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CONVERGENCE RATES FROM YUKAWA TO COULOMB

INTERACTION IN THE THOMAS–FERMI–VON WEIZSÄCKER

MODEL

F. Q. NAZAR

Abstract. We establish uniform convergence, with explicit rate, of the solution to
the Thomas–Fermi–von Weizsäcker (TFW) Yukawa model to the solution of the TFW
Coulomb model, for general condensed nuclear configurations. As a consequence, we
show the convergence of forces from the Yukawa to the Coulomb model. These results
rely on an extension of Nazar & Ortner (2015) to the Yukawa setting. Auxiliary results of
independent interest shown also include new existence, uniqueness and stability results
for the Yukawa ground state.

1. Introduction

One of the challenges in molecular simulation is treating the interaction of charged
particles using the Coulomb potential. Due to the long-range of the Coulomb potential
1
|x|
, the Yukawa potential Ya(x) = e−a|x|

|x|
, for a > 0, is often used as a short-ranged

approximation [6, 5, 15, 4, 17]. The Yukawa potential also appears in the Thomas–Fermi
theory of impurity screening, where the parameter a > 0 represents the inverse screening
length of a metal [13, 14, 1].
The aim of this paper is to establish the uniform convergence of the Yukawa ground

state to the Coulomb ground state, in the Thomas–Fermi–von Weizsäcker (TFW) model.
The main technical result estimates the rate of convergence. A rigorous statement is given
in Theorem 3.5.

Theorem. Let m ∈ L∞(R3) represent a nuclear charge distribution satisfying

m ≥ 0 and lim
R→∞

1

R
inf
x∈R3

∫

BR(x)

m(z) dz = +∞.

Let the corresponding Coulomb ground state electron density and electrostatic potential,

denoted by u, φ : R3 → R, satisfy the TFW equations,

−∆u+
5

3
u7/3 − φu = 0,

−∆φ = 4π(m− u2),

and for a > 0, let the corresponding Yukawa ground state, denoted by (ua, φa), satisfy the

TFW Yukawa equations

−∆ua +
5

3
u7/3a − φaua = 0,

−∆φa + a2φa = 4π(m− u2a).

Then there exists C > 0 such that

‖ua − u‖W 2,∞(R3) + ‖φa − φ‖W 2,∞(R3) ≤ Ca2. (1.1)
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To the best of the author’s knowledge, this is the first result that provides a rate of
convergence for ground states from Yukawa to Coulomb interaction, for any electronic
structure model.
An important consequence of (1.1) is an estimate for the rate of convergence of forces

in the TFW model, when passing from the Yukawa to Coulomb interaction. Given a
countable collection of nuclei Y = (Yj)j∈N ⊂ R3 and a > 0, the TFW Yukawa and
Coulomb energy densities, Ea(Y ; x) and E(Y ; x) respectively, can be defined. It follows
from (1.1) that

∣∣∣∣
∫

R3

(
∂Ea
∂Yk

− ∂E
∂Yk

)
(Y ; x) dx

∣∣∣∣ ≤ Ca2. (1.2)

A rigorous statement of this result is given in Theorem 4.1.
In a forthcoming article [7], the aim will be to generalise the analysis of variational prob-

lems for the mechanical response to defects in an infinite crystal [8] to electronic structure
models, using the TFW model with Coulomb interaction. The uniform convergence of
forces from Yukawa to Coulomb suggests that one could construct an approximate me-
chanical response problem using the Yukawa interaction. This could be more efficient for
the purposes of numerical simulations as it replaces the long-range Coulomb interaction
with the short-ranged Yukawa interaction. The result (1.2) suggests that the error in the
electron density may propagate into an O(a2) error in the equilibrium configuration. This
will be explained in future work.
The remainder of this article is organised as follows: In Section 2 the definition of the

TFW model is recalled and the relevant existing results are summarised. In Section 3
the main technical results are stated, including the rigorous statement of the convergence
result (1.1). Applications are presented in Section 4, followed by the detailed proofs of
the results in Section 5. An additional technical argument is given in the Appendix, that
extends uniqueness of the Yukawa ground state to all a > 0.

Remark 1. The analytical approach presented closely follows and adapts the study of
the TFW equations in [6, 11]. An overview of the TFW equations can be found in [11]
and [17] provides a background on the Yukawa potential and its various applications.
To the best of the author’s knowledge, the closest existing result to (1.1) in the literature

is [6, Proposition 2.30], which shows ua → u strongly in H1
loc(R

3) as a → 0, for periodic
and neutral TFW systems, but does not estimate the rate. �

Acknowledgements. The author thanks Virginie Ehrlacher and Xavier Blanc for helpful
discussions about the TFW model in the Yukawa setting.

2. The TFW Yukawa Model

For p ∈ [1,∞] define the function spaces

Lp
loc(R

3) := { f : R3 → R | ∀K ⊂ R3 compact, f ∈ Lp(K) } and

Lp
unif(R

3) := { f ∈ Lp
loc(R

3) | sup
x∈R3

‖f‖Lp(B1(x)) <∞}.

For k ∈ N, Hk
loc(R

3), Hk
unif(R

3) are defined analogously. For a multi-index α = (α1, α2, α3),
define the partial derivative ∂α = ∂α1

1 ∂α2

2 ∂α3

3 . Throughout this paper, α, β denote three-
dimensional multi-indices.
The Coulomb interaction, for f, g ∈ L6/5(R3), is given by

D0(f, g) =

∫

R3

∫

R3

f(x)g(y)

|x− y| dx dy =

∫

R3

(
f ∗ 1

|·|

)
(y)g(y) dy.
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and is finite due to the Hardy–Littlewood–Sobolev estimate [2]. The Yukawa interaction
is a short-range approximation to the Coulomb interaction, with the Yukawa potential

Ya(x) = e−a|x|

|x|
, for a > 0, replacing the Coulomb potential 1

|x|
. The parameter a > 0

controls the range of the interaction, in particular one formally recovers the long-ranged
Coulomb interaction as a → 0. The Yukawa interaction, for a > 0 and f, g ∈ L2(R3), is
given by

Da(f, g) =

∫

R3

∫

R3

f(x)e−a|x−y|g(y)

|x− y| dx dy =

∫

R3

(f ∗ Ya) (y)g(y) dy,

which is finite as Cauchy-Schwarz’ and Young’s inequality for convolutions imply

|Da(f, g)| ≤ ‖Ya‖L1(R3)‖f‖L2(R3)‖g‖L2(R3) ≤ Ca−2‖f‖L2(R3)‖g‖L2(R3).

Let a > 0 and m ∈ L2(R3), m ≥ 0, denote the charge density of a finite nuclear cluster,
then the corresponding TFW Yukawa energy functional is defined, for v ∈ H1(R3), by

ETFW
a (v,m) = CW

∫

R3

|∇v|2 + CTF

∫

R3

v10/3 +
1

2
Da(m− v2, m− v2). (2.1)

The function v corresponds to the positive square root of the electron density. The first
two terms of (2.1) model the kinetic energy of the electrons while the third term models
the Coulomb energy. This definition of the Coulomb energy is only valid for smeared
nuclei. The energy (2.1) can be rescaled to ensure that CW = CTF = 1.
To construct the electronic ground state for an infinite arrangement of nuclei (e.g., crys-

tals), it is necessary to restrict admissible nuclear charge densities tom ∈ L1
unif(R

3), m ≥ 0,
satisfying

(H1) sup
x∈R3

∫

B1(x)

m(z) dz <∞,

(H2) lim
R→∞

inf
x∈R3

1

R

∫

BR(x)

m(z) dz = ∞.

The property (H1) guarantees that no clustering of infinitely many nuclei occurs at any
point in space whereas (H2) ensures that there are no large regions that are devoid of
nuclei.
For each m satisfying (H1)–(H2), [11, Theorem 6.10] guarantees the existence and

uniqueness of a ground state (u, φ) satisfying

−∆u+
5

3
u7/3 − φu = 0, (2.2a)

−∆φ = 4π(m− u2), (2.2b)

Similarly, as remarked in [6, Chapter 6], it also follows that for sufficiently small a > 0,
the existence and uniqueness of the Yukawa ground state (ua, φa), solving

−∆ua +
5

3
u7/3a − φaua = 0, (2.3a)

−∆φa + a2φa = 4π(m− u2a), (2.3b)

The equation (2.2b) arises from the Coulomb interaction, as 1
4π|·|

is the Green’s function

for the Laplacian on R3, while (2.3b) is obtained for the Yukawa problem, as 1
4π
Ya is the

Green’s function for −∆+ a2 on R3, a > 0.
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Definition 1. In this article, for any nuclear configuration m satisfying (H1)–(H2), the
ground state corresponding to m refers to the unique solution (u, φ) to (2.2). For a > 0,
the Yukawa ground state corresponding to m refers to the unique solution (ua, φa) to

(2.3). �

3. Main Results

3.1. Regularity estimates. This section generalises the TFW pointwise stability esti-
mate and its consequences [11] from the Coulomb to the Yukawa setting.
The proofs of the main results in the next section require uniform regularity estimates

for Yukawa systems refining those shown in [6], provided that a ∈ (0, a0] for some a0 > 0.
The main regularity estimate (3.1) relies on uniform variants of (H1)–(H2), so the

class of nuclear configurations ML2 , defined in [11], is used. Given M,ω0, ω1 > 0, let
ω = (ω0, ω1) and define

ML2(M,ω) =

{
m ∈ L2

unif(R
3)

∣∣∣∣ ‖m‖L2
unif

(R3) ≤ M,

∀R > 0 inf
x∈R3

∫

BR(x)

m(z) dz ≥ ω0R
3 − ω1

}
. (3.1)

As each nuclear distribution m ∈ ML2(M,ω) satisfies (H1)–(H2), [6, Chapter 6] guar-
antees the existence of corresponding ground states (ua, φa) for sufficiently small a. The
proof of [6, Proposition 2.2, Chapter 6] is adapted to extend existence and uniqueness of
Yukawa ground states to all a > 0. In addition, the uniformity in upper and lower bounds
on m ∈ ML2(M,ω) yields regularity estimates and lower bounds on these ground states
which are also uniform.

Proposition 3.1. Let a0 > 0 and m ∈ ML2(M,ω), then for any 0 < a ≤ a0 there exists

(ua, φa) solving (2.3), satisfying ua ≥ 0 and

‖ua‖H4
unif

(R3) + ‖φa‖H2
unif

(R3) ≤ C(a0,M), (3.2)

where the constant C(a0,M) is increasing in both a0 and M .

Proposition 3.1 can be generalised to obtain existence of Yukawa ground states cor-
responding to finite nuclear configurations, for sufficiently small a > 0. The following
result will be used in Proposition 4.2 to compare the Yukawa ground state with its finite
approximation.

Proposition 3.2. For any nuclear distribution m : R3 → R≥0, satisfying

‖m‖L2
unif

(R3) ≤M,

there exists a0 = a0(m) > 0 such that for all 0 < a ≤ a0, there exists (ua, φa) solving

(2.3), satisfying ua ≥ 0 and

‖ua‖H4
unif

(R3) + ‖φa‖H2
unif

(R3) ≤ C(M). (3.3)

If
∫
BR0

(x)
m ≥ c0 > 0 for some x ∈ R3 and R0, c0, then a0 = a0(R0, c0) > 0.

Proposition 3.3. Let a0 > 0 and m ∈ ML2(M,ω), then for all 0 < a ≤ a0 the corre-

sponding Yukawa ground state (ua, φa) is unique and there exists ca0,M,ω > 0 such that the

electron density ua satisfies

inf
x∈R3

ua(x) ≥ ca0,M,ω > 0. (3.4)
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Assuming higher regularity of the nuclear distributions implies higher regularity of the
ground state. Therefore define for k ∈ N0

MHk(M,ω) =

{
m ∈ Hk

unif(R
3)

∣∣∣∣ ‖m‖Hk
unif

(R3) ≤M,

∀R > 0 inf
x∈R3

∫

BR(x)

m(z) dz ≥ ω0R
3 − ω1

}
.

Arguing by induction and applying the uniform lower bound (3.4) yields the following
result.

Corollary 3.4. Let a0 > 0, k ∈ N0 and m ∈ MHk(M,ω), then for all 0 < a ≤ a0 the

corresponding Yukawa ground state (ua, φa) satisfies

‖ua‖Hk+4

unif
(R3) + ‖φa‖Hk+2

unif
(R3) ≤ C(a0, k,M, ω). (3.5)

3.2. Uniform Yukawa estimates. The main result of this article is a uniform estimate
comparing the Yukawa and Coulomb ground states corresponding to the same nuclear
configuration. This result is essentially a consequence of [11, Theorems 3.4 and 3.5].
In the following, (u, φ) = (u0, φ0) denotes the corresponding Coulomb ground state

solving (2.2), i.e the ground state with Yukawa parameter a = 0.

Theorem 3.5. Suppose a0 > 0, k ∈ N0, m ∈ MHk(M,ω) and let (u, φ) denote the

corresponding Coulomb ground state. For 0 < a ≤ a0, let (ua, φa) denote the corresponding
Yukawa ground state, then there exists C = C(a0, k,M, ω) > 0 such that

‖ua − u‖W k+2,∞(R3) + ‖φa − φ‖W k+2,∞(R3) ≤ Ca2. (3.6)

Remark 2. The error term in (3.6) arises from the additional term in the Yukawa equation
(2.3b), as opposed to due to a difference in nuclear distributions in [11, Theorems 3.4 and
3.5]. For this reason, the author believes that an analogous result to Theorem 3.5 also
holds for point charge nuclei. �

Theorem 3.5 can be generalised to compare two Yukawa ground states (ua1, φa1),
(ua2, φa2) corresponding to the same nuclear configuration, where the parameters a1, a2
differ.

Corollary 3.6. Let a0 > 0, k ∈ N0, m ∈ MHk(M,ω) and suppose 0 < a1 ≤ a2 ≤ a0,
then let (ua1, φa1), (ua2, φa2) denote the corresponding Yukawa ground states. There exists

C = C(a0, k,M, ω) > 0 such that

‖ua1 − ua2‖W k+2,∞(R3) + ‖φa1 − φa2‖W k+2,∞(R3) ≤ C
(
a22 − a21

)
. (3.7)

3.3. Pointwise Yukawa estimates. Theorems 3.7 and 3.8 extend [11, Theorems 3.4
and 3.5] to the Yukawa model and require the class of test functions

Hγ =

{
ξ ∈ H1(R3)

∣∣∣∣ |∇ξ(x)| ≤ γ|ξ(x)| ∀ x ∈ R3

}
(3.8)

for some γ > 0. Observe that e−γ̃|·| ∈ Hγ for any 0 < γ̃ ≤ γ.

Theorem 3.7. Let m1 ∈ ML2(M,ω), and let m2 : R
3 → R≥0 satisfy

‖m2‖L2
unif

(R3) ≤M ′,
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then there exists a1 = a1(ω,m2) > 0 such that for all 0 < a ≤ a1 there exist solutions

(u1,a, φ1,a) and (u2,a, φ2,a) to (2.3) corresponding to m1, m2, where (u2,a, φ2,a) satisfies

u2,a ≥ 0 and

‖u2,a‖H4
unif

(R3) + ‖φ2,a‖H2
unif

(R3) ≤ C(M ′), (3.9)

independently of a. Define

w = u1,a − u2,a, ψ = φ1,a − φ2,a, Rm = 4π(m1 −m2),

then there exist C = C(M,M ′, ω), γ = γ(M,M ′, ω) > 0, such that for any ξ ∈ Hγ

∫

R3

( ∑

|α1|≤4

|∂α1w|2 +
∑

|α2|≤2

|∂α2ψ|2
)
ξ2 ≤ C

∫

R3

Rmξ
2. (3.10)

In particular, for any y ∈ R3,

∑

|α|≤2

|∂αw(y)|2 + |ψ(y)|2 ≤ C

∫

R3

|Rm(x)|2e−2γ|x−y| dx. (3.11)

Theorem 3.7 can be generalised to obtain higher-order pointwise estimates, but this
requires that m1, m2 ∈ MHk(M,ω) for some k ∈ N0 to ensure that both inf u1, inf u2 > 0.

Theorem 3.8. Let a0 > 0, k ∈ N0, m1, m2 ∈ MHk(M,ω) and for 0 < a ≤ a0, let

(u1,a, φ1,a), (u2,a, φ2,a) denote the corresponding Yukawa ground states. Define

w = u1,a − u2,a, ψ = φ1,a − φ2,a, Rm = 4π(m1 −m2),

then there exist C = C(a0, k,M, ω), γ = γ(a0,M, ω) > 0, independent of a, such that for

any ξ ∈ Hγ

∫

R3

( ∑

|α1|≤k+4

|∂α1w|2 +
∑

|α2|≤k+2

|∂α2ψ|2
)
ξ2 ≤ C

∫

R3

∑

|β|≤k

|∂βRm|2ξ2. (3.12)

In particular, for any y ∈ R3,

∑

|α1|≤k+2

|∂α1w(y)|2 +
∑

|α2|≤k

|∂α2ψ(y)|2 ≤ C

∫

R3

∑

|β|≤k

|∂βRm(x)|2e−2γ|x−y| dx. (3.13)

4. Applications

4.1. Yukawa and Coulomb forces. Let η ∈ C∞
c (BR0

(0)) be radially symmetric and
satisfy η ≥ 0 and

∫
R3 η = 1 describe the charge density of a single (smeared) nucleus, for

some fixed R0 > 0. For any countable collection of nuclear coordinates Y = (Yj)j∈N ∈
(R3)N, let the corresponding nuclear configuration be defined by

mY (x) =
∑

j∈N

η(x− Yj). (4.1)

A natural space of nuclear coordinates, related to the MHk spaces is

YL2(M,ω) := { Y ∈ (R3)N |mY ∈ ML2(M,ω) }. (4.2)

For any Y ∈ YL2(M,ω) and a > 0, there exists a unique Yukawa ground state (ua, φa)
corresponding to m = mY . Two definitions for the energy density for an infinite system



CONVERGENCE FROM YUKAWA TO COULOMB IN THE TFW MODEL 7

are provided, for bounded Ω ⊂ R3:∫

Ω

E1,a(Y ; x) dx :=

∫

Ω

|∇ua|2 +
∫

Ω

u10/3a +
1

2

∫

Ω

φa(m− u2a), (4.3)

∫

Ω

E2,a(Y ; x) dx :=

∫

Ω

|∇ua|2 +
∫

Ω

u10/3a +
1

8π

(∫

Ω

|∇φa|2 + a2
∫

Ω

φ2
a

)
, (4.4)

which satisfy E1,a(Y ; ·), E2,a(Y ; ·) ∈ L1
unif(R

3).
Suppose now that Ω ⊂ R3 is a charge-neutral volume [20], that is, if n is the unit

normal to ∂Ω, then ∇φa · n = 0 on ∂Ω. Recall (2.3b),

−∆φa + a2φa = 4π(m− u2a),

it then follows that

1

8π

(∫

Ω

|∇φa|2 + a2
∫

Ω

φ2
a

)
=

1

8π

∫

Ω

(−∆φa + a2φa)φa +

∫

∂Ω

φa∇φa · n =
1

2

∫

Ω

φa(m− u2a),

hence ∫

Ω

E1,a(Y ; x) dx =

∫

Ω

E2,a(Y ; x) dx.

Similarly, for finite systems and Ω = R3, the two energies (4.3)–(4.4) agree. Thus E1,a, E2,a
are two energy densities which are well-defined for infinite configurations.
Given Y ∈ YL2(M,ω), similarly define the Coulomb energy densities E1(Y ; ·), E2(Y ; ·) ∈

L1
unif(R

3) [11]

E1(Y ; ·) := |∇u|2 + u10/3 +
1

2
φ(m− u2), (4.5)

E2(Y ; ·) := |∇u|2 + u10/3 +
1

8π
|∇φ|2. (4.6)

By comparing the Yukawa and Coulomb energy densities, (4.3)–(4.4) with (4.5)–(4.6)
respectively, then applying Theorem 3.5 and Proposition 3.2 yields the convergence of the
energy densities: for all 0 < a ≤ a0

‖E1,a − E1‖L2
unif

(R3) + ‖E2,a − E2‖H1
unif

(R3) ≤ C(a0,M)a2. (4.7)

In (4.7), the regularity of the difference E1,a − E1 is limited by the nuclear distribution
m ∈ L2

unif(R
3), whereas this term does not apppear in E2,a−E2, hence the latter possesses

additional regularity.
The next result shows that the force generated by a nucleus converges when passing

from the Yukawa to the Coulomb model.

Theorem 4.1. Let a0 > 0, Y ∈ YL2(M,ω) and i ∈ {1, 2}, then for all 0 < a ≤ a0 and

k ∈ N, the Yukawa force density ∂Yk
Ei,a(Y, ·) ∈ L1(R3) exists and satisfies

∫

R3

∂E1,a
∂Yk

(Y ; x) dx =

∫

R3

∂E2,a
∂Yk

(Y ; x) dx =

∫

R3

φa(x)
∂mY (x)

∂Yk
dx. (4.8)

In addition, the Coulomb force density ∂Yk
Ei(Y, ·) ∈ L1(R3) also exists and there exists

C = C(a0,M, ω) > 0 such that for all 0 < a ≤ a0∣∣∣∣
∫

R3

(
∂Ei,a
∂Yk

− ∂Ei
∂Yk

)
(Y ; x) dx

∣∣∣∣ ≤ Ca2. (4.9)

The expression (4.8) shows that the forces generated by the energy densities E1,a and
E2,a are identical. Also, (4.9) establishes an O(a2) convergence of forces when passing
from the Yukawa to the Coulomb model.
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4.2. Thermodynamic limit estimates. The following result extends [11, Proposition
4.1] to the Yukawa setting, providing an estimate for comparing the infinite Yukawa
ground state with its finite approximation, over compact sets, thus providing explicit
rates of convergence for the thermodynamic limit. This is discussed in Remark 3.
Interpreted differently, the result yields estimates on the decay of the perturbation from

the bulk electronic structure at a domain boundary.

Proposition 4.2. Let m ∈ ML2(M,ω), Ω ⊂ R3 be open and suppose there exists mΩ :
R3 → R≥0 such that mΩ = m on Ω and ‖mΩ‖L2

unif
(R3) ≤ M (e.g., mΩ = mχΩ). Then

there exists a0 = a0(ω,mΩ) > 0 such that for all 0 < a ≤ a0 there exists a ground state

(ua, φa) corresponding to m and (uΩ,a, φΩ,a) solving (2.3) with m = mΩ, uΩ,a ≥ 0 and

C = C(a0,M, ω), γ = γ(a0,M, ω) > 0, independent of a and Ω, such that for all y ∈ Ω
∑

|α|≤2

|∂α(ua − uΩ,a)(y)|+ |(φa − φΩ,a)(y)| ≤ Ce−γdist(y,∂Ω). (4.10)

Remark 3. Let R > 0 and Rn ↑ ∞, then applying Proposition 4.2, with Ω = BRn(0) and
mΩ = mRn and 0 < a ≤ a0 = a0(ω) gives a rate of convergence for the finite approximation
(ua,Rn, φa,Rn), solving (2.3), to the ground state (ua, φa)

‖ua − ua,Rn‖W 2,∞(BR(0)) + ‖φa − φa,Rn‖L∞(BR(0)) ≤ Ce−γ(Rn−R). (4.11)

This strengthens the result that (ua,Rn, φa,Rn) converges to (ua, φa) pointwise almost ev-
erywhere along a subsequence [6]. �

4.3. Pointwise stability and neutrality estimates. The following results extend [11,
Corollary 4.2, Theorem 4.3] to the Yukawa model. Corollary 4.3 shows that the decay
properties of the nuclear perturbation are inherited by the response of the Yukawa ground
state, and Corollary 4.4 shows the neutrality of nuclear perturbations for the TFW equa-
tions in the Yukawa setting.

Corollary 4.3. Let a0 > 0, k ∈ N0, m1, m2 ∈ MHk(M,ω) and 0 < a ≤ a0, then let

(u1,a, φ1,a), (u2,a, φ2,a) denote the corresponding Yukawa ground states and define

w = u1,a − u2,a, ψ = φ1,a − φ2,a, Rm = 4π(m1 −m2).

(1) (Exponential Decay) If Rm ∈ Hk(R3) and spt(Rm) ⊂ BR(0), or there exists γ
′ > 0

such that
∑

|β|≤k |∂βRm(x)| ≤ Ce−γ′|x|, then there exist C = C(a0, k,M, ω), γ =

γ(a0,M, ω) > 0 depending also on R or γ′ such that
∑

|α1|≤k+2

|∂α1w(x)|+
∑

|α2|≤k

|∂α2ψ(x)| ≤ Ce−γ|x|. (4.12)

(2) (Algebraic Decay) If there exist C, r > 0 such that
∑

|β|≤k |∂βRm(x)| ≤ C(1+|x|)−r

then there exists C = C(a0, r, k,M, ω) > 0 such that
∑

|α1|≤k+2

|∂α1w(x)|+
∑

|α2|≤k

|∂α2ψ(x)| ≤ C(1 + |x|)−r. (4.13)

(3) (Global Estimates) If Rm ∈ Hk(R3) then there exists C = C(a0, k,M, ω) > 0 such

that

‖w‖Hk+4(R3) + ‖ψ‖Hk+2(R3) ≤ C‖Rm‖Hk(R3). (4.14)

Corollary 4.4. Let a0 > 0, m1, m2 ∈ ML2(M,ω) and 0 < a ≤ a0, then define ρ12,a :=
m1 − u21,a −m2 + u22,a.
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(1) If spt(m1 − m2) ⊂ BR′(0), or there exist C, γ̃ > 0 such that |(m1 − m2)(x)| ≤
Ce−γ̃|x|, then ρ12,a ∈ L1(R3) and there exist C, γ > 0, independent of a, such that,

for all R > 0, ∣∣∣∣
∫

BR(0)

ρ12,a

∣∣∣∣ ≤ Ce−γR. (4.15)

(2) If there exists C, r > 0 such that |(m1 −m2)(x)| ≤ C(1 + |x|)−r then there exists

C > 0, independent of a, such that, for all R > 0,∣∣∣∣
∫

BR(0)

ρ12,a

∣∣∣∣ ≤ C(1 +R)2−r. (4.16)

(3) If m1 −m2 ∈ L2(R3) (e.g., r > 3/2 in (2)) then ρ12,a ∈ L2(R3) and

lim
ε→0

1

|Bε(0)|

∫

Bε(0)

ρ̂12,a(k) dk = 0, (4.17)

where ρ̂12,a denotes the Fourier transform of ρ12,a.

5. Proofs

The following technical lemma is used in Proposition 5.3 to show ua,Rn > 0 but will
also be useful to show a uniform lower bound for the ground state electron density ua in
Lemma 6.1 in the Appendix.

Lemma 5.1. Let 0 < a1 ≤ a2 and m ∈ ML2(M,ω), then for Rn > 0 define ψRn ∈
C∞

c (B4Rn(0)) satisfying ψRn ≥ 0 and ψRn = 1 on B2Rn(0) and mRn = m · χBRn (0)
.

Then there exists C0 = C0(a1, a2, ω) > 0 and R0 = R0(a1, a2, ω) > 0 such that for all

a1 ≤ a ≤ a2 and Rn ≥ R0∫

R3

|∇ψRn |2 −Da(mRn , ψ
2
Rn
) ≤ −C0R

3
n. (5.1)

Proof of Lemma 5.1. Let a1 ≤ a ≤ a2. By the construction of ψRn∫
|∇ψRn |2 =

∫

B4Rn (0)rB2Rn (0)

|∇ψRn |2 ≤ C

∫

B4Rn (0)rB2Rn (0)

R−2
n ≤ C1Rn. (5.2)

Additionally, it follows that

Da(mRn , ψ
2
Rn

) =

∫

R3

(mRn ∗ Ya)ψ2
Rn

≥
∫

B2Rn (0)

(mRn ∗ Ya) (x) dx

=

∫

R3

(∫

B2Rn (0)∩BRn (y)

mRn(x− y) dx

)
e−a|y|

|y| dy

=

∫

R3

(∫

B2Rn (−y)∩BRn (0)

mRn(x) dx

)
e−a|y|

|y| dy. (5.3)

First consider for R′ > 0
∫

BR′(0)

e−a|y|

|y| dy = 4π

∫ R′

0

re−ar dr =
4π

a2

(
1− e−aR′

(1 + aR′)
)
,

hence choosing R′ = (4a)−1 ensures that
∫

B1/4a(0)

e−a|y|

|y| dy =
4π

a2
(
1− 5

4
e−1/4

)
=: C2a

−2, (5.4)
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where C2 > 0. Now choose Rn ≥ (4a)−1, then the triangle inequality implies for |y| ≤
(4a)−1, B2Rn(−y) ⊃ BRn(0), hence as m ∈ ML2(M,ω)

∫

B2Rn (−y)∩BRn (0)

mRn(x) dx ≥
∫

BRn(0)

m(x) dx ≥ ω0R
3
n − ω1. (5.5)

Combining the inequalities (5.3)–(5.5) gives

Da(mRn , ψ
2
Rn

) =

∫

R3

(∫

B2Rn (−y)∩BRn (0)

mRn(x) dx

)
e−a|y|

|y| dy

≥
∫

B1/4a(0)

(∫

B2Rn (−y)∩BRn (0)

mRn(x) dx

)
e−a|y|

|y| dy

≥
∫

B1/4a(0)

(∫

BRn(0)

mRn(x) dx

)
e−a|y|

|y| dy ≥ C2a
−2(ω0R

3
n − ω1). (5.6)

Now define C0 = C2ω0

2a2
2

> 0 and Rn ≥ R0 := max{1, (4a1)−1, (
C1+C2ω1a

−2
1

C0
)1/2}, then com-

bining (5.2) and (5.6) yields the desired estimate (5.1) for any a1 ≤ a ≤ a2 and Rn ≥ R0

∫
|∇ψRn |2 −Da(mRn , ψ

2
Rn

) ≤
(
C1Rn + C2ω1a

−2
)
− 2C0R

3
n

≤ C0R
3
n − 2C0R

3
n = −C0R

3
n. �

5.1. Proof of regularity estimates.

Proposition 5.2. Let m : R → R≥0 satisfy

‖m‖L2
unif

(R3) ≤M,

and Rn ↑ ∞, then define the truncated nuclear distribution mRn = m · χBRn (0)
. There

exists R0 = R0(m), a0 = a0(m) > 0 such that for all Rn ≥ R0 and 0 < a ≤ a0, the unique

solution to the minimisation problem

ITFW
a (mRn) = inf

{
ETFW

a (v,mRn)

∣∣∣∣∇v ∈ L2(R3), v ∈ L10/3(R3), v ≥ 0

}
(5.7)

yields a unique solution (ua,Rn, φa,Rn) to

−∆ua,Rn +
5

3
u
7/3
a,Rn

− φa,Rnua,Rn = 0, (5.8a)

−∆φa,Rn + a2φa,Rn = 4π
(
mRn − u2a,Rn

)
. (5.8b)

which satisfy the following estimates, with constants independent of Rn:

‖ua,Rn‖H4
unif

(R3) ≤ C(M), (5.9)

‖φa,Rn‖H2
unif

(R3) ≤ C(M), (5.10)

and ua,Rn > 0 on R3 whenever mRn 6≡ 0. In particular, if
∫
BR0

(x)
m ≥ c0 > 0 for some

x ∈ R3 and R0, c0 > 0, then a0 = a0(R0, c0) > 0.

In the case m ∈ ML2(M,ω), Proposition 5.2 can be extended to all a > 0. The
following result will be used to prove Proposition 3.1.
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Proposition 5.3. Let a0 > 0, m ∈ ML2(M,ω) and Rn ↑ ∞, then define mRn :=
m · χBRn(0)

. There exists R0 = R0(a0, ω) > 0 such that for all 0 < a ≤ a0 and Rn ≥ R0,

the minimisation problem (5.7) yields a unique solution (ua,Rn, φa,Rn) to (5.8) which satisfy

the following estimates, with constants independent of a and Rn:

‖ua,Rn‖H4
unif

(R3) ≤ C(a0,M), (5.11)

‖φa,Rn‖H2
unif

(R3) ≤ C(a0,M). (5.12)

Remark 4. The Coulomb minimisation problem [11, Proposition 6.3] imposes a charge
neutrality condition. Imposing a neutrality condition for the finite Yukawa problem in-
troduces a Lagrange multiplier into (5.8) that weakens Theorem 3.5 significantly. �

The proof of Proposition 5.2 largely follows the proof of [11, Proposition 6.3]. Propo-
sition 5.2 is proved in four steps.
In Step 1, the minimisation problem (5.7) is shown to be well-posed and defines a unique

solution (ua,Rn, φa,Rn) to (5.8), where ua,Rn, φa,Rn are continuous and decay at infinity. The
argument in Step 2 adapts the Solovej estimate for Yukawa systems to show: there exists
CS > 0 that for all m ∈ ML2(M,ω) and a, Rn > 0

10
9
u
4/3
a,Rn

≤ φa,Rn + CS + a2. (5.13)

The aim of Step 3 is to show that there exists a0 = a0(ω), R0 = R0(ω) > 0 such that for
all 0 < a ≤ a0 ≤ 1 and Rn ≥ R0

ua,Rn > 0 on R3.

Finally, in Step 4, the following estimate is established

‖uRn‖4/3L∞(R3) + ‖φRn‖L∞(R3) ≤ C(M) + a2 ≤ C(M) + 1, (5.14)

where the final constant is independent of a, a0 and Rn. The desired estimates (5.9)-(5.10)
then follow from standard elliptic regularity.

Proof of Proposition 5.2. If m ≡ 0, then for all a > 0 and Rn, clearly ua,Rn = φa,Rn =
mRn = 0 satisfies (5.8) and (5.9)–(5.10).
If m 6≡ 0, then

∫
BR0

(x)
m ≥ c0 > 0 for some x ∈ R3 and R0, c0 > 0. Without loss of

generality suppose x = 0 otherwise translate m.
Step 1 For each n ∈ N define

mRn(x) = m(x) · χBRn
(x),

and choosing Rn ≥ R0 ensures that
∫
R3 mRn ≥ c0 > 0, hence mRn 6≡ 0. Recall

ETFW
a (v,mRn) =

∫
|∇v|2 +

∫
v10/3 +

1

2
Da(mRn − v2, mRn − v2) ≥ 0.

For each Rn and a > 0, recall the minimisation problem (5.7)

ITFW
a (mRn) = inf

{
ETFW

a (v,mRn)

∣∣∣∣∇v ∈ L2(R3), v ∈ L10/3(R3), v ≥ 0

}
.

By the Gagliardo–Nirenberg–Sobolev embedding [9], v ∈ L6(R3) and ‖v‖L6(R3) ≤ C‖∇v‖L2(R3),
moreover v ∈ Lp(R3) for p ∈ [10/3, 6]. Consequently

0 ≤ Da(v
2, v2) ≤ ‖Ya‖L1(R3)‖v‖4L4(R3) ≤ C‖v‖5/2

L10/3(R3)
‖v‖3/2L6(R3) ≤ C‖v‖5/2

L10/3(R3)
‖∇v‖3/2L2(R3).

Observe that there are no charge constraints on the electron density as in general v 6∈
L2(R3). This is chosen to ensure that no Lagrange multipliers appear in (5.8).
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As mRn ∈ Lp1(R3), Ya ∈ Lp2(R3) for all p1 ∈ [1, 2], p2 ∈ [1, 3), applying Young’s inequal-
ity yields

Da(mRn , v
2) ≤ ‖Ya‖L5/2(R3)‖mRn‖L1(R3)‖v2‖L5/3(R3) ≤ C‖v‖2L10/3(R3) ≤ C +

1

2
‖v‖10/3

L10/3(R3)
,

it follows that

ETFW
a (v,mRn) ≥

1

2

(
‖∇v‖2L2(R3) + ‖v‖10/3

L10/3(R3)
+Da(v

2, v2)
)
+

1

2
Da(mRn , mRn)− C.

As the energy is bounded below, there exists a minimising sequence vk satisfying

‖∇v‖2L2(R3) + ‖v‖10/3
L10/3(R3)

+Da(v
2, v2) ≤ C,

hence there exists ua,Rn such that ∇ua,Rn ∈ L2(R3), ua,Rn ∈ L10/3(R3). Moreover, along a
subsequence ∇vk converges to ∇ua,Rn weakly in L2(R3), vk converges to ua,Rn, weakly in
L6(R3) and L10/3(R3), strongly in Lp(BR(0)) for all p ∈ [1, 6) and R > 0 and pointwise
almost everywhere. Consequently,

ETFW
a (ua,Rn, mRn) ≤ lim inf

k→∞
ETFW

a (vk, mRn) = ITFW
a (mRn),

hence ua,Rn is a minimiser of (5.7). Define the alternate minimisation problem

inf

{
ETFW

a (
√
ρ,mRn)

∣∣∣∣∇
√
ρ ∈ L2(R3), ρ ∈ L5/3(R3), ρ ≥ 0

}
. (5.15)

Due to the strict convexity of ρ 7→ ETFW
a (

√
ρ,mRn), it follows that ρa,Rn = u2a,Rn

is the
unique minimiser of (5.15), hence ua,Rn is the unique minimiser of (5.7).
Define

φa,Rn =
(
mRn − u2a,Rn

)
∗ Ya, (5.16)

then it follows that (ua,Rn, φa,Rn) is the unique distributional solution to (5.8)

−∆ua,Rn +
5

3
u
7/3
a,Rn

− φa,Rnua,Rn = 0,

−∆φa,Rn + a2φa,Rn = 4π
(
mRn − u2a,Rn

)
.

Moreover, as mRn − u2a,Rn
∈ L2(R3) and the Fourier transform of Ya, Ŷa, satisfies

Ŷa(k) =
1

a2 + |k|2 ,

it follows that∫

R3

|φ̂a,Rn(k)|2(a2 + |k|2) dk =

∫

R3

| ̂(
mRn − u2a,Rn

)
(k)|2|Ŷa(k)|2(a2 + |k|2) dk

=

∫

R3

| ̂(
mRn − u2a,Rn

)
(k)|2

(a2 + |k|2) dk

=

∫

R3

((
mRn − u2a,Rn

)
∗ Ya

) (
mRn − u2a,Rn

)

= Da(mRn − u2a,Rn
, mRn − u2a,Rn

).

It follows that φa,Rn ∈ H1(R3) and
∫

R3

|∇φa,Rn|2 + a2
∫

R3

φ2
a,Rn

= Da(mRn − u2a,Rn
, mRn − u2a,Rn

). (5.17)
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Additionally, by applying Young’s inequality yields

‖φa,Rn‖L∞(R3) ≤ ‖mRn‖L2(R3)‖Ya‖L2(R3)+ ≤ ‖u2a,Rn
‖L3(R3)‖Ya‖L3/2(R3)

≤ ‖mRn‖L2(R3)‖Ya‖L2(R3)+ ≤ ‖ua,Rn‖2L6(R3)‖Ya‖L3/2(R3),

hence by [16, Lemma II.25], φa,Rn is a bounded, continuous function that decays uniformly
at infinity. In addition, as mRn ∈ Lp(R3) for all p ∈ [1, 2], Ya ∈ L1(R3) and ua,Rn ∈
L10/3(R3), it follows that

‖φa,Rn‖L5/3(R3) ≤ ‖mRn − u2a,Rn
‖L5/3(R3)‖Ya‖L1(R3)

≤ C
(
‖mRn‖L5/3(R3) + ‖u2a,Rn

‖L5/3(R3)

)

≤ C
(
‖mRn‖L5/3(R3) + ‖ua,Rn‖2L10/3(R3)

)
.

To bound ua,Rn above, recall that ua,Rn solves

−∆ua,Rn = −5

3
u
7/3
a,Rn

+ φa,Rnua,Rn , (5.18)

and ua,Rn ∈ L10/3(R3)∩L6(R3), φa,Rn ∈ L5/3(R3)∩L∞(R3). It follows that the right-hand
side of (5.18) belongs to L2(R3) and

‖ − 5
3
u
7/3
a,Rn

+ φa,Rnua,Rn‖L2(R3) ≤ 5
3
‖u7/3a,Rn

‖L2(R3) + ‖φa,Rnua,Rn‖L2(R3)

≤ 5
3
‖ua,Rn‖7/3L14/3(R3)

+ ‖φa,Rn‖L5(R3)‖ua,Rn‖L10/3(R3)

≤ 5
3
‖ua,Rn‖5/6L10/3(R3)

‖ua,Rn‖3/2L6(R3) + ‖φa,Rn‖L5(R3)‖ua,Rn‖L10/3(R3).

Then for any x ∈ R3 applying the elliptic regularity estimate [9] yields

‖ua,Rn‖H2(B1(x)) ≤ C(‖5
3
u
7/3
a,Rn

− φa,Rnua,Rn‖L2(B2(x)) + ‖ua,Rn‖L2(B2(x)))

≤ C(‖5
3
u
7/3
a,Rn

− φa,Rnua,Rn‖L2(R3) + ‖ua,Rn‖L10/3(B2(x)))

≤ C(‖5
3
u
7/3
a,Rn

− φa,Rnua,Rn‖L2(R3) + ‖ua,Rn‖L10/3(R3)),

where the constant is independent of x ∈ R3. The Sobolev embedding H2(B1(x)) →֒
C0,1/2(B1(x)) implies that ua,Rn is continuous and bounded as

‖ua,Rn‖L∞(B1(x)) ≤ ‖ua,Rn‖C0,1/2(B1(x)) ≤ C‖ua,Rn‖H2(B1(x)),

hence

‖ua,Rn‖L∞(R3) = sup
x∈R3

‖ua,Rn‖L∞(B1(x)) ≤ sup
x∈R3

C‖ua,Rn‖H2(B1(x)) <∞. (5.19)

It remains to show that ua,Rn decays at infinity. Recall that ua,Rn solves (5.18)

−∆uRn = −5

3
u
7/3
Rn

+ φRnuRn

and also that ua,Rn ∈ L10/3(R3) ∩ L∞(R3), φa,Rn ∈ L5/3(R3) ∩ L∞(R3). Define

ga,Rn :=

(
−5

3
u
7/3
a,Rn

+ φa,Rnua,Rn

)
∗ 1

|·|
. (5.20)

Observe that u
7/3
a,Rn

∈ L10/7(R3) ∩ L∞(R3) and applying Hölder’s inequality gives

‖φa,Rnua,Rn‖L10/9(R3) ≤ ‖φa,Rn‖L5/3(R3)‖ua,Rn‖L10/3(R3),



CONVERGENCE FROM YUKAWA TO COULOMB IN THE TFW MODEL 14

hence φa,Rnua,Rn ∈ L10/9(R3) ∩ L∞(R3). It follows that −5
3
u
7/3
Rn

+ φRnuRn ∈ L10/7(R3) ∩
L∞(R3). Decompose

ga,Rn =

(
−5

3
u
7/3
a,Rn

+ φa,Rnua,Rn

)
∗
(

1
|·|
χB1(0)

)
+

(
−5

3
u
7/3
a,Rn

+ φa,Rnua,Rn

)
∗
(

1
|·|
χB1(0)c

)
,

then as 1
|·|
χB1(0) ∈ Lp1(R3) for all p1 ∈ [1, 3), 1

|·|
χBc

1
(0) ∈ Lp2(R3) for all p2 ∈ (3,∞] applying

Young’s inequality yields

‖ga,Rn‖L∞(R3) ≤ ‖5
3
u
7/3
a,Rn

− φa,Rnua,Rn‖L2(R3)

∥∥∥ 1
|·|
χB1(0)

∥∥∥
L2(R3)

+ ‖5
3
u
7/3
a,Rn

− φa,Rnua,Rn‖L10/7(R3)

∥∥∥ 1
|·|
χB1(0)c

∥∥∥
L10/3(R3)

,

hence [16, Lemma II.25] implies that ga,Rn is a continuous, bounded function vanishing
at infinity. In addition, ga,Rn solves

−∆ga,Rn = −5

3
u
7/3
a,Rn

+ φa,Rnua,Rn (5.21)

in distribution. Combining (5.18) and (5.21), it follows that

−∆(ua,Rn − ga,Rn) = 0,

in distribution, so by Weyl’s Lemma ua,Rn − ga,Rn is harmonic [12]. As ua,Rn − ga,Rn ∈
L∞(R3), Liouville’s Theorem implies ua,Rn − ga,Rn is constant [12]. Suppose that ua,Rn −
ga,Rn = c 6= 0, then as ga,Rn decays at infinity

lim
x→∞

ua,Rn(x) = c 6= 0,

which contradicts ua,Rn ∈ L10/3(R3). It follows that ua,Rn = ga,Rn hence ua,Rn decays
uniformly at infinity.
Step 2 The argument in [18] is now adapted to show the Solovej estimate for Yukawa

systems (5.13)

10
9
u
4/3
a,Rn

≤ φa,Rn + CS + a2.

For convenience, in the following argument ua,Rn, φa,Rn, ma,Rn will be denoted as u, φ,m.
As u solves (5.8a)

−∆u+
5

3
u7/3 − φu = 0,

following the proof of [18, Proposition 8], w = u4/3 is non-negative and satisfies

−∆w +
4

3

(
5
3
w − φ

)
w ≤ 0. (5.22)

Let λ ∈ (0, 5
3
) and define

v(x) = λu4/3 − φ− (C(λ) + a2),

where C(λ) = (9/4)π2λ−2(5
3
− λ)−1 > 0. The expression (5.8b) can be written as

−∆φ + a2φ = 4π(m− w3/2). (5.23)

Combining (5.22) and (5.23), it follows that

∆v(x) ≥ 4λ

3

(
5
3
w − φ

)
w − 4πw3/2 + 4πm− a2φ.
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The aim is to prove that v ≤ 0 by showing that S = {x | v(x) > 0} is empty. As u, φ are
continuous functions decaying at infinity, it follows that v is continuous, S is bounded,
open and v = 0 on ∂S. Over S,

∆v ≥ 4λ

3

(
v + 5

3
w − λw + (C(λ) + a2)

)
w − 4πw3/2 + 4πm− a2φ

≥ 4λ

3

(
5
3
w − λw + C(λ) + a2

)
w − 4πw3/2 + 4πm− a2φ

=

(
4λ(5

3
− λ)

3
w − 4πw1/2 +

4λ

3
C(λ)

)
w +

4λ

3
a2w + 4πm− a2φ.

The value of C(λ) is chosen to ensure that

4λ(5
3
− λ)

3
w − 4πw1/2 +

4λ

3
C(λ) ≥ 0,

hence as m is non-negative and v ≥ 0 in S

∆v ≥ 4λ

3
a2w + 4πm− a2φ

≥ a2(λw − φ) = a2(v + (C(λ) + a2)) ≥ a2(C(λ) + a2) ≥ 0.

As v satisfies

−∆v ≤ 0 in S,

v = 0 on ∂S,

it follows that both v ≤ 0 and v > 0 on S, hence S is non-empty and v ≤ 0 on R3. So for
all λ ∈ (0, 5

3
) and all x ∈ R3

λu4/3(x) ≤ φ(x) + C(λ) + a2.

The right-hand side is minimised by choosing λ = 10
9
, which yields the desired estimate

(5.13).
Step 3 The aim is to show that there exists a0 = a0(ω), R0 = R0(ω) > 0 such that for

all 0 < a ≤ a0 and Rn ≥ R0, ua,Rn > 0 on R3, by following the argument used in [6,
Proposition 2.2].
First recall the energy minimisation problem (5.7)

ITFW
a (mRn) = inf

{
ETFW

a (v,mRn)

∣∣∣∣∇v ∈ L2(R3), v ∈ L10/3(R3), v ≥ 0

}

where

ETFW
a (v,mRn) =

∫

R3

|∇v|2 +
∫

R3

v10/3 +
1

2
Da(mRn − v2, mRn − v2). (5.24)

By showing that for large Rn and small a > 0

ITFW
a (mRn) = ETFW

a (ua,Rn , mRn) < ETFW
a (0, mRn), (5.25)

it follows that ua,Rn 6≡ 0, hence by the Harnack inequality ua,Rn > 0 on R3 [12]. An
admissible test function ϕa is constructed to satisfy: for sufficiently large Rn

ITFW
a (mRn) ≤ ETFW

a (ϕa0 , mRn) < ETFW
a (0, mRn) =

1

2
Da(mRn , mRn).
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For ε > 0, let ϕa = εψa and consider the difference

ETFW
a (εψa, mRn)− ETFW

a (0, mRn)

= ε2
(∫

|∇ψa|2 −Da(mRn , ψ
2
a)

)
+
ε4

2
Da(ψ

2
a, ψ

2
a) + ε10/3

∫
ψ10/3
a . (5.26)

For small ε > 0, the right-hand side of (5.26) is shown to be negative by first proving that
there exists a0, C0 > 0 such that for all 0 < a ≤ a0∫

R3

|∇ψa|2 −Da(mRn , ψ
2
a) ≤ −C0

2
a < 0. (5.27)

Let ψ0 ∈ C∞
c (B1(0)) satisfy ψ0 ≥ 0, and ψ0 = 1 on B1/2(0), then define ψa(x) =

a3/2ψ0(ax), for a ∈ (0, 1].
Using the definition of ψa gives

Da(mRn , ψ
2
a) =

∫

R3

(mRn ∗ Ya)ψ2
a ≥ a3

4

∫

B1/2a(0)

(mRn ∗ Ya) (x) dx

= a3
∫

R3

(∫

B1/2a(0)∩BRn (y)

mRn(x− y) dx

)
e−a|y|

|y| dy

= a3
∫

R3

(∫

B1/2a(−y)∩BRn (0)

mRn(x) dx

)
e−a|y|

|y| dy. (5.28)

First consider for R′ > 0
∫

BR′(0)

e−a|y|

|y| dy = 4π

∫ R′

0

re−ar dr =
4π

a2

(
1− e−aR′

(1 + aR′)
)
,

hence choosing R′ = (4a)−1 ensures that
∫

B1/4a(0)

e−a|y|

|y| dy =
4π

a2
(
1− 5

4
e−1/4

)
≥ π

10a2
. (5.29)

Now choose a∗ = min{1, (4R0)
−1} and suppose Rn ≥ R0. Then for all y ∈ B1/4a(0), it

follows from the triangle inequality that BR0
(0) ⊂ B1/2a(−y) ∩ BRn(0), hence

∫

B1/2a(−y)∩BRn (0)

mRn(x) dx ≥
∫

BR0
(0)

m(x) dx ≥ c0 > 0. (5.30)

Applying (5.29)–(5.30) to (5.28), it follows that for all 0 < a ≤ a∗ and Rn ≥ R0

Da(mRn , ψ
2
a) =

∫

R3

(mRn ∗ Ya)ψ2
a

≥ a3
∫

R3

(∫

B1/2a(−y)∩BRn (0)

mRn(x) dx

)
e−a|y|

|y| dy

= c0a
3

∫

B1/4a(0)

e−a|y|

|y| dy ≥ c0π

10
a =: C0 a. (5.31)

Using a change of variables
∫

B1/a(0)

|∇ψa|2 = a2
∫

B1(0)

|∇ψ0|2 =: C1a
2. (5.32)
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Now define a0 = min{a∗, C0

2C1
}, then for any 0 < a ≤ a0 and Rn ≥ R0, combining (5.31)–

(5.32) yields (5.27)
∫

|∇ψa|2 −Da(mRn , ψ
2
a) ≤ C1a

2 − C0a ≤ C0

2
a− C0 a = −C0

2
a < 0.

Using that a0, ε ∈ (0, 1], the remaining terms in (5.26) can be estimated using a change
of variables

ε4

2
Da(ψ

2
a0 , ψ

2
a0) + ε10/3

∫
ψ10/3
a0 =

ε4a0
2
D0(ψ

2
0, ψ

2
0) + ε10/3a70

∫
ψ

10/3
0

≤
(
1

2
D0(ψ

2
0 , ψ

2
0) +

∫
ψ

10/3
0

)
ε4a0 =: C2ε

4a0. (5.33)

Applying the estimates (5.27)-(5.33) to (5.26) and choosing 0 < ε ≤ min{1, ( C0

3C2
)1/2}

yields the desired result (5.25)

ETFW
a (εψa, mRn)− ETFW

a (0, mRn) ≤
(
C2ε

2 − C0

2

)
ε2a0 < 0.

Step 4 The aim is to show a uniform upper bound for φa,Rn , which together with (5.13)
yields the uniform estimate (5.14)

‖ua,Rn‖4/3L∞(R3) + ‖φa,Rn‖L∞(R3) ≤ C(M) + a2 ≤ C(M) + 1,

where the constant is independent of a and Rn. This will be proved by adapting the
argument used to show uniform regularity for finite systems with Coulomb interaction
[11, 6].
As ua,Rn ≥ 0, re-arranging the Solovej estimate (5.13) gives the uniform lower bound

φa,Rn ≥ −(CS + a2). (5.34)

If φa,Rn is non-positive, then (5.14) holds as

‖ua,Rn‖4/3L∞(R3) + ‖φa,Rn‖L∞(R3) ≤ 2(CS + a2) ≤ 2(CS + 1).

Instead, suppose that φ+
a,Rn

is non-zero at some point in R3. As shown in Step 1, φa,Rn is

a continuous function that decays at infinity, hence there exists xa,Rn ∈ R3 such that

φ+
a,Rn

(xa,Rn) = ‖φ+
a,Rn

‖L∞(R3) > 0. (5.35)

Without loss of generality, assume that xa,Rn = 0.
In Step 1, it was shown that ua,Rn, φa,Rn ∈ L∞(R3),∇ua,Rn ∈ L2(R3), φa,Rn ∈ H1(R3).

Consequently, applying [11, Lemma 6.1] implies that

La,Rn = −∆+ 5
3
u
4/3
a,Rn

− φa,Rn is a non-negative operator.

Choose ϕ ∈ C∞
c (B1(0)) satisfying 0 ≤ ϕ ≤ 1, ϕ = 1 on B1/2(0) and

∫
R3 ϕ

2 = 1, then
for y ∈ R3, define ϕy ∈ C∞

c (B1(y)) by ϕy = ϕ(· − y). As La,Rn is non-negative

〈ϕy, La,Rnϕy〉 =
∫

R3

|∇ϕy|2 +
∫

R3

(
5

3
u
4/3
a,Rn

− φa,Rn

)
ϕ2
y ≥ 0,

which can be re-arranged and expressed using convolutions as

5

3

(
u
4/3
a,Rn

∗ ϕ2
)
≥
(
φa,Rn ∗ ϕ2 −

∫

R3

|∇ϕ|2
)

+

=
(
φa,Rn ∗ ϕ2 − C

)
+

(5.36)
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Observe that φa,Rn ∗ ϕ2 solves

−∆
(
φa,Rn ∗ ϕ2

)
+ a2

(
φa,Rn ∗ ϕ2

)
= 4π

(
mRn ∗ ϕ2 − u2a,Rn

∗ ϕ2
)
. (5.37)

The first term can be estimated uniformly
(
mRn ∗ ϕ2

)
(x) =

∫

B1(x)

mRn(y)ϕ
2(x− y) dy

≤
∫

B1(x)

m(y) dy ≤ C0‖m‖L2
unif

(R3) ≤ C0M. (5.38)

For the second term, using the convexity of t 7→ t3/2 for t ≥ 0 and the fact that
∫
ϕ2 = 1,

applying Jensen’s inequality and (5.36) implies that

4π u2a,Rn
∗ ϕ2(x) ≥ 5

3
u2a,Rn

∗ ϕ2(x)

=
5

3

∫

R3

u2a,Rn
(x− y)ϕ2(y) dy

=
5

3

∫

R3

(
u
4/3
a,Rn

(x− y)
)3/2

ϕ2(y) dy

≥ 5

3

(∫

R3

u
4/3
a,Rn

(x− y)ϕ2(y) dy

)3/2

=
5

3
(u

4/3
a,Rn

∗ ϕ2)3/2 ≥
(
φa,Rn ∗ ϕ2 − C

)3/2
+

. (5.39)

Combining the estimates (5.37)–(5.39) yields

−∆
(
φa,Rn ∗ ϕ2

)
+ a2

(
φa,Rn ∗ ϕ2

)
+
(
φa,Rn ∗ ϕ2 − C

)3/2
+

≤ C0M.

Observe that as φa,Rn is a continuous function that decays at infinity, φa,Rn ∗ϕ2 also shares
these properties. Now consider the set

S = { x ∈ R3 | φa,Rn ∗ ϕ2 − C > 0 },
it follows that S is open and bounded and that φa,Rn ∗ ϕ2 − C = 0 on ∂S. Observe that
the constant function h = (C0M)2/3 satisfies

−∆h + a2(h+ C) + h
3/2
+ ≥ h

3/2
+ = C0M on S,

0 = φa,Rn ∗ ϕ2 − C ≤ h in ∂S,

so by the maximum principle φa,Rn ∗ ϕ2 ≤ C(1 +M2/3) over S, and also on Sc, hence

φa,Rn ∗ ϕ2 ≤ C(1 +M2/3). (5.40)

Applying (5.34), it follows that

φ+
a,Rn

∗ ϕ2 = φ−
a,Rn

∗ ϕ2 + φa,Rn ∗ ϕ2 ≤ CS + a2 + C(1 +M2/3) = C(1 +M2/3) + a2.
(5.41)

Additionally,

−∆φ+
a,Rn

≤ −∆φ+
a,Rn

+ a2φ+
a,Rn

=
(
−∆φa,Rn + a2φa,Rn

)
χ{φa,Rn>0}

= 4π
(
mRn − u2a,Rn

)
χ{φa,Rn>0} ≤ 4πmRnχ{φa,Rn>0} ≤ 4πmRn . (5.42)

From this point onwards, following the proof of [11, Proposition 6.2] verbatim with the
estimates (5.41)–(5.42) gives

‖φ+
a,Rn

‖L∞(R3) ≤ C(1 +M) + a2. (5.43)
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Combining (5.34)–(5.43) with the Solovej estimate (5.13), yields the desired estimate
(5.14)

‖ua,Rn‖4/3L∞(R3) + ‖φa,Rn‖L∞(R3) ≤ C(1 +M) + a2 ≤ C(1 +M).

Then, as in the proof of [11, Proposition 6.2], applying elliptic regularity estimates to the
system (5.8) yields the desired estimates (5.9)–(5.10).

‖ua,Rn‖H4
unif

(R3) ≤ C(M),

‖φa,Rn‖H2
unif

(R3) ≤ C(M). �

Proof of Proposition 5.3. The proof follows the steps used to show Proposition 5.2. Steps
1, 2 and 4 hold verbatim and Step 3 is modified to instead show that for any a0 > 0
and m ∈ ML2(M,ω), there exists R0 = R0(a0, ω) > 0 such that for any 0 < a ≤ a0 and
Rn ≥ R0, the unique minimiser ua,Rn of (5.7) satisfies

ua,Rn > 0 on R3. (5.44)

Recall the energy minimisation problem (5.7)

ITFW
a (mRn) = inf

{
ETFW

a (v,mRn)

∣∣∣∣∇v ∈ L2(R3), v ∈ L10/3(R3), v ≥ 0

}

where

ETFW
a (v,mRn) =

∫

R3

|∇v|2 +
∫

R3

v10/3 +
1

2
Da(mRn − v2, mRn − v2).

A family of test functions ϕRn is now constructed to satisfy: for large Rn

ITFW
a (mRn) ≤ ETFW

a (ϕRn, mRn) < ETFW
a (0, mRn) =

1

2
Da(mRn , mRn). (5.45)

It follows from (5.45) that

ITFW
a (mRn) = ETFW

a (ua,Rn , mRn) < ETFW
a (0, mRn), (5.46)

which implies that ua,Rn 6≡ 0, hence by the Harnack inequality ua,Rn > 0 on R3 [12], hence
(5.44) holds.
Let ψRn ∈ C∞

c (B4Rn(0)) satisfy ψRn ≥ 0 and ψRn = 1 on B2Rn(0). Then let ε > 0 and
consider the difference

ETFW
a (εψRn , mRn)− ETFW

a (0, mRn)

= ε2
(∫

|∇ψRn |2 −Da(mRn , ψ
2
Rn

)

)
+
ε4

2
Da(ψ

2
Rn
, ψ2

Rn
) + ε10/3

∫
ψ

10/3
Rn

. (5.47)

Applying (5.1) of Lemma 5.1, there exists R0 > 0 such that for any Rn ≥ R0∫

R3

|∇ψRn |2 −Da(mRn , ψ
2
Rn
) ≤ −C0R

3
n. (5.48)

The remaining terms in (5.47) can be estimated for 0 < ε ≤ 1, using Young’s inequality
for convolutions and Cauchy-Schwarz, by

ε4

2
Da(ψ

2
Rn
, ψ2

Rn
) + ε4

∫
ψ

10/3
Rn

≤ ε4

2
Da(χB2Rn (0), χB2Rn (0)

) + ε4
∫

B2Rn (0)

1

≤
(
1

2
‖Ya‖L1(R3)‖χB2Rn (0)

‖2L2(R3) + ‖χB2Rn (0)
‖L1(R3)

)
ε4

≤ C(1 + a−2)R3
nε

4 =: C3ε
4R3

n. (5.49)
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Combining the estimates (5.48)–(5.49) and choosing 0 < ε ≤ ε0 := min{1, ( C0

2C3
)1/2}

ensures that

ETFW
a (εψRn , mRn)− ETFW

a (0, mRn) ≤
(
−C0 + C3ε

2
)
ε2R3

n < 0,

hence the desired estimate (5.45) holds. �

Proof of Proposition 3.2. First suppose that spt(m) is bounded, then by Proposition 5.2
there exists a0 > 0 such that for all 0 < a ≤ a0 and sufficiently large Rn, m = mRn and
hence (ua, φa) = (ua,Rn, φa,Rn) solves (2.3) and satisfies the desired estimate (3.3).
Now suppose spt(m) is unbounded, then the estimates (5.9)–(5.10) of Proposition 5.2

guarantee that for all 0 < a ≤ a0 and Rn sufficiently large, the sequences ua,Rn , φa,Rn are
bounded uniformly in H2

unif(R
3). Consequently, there exist ua, φa ∈ H2

unif(R
3) ∩ L∞(R3)

such that along a subsequence ua,Rn , φa,Rn converges to ua, φa, weakly in H2(BR(0)),
strongly in H1(BR(0)) for all R > 0 and pointwise almost everywhere. It follows from the
pointwise convergence that ua ≥ 0 and

‖ua‖L∞(R3) + ‖φa‖L∞(R3) ≤ C(M).

Passing to the limit of the equations (5.8) in distribution shows the limit (ua, φa) solves

−∆ua +
5

3
u7/3a − φaua = 0,

−∆φa + a2φa = 4π(m− u2a).

Following the argument used to prove (5.9)–(5.10) in this instance yields the desired
estimate (3.3) holds

‖ua‖H4
unif

(R3) + ‖φa‖H2
unif

(R3) ≤ C(M). �

Proof of Proposition 3.1. This holds from applying Proposition 5.3 and following the proof
of Proposition 3.2 in the unbounded case verbatim. �

Proposition 5.4. There exists ac = ac(M,ω) > 0 and cac,M,ω > 0 such that for all

m ∈ ML2(M,ω) and 0 < a ≤ ac the corresponding Yukawa ground state (ua, φa) is

unique and the electron density ua satisfies

inf
x∈R3

ua(x) ≥ cac,M,ω > 0. (5.50)

Proof of Proposition 5.4. The proof of Proposition 5.4 closely follows the proof of [11,
Proposition 6.2] and [6, Theorem 6.10]. The estimate (5.50) is shown by contradiction,
so suppose that for any ac > 0

inf
0<a≤ac

inf
m∈ML2 (M,ω)

inf
x∈R3

ua(x) = 0,

hence there exists sequences an ↓ 0 satisfying an ≤ a1 for all n ∈ N, (mn) ⊂ ML2(M,ω)
and (xn) ⊂ R3 such that for all n ∈ N the ground state (un, φn), corresponding to mn

with Yukawa parameter an, satisfies

un(xn) ≤
1

n
. (5.51)

As 5
3
u
4/3
n − φnun ∈ L2

loc(R
3), un ∈ H1

unif(R
3) and un > 0 solves

Lnun :=

(
−∆+

5

3
u4/3n − φn

)
un = 0,
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applying the Harnack inequality [19], and observing that the coefficients of Ln are uni-
formly estimated by Proposition 3.1, this yields a uniform Harnack constant, hence for
all R > 0, there exists C = C(R, a1,M) > 0 such that for all n ∈ N

sup
x∈BR(xn)

un(x) ≤ C inf
x∈BR(xn)

un(x) ≤
C

n
.

It follows that the sequence of functions un(·+xn) converges uniformly to zero on compact
sets. Consider the ground state (un, φn) corresponding to the nuclear distribution mn.
By the Harnack inequality, it follows that un(·+xn) converges uniformly to 0 on compact

subsets. Recall that φn satisfies

−∆φn + a2nφn = 4π(mn − u2n)

in distribution. In addition, φn and mn satisfy

‖mn(·+ xn)‖L2
unif

(R3) + ‖φn(·+ xn)‖H2
unif

(R3) ≤ C(a1,M).

It follows that along a subsequence φn(· + xn) converges to φ̃, weakly in H2(BR(0)),
strongly in H1(BR(0)) for all R > 0 and pointwise almost everywhere. Also, mn(· +
xn) converges to m̃, weakly in L2(BR(0)) for all R > 0. By the Lebesgue-Besicovitch
Differentiation Theorem [10], m̃ ∈ ML2(M,ω). As an ↓ 0, passing to the limit of

−∆φn(·+ xn) + a2nφn(·+ xn) = 4π
(
mn(·+ xn)− u2n(·+ xn)

)

shows that φ̃ is a distributional solution of

−∆φ̃ = 4πm̃. (5.52)

The argument of [6, Theorem 6.10] is now used to show that for all R > 0
∫

BR(0)

m̃(z) dz ≤ CR. (5.53)

As m̃ ∈ ML2(M,ω), this leads to the contradiction that for all R > 0

ω0R
3 − ω1 ≤

∫

BR(0)

m̃(z) dz ≤ CR.

To show (5.53) choose ϕ ∈ C∞
c (B2(0)) such that 0 ≤ ϕ ≤ 1 and ϕ = 1 on B1(0). Let

R > 0, then testing (5.52) with ϕ(·/R) gives

− 1

R2

∫

B2R(0)

φ̃(z)(∆ϕ)(z/R) dz = 4π

∫

B2R(0)

m̃(z)ϕ(z/R) dz. (5.54)

The left-hand side can be estimated by

1

R2

∣∣∣∣
∫

B2R(0)

φ̃(z)(∆ϕ)(z/R) dz

∣∣∣∣ ≤ ‖φ̃‖L∞(R3)‖∆ϕ‖L∞

|B2R(0)|
R2

≤ CR, (5.55)

where the constant C > 0 is independent of R. As m̃ ≥ 0, combining (5.54)–(5.55) yields
(5.53)

∫

BR(0)

m̃(z) dz ≤
∫

B2R(0)

m̃(z)ϕ(z/R) dz ≤ CR.

The contradiction ensures that there exists ac > 0 and cac,M,ω > 0 such that for all
m ∈ ML2(M,ω) and 0 < a ≤ ac, the corresponding Yukawa electron density ua satisfies

inf
x∈R3

ua(x) ≥ cac,M,ω > 0. �
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Consequently, for 0 < a ≤ ac, the electron density satisfies inf ua > 0, hence the arguments
of [6, Chapter 6] can be applied verbatim to guarantee the uniqueness of the ground state
(ua, φa).

Remark 5. Theorem 3.5 provides an additional proof of Proposition 5.4. Let a0 > 0
and m ∈ ML2(M,ω), then for any 0 < a ≤ a0, [11, Propositions 3.1 and 3.2] and
Proposition 3.1 guarantees that there exist corresponding Coulomb and Yukawa ground
states (u, φ), (ua, φa), respectively satisfying inf u ≥ cM,ω > 0 and ua ≥ 0. Then applying
(3.6) of Theorem 3.5 implies

ua(x) ≥ u(x)− ‖ua − u‖L∞(R3) ≥ cM,ω − C ′a2,

hence for all 0 < a ≤ ac := min{a0, ( cM,ω

2C′ )
1/2}

inf
x∈R3

ua(x) ≥ cM,ω − C ′a2 ≥ 1

2
cM,ω > 0.

�

The proof of Proposition 3.3 requires the following result, which extends the lower
bound on ua from 0 < a ≤ ac to arbitrary a > 0.

Proposition 5.5. Let a0 > ac > 0 and m ∈ ML2(M,ω), then for all 0 < a ≤ a0 the

corresponding Yukawa ground state (ua, φa) is unique and there exists ca0,M,ω > 0 such

that the electron density ua satisfies

inf
x∈R3

ua(x) ≥ ca0,M,ω > 0. (5.56)

Due to the length of the argument, the proof of Proposition 5.5 is postponed to the
Appendix, which can be found on Page 30.

Proof of Proposition 3.3. Combining Proposition 5.4 and Proposition 5.5 yields the de-
sired result. �

Proof of Corollary 3.4. This is identical to the proof of [11, Corollary 6.3], using the
estimates (5.9)-(5.10) to provide the initial regularity. �

5.2. Proof of main results. The proofs of Theorems 3.5, 3.7 and 3.8 closely follow the
proofs of [11, Theorems 3.4 and 3.5], which adapts the uniqueness of the TFW equations
[6, 3].
First, two alternative sets of assumptions on nuclear distributions m1, m2 are given. In

the following, (u0, φ0) denotes the corresponding Coulomb ground state solving (2.2), i.e
the ground state with Yukawa parameter a = 0.

(A) Let k = 0, m1 ∈ ML2(M,ω), m2 : R
3 → R≥0 satisfy

‖m2‖L2
unif

(R3) ≤M ′,

then by Proposition 3.2 there exist a′ = a′(ω,m2) > 0 such that for all 0 ≤ a1 ≤
a2 ≤ a′ there exists (u1, φ1) = (u1,a1 , φ1,a1) (u2, φ2) = (u2,a2, φ2,a2) solving either
(2.2) or (2.3) corresponding to m2, satisfying inf u1 > 0, u2 ≥ 0 and

‖u2‖H4
unif

(R3) + ‖φ2‖H2
unif

(R3) ≤ C(M ′). (5.57)

In addition, assume either m2 6≡ 0 and u2 > 0 or m2 = u2 = φ2 = 0.
Observe that (A) assumes that u2 > 0, while Theorems 3.5 (with k = 0) and

3.7 only require either ua ≥ 0 or u2,a ≥ 0. The restriction u2 > 0 will be lifted via
a thermodynamic limit argument in the third part of its proof on page 26.
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(B) Let a0 > 0, k ∈ N0, m1, m2 ∈ MHk(M,ω), 0 ≤ a1 ≤ a2 ≤ a0 and let (u1, φ1) =
(u1,a1 , φ1,a1), (u2, φ2) = (u2,a2, φ2,a2) denote the corresponding ground states. (Note
that (B) implies (A), with a′ = a0 and M ′ = C(a0,M).)

In addition, for both (A) and (B), define

w = u1 − u2, ψ = φ1 − φ2,

and suppose that there exists R ∈ Hk′

unif(R
3), where k′ ∈ {k, k+2}, such that (w, ψ) solves

−∆w +
5

3

(
u1

7/3 − u
7/3
2

)
− φ1u1 + φ2u2 = 0, (5.58a)

−∆ψ + a21ψ = 4π
(
u22 − u21

)
+R. (5.58b)

Lemma 5.6. Suppose that either (A) or (B) holds, then there exist C = CA(M,M ′, ω),
γ = γA(M,M ′, ω) > 0 or C = CB(a0, k

′,M, ω), γ = γB(a0,M, ω) > 0, independent of both
a1, a2, such that for any ξ ∈ Hγ∫

R3

( ∑

|α1|≤k+4

|∂α1w|2 +
∑

|α2|≤k′+2

|∂α2ψ|2
)
ξ2 ≤ C

∫

R3

∑

|β|≤k′

|∂βR|2ξ2. (5.59)

In particular, for any y ∈ R3,
∑

|α1|≤k+2

|∂α1w(y)|2 +
∑

|α2|≤k′

|∂α2ψ(y)|2 ≤ C

∫

R3

∑

|β|≤k′

|∂βR(x)|2e−2γ|x−y| dx. (5.60)

Further, if both a1 = a2 = 0, then C = CB(k
′,M, ω), γ = γB(M,ω).

One of the key steps in proving Lemma 5.6 is showing
∫

R3

ψ2ξ2 ≤ C

(∫

R3

Rψξ2 +

∫

R3

(w2 + ψ2)|∇ξ|2
)
, (5.61)

where the constant C is independent of a1, a2. However, due to the presence of the
additional term in (5.58b), the argument in [11, Lemma 6.4] directly yields

a21

∫

R3

ψ2ξ2 ≤ C

(∫

R3

Rψξ2 +

∫

R3

(w2 + ψ2)|∇ξ|2
)
, (5.62)

where the left-hand constant tends to 0 as a1 → 0. Instead, (5.61) is obtained by closely
following the proof in the Coulomb setting.
In the following proof, all integrals are taken over R3.

Proof of Lemma 5.6. The argument closely follows the proof of [11, Lemma 6.7]. This
proof describes the key steps of the argument and additional details are provided in [11].
Case 1. Suppose (B) holds, so m1, m2 ∈ MHk(M,ω), so by Corollary 3.4 (or [11,

Corollary 3.3] if either ai = 0) for i ∈ {1, 2}
‖ui‖Hk+4

unif
(R3) + ‖φi‖Hk+2

unif
(R3) ≤ C(a0, k,M, ω)

and by Proposition 5.4 inf u1, inf u2 ≥ cac,M,ω > 0 (if for i ∈ {1, 2} ai = 0 then by [11,
Proposition 3.2] inf ui ≥ cM,ω > 0). Let ξ ∈ H1(R3), then testing (5.58a) with wξ2 and
re-arranging yields∫

|∇(wξ)|2 + 5

6

∫
(u

4/3
1 + u

4/3
2 )w2ξ2 − 1

2

∫
(φ1 + φ2)w

2ξ2 + ν

∫
w2ξ2

≤
∫
w2|∇ξ|2 + 1

2

∫
ψ(u21 − u22)ξ

2, (5.63)
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where ν = 1
2
(u

4/3
1 + u

4/3
2 ) ≥ 1

2
c
4/3
ac,M,ω > 0 (or ν ≥ 1

2
c
4/3
M,ω > 0 when a1 = a2 = 0). As

u1, u2 > 0, [11, Lemma 6.2] implies that

L = −∆+ 5
6
(u

4/3
1 + u

4/3
2 )− 1

2
(φ1 + φ2)

is a non-negative operator, hence (5.63) can be expressed as

〈wξ, L(wξ)〉+ ν

∫
w2ξ2 ≤

∫
w2|∇ξ|2 + 1

2

∫
ψ(u21 − u22)ξ

2, (5.64)

Then, testing (5.58b) with ψξ2 and re-arranging and using a1 ≥ 0 gives
∫

|∇(ψξ)|2 ≤
∫

|∇(ψξ)|2 + a21

∫
ψ2ξ2 ≤

∫
Rψξ2 + 4π

∫
ψ(u22 − u21)ξ

2. (5.65)

Combining (5.64) and (5.65) and further re-arrangement yields

〈wξ, L(wξ)〉+ ν

∫
w2ξ2 +

1

8π

∫
|∇ψ|2ξ2 ≤ C

(∫
Rψξ2 +

∫
(w2 + ψ2)|∇ξ|2

)
. (5.66)

From this point, the proof of [11, Lemma 6.7] follows verbatim to show the estimate:
there exists C, γ > 0 such that for all ξ ∈ Hγ∫

R3

( ∑

|α1|≤k+4

|∂α1w|2 +
∑

|α2|≤k+2

|∂α2ψ|2
)
ξ2 ≤ C

∫

R3

∑

|β|≤k

|∂βR|2ξ2. (5.67)

If k′ = k, then this is the desired estimate (5.59). Alternatively, if k′ = k+2, the remaining
estimate is shown by adapting the proof of [11, Lemma 6.6]. Recall (5.58b), that ψ solves

−∆ψ = −a21ψ + 4π
(
u22 − u21

)
+R ∈ Hk+2

unif (R
3), (5.68)

hence by standard elliptic regularity [9] ψ ∈ Hk+4
unif (R

3). It follows that
∫ ∑

|α|≤k+2

|∂α∆ψ|2ξ2 ≤ C(k′,M, ω)

∫ ∑

|β|≤k+2

(
|∂βψ|2 + |∂βR|2 + |∂βw|2

)
ξ2. (5.69)

In addition, applying integration by parts, for any k1 ≤ k + 2
∑

|α|=k1+2

∫
|∂αψ|2ξ2 ≤ C

(∫ ∑

|β1|=k1

|∂β1∆ψ|2ξ2 +
∫ ∑

|β2|=k1+1

|∂β2ψ|2ξ2
)
, (5.70)

hence combining (5.67)–(5.70) for k1 = k + 2 gives

∑

|α|=k+4

∫
|∂αψ|2ξ2 ≤ C

(∫ ∑

|β1|=k+2

|∂β1∆ψ|2ξ2 +
∫ ∑

|β2|=k+3

|∂β2ψ|2ξ2
)

≤ C

(∫ ∑

|β1|=k+2

|∂β1∆ψ|2ξ2 +
∫ ∑

|β2|=k+2

|∂β2ψ|2ξ2
)

≤ C

∫ ∑

|β|≤k+2

(
|∂βψ|2 + |∂βR|2 + |∂βw|2

)
ξ2

≤ C

∫

R3

∑

|β|≤k+2

|∂βR|2ξ2. (5.71)

Inserting (5.71) into (5.67) yields the desired estimate (5.59)
∫

R3

( ∑

|α1|≤k+4

|∂α1w|2 +
∑

|α2|≤k′

|∂α2ψ|2
)
ξ2 ≤ C

∫

R3

∑

|β|≤k′

|∂βR|2ξ2.
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Let y ∈ R3, then applying (5.67) with ξ(x) = e−γ|x−y| ∈ Hγ and following the proof of
[11, Lemma 6.6] yields the remaining estimate (5.60).
Case 2. Suppose (A) holds, then by Proposition 5.2

‖u1‖H4
unif

(R3) + ‖φ1‖H2
unif

(R3) ≤ C(M),

‖u2‖H4
unif

(R3) + ‖φ2‖H2
unif

(R3) ≤ C(M ′),

and inf u1 ≥ ca′,M,ω > 0 (if a1 = 0 then inf u1 ≥ cM,ω > 0) and u2 ≥ 0. Other than this,
the argument of Case 1 holds verbatim to obtain (5.59)–(5.60). �

Proof of Corollary 3.6. As m ∈ MHk(M,ω), applying Lemma 5.6(B) with 0 < a1 ≤
a2 ≤ a0 and R = (a22 − a21)φ2 ∈ Hk+2

unif (R
3). Then applying Lemma 5.6 case (B) with

ξ(x) = e−γ|x−y| ∈ Hγ yields

∑

|α|≤k+2

(
|∂αw(y)|2 + |∂αψ(y)|2

)
≤ C(a22 − a21)

∫

R3

∑

|β|≤k+2

|∂βφ2(x)|2e−2γ|x−y| dx.

As φ2 ∈ Hk+2
unif (R

3), and for all z ∈ R3 and A ⊂ B1(z), supx∈A e
−2γ|x| ≤ C infx∈A e

−2γ|x|, it
follows that
∑

|α|≤k+2

(
|∂αw(y)|2 + |∂αψ(y)|2

)
≤ C(a22 − a21)

∫

R3

∑

|β|≤k+2

|∂βφ2(x)|2e−2γ|x−y| dx

≤ C(a22 − a21)‖φ2‖2Hk+2

unif
(R3)

∫

R3

e−2γ|x−y| dx ≤ C(a22 − a21),

where the final constant is independent of y ∈ R3, hence the desired estimate (3.7)
holds. �

Proof of Theorem 3.5. For 0 < a ≤ a0, applying Corollary 3.6 with a1 = 0, a2 = a yields
the desired estimate (3.6). �

Proof of Theorem 3.8. Let 0 < a ≤ a0, then asm1, m2 ∈ MHk(M,ω) for k ∈ N0, applying
Lemma 5.6(B) with a1 = a2 = a and R = 4π(m1 − m2) ∈ Hk

unif(R
3) yields the desired

estimate (3.12). �

Proof of Theorem 3.7. The proof closely follows and adapts the argument used to show
[11, Theorem 3.4].
As m1 ∈ ML2(M,ω), by Proposition 3.3 for all a > 0 there exists a unique ground

state (u1,a, φ1,a) corresponding to m1. It remains to show that m2 and its corresponding
solution satisfy the conditions of Lemma 5.6(A).
Case 1. Suppose spt(m2) is bounded and m2 6≡ 0. Since m2 ∈ L2

unif(R
3), it follows that

m2 ∈ L1(R3) and since m2 ≥ 0 and m2 6≡ 0, it follows that
∫
m2 > 0. For a > 0, consider

the minimisation problem

ITFW
a (m2) = inf

{
ETFW

a (v,m2)

∣∣∣∣ v ∈ H1(R3), v ≥ 0

}
.

By Proposition 5.2, there exists a0 = a0(m2) > 0 such that for all 0 < a ≤ a0, the
minimisation problem yields a unique solution (u2,a, φ2,a) of (2.3), satisfying u2,a > 0 and
(3.9)

‖u2,a‖H4
unif

(R3) + ‖φ2,a‖H2
unif

(R3) ≤ C(M ′),

independently of a. Consequently, applying Lemma 5.6(A) with 0 < a1 = a2 ≤ a′ ≤ 1
and R = 4π(m1 −m2) ∈ Hk

unif(R
3) yields the desired estimate (3.10).
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Case 2. Suppose m2 = u2 = φ2 = 0, then by definition (u2, φ2) solve (2.2) and (A) is
satisfied, so applying Lemma 5.6(A) with 0 < a1 = a2 ≤ a′ = 1 and R = 4π(m1 −m2) ∈
Hk

unif(R
3) yields the desired estimate (3.10).

Case 3. Suppose spt(m2) is unbounded. By Proposition 5.2, there exists a0 = a0(m2) >
0 such that for all 0 < a ≤ a0, there exists (u2,a, φ2,a) solving (2.3) and satisfying u2,a ≥ 0.
As it is not guaranteed that u2,a > 0, it is not possible to apply Lemma 5.6(A) di-
rectly to compare (u1,a, φ1,a) with (u2,a, φ2,a). Instead, by following the proof of Propo-
sition 5.2, a thermodynamic limit argument is used to construct a sequence of functions
(u2,a,Rn, φ2,a,Rn) which satisfy (A) for sufficiently large Rn and converge to (u2,a, φ2,a) as
Rn → ∞.
Let Rn ↑ ∞ and define m2,Rn := m2 · χBRn (0)

, then as m2 ∈ L2
unif(R

3), m2 ≥ 0 and
m2 6≡ 0, it follows that m2,Rn ∈ L1(R3) and for sufficiently large Rn,

∫
m2,Rn > 0. By

Proposition 5.2, there exists R0 = R0(m2), a0 = a0(m2) > 0 such that for all Rn ≥ R0

and 0 < a ≤ a0 the minimisation problem

ITFW
a (m2,Rn) = inf

{
ETFW

a (v,m2,Rn)

∣∣∣∣ v ∈ H1(R3), v ≥ 0,

∫

R3

v2 =

∫

R3

m2,Rn

}
,

defines a unique solution (u2,a,Rn, φ2,a,Rn) to (2.3), satisfying u2,a,Rn > 0 and

‖u2,a,Rn‖H4
unif

(R3) + ‖φ2,a,Rn‖H2
unif

(R3) ≤ C(M ′), (5.72)

where the constant is independent of a, a0 and Rn. Passing to the limit in (5.72),
there exist u2,a ∈ H4

unif(R
3), φ2,a ∈ H2

unif(R
3) such that, respectively, along a subsequence

u2,a,Rn, φ2,a,Rn converges to u2,a, φ2,a, weakly in H4(BR(0)) and H2(BR(0)), strongly in
H2(BR(0)) and L2(BR(0)) for all R > 0 and for all |α| ≤ 2, ∂αu2,a,Rn , φ2,a,Rn converges
to ∂αu2,a, φ2,a pointwise. It follows that (u2,a, φ2,a) is a solution of (2.3) corresponding to
m2, satisfying u2,a ≥ 0 and (3.9)

‖u2,a‖H4
unif

(R3) + ‖φ2,a‖H2
unif

(R3) ≤ C(M ′).

In addition, for 0 < a ≤ a′ = a0, (u
′
1, φ

′
1) = (u1,a, φ1,a) and (u′2, φ

′
2) = (u2,a,Rn, φ2,a,Rn)

satisfy (A) for all Rn ≥ R0, so by Lemma 5.6 that there exist C, γ > 0, independent of a,
a0 and Rn, such that for Rn ≥ R0 and any ξ ∈ Hγ

∫

R3

( ∑

|α1|≤4

|∂α1(u1,a − u2,a,Rn)|2 +
∑

|α2|≤2

|∂α2(φ1,a − φ2,a,Rn)|2
)
ξ2

≤ C

∫

R3

(m1 −m2,Rn)
2ξ2, (5.73)

and for any y ∈ R3,

∑

|α1|≤2

|∂α1(u1,a − u2,a,Rn)(y)|2 + |(φ1,a − φ2,a,Rn)(y)|2

≤ C

∫

R3

|(m1 −m2,Rn)(x)|2e−2γ|x−y| dx. (5.74)

Using the pointwise convergence of (u2,a,Rn , φ2,a,Rn) to (u2,a, φ2,a), applying the Dominated
Convergence Theorem and sending Rn → ∞ in (5.73)–(5.74) gives the desired estimates
(3.10)–(3.11). �
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5.3. Proof of Applications. Proving Theorem 4.1 first requires establishing the exis-
tence, uniqueness and regularity of solutions to the linearised TFW Yukawa equations.
Fix Y = (Yj)j∈N ∈ YL2(M,ω) and let m = mY ∈ ML2(M,ω). Let V ∈ R3r{0}, k ∈ N

and for h ∈ [0, 1] define

Y h = { Yj + δjkhV | j ∈ N }, (5.75)

and the associated nuclear configuration

mh(x) = m(x) + η(x− Yk − hV )− η(x− Yk). (5.76)

By [11, Lemma 6.7], there exist (M ′, ω′) such that mh ∈ YL2(M ′, ω′) for all h ∈ [0, 1],
hence by Proposition 3.1 for all a > 0 there exists a corresponding ground state (ua,h, φa,h).
Also, let (ua, φa) = (ua,0, φa,0). Corollary 4.3 is now used to compare (ua,h, φa,h) with
(ua, φa) to rigorously linearise the TFW Yukawa equations.

Lemma 5.7. Let a0 > 0, Y ∈ YL2(M,ω) and let m = mY ∈ ML2(M,ω). Also, let k ∈ N,

V ∈ R3 r {0} and h0 = min{1, |V |−1}. For h ∈ [0, h0] define

mh(x) = m(x) + η(x− Yk − hV )− η(x− Yk),

then for all 0 < a ≤ a0 and h ∈ [0, h0] there exists a unique Yukawa ground state

(ua,h, φa,h) corresponding to mh. There exist C = C(a0,M
′, ω′), γ0 = γ0(a0,M

′, ω′) > 0,
independent of a, h and |V |, such that for all 0 < a ≤ a0 and h ∈ [0, h0]∑

|α|≤2

(
|∂α(ua,h − ua)(x)|+ |∂α(φa,h − φa)(x)|

)
+ |(mh −m)(x)| ≤ Che−γ|x−Yk|, (5.77)

‖ua,h − ua‖H4(R3) + ‖φa,h − φa‖H2(R3) ≤ C‖mh −m‖L2(R3) ≤ Ch. (5.78)

Moreover, for all 0 < a ≤ a0, the limits

ua = lim
h→0

ua,h − ua
h

, φa = lim
h→0

φa,h − φa

h
, m = lim

h→0

mh −m

h
,

exist and (ua, φa) is the unique solution to the linearised TFW Yukawa equations

−∆ua +

(
35

9
u4/3a − φa

)
ua − uaφa = 0, (5.79a)

−∆φa + a2φa = 4π (m− 2uaua) . (5.79b)

Moreover, ua ∈ H4(R3), φa ∈ H2(R3), m ∈ C∞
c (R3) and satisfy

∑

|α|≤2

(
|∂αua(x)|+ |∂αφa(x)|

)
+ |m(x)| ≤ Ce−γ|x−Yk|, (5.80)

‖ua‖H4(R3) + ‖φa‖H2(R3) ≤ C‖m‖L2(R3), (5.81)

where C = C(a0,M
′, ω′), γ0 = γ0(a0,M

′, ω′) > 0 are independent of a and |V |.
Proof of Lemma 5.7. The first step is to show the uniqueness of the linearised Yukawa
solution (ua, φa) to (5.79). Let 0 < a ≤ a0 and suppose (w, ψ) ∈ H1(R3)×H1(R3) solves

−∆w +

(
35

9
u4/3a − φa

)
w − uaψ = 0, (5.82a)

−∆ψ + a2ψ = −8πuaψ. (5.82b)

Testing (5.82a) with w yields
∫

R3

|∇w|2 +
∫

R3

(
35

9
u4/3a − φa

)
w2 =

∫

R3

uawψ.
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Then as ua > 0, by [11, Lemma 6.2] La = −∆ + 35
9
u
4/3
a − φa is a non-negative operator.

In addition, by Proposition 3.3 inf ua ≥ ca0,M ′,ω′ > 0, hence there exists c0 > 0 such that

c0

∫

R3

w2 ≤ 10

9

∫

R3

u4/3a w2 ≤ 〈w,Law〉+
10

9

∫

R3

u4/3a w2

=

∫

R3

|∇w|2 +
∫

R3

(
35

9
u4/3a − φa

)
w2 =

∫

R3

uawψ. (5.83)

Then testing (5.82b) with 1
8π
ψ gives

1

8π

(∫

R3

|∇ψ|2 + a2
∫

R3

ψ2

)
= −

∫

R3

uawψ, (5.84)

and adding (5.83)–(5.84) yields

0 ≤ c0

∫

R3

w2 +
1

8π

(∫

R3

|∇ψ|2 + a2
∫

R3

ψ2

)
≤ 0,

hence w = ψ = 0 almost everywhere, so (5.79) has a unique solution in H1(R3)×H1(R3).
Now, Proposition 3.2 and Proposition 5.4 imply that for 0 < a ≤ a0 and h ∈ [0, h0] the

ground state (ua,h, φa,h) satisfies

‖ua,h‖H4
unif

(R3) + ‖φa,h‖H2
unif

(R3) ≤ C(a0,M
′), (5.85)

inf
x∈R3

ua,h(x) ≥ ca0,M ′,ω′ > 0, (5.86)

independently of a, h and |V |. Then following the proof of [11, Lemma 6.8], for all
0 < a ≤ a0 and h ∈ [0, h0], the estimates (5.77)–(5.78) hold. In addition, there exist
ua ∈ H4(R3) and φa ∈ H2(R3) such that along a subsequence hn (which may depend

on a) such that
ua,hn−ua

hn
,
φa,hn−φa

hn
converge to ua ∈ H4(R3), φa ∈ H2(R3) respectively,

weakly in H4(R3) and H2(R3), strongly in H3(BR(0)) and H
1(BR(0)) for all R > 0 and

pointwise almost everywhere, along with their derivatives. In addition, it follows that
(ua, φa) satisfy (5.80)–(5.81).
To verify that (ua, φa) are independent of the sequence chosen, passing to the limit in

the equations

−∆

(
ua,hn − ua

hn

)
+

5

3

u
7/3
a,hn

− u
7/3
a

hn
− φa,hnua,hn − φaua

hn
= 0,

−∆

(
φa,hn − φa

hn

)
+ a2

(
φa,hn − φa

hn

)
= 4π

(
mhn −m

hn
−
u2a,hn

− u2a
hn

)
,

gives that (ua, φa) solve the linearised Yukawa equations (5.79) pointwise,

−∆ua +

(
35

9
u4/3a − φa

)
ua − uaφa = 0,

−∆φa + a2φa = 4π (m− 2uaua) ,

where m(x) = lim
hn→0

(mhn −m)(x)

hn
= −∇η(x− Yk) · V.

Clearly m is independent of the sequence hn, so as (ua, φa) is the unique solution to the
linearised Yukawa system (5.79), it is independent of the sequence (hn). It then follows

that
ua,h−ua

h
,
φa,h−φa

h
converge to ua, φa as h→ 0 as stated above. �
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Proof of Theorem 4.1. Let 0 < a ≤ a0 and h ∈ [0, h0], then recall (4.4)

E2,a(Y h; ·) = |∇ua,h|2 + u
10/3
a,h + 1

8π

(
|∇φa,h|2 + a2φ2

a,h

)
.

Applying Lemma 5.7 and using the pointwise convergence of ua,h, φa,h,
ua,h−ua

h
,
φa,h−φa

h
to

ua, φa, ua, φa as h→ 0, along with their derivatives, it follows that

E2,a(Y h; ·)− E2,a(Y ; ·)
h

→ 2∇ua · ∇ua +
10

3
u7/3a ua +

1

4π

(
∇φa · ∇φa + a2φaφa

)
.

As ua ∈ W 1,∞(R3), φa ∈ L∞(R3) and ∇φa ∈ L2
unif(R

3) and (5.80) holds
∑

|α|≤2

(
|∂αua(x)|+ |∂αφa(x)|

)
+ |m(x)| ≤ Ce−γ0|x−Yk|,

it follows that ∂Yk
E2,a ∈ L1(R3) and
∫

R3

∂E2,a(Y ; x)
∂Yk

dx = 2

∫

R3

∇ua · ∇ua +
10

3

∫

R3

u7/3a ua

+
1

4π

∫

R3

(
∇φa · ∇φa + a2φaφa

)
. (5.87)

An identical argument shows that ∂Yk
E1,a ∈ L1(R3) and

∫

R3

∂E1,a(Y ; x)
∂Yk

dx = 2

∫

R3

∇ua · ∇ua +
10

3

∫

R3

u7/3a ua

+
1

2

∫

R3

(
φa(m− 2uaua) + φa(m− u2a)

)
. (5.88)

Using that φa and φa solve (2.3b) and (5.79b), respectively,

1

2

∫

R3

φa(m− u2a) =
1

8π

∫

R3

φa(−∆φa + a2φa) =
1

8π

∫

R3

(
∇φa · ∇φa + a2φaφa

)

=
1

8π

∫

R3

φa(−∆φa + a2φa) =
1

2

∫

R3

φa(m− 2uaua). (5.89)

Combining (5.87)–(5.89) and using that ua solves (2.3a), −∆ua +
5
3
u
7/3
a − φaua = 0, the

estimate (4.8) follows
∫

R3

∂E1,a(Y ; x)

∂Yk
dx =

∫

R3

∂E2,a(Y ; x)
∂Yk

dx

= 2

(∫

R3

∇ua · ∇ua +
5

3

∫

R3

u7/3a ua −
∫

R3

φauaua

)
+

∫

R3

φam =

∫

R3

φam.

Now recall the corresponding result for the Coulomb case [11, (4.21)], that ∂Yk
E1, ∂Yk

E2 ∈
L1(R3) and

∫

R3

∂E1(Y ; x)
∂Yk

dx =

∫

R3

∂E2(Y ; x)
∂Yk

dx =

∫

R3

φm.

Applying (3.6) of Theorem 3.5 and (5.80) of Lemma 5.7 yields the desired estimate (4.9),
for i ∈ {1, 2}

∣∣∣∣
∫

R3

(
∂Ei,a
∂Yk

− ∂Ei
∂Yk

)
(Y ; x) dx

∣∣∣∣

≤
∫

R3

|φa − φ||m| ≤ C‖φa − φ‖L∞(R3)

∫

R3

e−γ|x−Yk| dx ≤ Ca2. �
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Proof of Proposition 4.2. This holds directly from applying Theorem 3.7 and following
the proof of [11, Proposition 4.1] verbatim. �

Proof of Corollary 4.3. This holds directly from applying Theorem 3.8 and following the
proof of [11, Corollary 4.2] verbatim. �

Proof of Corollary 4.4. This holds directly from applying Theorem 3.8 with k = 0 and
following the proof of [11, Theorem 4.3] verbatim. �

6. Appendix

The purpose of this section is to prove Proposition 5.5.

Proposition 5.5. Let a0 > ac > 0 and m ∈ ML2(M,ω), then for all 0 < a ≤ a0 the

corresponding Yukawa ground state (ua, φa) is unique and there exists ca0,M,ω > 0 such

that the electron density ua satisfies

inf
x∈R3

ua(x) ≥ ca0,M,ω > 0. (5.56)

The proof of Proposition 5.5 adapts the argument described in [6, Remark 4.16, Lemma
4.14], which shows that the periodic Yukawa ground state is bounded below and hence
unique. The proof requires the following result.

Lemma 6.1. For any a0 > 0 and m ∈ ML2(M,ω), there exists R0 = R0(a0, ω), νa0,M,ω >
0 such that for all 0 < a ≤ a0 and Rn ≥ R0

inf
x∈B1(0)

ua,Rn(x) ≥ νa0,M,ω > 0. (6.1)

Then, sending Rn → ∞ in (6.1), it follows that for all 0 < a ≤ a0

inf
x∈B1(0)

ua(x) ≥ νa0,M,ω > 0,

hence ua > 0. Then following the proof of [6, Lemma 4.14] gives the desired estimate
(5.56). As the argument used in [6, Lemma 4.14] is also necessary to show Lemma 6.1, it
is followed closely in this instance and for the proof of Proposition 5.5, only the necessary
changes in the argument are described.

Proof of Lemma 6.1. It is first shown that there exists R′
0 > 0 such that for all 0 < a ≤ ac

inf
Rn≥R′

0

inf
m∈ML2 (M,ω)

inf
x∈B1(0)

ua,Rn,m(x) ≥
cac,M,ω

2
> 0, (6.2)

then it remains to show that there exists R0 > 0 such that for all ac < a ≤ a0

inf
Rn≥R0

inf
m∈ML2 (M,ω)

inf
x∈B1(0)

ua,Rn,m(x) = ca0,M,ω > 0. (6.3)

By Proposition 5.4, for any m ∈ ML2(M,ω), 0 < a ≤ ac, the Yukawa ground state
electron density ua satisfies

inf
x∈R3

ua(x) ≥ cac,M,ω > 0,

and by Remark 3 following Proposition 4.2

‖ua − ua,Rn‖L∞(B1(0)) ≤ C ′e−γ(Rn−1).

It follows that (6.2) holds for Rn ≥ R′
0 := 1 + γ−1 log(2C ′c−1

ac,M,ω) and any x ∈ B1(0)

ua,Rn(x) ≥ ua(x)− C ′e−γ(Rn−1) ≥ cac,M,ω − cac,M,ω

2
≥ cac,M,ω

2
> 0.
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The estimate (6.3) is shown by contradiction, so suppose that for all R0 > 0

inf
ac<a≤a0

inf
Rn≥R0

inf
m∈ML2 (M,ω)

inf
x∈B1(0)

ua,Rn,m(x) = 0, (6.4)

where ua,Rn,m solves (2.3a) corresponding to mRn = m · χBRn (0)
.

Hence for each k ∈ N there exist sequences (ak) ⊂ (ac, a0], Rnk
↑ ∞, m̃k ∈ ML2(M,ω)

and xk ∈ B1(0) such that mk,Rnk
= m̃k · χBRnk

(0) satisfies for all k ∈ N

uak,Rnk
,m̃k

(xk) ≤
1

k
.

For convenience, in this argument uak,Rnk
,m̃k

and mk,Rnk
are referred to as uk and mk,

respectively. By the Harnack inequality, for fixed k ∈ N and any R′ ≥ 1 there exists
C(R′, a0,M) > 0 such that

sup
x∈BR′ (0)

uk(x) ≤ C inf
x∈BR′(0)

uk(x) ≤
C(R′, a0,M)

k
, (6.5)

so it follows that uk converges uniformly to 0 on any compact subset as k → ∞. For
R > 0 and k ∈ N, define the energy functional acting on v satisfying ∇v ∈ L2(BR(0))
and v ∈ L10/3(BR(0)) by

E(v; k, R) =

∫

BR(0)

|∇v|2 +
∫

BR(0)

v10/3 −
∫

BR(0)

(mk ∗ Yak) v2

+
1

2

∫

BR(0)

(
v2 · χBR(0) ∗ Yak

)
v2 +

∫

BR(0)

(
u2k · χBR(0)c ∗ Yak

)
v2. (6.6)

Then consider the corresponding variational problem

I(k, R) = inf

{
E(v; k, R)

∣∣∣∣ ∇v ∈ L2(BR(0)), v ∈ L10/3(BR(0)), v|∂BR(0) = uk

}
. (6.7)

The construction of the energy and the boundary condition of (6.7) ensures that uk is the
unique minimiser of (6.7) for each R > 0. To prove this, observe that E(v; k, R) can be
expressed as

E(v; k, R) =

∫

BR(0)

|∇v|2 +
∫

BR(0)

v10/3 +

∫

BR(0)

(
u2k · χBR(0)c ∗ Yak

)
v2

+
1

2
Dak

(
mk − v2χBR(0), mk − v2χBR(0)

)
− 1

2
Dak (mk, mk) .

As Yak and the Yukawa interaction term are non-negative, it follows that

E(v; k, R) ≥
∫

BR(0)

|∇v|2 +
∫

BR(0)

v10/3 − 1

2
Dak (mk, mk) ≥ −1

2
Dak (mk, mk) > −∞,

so as E(v; k, R) is bounded below, I(k, R) is well-defined. Any minimising sequence vn
satisfies

‖∇vn‖2L2(BR(0)) + ‖vn‖10/3L10/3(BR(0))
≤ C(k, R, a0,M),

hence there exists vk,R such that ∇vk,R ∈ L2(R3), vk,R ∈ L10/3(R3). Moreover, along a
subsequence ∇vn converges to ∇vk,R weakly in L2(R3), vn converges to vk,R, weakly in
L6(R3) and L10/3(R3), strongly in Lp(BR(0)) for all p ∈ [1, 6) and R > 0 and pointwise
almost everywhere. Moreover, vk,R satisfies

E(vk,R; k, R) = I(k, R),
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and solves

−∆vk,R +
5

3
v
7/3
k,R+

(
mk − v2k,R · χBR(0) − u2k · χBR(0)c

)
vk,R = 0, (6.8)

vk,R = uk on ∂BR(0).

It is straightforward to verify that uk solves (6.8). Define the alternate minimisation
problem

inf

{
E(

√
ρ; k, R)

∣∣∣∣∇
√
ρ ∈ L2(R3), ρ ∈ L5/3(R3), ρ ≥ 0

}
. (6.9)

Due to the strict convexity of ρ 7→ E(
√
ρ; k, R), it follows that ρk = u2k is the unique

minimiser of (6.9), hence uk is the unique minimiser of (5.7).
As uk → 0 uniformly as k → ∞, it follows that for any fixed R > 0

E(uk; k, R) → 0 as k → ∞. (6.10)

To verify (6.10), observe that

E(uk; k, R) =

∫

BR(0)

|∇uk|2 +
∫

BR(0)

u
10/3
k −

∫

BR(0)

(mk ∗ Yak)u2k

+
1

2

∫

BR(0)

(
u2k · χBR(0) ∗ Yak

)
u2k +

∫

BR(0)

(
u2k · χBR(0)c ∗ Yak

)
u2k.

Clearly

0 ≤
∫

BR(0)

u
10/3
k ≤ CR3‖uk‖10/3L∞(BR(0)) → 0 as k → ∞. (6.11)

The term mk ∗ Yak can be estimated by

‖mk ∗ Yak‖L∞(R3) ≤ C(ac,M), (6.12)

where the constant C(ac,M) is independent of k ∈ N. From (6.12) it follows that
∣∣∣∣
∫

BR(0)

(mk,j ∗ Yak) u2k
∣∣∣∣ ≤ ‖mk ∗ Yak‖L∞(R3)

∫

BR(0)

u2k

≤ Ca−3
c MR3‖uk‖2L∞(BR(0)) → 0 as k → ∞. (6.13)

To show (6.12), let Γ ⊂ R3 be a semi-open unit cube centred at the origin, so R3 =
{Γ + i | i ∈ Z3 }. For any x ∈ R3

|(mk ∗ Yak) (x)| ≤
∫

R3

|mk(x− y)|e
−ak|y|

|y| dy =
∑

i∈Z3

∫

Γ+i

|mk(x− y)|e
−ak|y|

|y| dy

≤ C
∑

i∈Z3

‖mk‖L2
unif

(R3)

∥∥∥e−ak|·|

|·|

∥∥∥
L2(Γ+i)

≤ CM
∑

i∈Z3

∥∥∥ e−ak|·|

|·|

∥∥∥
L2(Γ+i)

≤ CM
∑

i∈Z3

e−ak |i| ≤ CM

a3k
≤ CM

a3c
. (6.14)

As the estimate (6.14) is independent of k ∈ N and x ∈ R3, (6.12) holds. Estimating the
remaining terms gives

1

2

∫

BR(0)

(
u2k · χBR(0) ∗ Yak

)
u2k ≤ ‖uk‖4L∞(BR(0))Dak(χBR(0), χBR(0)) (6.15)

≤ Ca−2
c R3‖uk‖4L∞(BR(0)) → 0 as k → ∞, (6.16)
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∫

BR(0)

(
u2k · χBR(0)c ∗ Yak

)
u2k ≤

∥∥u2k · χBR(0)c ∗ Yak
∥∥
L∞(R3)

∫

BR(0)

u2k

≤ CR3‖uk‖2L∞(R3) ‖Yak‖L1(R3) ‖uk‖2L∞(BR(0))

≤ C(a0,M)R3

a2c
‖uk‖2L∞(BR(0)) → 0 as k → ∞. (6.17)

For the final term, integration by parts yields

∫

BR(0)

|∇uk|2 = −
∫

BR(0)

uk∆uk +

∫

∂BR(0)

uk
∂uk
∂n

≤ C‖uk‖W 2,∞(R3)(R
3 +R2)‖uk‖L∞(BR(0))

≤ C(a0,M)R3‖uk‖L∞(BR(0)) → 0 as k → ∞. (6.18)

Collecting (6.11)–(6.18), it follows that for fixed R > 0, E(uk; k, R) → 0 as k → ∞. A
family of test functions ϕε,k ∈ H1(BR(0)) is now constructed, satisfying the boundary
condition ϕε,k|∂BR(0) = uk of (6.7) such that for sufficiently large R > 0 and small ε > 0,
there exists a constant C1 > 0 such that for all large k ∈ N

E(ϕε,k; k, R) ≤ −C1 < 0, (6.19)

contradicting the fact that E(uk; k, R) → 0 as k → ∞, as (6.19) implies

E(uk; k, R) ≤ E(ϕε,k; k, R) ≤ −C1 < 0.

Lemma 5.1 will be used to prove (6.19) by showing that there exists R′
0 ≥ R0 and k1 ∈ N

such that choosing Rn = R′
0 and k ≥ k1 ensures

∫

B
4R′

0
(0)

|∇ψR′
0
|2 +

∫

B
4R′

0
(0)

((
u2k · χB

4R′
0
(0)c −mk

)
∗ Yak

)
ψ2
R′

0
≤ −1. (6.20)

Recall Lemma 5.1, that there exists C0 = C0(ac, a0, ω) > 0 and R0 = R0(ac, a0, ω) > 0
such that for any ac < a ≤ a0 and Rn ≥ R0

∫

R3

|∇ψRn |2 −Da(mRn , ψ
2
Rn
) ≤ −C0R

3
n, (6.21)

The following term can be estimated and decomposed as

∫

B4Rn (0)

((
u2k · χB4Rn (0)

c

)
∗ Yak

)
ψ2
Rn

≤
∫

B4Rn (0)

((
u2k · χB4Rn (0)

c

)
∗ Yak

)

=

∫

B4Rn (0)

((
u2k · χB8Rn (0)c

)
∗ Yak

)
+

∫

B4Rn (0)

((
u2k · χB8Rn (0)rB4Rn (0)

)
∗ Yak

)
. (6.22)

The first term of (6.22) can be expressed as

∫

B4Rn (0)

((
u2k · χB8Rn (0)

c

)
∗ Yak

)
=

∫

B8Rn (0)c
u2k(y)

(∫

B4Rn (0)

e−ak |x−y|

|x− y| dx

)
dy.
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By the triangle inequality |x− y| ≥ |y|
2
, hence

∫

B4Rn (0)

((
u2k · χB8Rn (0)

c

)
∗ Yak

)

≤ ‖uk‖2L∞(R3)

∫

B8Rn (0)c

(∫

B4Rn (0)

e−ac|y|/2

|y| dx

)
dy = CR3

n

∫

B8Rn (0)
c

e−ac|y|/2

|y| dy

= Ca−2
c R3

n (1 + 4acRn) e
−4acRn ≤ Ca−2

c R3
ne

−2acRn .

As e−2acRn → 0 as Rn → ∞, there exists R2 > 0 such that for Rn ≥ R2∫

B4Rn (0)

((
u2k · χB8Rn (0)c

)
∗ Yak

)
≤ Ca−2

c R3
ne

−2acRn ≤ C0

4
R3

n. (6.23)

Now define R′
0 = max{R0, R2, (2C0)

−1/3} and choose Rn = R′
0. The second term of (6.22)

can be estimated using Young’s inequality for convolutions
∫

B
4R′

0
(0)

((
u2k · χB

8R′
0
(0)rB

4R′
0
(0)

)
∗ Yak

)
≤
∫

B
4R′

0
(0)

((
u2k · χB

8R′
0
(0)

)
∗ Yak

)

≤ CR′3
0 ‖Yak‖L1(R3)‖uk‖2L∞(B

8R′
0
(0)) ≤ Ca−2

c R′3
0 ‖uk‖2L∞(B

8R′
0
(0)).

As uk → 0 on compact sets, there exists k1 ∈ N such that k ≥ k1 ensures that
∫

B
4R′

0
(0)

((
u2k · χB

8R′
0
(0)rB

4R′
0
(0)

)
∗ Yak

)
≤ Ca−2

c R′3
0 ‖uk‖2L∞(B

8R′
0
(0)) ≤

C0

4
R′3

0 . (6.24)

Choose Rn = R′
0 and recall that Rnk

↑ ∞, hence there exists k2 ∈ N such that Rnk
≥ R′

0

for all k ≥ k2, so it follows that mk ≥ mRn . Collecting the estimates (6.21), (6.22)–(6.24)
with Rn = R′

0 and observing that C0

4
R′3

0 ≥ 1 yields the desired estimate (6.20)
∫

B
4R′

0
(0)

|∇ψR′
0
|2 +

∫

B
4R′

0
(0)

((
u2k · χB

4R′
0
(0)c −mk

)
∗ Yak

)
ψ2
R′

0

≤
∫

R3

|∇ψR′
0
|2 −Da(mR′

0
, ψ2

R′
0
) +

∫

B
4R′

0
(0)

((
u2k · χB

8R′
0
(0)c

)
∗ Yak

)

+

∫

B
4R′

0
(0)

((
u2k · χB

8R′
0
(0)rB

4R′
0
(0)

)
∗ Yak

)

≤ −C0R
′3
0 +

C0

4
R′3

0 +
C0

4
R′3

0 = −C0

2
R′3

0 ≤ −1.

Now choose R = 4R′
0 + 2 such that ψ = ψR′

0
∈ C∞

c (BR−2(0)) satisfies the estimate (6.20)

for all ac < a ≤ a0. Then let ξ ∈ C∞(R3) satisfy 0 ≤ ξ ≤ 1, ξ = 1 on Bc
R−1(0), ξ = 0 on

BR−2(0) and for ε > 0, define ϕε,k ∈ H1(R3) by

ϕε,k(x) = εψ(x) + ξ(x)uk(x). (6.25)

It follows from the definition that ϕε,k satisfies the boundary condition from (6.7), that
ϕε,k|∂BR(0) = uk. Observe that as ψ and ξ·uk have disjoint support, the energy E(ϕε,k; k, R)
can be decomposed as

E(ϕε,k; k, R) = E(εψ; k, R) + E(ξuk; k, R)

+ ε2
∫

BR(0)

(
(ξuk)

2 · χBR(0) ∗ Yak
)
ψ2.
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Recall that ψ satisfies (6.20), so for 0 < ε ≤ 1

E(εψ; k, R) + ε4 = ε2
(∫

BR(0)

|∇ψ|2 +
∫

BR(0)

((
u2k · χBR(0)c −mk

)
∗ Yak

)
ψ2

)

+ ε10/3
∫

BR(0)

ψ10/3 +
ε4

2

∫

BR(0)

(
ψ2 · χBR(0) ∗ Yak

)
ψ2 + ε4

≤ −ε2 + Cε10/3R3 + Cε4a−2
k R3 + ε4

≤ −ε2 + Cε4 =: −ε2 + C3ε
4.

Choosing ε = ε0 = min{1, (2C3)
−1/2} implies that (6.26) holds

E(ε0ψ; k, R) + ε40 ≤ −ε20 + C3ε
4
0 ≤ −ε

2
0

2
=: −C1 < 0. (6.26)

Now consider

E(ξuk; k, R) =

∫

BR(0)

|∇(ξuk)|2 +
∫

BR(0)

(ξuk)
10/3 −

∫

BR(0)

(mk ∗ Yak) (ξuk)2

+
1

2

∫

BR(0)

(
(ξuk)

2 · χBR(0) ∗ Yak
)
(ξuk)

2 +

∫

BR(0)

(
u2k · χBR(0)c ∗ Yak

)
(ξuk)

2.

Using that 0 ≤ ξ ≤ 1, |∇ξ| ∈ L∞(R3), uk → 0 as k → ∞ and following the proof of
(6.10), it follows that E(ξuk; k, R) → 0 as k → ∞. For the remaining term

0 ≤ ε20

∫

BR(0)

(
(ξuk)

2 · χBR(0) ∗ Yak
)
ψ2 ≤ Cε20‖uk‖2L∞(BR(0)) ‖Yak‖L1(R3)

∫

BR(0)

ψ2

=
Cε20
a2c

‖uk‖2L∞(BR(0)) → 0 as k → ∞. (6.27)

It follows that there exists k2 ∈ N such that for all k ≥ k2

E(ξuk; k, R) + ε20

∫

BR(0)

(
(ξuk)

2 · χBR(0) ∗ Yak
)
ψ2 ≤ ε40. (6.28)

Combining (6.26) and (6.28), for k ≥ max{k1, k2} yields the desired estimate (6.19).

E(ϕε0,k; k, R) = E(ε0ψ; k, R) + E(ξuk; k, R)

+ ε20

∫

BR(0)

(
(ξuk)

2 · χBR(0) ∗ Yak
)
ψ2

≤ E(ε0ψ; k, R) + ε40 ≤ −C1 < 0,

which contradicts the initial assumption (6.4). �

Proof of Proposition 5.5. The estimate (5.56) is shown by contradiction, so suppose there
exists a0 > ac such that

inf
ac<a≤a0

inf
m∈ML2 (M,ω)

inf
x∈R3

ua,m(x) = 0, (6.29)

hence for each k ∈ N, there exists ak ∈ (ac, a0], mk ∈ ML2(M,ω) and xk ∈ R3 such that
uak,mk

(xk) ≤ 1
k
. Without loss of generality, assume that xk = 0 for all k ∈ N, otherwise

translate uak,mk
. For convenience, uak ,mk

will be referred to as uk in this argument. By
the Harnack inequality, it follows that uk converges uniformly to 0 on compact sets.
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For R > 0 and k ∈ N, define the energy functional acting on v satisfying ∇v ∈
L2(BR(0)) and v ∈ L10/3(BR(0)) by

E(v; k, R) =

∫

BR(0)

|∇v|2 +
∫

BR(0)

v10/3 −
∫

BR(0)

(mk ∗ Yak) v2

+
1

2

∫

BR(0)

(
v2 · χBR(0) ∗ Yak

)
v2 +

∫

BR(0)

(
u2k · χBR(0)c ∗ Yak

)
v2. (6.30)

Then consider the corresponding variational problem

I(k, R) = inf

{
E(v; k, R)

∣∣∣∣ ∇v ∈ L2(BR(0)), v ∈ L10/3(BR(0)), v|∂BR(0) = uk

}
. (6.31)

The construction of the energy (6.30) and the boundary condition of (6.31) ensures that
uk is the unique minimiser of (6.31) for each R > 0. It follows that for any fixed R >
0, I(k, R) → 0 as k → ∞. Then by following the construction used in the proof of
Lemma 6.1, there exists R > 0 and ϕε,k such that for sufficiently small ε > 0 and
sufficiently large k ∈ N

I(k, R) = E(uk; k, R) ≤ E(ϕε,k; k, R) ≤ −C1 < 0,

which contradicts the fact that I(k, R) → 0 as k → ∞, hence the desired estimate (5.56)
holds.
Consequently, as for all a > 0 and m ∈ ML2(M,ω), the electron density satisfies

inf ua > 0, the argument presented in [6, Chapter 6] can be applied verbatim to guarantee
the uniqueness of the corresponding ground state (ua, φa). �
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