their precise-
tuning capabilities over a wide range of laser parameters.
However, despite all the past and ongoing attempts with Fermi
gases across p-wave Feshbach resonances [5–8], the short life-
times of the resultant p-wave molecules have so far been the
biggest drawback in this line of research, which the experi-
mentalists yet to overcome.

On the other hand, given the recent progress in creating
artificial gauge fields [9, 10], there is a growing consensus
that one of the most promising ways to realize a topologi-
cal phase transition is to incorporate s-wave Fermi gases with
spin-orbit couplings (SOC) [11]. For instance, depending on
the inter-particle interaction, polarization, dimension, geome-
try, and symmetry and strength of SOC, it is possible to create
a zoo of nodal SFs with point, line or surface nodes in k space
in various numbers. Since several groups have already suc-
ceeded in creating such setups at high temperatures [12–15],
there is arguably no doubt that these new systems will soon
offer unforeseen possibilities once they are cooled below the

required SF transition temperature. Stimulated by these ex-
periments, there has been a fruitful activity on many aspects
of spin-orbit coupled Fermi gases, but the majority of them
are focused on continuum systems with a lack of interest in
lattice ones [16]. For instance, even though topological SFs
have recently been charecterized for a square lattice with non-
Abelian gauge fields [17, 18], and tunable honeycomb lattices
(made of two triangular sublattices) are of both ongoing ex-
perimental and theoretical interest [19–23], the triangular lat-
tices themselves are almost entirely overlooked in this context.

Here, we study the BCS-BEC evolution of a spin-1/2
Fermi gas on a single-band triangular lattice, and construct
its ground-state phase diagrams. Our primary objective is to
establish that the interplay of an out-of-plane Zeeman field
and a generic non-Abelian gauge field gives rise to a wealth
of topological phase transitions between gapped and gapless
SFs that are accessible in atomic optical lattices. The rest
of the paper is organized as follows. After we introduce the
model Hamiltonian in Sec. II, first we discuss the effects of
a generic non-Abelian gauge field on the single-particle prob-
lem, and then briefly summarize the mean-field formalism that
is used for tackling the many-body problem. In Sec. III, we
thoroughly analyze the conditions under which the quasipar-
ticle/quasihole excitation spectrum of the SF phase may van-
ish, and evaluate the corresponding changes in the underlying
Chern number. These conditions are numerically solved in
Sec. IV together with the self-consistency equations, where
we construct the ground-state phase diagrams as a function of
particle filling and SOC for a wide range of polarizations and
interactions. The paper ends with a briery summary of our
conclusions and an outlook given in Sec. V.

II. THEORETICAL MODEL

In this paper, we consider a spin-1/2 Fermi gas on a tri-
angular lattice, and study the effects of the following non-
Abelian gauge field A = (ασy,−βσx) on the ground state
SF phases, where {α, β} ≥ 0 characterize the SOC, and σx
and σy are the Pauli-spin matrices [17, 18]. We take the gauge
field into account via the Peierls substitution, under which the
tunneling of atoms from site i to j is described by the hop-
ping Hamiltonian H0 = −

∑
σσ′ij c

†
σ′jt

σ′σ
ji cσi. Here, we only

allow nearest-neighbor hoppings with tσ
′σ
ji = te−i

∫ rj
ri

A·dr,
where t ≥ 0 is its amplitude, and ri is the position of site

ar
X

iv
:1

60
1.

01
18

5v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 6

 J
an

 2
01

6



2

i. The lattice spacing a is set to unity in this paper. Us-
ing the Fourier series expansion of the annihilation operator
cσi = (1/

√
M)

∑
k e

ik·ricσk and its Hermitian conjugate in
momentum k = (kx, ky) space, where M → ∞ is the num-
ber of lattice sites in the system, the hopping Hamiltonian can
be written asH0 =

∑
k ψ
†
k(εkσ0+Sk ·~σ)ψk.Here, the spinor

ψ†k = (c†↑k, c
†
↓k) denotes the creation operators, εk is the en-

ergy dispersion, σ0 is the identity matrix, Sk = (Sxk, S
y
k, 0)

is the SOC, and ~σ = (σx, σy, σz) is a vector of spin matri-
ces. For a triangular crystal lattice with primitive unit vectors
a1 = (1, 0) and a2 = (1/2,

√
3/2), we find

εk = −2t cosα cos kx − 4t cos γ cos
kx
2

cos

√
3ky
2

, (1)

Sxk = −2
√

3tβ
sin γ

γ
cos

kx
2

sin

√
3ky
2

, (2)

Syk = 2t sinα sin kx + 2tα
sin γ

γ
sin

kx
2

cos

√
3ky
2

, (3)

where γ =
√
α2 + 3β2/2. Note that the reciprocal of a tri-

angular lattice is a hexagonal lattice in k space with primi-
tive unit vectors b1 = (2π,−2π/

√
3) and b2 = (0, 4π/

√
3),

and therefore, the first BZ is bounded by |ky| = 2π/
√

3 for
|kx| ≤ 2π/3, ky = ±(

√
3kx − 4π/

√
3) for 2π/3 ≤ kx ≤

4π/3 and ky = ±(
√

3kx + 4π/
√

3) for −4π/3 ≤ kx ≤
−2π/3. In addition, since the area of the first BZ is 8π2/

√
3,

we evaluate the sums
∑

k by converting them into integrals
[M
√

3/(8π2)]
∫

BZ d
2k in our numerics.

The total single-particle density-of-states (DoS) for the
hopping Hamiltonian can be written as D(ω) = D+(ω) +
D−(ω), where D±(ω) = (1/M)

∑
k δ(ω − εk ∓ |Sk|)

with δ(x) the Dirac-delta function. In Fig. 1, we show col-
ored maps of tD(ω) as a function of ω/t and (α, β), where
πδ(x) → η/(x2 + η2) is implemented in our numerics with
a small broadening η = 0.01t. First of all, after summing
over k, since the SOC can be gauged away from the single-
particle problem in the limits of α → 0 or β → 0, D(ω)
approach to the no-SOC value in all figures, showing a sharp
peak at ω = 2t. This is also the reason behind the some-
what featureless structure of Fig. 1(b) where β is small. Fur-
thermore, for symmetric SOCs with α = β, it can analyt-
ically be shown that the DoS has D(ω, α) = D(ω,−α),
D(ω, π + α) = D(ω, π − α) and D(ω, α) = D(−ω, π − α)
symmetries for any α, leading to D(ω = 0, α = iπ/2) = 0
for any integer i. These symmetries and the resultant gaps are
clearly illustrated in our numerics shown in Fig. 1(a), and they
play important roles in understanding the resultant ground-
state SF phases as discussed below in Sec. IV. Thus, in sharp
contrast to the continuum systems where the low-energy DoS
increases with increasing SOC, we show that the DoS has a
much richer dependence on energy and SOC on a triangular
lattice. For completeness, typical DoS data are illustrated in
Figs. 1(b) and 1(c) for asymmetric SOCs with α 6= β 6= 0,
showing no particular symmetry in general. In comparison to
Fig. 1(a), we also show the analogous DoS dependence for a
nearest-neighbor square lattice in Fig. 1(d), manifesting the
particle-hole symmetry around ω = 0 for any α.

FIG. 1. (Color online) The total DoS tD(ω) is shown as a function
of energy ω/t and SOC (α, β) for (a) α = β, (b) β = π/4, (c)
α = π/4, and (d) α = β (square lattice).

Since our primary objective in this paper is to character-
ize distinct SF phases of ↑ and ↓ fermions in the presence of
on-site attractive interactions in between, we introduce a com-
plex parameter ∆i = g〈c↑ic↓i〉, which describes the local SF
order within the BCS mean-field description, where g ≥ 0 is
the strength of the interaction, and 〈· · · 〉 is a thermal average.
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Finally, including a possible out-of-plane Zeeman field h, the
total mean-field Hamiltonian can be compactly written as [18]
H = M |∆|2/g+

∑
k ξk+(1/2)

∑
k Ψ†kHkΨk,where the op-

erator Ψ†k = (c†↑k, c
†
↓k, c↑,−k, c↓,−k) denotes the creation and

annihilation operators collectively, the matrix

Hk =


ξk − h S⊥k 0 ∆
S⊥∗k ξk + h −∆ 0

0 −∆∗ −ξk + h S⊥∗k

∆∗ 0 S⊥k −ξk − h

 (4)

is the Hamiltonian density, ξk = εk − µ with µ the
chemical potential, S⊥k = Sxk − iSyk is the SOC, and
the SF order parameter ∆ = g

∑
k〈c↑kc↓,−k〉 is uni-

form in k space. The eigenvalues Eλk of the Hamilto-
nian matrix with λ = {1, 2, 3, 4} are simply given by

Eλk = sλ

√
ξ2k + h2 + |∆|2 + |S⊥k |2 + 2pλAk, correspond-

ing to the quasiparticle (s1,3 = p3,4 = +1) and quasihole
(p1,2 = s2,4 = −1) excitation energies of the system, where

Ak =
√

(ξ2k + |∆|2)h2 + |S⊥k |2ξ2k. In terms of Eλk, the self-
consistency equations can be written as [18]

−M |∆|
g

=
1

4

∑
λk

∂Eλk
∂|∆|

f(Eλk), (5)

N↑ +N↓ =
1

4

∑
λk

[
1− 2

∂Eλk
∂µ

f(Eλk)

]
, (6)

N↓ −N↑ =
1

2

∑
λk

∂Eλk
∂h

f(Eλk), (7)

where f(x) = 1/[ex/(kBT ) + 1] is the Fermi func-
tion with kB the Boltzmann constant and T the temper-
ature. Here, the derivatives are ∂Eλk/∂|∆| = (1 +
pλh

2/Ak)|∆|/Eλk for the order parameter, ∂Eλk/∂µ =
−[1+pλ(h2 + |S⊥k |2)/Ak]ξk/Eλk for the chemical potential,
and ∂Eλk/∂h = −[1+pλ(ξ2k+|∆|2)/Ak]h/Eλk for the Zee-
man field. While µ determines the total numberN = N↑+N↓
of atoms where Nσ =

∑
i nσi with the local fermion filling

0 ≤ nσi = 〈c†σicσi〉 ≤ 1, h ≥ 0 determines the polarization
P = (N↑ − N↓)/N ≥ 0 of the system which is assumed to
be positive without loosing generality. Next, we analyze Eλk
for gapped/gapless solutions to distinguish SF phases by the
k-space topology of their excitations.

III. TOPOLOGICAL SUPERFLUIDS

It is clear that E1k and E2k may become gapless in k
space, i.e., E1(2)k0

are precisely 0 at some special k0 points
satisfying the condition |S⊥k0

| = 0 when h = hk0 =√
(εk0 − µ)2 + |∆|2. There are five sets of k0 points satis-

fying |S⊥k0
| = 0: in addition to the center k1 = (0, 0) of the

hexagon-shaped BZ, the two-point set k2 = (0,±2π/
√

3)
corresponds to the midpoints of the top and bottom edges of
the BZ adding in total to one full point, the four-point set
k3 = (±π,±π/

√
3) corresponds to the midpoints of the right

and left edges of the BZ adding in total to two full points, the
two-point set k4 = (kx4 , 0) is such that cos

kx4
2 = − α

sinα
sin γ
2γ ,

and finally the four-point set k5 = (kx5 ,±2π/
√

3) where
cos

kx5
2 = α

sinα
sin γ
2γ corresponds to two half-points on the top

and two half-points on the bottom edges adding in total to two
full points. Note that kx5 = kx4 ± 2π can only be satisfied
in the first BZ for α = β, in which case the combined set
k4 = (±4π/3, 0) and k5 = (±2π/3,±2π/

√
3) corresponds

to the six corners of the BZ adding in total to two full points.
Therefore, either the set k4 or k5 but not both is relevant when
α 6= β as illustrated in Fig. 2. The corresponding energy
dispersions at the location of zeros are εk1 = −2t(cosα +
2 cos γ) for the first set, εk2 = −2t(cosα − 2 cos γ) for the
second set, εk3 = 2t cosα for the third set, and εk4 = εk5 =

2t cosα
(

1− α2

sin2 α
sin2 γ
2γ2

)
+ t α

sinα
sin(2γ)
γ for the remaining

sets.
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FIG. 2. (Color online) The gapless k-space points are illustrated
within the first BZ. Note that either the set k4 or k5 but not both is
relevant when α 6= β (see the text).

It is well-known that opening or closing of a gap in k
space gives rise to a topological phase transition between
SFs with distinct k-space topologies. In our case, these
transitions are further signalled by changes in the topolog-
ical invariant of the system [24], which by definition may
only change due to a change in system’s underlying topol-
ogy. For instance, it can be shown that the change in CN at
h = hk0 is simply given by a sum over the Berry indices
at all touching points [17, 18] ∆CN(hk0) =

∑
k0

sign(Yk0)

where Yk0 =
[
∂Sx

k

∂kx

∂Sy
k

∂ky
− ∂Sy

k

∂kx

∂Sx
k

∂ky

]
k0

. In particular, we find

that Yk1 = 6t2αβ
(

sinα
α + sin γ

2γ

)
sin γ
γ is always positive and

∆CN(hk1) = +1, Yk2 = −6t2αβ
(

sinα
α − sin γ

2γ

)
sin γ
γ is al-

ways negative and ∆CN(hk2) = −1, Yk3 = −3t2αβ sin2 γ
γ2

is always negative and ∆CN(hk3) = −2, and Yk4 =

Yk5 = 3t2αβ
(

sin2 γ
γ2 − α2

sin2 α
sin4 γ
4γ4

)
is always positive and

∆CN(hk4) = ∆CN(hk5) = +2. Note that the total change
in CN adds up to 0 for all parameters as a function of increas-
ing h. This is because since the SF phase is topologically triv-
ial in the h→ 0 limit, the normal phase must also be topolog-
ically trivial in the h � t as well. In particular, when α = β,
these expressions reduce to Yk1 = −3Yk2 = −3Yk3 =
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4Yk4 = 4Yk5 = 9t2 sin2 α, and the corresponding energy
dispersions are given by εk1 = −3εk2 = −3εk3 = −2εk4 =
−2εk5 = −6t cosα. Thus, since the combined set {k4,k5}
corresponds to the six corners of the first BZ as illustrated in
Fig. 2, and hk2 = hk3 and hk4 = hk5 are two-fold degen-
erate, we find ∆CN(hk1) = +1, ∆CN(hk2,3) = −3 and
∆CN(hk4,5) = +2. Based on this classification scheme, next
we explore the phase diagrams of the system for SF phases
with distinct k-space topologies.

IV. SELF-CONSISTENT RESULTS

For simplicity, we restrict our numerical analysis to the
ground state with symmetric SOCs, and solve the self-

consistency Eqs. (5), (6) and (7) at T = 0 as a function of
total particle filling F = (N↑ +N↓)/M and α = β. We con-
struct the ground-state phase diagrams for a number of po-
larization P = (N↑ − N↓)/(N↑ + N↓) and g values. Note
that since 0 ≤ Nσ/M ≤ 1 within the single-band approxi-
mation, the maximum possible value of F depends on P , i.e.,
Fmax = 2/(1 + |P |) and the majority (minority) component
is a band insulator (normal) for F ≥ Fmax. In addition, since
the phase diagrams are symmetric around π with α→ 2π−α
symmetry, which is caused by the symmetry of the DoS as
shown in Fig. 1(a), we present the resultant phase diagrams
only for the interval 0 ≤ α ≤ π.

For instance, in Fig. 3, we show colored maps of |∆|/t
and the corresponding boundaries for the topological quan-
tum phase transitions when g = 4t and P = {0, 0.2, 0.4, 0.6}.
Here, the normal region is characterized by |∆| . 10−3t. In
the trivial case of zero polarization shown in Fig. 3(a), the
entire phase diagram is a SF and even though some of the
low-energy features are smeared out by finite g, |∆| has pre-
cisely the symmetry of the DoS shown in Fig. 1(a), where
ω = 0 corresponds to µ = 0, i.e., the half-filling F = 1. As
increasing P progressively weakens |∆| due to the Zeeman-
induced pairing mismatch between ↑ and ↓ fermions, not only
the normal region expands but also more footprints of the low-
energy DoS become gradually salient in |∆|, including the gap
at ω = 0 when α = π/2. In particular, we find reentrant SF
phase transitions that are interfered by the normal phase in
the neighbourhood of this gap in Figs. 3(c) and 3(d). Fur-
thermore, while the SF phase is trivially gapped in the entire
phase diagram shown in Fig. 3(a), having a finite P gives rise
to the emergence of two phase-transition branches per each
ki, satisfying the critical condition h = hki

. These branches
arise from the particle- and hole-pairing sectors, and all of
them eventually meet at F = 1 and α = π/2 with increasing
P . Since µ = 0 for all parameters as long as F = 1, and
εki

= 0 for all ki points at α = β = π/2, all of the transi-
tion boundaries become degenerate precisely when h = |∆|
is simultaneously satisfied. Therefore, the critical value of P
for such a crossing clearly increases with g, and it happens
around Pc ≈ 0.2 when g = 4t and Pc ≈ 0.4 when g = 10t.

Similarly, in Fig. 4, we show colored maps of |∆|/t and the
corresponding boundaries for the topological quantum phase
transitions when P = 0.5 and g = {3, 4, 5, 7}. The intricate
dependence of |∆| on F and α, and the resultant reentrant SF
phase transitions can again be traced back to the low-energy
features of DoS, as they play the most important roles in the
weakly-interacting limit where the reentrant behavior is most
eminent for any P . Apart from the shrinkage of the normal re-
gion and gradual disappearance of the reentrant behavior due

to enhanced pairing, one of the most notable findings in Fig. 4
is that not only the qualitative but also the quantitative struc-
ture of the phase diagrams are quite robust against increasing
g. Thus, we conclude that topological phase transitions with
∆CN = {±1,±2,±3} are generally accessible on a trian-
gular lattice. Having achieved our primary objective of con-
structing the ground-state phase diagrams, next we end this
paper with a briery summary of our conclusions and an out-
look.

V. CONCLUSIONS

In summary, to describe the BCS-BEC evolution of a spin-
1/2 Fermi gas that is loaded on a uniform triangular optical
lattice, here we considered a single-band lattice Hamiltonian
within the mean-field approximation for on-site pairing. In
particular, we explored topological phase transitions between
gapped and gapless SF phases that are induced by the in-
terplay of an out-of-plane Zeeman field and a non-Abelian
gauge field. These transitions are signalled by changes in
the underlying Chern number, and we found that ∆CN =
{±1,±2,±3} are generally accessible on a triangular lat-
tice. By constructing a number of ground-state phase dia-
grams self-consistently for a wide range of parameter space,
we also found reentrant SF phase transitions that are inter-
fered by the normal phase, and traced their imprints to the
DoS of the non-interacting problem. In sharp contrast to the
continuum systems where the low-energy DoS increases with
increasing SOC, we showed that the DoS has a much richer
dependence on energy and SOC on a triangular lattice, lead-
ing in return to an intricate dependence of the SF order pa-
rameter on particle filling, SOC and inter-particle interaction.
Since the low-energy DoS plays the most important role in the
weakly-interacting limit, the reentrant behavior is most emi-
nent there for any polarization, and it gradually diminishes as
the interaction gets stronger.
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FIG. 3. (Color online) The SF order parameter |∆|/t (left) and the extracted boundaries for the topological quantum phase transitions (right)
are shown as a function of total particle filling F and SOC α = β for (a) P = 0, (b) 0.2, (c) 0.4 and (d) 0.6, where g = 4t.
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Even though the topological phase transitions discussed
in this paper occur in momentum space, and therefore, are
most evident in the momentum distributions of atoms in time-
of-flight measurements, it is well-established in the context
of unconventional (e.g., p- or d-wave) nodal-SFs that such
changes also leave non-analytic traces in the thermodynamic
properties of the system including the compressibility, spin
susceptibility, specific heat, etc. Thus, as an outlook, we be-
lieve it is fruitful to extend this line of research towards all
sorts of directions, including finite center-of-mass pairings,
finite temperatures, multi-band lattices, longer-ranged hop-
pings/interactions, Abelian gauge fields, confined systems,

hexagonal lattices, higher-dimensional lattices, beyond mean-
field effects, etc. Theoretical understanding of these exten-
sions in greater depth will surely have dramatic impacts for
not only to the cold-atom and condensed-matter communities
but also to the others, where the interplay of SF pairing and
SOC are contemporary concepts offering futuristic technolog-
ical applications.
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No. 1001-114F232.

[1] For instance, see the review by G.E. Volovik, Quantum phase
transitions from topology in momentum space, Lect. Notes
Phys. 718, (2007).

[2] For instance, see the review by I. M. Lifshitz and M. I. Kaganov,
Some problems of the electron theory of metals II. Statistical
mechanics and thermodynamics of electrons in metals, Sov.
Phys. Usp. 5, 878 (1963).
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FIG. 4. (Color online) The SF order parameter |∆|/t (left) and the extracted boundaries for the topological quantum phase transitions (right)
are shown as a function of total particle filling F and SOC α = β for (a) g = 3t, (b) 4t, (c) 5t and (d) 7t, where P = 0.5.
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