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CONVERGENCE RATES FROM YUKAWA TO COULOMB
INTERACTION IN THE THOMAS-FERMI-VON WEIZSACKER
MODEL

F. Q. NAZAR

ABSTRACT. We establish uniform convergence, with explicit rate, of the solution to
the Thomas—Fermi—von Weizsicker (TFW) Yukawa model to the solution of the TFW
Coulomb model, for general condensed nuclear configurations. As a consequence, we
show the convergence of forces from the Yukawa to the Coulomb model. These results
rely on an extension of Nazar & Ortner (2015) to the Yukawa setting. Auxiliary results of
independent interest shown also include new existence, uniqueness and stability results
for the Yukawa ground state.

1. INTRODUCTION

One of the challenges in molecular simulation is treating the interaction of charged
particles using the Coulomb potential. Due to the long-range of the Coulomb potential
ﬁ, the Yukawa potential Y, (z) = %“‘x‘, for a > 0, is often used as a short-ranged
approximation [0, 5, 15, 4, 17]. The Yukawa potential also appears in the Thomas—Fermi
theory of impurity screening, where the parameter a > 0 represents the inverse screening
length of a metal [13, 14, 1].

The aim of this paper is to establish the uniform convergence of the Yukawa ground
state to the Coulomb ground state, in the Thomas—Fermi-von Weizsiacker (TFW) model.
The main technical result estimates the rate of convergence. A rigorous statement is given
in Theorem 3.5.

Theorem. Let m € L®(R3) represent a nuclear charge distribution satisfying

1
m >0 and lim — inf / m(z) dz = +o0.
R—oo R zcR3 Br(z)

Let the corresponding Coulomb ground state electron density and electrostatic potential,
denoted by u, ¢ : R® — R, satisfy the TEW equations,

—Au + guw’ — ¢pu =0,
—A¢ = dr(m — u?),

and for a > 0, let the corresponding Yukawa ground state, denoted by (uq, ¢4), satisfy the
TFW Yukawa equations

~ At 2l Gt =0,
— A¢y + a’¢p, = dr(m — u?).
Then there exists C' > 0 such that
it — ooy + 60 — Sllwaceus) < Ca? (1.1)
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To the best of the author’s knowledge, this is the first result that provides a rate of
convergence for ground states from Yukawa to Coulomb interaction, for any electronic
structure model.

An important consequence of (1.1) is an estimate for the rate of convergence of forces
in the TFW model, when passing from the Yukawa to Coulomb interaction. Given a
countable collection of nuclei Y = (Y});ey C R® and a > 0, the TFW Yukawa and
Coulomb energy densities, &,(Y;x) and E(Y;x) respectively, can be defined. It follows

from (1.1) that
o0&, 0E
—ZZ ) (v
/Ra (0Yk ayk)< o) deo

A rigorous statement of this result is given in Theorem 4.1.

In a forthcoming article [7], the aim will be to generalise the analysis of variational prob-
lems for the mechanical response to defects in an infinite crystal [8] to electronic structure
models, using the TFW model with Coulomb interaction. The uniform convergence of
forces from Yukawa to Coulomb suggests that one could construct an approximate me-
chanical response problem using the Yukawa interaction. This could be more efficient for
the purposes of numerical simulations as it replaces the long-range Coulomb interaction
with the short-ranged Yukawa interaction. The result (1.2) suggests that the error in the
electron density may propagate into an O(a?) error in the equilibrium configuration. This
will be explained in future work.

The remainder of this article is organised as follows: In Section 2 the definition of the
TEFW model is recalled and the relevant existing results are summarised. In Section 3
the main technical results are stated, including the rigorous statement of the convergence
result (1.1). Applications are presented in Section 4, followed by the detailed proofs of
the results in Section 5. An additional technical argument is given in the Appendix, that
extends uniqueness of the Yukawa ground state to all a > 0.

< Ca. (1.2)

Remark 1. The analytical approach presented closely follows and adapts the study of
the TFW equations in [6, 11]. An overview of the TFW equations can be found in [11]
and [17] provides a background on the Yukawa potential and its various applications.

To the best of the author’s knowledge, the closest existing result to (1.1) in the literature
is [6, Proposition 2.30], which shows u, — u strongly in H._(R?®) as a — 0, for periodic
and neutral TFW systems, but does not estimate the rate. O

Acknowledgements. The author thanks Virginie Ehrlacher and Xavier Blanc for helpful
discussions about the TFW model in the Yukawa setting.

2. THE TFW YUKAWA MODEL
For p € [1, 00| define the function spaces
L} (R*):={f:R* = R|VK CR? compact, f € [(K)} and
wit(R%) = { £ € Lioo(RY) | 5up [1f lv(ssca) < 00}

Lp
For k € N, HF (R?), HY ,/(R3) are defined analogously. For a multi-index a = (ay, ag, a3),
define the partial derivative 0% = 07" 05%05°. Throughout this paper, a, 8 denote three-
dimensional multi-indices.

The Coulomb interaction, for f,g € L%5(R?), is given by

Dot = [ [ I sy = [ (£8) ot an.
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and is finite due to the Hardy-Littlewood—Sobolev estimate [2]. The Yukawa interaction
is a short—range approximation to the Coulomb interaction, With the Yukawa potential
Yo(z) = | | , for a > 0, replacing the Coulomb potential = ok The parameter a > 0
controls the range of the interaction, in particular one formally recovers the long-ranged
Coulomb interaction as a — 0. The Yukawa interaction, for a > 0 and f,g € L?(R3), is
given by

f(z *a\l‘ yl g(y
D)= [ D aray= [ (£+%.) gty du.
R3 R3
which is finite as Cauchy-Schwarz’ and Young’s inequality for convolutions imply

1Do(f, )| < 1 Yall @ |l 2@y |9l z2®ey < Ca™? || f || 2y |9l 22y

Let a > 0 and m € L*(R?),m > 0, denote the charge density of a finite nuclear cluster,
then the corresponding TFW Yukawa energy functional is defined, for v € H'(R?), by

EFW(y,m) = CW/ |Vl + CTF/ 0103 4 1Da(m — % m —v?). (2.1)
RS RS 2

The function v corresponds to the positive square root of the electron density. The first
two terms of (2.1) model the kinetic energy of the electrons while the third term models
the Coulomb energy. This definition of the Coulomb energy is only valid for smeared
nuclei. The energy (2.1) can be rescaled to ensure that Cyw = Cg = 1.

To construct the electronic ground state for an infinite arrangement of nuclei (e.g., crys-
tals), it is necessary to restrict admissible nuclear charge densities to m € L. (R3),m > 0,
satisfying

z€ER3

(H1) sup/ m(z) dz < oo,
Bi(z)

(H2) lim inf 1 m(z) dz = 0.
R—o00 z€R3 Br(z)
The property (H1) guarantees that no clustering of infinitely many nuclei occurs at any
point in space whereas (H2) ensures that there are no large regions that are devoid of
nuclei.
For each m satisfying (H1)—(H2), [11, Theorem 6.10] guarantees the existence and
uniqueness of a ground state (u, ¢) satisfying

—Au+ §u7/3 — ¢pu =0, (2.2a)
—A¢ = dr(m — u?), (2.2b)

Similarly, as remarked in [6, Chapter 6], it also follows that for sufficiently small a > 0,
the existence and uniqueness of the Yukawa ground state (ug, ¢,), solving

— Au, + guj/?’ Batla = 0, (2.3a)
— A¢y + a’¢p, = dr(m — u?), (2.3b)

The equation (2.2b) arises from the Coulomb interaction, as 4 | | is the Green’s function
for the Laplacian on R?, while (2.3b) is obtained for the Yukawa problem, as =Y, is the

Green’s function for —A + a? on R3, a > 0.
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Definition 1. In this article, for any nuclear configuration m satisfying (H1)—(H2), the
ground state corresponding to m refers to the unique solution (u,®) to (2.2). For a > 0,
the Yukawa ground state corresponding to m refers to the unique solution (ug, @) to
(2.3). O

3. MAIN RESULTS

3.1. Regularity estimates. This section generalises the TFW pointwise stability esti-
mate and its consequences [11] from the Coulomb to the Yukawa setting.
The proofs of the main results in the next section require uniform regularity estimates
for Yukawa systems refining those shown in [6], provided that a € (0, o] for some ag > 0.
The main regularity estimate (3.1) relies on uniform variants of (H1)-(H2), so the
class of nuclear configurations Mz, defined in [11], is used. Given M, wgy,w; > 0, let
w = (wp,w) and define
Imlrz @3y < M,

unif

M (M, w) = {m € L2 +(R%)

VR >0 inf / m(z) dz > woR® — w; } (3.1)
T€R3 Br(z)

As each nuclear distribution m € M2(M,w) satisfies (H1)—(H2), [6, Chapter 6] guar-
antees the existence of corresponding ground states (u,, ¢,) for sufficiently small a. The
proof of [6, Proposition 2.2, Chapter 6] is adapted to extend existence and uniqueness of
Yukawa ground states to all @ > 0. In addition, the uniformity in upper and lower bounds
on m € Mpz2(M,w) yields regularity estimates and lower bounds on these ground states
which are also uniform.

Proposition 3.1. Let ag > 0 and m € M2(M,w), then for any 0 < a < aq there exists
(Ug, @a) Solving (2.3), satisfying u, > 0 and

allHA . (R3) allH2 (R3) > 0, ’ .
[wall s o) + [ Gall 2wy < Clao, M) (3:2)
where the constant C(ag, M) is increasing in both ag and M.

Proposition 3.1 can be generalised to obtain existence of Yukawa ground states cor-
responding to finite nuclear configurations, for sufficiently small a > 0. The following
result will be used in Proposition 4.2 to compare the Yukawa ground state with its finite
approximation.

Proposition 3.2. For any nuclear distribution m : R?* — Rsq, satisfying
[mlrz @3y < M,

there ezists ag = ag(m) > 0 such that for all 0 < a < ag, there exists (uq, ¢q) solving
(2.3), satisfying u, > 0 and
[ttal| 2

unif

If fBR @ M > ¢y > 0 for some x € R® and Ry, ¢y, then ag = ag(Ro, co) > 0.
‘0

(R3) + ||¢a||H2

unif

=) < C(M), (3.3)

Proposition 3.3. Let ag > 0 and m € M2(M,w), then for all 0 < a < ay the corre-
sponding Yukawa ground state (uq, ¢q) is unique and there exists Cqy prw > 0 such that the
electron density u, satisfies

inf we(x) > om0 > 0. (3.4)
z€R3
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Assuming higher regularity of the nuclear distributions implies higher regularity of the
ground state. Therefore define for k£ € Nj
(R?)

unif

Mue(M,w) = {m c 0*

”mHH’;mf(RS) < M,

TER3

VR >0 inf / m(z) dszoR3—w1}.
BR(Z‘)

Arguing by induction and applying the uniform lower bound (3.4) yields the following
result.

Corollary 3.4. Let ag > 0, k € Ny and m € Mpgw(M,w), then for all 0 < a < ag the
corresponding Yukawa ground state (u,, ¢,) satisfies

”uaHHﬁrﬁ?(RS) + ||¢a||H"f$f(R3) < C(a07 k, Mvw)' (3'5)

3.2. Uniform Yukawa estimates. The main result of this article is a uniform estimate
comparing the Yukawa and Coulomb ground states corresponding to the same nuclear
configuration. This result is essentially a consequence of [11, Theorems 3.4 and 3.5].

In the following, (u,¢) = (ug, ¢o) denotes the corresponding Coulomb ground state
solving (2.2), i.e the ground state with Yukawa parameter a = 0.

Theorem 3.5. Suppose ag > 0, k € No, m € Mpyx(M,w) and let (u,d) denote the
corresponding Coulomb ground state. For(0 < a < ay, let (uq, ¢,) denote the corresponding
Yukawa ground state, then there exists C' = C(ag, k, M,w) > 0 such that

||ua - u||Wk+2,oo(R3) + ||§Z5a - ¢||Wk+2,oo(R3) < C(IQ. (36)

Remark 2. The error term in (3.6) arises from the additional term in the Yukawa equation
(2.3b), as opposed to due to a difference in nuclear distributions in [11, Theorems 3.4 and
3.5]. For this reason, the author believes that an analogous result to Theorem 3.5 also
holds for point charge nuclei. O

Theorem 3.5 can be generalised to compare two Yukawa ground states (uq,,®q,),
(Uay, Pay) corresponding to the same nuclear configuration, where the parameters aq, as
differ.

Corollary 3.6. Let ap > 0, k € Ny, m € Mpg:(M,w) and suppose 0 < a; < ay < ag,
then let (Ua,, ay )y (Uay, Gay) denote the corresponding Yukawa ground states. There exists

C = C(ag, k, M,w) > 0 such that
[t = Uas lwrr2o0 gy + |Gy — Pas Iz @sy < C (a3 — af) . (3.7)

3.3. Pointwise Yukawa estimates. Theorems 3.7 and 3.8 extend [I1, Theorems 3.4
and 3.5] to the Yukawa model and require the class of test functions

H, - {s c H'(R)

Ve()| < yiE(@)| Va € B? } (3.8)

for some v > 0. Observe that e 7'l € H, for any 0 <7 < 7.
Theorem 3.7. Let m; € Mp2(M,w), and let my : R® — Rsq satisfy

Imallzz @3 < M,
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then there exists a; = aj(w, my) > 0 such that for all 0 < a < ay there exist solutions
(Ula, P1.0) and (Ugq, P24) to (2.3) corresponding to my,ma, where (Usq, P24) Satisfies
Uz q > 0 and

lugallis ®s) + [920llm2 @3 < C(M), (3.9)

unif

independently of a. Define
W= Uy~ Uga, Y= Pra— P24, R =4dm(my—my),

then there exist C' = C(M, M’ ,w),y = v(M, M',w) > 0, such that for any £ € H,

/ ( D lomw 4 Y |8“2w|2)52 <c / R, (3.10)

RS N ay|<a || <2 RS

In particular, for any y € R3,
S 10w+ WP < C [ [Rafa)fe 0 d, .11
<2 ke

Theorem 3.7 can be generalised to obtain higher-order pointwise estimates, but this
requires that my, mg € Mpgr(M,w) for some k € Ny to ensure that both inf uy,inf uy > 0.

Theorem 3.8. Let ag > 0, k € Ny, my,my € Mpr(M,w) and for 0 < a < ayg, let
(U1,0 D1.0)s (Ugas P2) denote the corresponding Yukawa ground states. Define

W=1Uq4—Usg, U=0b14a— P24 Ry =4m(my—my),

then there exist C' = C(ag, k, M,w),y = v(ag, M,w) > 0, independent of a, such that for
any § € H,

/ ( Sojomw Y |aa2¢|2)§2 < c/ > 0 R (3.12)
R\ |y <k+4 || <k+2 R? |81<k
In particular, for any y € R3,

> P+ 3 el <€ [ S 0 R T dn (313)

3
|| <k+2 |az|<k B 81<k

4. APPLICATIONS

4.1. Yukawa and Coulomb forces. Let n € C(Bg,(0)) be radially symmetric and
satisfy n > 0 and fR3 n = 1 describe the charge density of a single (smeared) nucleus, for
some fixed Ry > 0. For any countable collection of nuclear coordinates Y = (Y});en €
(RN let the corresponding nuclear configuration be defined by

v () = Y e = Y;). (41)
jEN
A natural space of nuclear coordinates, related to the M gx spaces is
Ve (M,w) :={Y € (RN |my € Mp2(M,w) }. (4.2)

For any Y € YV;2(M,w) and a > 0, there exists a unique Yukawa ground state (uq, ¢q)
corresponding to m = my. Two definitions for the energy density for an infinite system
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are provided, for bounded © C R?:

[ eatvie) doim [ 190+ [ o] / pulm — 2), (4.3)
/52a(y z) dz —/|Vua|2 / 1073 4 (/ Vol + a? / ) (4.4)

which satisfy £ 4(Y;),E4(Y;-) € L (R3).
Suppose now that Q C ]Rg is a charge-neutral volume [20], that is, if n is the unit
normal to 0€, then V¢, -n =0 on 9. Recall (2.3b),
~A¢, + a*p, = dm(m — u?),
it then follows that

1 2 2 2\ _ 1 _ 2 _ 1 2
o ([1vour v [ ) =& [ao oot [ oo n=g [ sm-

hence
/Sl,a(Y;x) dor = / Era(Yix) do
Q Q

Similarly, for finite systems and 2 = R*, the two energies (4.3)—(4.4) agree. Thus &; 4,24
are two energy densities which are well-defined for infinite configurations.

Given Y € Yr2(M,w), similarly define the Coulomb energy densities & (Y ), E(Y; ) €
Ll

unie(R?) [11]

E1(Y3) 1= [Vl + 0l 4 Zg(m — ), (4.5)

1
E(Y;) = |Vul> +u!8 + g\wﬂ?. (4.6)

By comparing the Yukawa and Coulomb energy densities, (4.3)—(4.4) with (4.5)—(4.6)
respectively, then applying Theorem 3.5 and Proposition 3.2 yields the convergence of the
energy densities: for all 0 < a < ay

||€17a - 81 ||Lanif(R3) + ||€27a - gQHH&nif(R:g) S C(ao, M)Q,Q. (47)

In (4.7), the regularity of the difference & , — &; is limited by the nuclear distribution
m € L2 (R?), whereas this term does not apppear in &, — &, hence the latter possesses
additional regularity.

The next result shows that the force generated by a nucleus converges when passing
from the Yukawa to the Coulomb model.

Theorem 4.1. Let ag > 0, Y € YVi2(M,w) and i € {1,2}, then for all 0 < a < ag and
k € N, the Yukawa force density Oy, &; (Y, ") € L*(R®) exists and satisfies

agla 852a 6my )
/Ra oy, Vio) de /R oy, Vio) de = / Golr) gy — o (48)

In addition, the Coulomb force density Oy, Ei(Y, ) € L*(R®) also exists and there exists
C = C(ap, M,w) > 0 such that for all 0 < a < ag

0& . O0& ‘
(3Yk - 8Yk) (V;z) dz

The expression (4.8) shows that the forces generated by the energy densities &, and
s are identical. Also, (4.9) establishes an O(a?) convergence of forces when passing
from the Yukawa to the Coulomb model.

< Ca* (4.9)
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4.2. Thermodynamic limit estimates. The following result extends [11, Proposition
4.1] to the Yukawa setting, providing an estimate for comparing the infinite Yukawa
ground state with its finite approximation, over compact sets, thus providing explicit
rates of convergence for the thermodynamic limit. This is discussed in Remark 3.

Interpreted differently, the result yields estimates on the decay of the perturbation from
the bulk electronic structure at a domain boundary.

Proposition 4.2. Let m € M2(M,w), 2 C R3 be open and suppose there exists mgq :
R3 — Rsg such that mg = m on Q and Imallzz @s) < M (e.g., mq = mxq). Then
there exists ag = ag(w, mq) > 0 such that for all 0 < a < aqg there exists a ground state
(Uq, Pq) corresponding to m and (uqq, Paq.) solving (2.3) with m = mq, ug, > 0 and
C = C(ag, M,w),y = 7v(ag, M,w) > 0, independent of a and 2, such that for all y € Q)

D 10%(ta — ta0) ()] + (G0 — daa) (y)] < Ce @I, (4.10)
o <2

Remark 3. Let R > 0 and R,, T oo, then applying Proposition 4.2, with 2 = By, (0) and
mg = mpg, and 0 < a < ag = ap(w) gives a rate of convergence for the finite approximation
(Ua,R» Pa.R, ), SOlVIng (2.3), to the ground state (uq, ¢q)

40 = ta,r, [l (Ba(0) + 60 = Paro | Loo(Bri0)y < Ce T, (4.11)
This strengthens the result that (uq r,, ¢a.r,) converges to (u,, ¢,) pointwise almost ev-
erywhere along a subsequence [6]. O

4.3. Pointwise stability and neutrality estimates. The following results extend [11,
Corollary 4.2, Theorem 4.3] to the Yukawa model. Corollary 4.3 shows that the decay
properties of the nuclear perturbation are inherited by the response of the Yukawa ground
state, and Corollary 4.4 shows the neutrality of nuclear perturbations for the TF'W equa-
tions in the Yukawa setting.

Corollary 4.3. Let ag > 0, k € Ny, my,mg € Mpge(M,w) and 0 < a < ag, then let
(U1.0 P1.0)s (Ugas P2,a) denote the corresponding Yukawa ground states and define

w = ul,a — UQ@, ’(/} == ¢1,a — ¢2,a7 Rm == 47T(m1 — mg).

(1) (Exponential Decay) If R,, € H*(R?) and spt(R,,) C Br(0), or there exists ¥' > 0
such that 3 5 |0°R,, ()| < Ce™1ol then there exist C = C(ag, k, M,w),y =
v(ag, M,w) > 0 depending also on R or ~' such that

> lorw@)+ 7 0mp(@)] < Ce (4.12)
ot | <k+2 laa| <k
(2) (Algebraic Decay) If there exist C,r > 0 such that 37 5 0P R (2)] < C(1+]x])~"
then there ezists C' = C'(ag, 1, k, M,w) > 0 such that

Yo lomw@) + Y [0%(a)| < O+ Jal) (4.13)

lon | <k+2 loa|<k
(3) (Global Estimates) If R,, € H*(R®) then there exists C = C(ag, k, M,w) > 0 such
that
||w||Hk+4(R3) + ||"7Z)||Hk+2(]R3) < CHRmHH’“(RC*)- (414)

Corollary 4.4. Let ag > 0, my,my € Mp2(M,w) and 0 < a < ag, then define p1a, :=
my — uia —ma + ug’a.
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(1) If spt(my — ma) C Bgri(0), or there exist C,5 > 0 such that |(m; — ms)(z)| <
Ce 1 then p12.a € LY(R3) and there exist C,~v > 0, independent of a, such that,

for all R > 0,
‘ / P12,a
Br(0)

(2) If there exists C,r > 0 such that |(my —mg)(x)| < C(1+ |z|)~" then there exists
C > 0, independent of a, such that, for all R > 0,

/ P12,a
Bgr(0)

(3) If my — mgy € LA(R®) (e.g., r > 3/2 in (2)) then p1a, € L*(R3) and
1
| B-(0)] J5.0)

where p1a,, denotes the Fourier transform of pia.q.

< Ce R, (4.15)

<C(1+R)*. (4.16)

ﬁlgﬂ(/{?) dk - 0, (417)

lim
e—0

5. PROOFS

The following technical lemma is used in Proposition 5.3 to show wu, g, > 0 but will
also be useful to show a uniform lower bound for the ground state electron density u, in
Lemma 6.1 in the Appendix.

Lemma 5.1. Let 0 < a1 < ay and m € Mp2(M,w), then for R, > 0 define g, €
C(B4r,(0)) satisfying g, > 0 and Yr, = 1 on Bsp,(0) and mg, = m - X, (0)-
Then there exists Cy = Co(ay,as,w) > 0 and Ry = Ro(ay,as,w) > 0 such that for all
ar <a<ay and R, > Ry

/mwmkiMmmﬁwg—%m. (5.1)
R3

Proof of Lemma 5.1. Let a; < a < ay. By the construction of g,

/Wwﬁ:/ Wwfsc/ R;2 < CiR,. (5.2)
Byr,, (0)\Bz2r,, (0) Byr,, (0)\Bz2r,, (0)

Additionally, it follows that

Dy(mp,, v}, ) = /

RS

(mRn * Ya) 77012% Z / (mRn * Ya) (ZL‘) dr

Bsr, (0)

e_a‘yl
-/ M, (z —y) da dy
R3 Bar,, (0)NBg,, (v) |y

—aly|
= / / mg, (x) dz € dy. (5.3)
R3 \ / Bzg, (—y)NBr,, (0) ]
First consider for R’ > 0

—aly| R 4 ,
/ ‘ dy = 47?/ re " dr = —Z (1 —e (14 aR’)) :
B (0) |y 0 a

hence choosing R’ = (4a)~! ensures that

—alyl 4

e T _

/ dy = — (1—35e M%) = Caa™?, (5.4)
By /44(0) Y| a




CONVERGENCE FROM YUKAWA TO COULOMB IN THE TFW MODEL 10

where Cy > 0. Now choose R, > (4a)™!, then the triangle inequality implies for |y| <
(4a)~t, Bag,(—y) D Bg,(0), hence as m € M2(M,w)

/ mg, (z) dz > / m(z) do > weR> — wi. (5.5)
Bary, (=y)NBr, (0) Br, (0)

Combining the inequalities (5.3)—(5.5) gives

efa‘y|
D, v%,) = / / g, (2) da dy
r3 \J Ban, (~9)Br, (0) [yl

67a|y‘
> / / mg, (z) dz dy
B1/1a(0) \J Ban,, (—9)"Bg, (0) Y|

—aly|
> / / mg, (x) dz € dy > Coa *(woR2 — wy).  (5.6)
B1/44(0) Br,, (0) |y|

Now define Cyy = % > 0 and R, > Ry := max{1, (4a;)7", (%ﬁjlaﬁ)lﬂ}, then com-
bining (5.2) and (5.6) yields the desired estimate (5.1) for any a; < a < as and R, > Ry

/ |van|2 — Da(mRn, w}%ﬂ) < (Can + 02w1a_2) — QCQRi
< CyR® —2C,R? = —CyR?. O

5.1. Proof of regularity estimates.
Proposition 5.2. Let m : R — R satisfy

[z

unif(RS) S M’
and R, T oo, then define the truncated nuclear distribution mg, = m - Xp, ). There
exists Ry = Ro(m), ag = ag(m) > 0 such that for all R, > Ry and 0 < a < ag, the unique

solution to the minimisation problem

IT"™W(mpg,) = inf { EW (v, mpg,) ’ Vo € L*(R?),v € L3 (R3),v > 0} (5.7)
yields a unique solution (Uq R, , $a.r,) to
5
— AU(LR” + guz’/}zn — gba,RnumRn = O, (58&)
— A¢o.p, + a*Gor, = 47 (mp, — uian) . (5.8b)
which satisfy the following estimates, with constants independent of R,,:
[ta,r. |l msy < C(M), (5.9)
|60, 2, (r3) < C(M), (5.10)

unif

and uq g, > 0 on R3 whenever mg, # 0. In particular, if fBR M > co > 0 for some
0

r € R® and Ry, co > 0, then ag = ag(Ry, co) > 0.

In the case m € My2(M,w), Proposition 5.2 can be extended to all a > 0. The
following result will be used to prove Proposition 3.1.
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Proposition 5.3. Let ayp > 0, m € Mp2(M,w) and R, T oo, then define mg, :=
M- XByg, ). There exists Ry = Ro(ag,w) > 0 such that for all 0 < a < ag and R, > Ry,
the minimisation problem (5.7) yields a unique solution (g g, , Pa.r,) to (5.8) which satisfy
the following estimates, with constants independent of a and R,,:

||Ua,Rn||H§mf(R3) < C(ag, M), (5.11)
||¢a,Rn||H§mf(R3) < C(ag, M). (5.12)
Remark 4. The Coulomb minimisation problem [11, Proposition 6.3] imposes a charge

neutrality condition. Imposing a neutrality condition for the finite Yukawa problem in-
troduces a Lagrange multiplier into (5.8) that weakens Theorem 3.5 significantly. U

The proof of Proposition 5.2 largely follows the proof of [11, Proposition 6.3]. Propo-
sition 5.2 is proved in four steps.

In Step 1, the minimisation problem (5.7) is shown to be well-posed and defines a unique
solution (ug g, , Pa,r,) to (5.8), where ug, g, , @o g, are continuous and decay at infinity. The
argument in Step 2 adapts the Solovej estimate for Yukawa systems to show: there exists
Cs > 0 that for all m € M2(M,w) and a, R, > 0

Wty < Gar, + Cs +a’. (5.13)

The aim of Step 3 is to show that there exists ay = ag(w), Ry = Ro(w) > 0 such that for
all0<a<ag<1land R, > R,
Uq,Rr, > 0 on R3.
Finally, in Step 4, the following estimate is established
172 2oy + |0, | Lemay < C(M) +a? < C(M) +1, (5.14)

where the final constant is independent of a, ag and R,,. The desired estimates (5.9)-(5.10)
then follow from standard elliptic regularity.

Proof of Proposition 5.2. If m = 0, then for all @ > 0 and R, clearly u, g, = ¢o.r, =
mg, = 0 satisfies (5.8) and (5.9)—(5.10).
If m # 0, then fBR ()M > ¢y > 0 for some x € R? and Ry, cy > 0. Without loss of
0

generality suppose z = 0 otherwise translate m.
Step 1 For each n € N define

mrg, () = m(z) - XBg, (),
and choosing R, > Ry ensures that fR3 mg, > ¢o > 0, hence mp, # 0. Recall
1
EaTFw(v’mRn) = / |VU|2 + /010/3 + §Da(mRn - v2amRn - ’1}2) > 0.
For each R,, and a > 0, recall the minimisation problem (5.7)

™ () — inf { ET (0, mi)

Vo € L*(R?),v € L'3(R?),v > 0 } .

By the Gagliardo—Nirenberg—Sobolev embedding [9], v € L(R?) and ||| re®sy < C|| V|| r2rs).,
moreover v € LP(R3) for p € [10/3,6]. Consequently

5/2 3/2 5/2 3/2
0 < Do(v?,0%) < |Vallpaes) [0l fagas) < ClvIT50 0oy 01156ty < ClIT e | V0l tms)

Observe that there are no charge constraints on the electron density as in general v &
L?(R3). This is chosen to ensure that no Lagrange multipliers appear in (5.8).
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Asmp, € LPY(R3),Y, € LP*(R?) for all p; € [1,2],ps € [1,3), applying Young’s inequal-
ity yields

10/3

Da(mp,,v?) < [Yallps2@s) Ime, @) 1* [l 2o @sy < CllvllFasgsy < C+ 5 || V[l Lros (gs)»

it follows that
1
EaTFW<U meg, ) (HVUHLQ(R?’ + HU|’1LO1{33(R3) + Da(UQ,UQ)) + §Da<mRn7mRn) - C.

As the energy is bounded below, there exists a minimising sequence vy, satisfying

10/3
||V'U||%2(R3) + HvHLl{)/i’)(R?’) + Da(UQ’UQ) < C’

hence there exists u, g, such that Vu, g, € L*(R?),u, p, € L'*3(R?). Moreover, along a
subsequence Vv, converges to Vi, g, weakly in L?(R3), v;, converges to Uq, R, , Weakly in
LS(R?) and L'9/3(R?), strongly in LP(Br(0)) for all p € [1,6) and R > 0 and pointwise
almost everywhere. Consequently,

E}"™ (ua,r,, mr,) < lim inf Ey"™Y (ve,mp,) = 1,7V (mg,),

hence u, g, is a minimiser of (5.7). Define the alternate minimisation problem

inf { EMWY(/p,mgr,) | Vp € L*(R?),p € L3(R?),p >0 } : (5.15)

Due to the strict convexity of p — E;*V(,/p,mg, ), it follows that p, g, = uz’Rn is the

unique minimiser of (5.15), hence u, g, is the unique minimiser of (5.7).
Define

Gary = (Mr, — Ul g, ) * Ya, (5.16)
then it follows that (ua g, , Pa.r,) is the unique distributional solution to (5.8)

5 7/3
— Dlag, + U R, — Paryliar, =0,

Moreover, as mpg, — uz r, € L*(R?) and the Fourier transform of Y, }//;, satisfies
~ 1
Yo(k) = 5/
8= i
it follows that

[ om0 +|k|>dk=43\<m3n—ua3n> AT, (R) PG o+ K?) d
:/ ‘(mRn_uaRn) dk’
s )

(@ + [K]?
= /RS ((mRn — uian) >x<Ya) (mRn — uian)

_ 2 2
- Da(mRn - ua,Rn7 mRn - ua,Rn)'

It follows that ¢, r, € H'(R?) and

/ Voor, |+ / 0 n = Dulmn, — 2 g, —2p). (5.17)
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Additionally, by applying Young’s inequality yields
|G, 0 ll Lo @3) < mr,ll2@s) | Yallo@s)+ < Ut g, s @)l Yall 72 rs)
< I, 2@ Yol 2y + < ok, 2o @s) | Yall Lo/ @),

hence by [16, Lemma I1.25], ¢, g, is a bounded, continuous function that decays uniformly
at infinity. In addition, as mg, € LP(R®) for all p € [1,2], Y, € LY(R?) and u,p, €
LY3(R?), it follows that
1.l 55 sy < lmr, — g g, lpsrs (RO Yall ooy
< C (Ilma, || s/ (R?) + llug g, |l 5/ @s))

< © (I 55 R?) + o sossces) ) -
To bound u, g, above, recall that u, g, solves

7/3

)
_Aua,Rn = _gua Rn + ¢a,Rnua,Rn7 (518)

and u, p, € L'3(R3)NLS(R?), ¢, € LP3(R?) N L>®(R?). It follows that the right-hand
side of (5.18) belongs to L*(R?) and

7/3
| — _ua/Rn + Ga,R, Ua, R, || 2r3) < 3| aRnHLQ(R?’ + |0, R, Ua, R, || L2 (%)
7/3
< §||Ua7Rn||L/14/3(R3) + ||¢a,Rn||L5(R3)||ua,Rn||L10/3(R3)
. 5/6 3/2

§|’ua7Rn|’L10/3(R3)HuaanHLﬁ(R?)) + H‘ba,Rn”L5(R3)”ua,Rn”Lm/?’(R?’)-
Then for any x € R? applying the elliptic regularity estimate [J] yields

7/3
tta, R, || 2081 () < C([| 30 a/Rn — Ga,Rpla,Rn || L2(Ba(2)) + [Ua, R |l 22(Ba(2)))
< O(|13ulsy, — barntta,ro |2y + |[taro || 105500
< C(13u)s — Garattarn | 2@s) + [ta,ro | 1075 (5))5

where the constant is independent of x € R®. The Sobolev embedding H?(Bi(z)) —
COY2(B,(x)) implies that u, g, is continuous and bounded as

[t R || Lo (B1(2)) < [[Ua,Rallco1r2(By (@) < Clltta,r, || 5281 ()5

hence

|ta, R, || Loo (R3) = SUD ||Ua,r, || oo (B (2)) < SUP C||ta,r,, || H2(By (2)) < 00- (5.19)
z€R3 x€R3

It remains to show that u, g, decays at infinity. Recall that u, g, solves (5.18)
b}
—AU‘R” = —gU,R + ¢RnURn
and also that u, p, € L'%3(R3) N L®(R?), ¢o r, € L*3(R3) N L®°(R?). Define

5
Ga,R, ‘= <_§uz,/}?%n + gba,Rnua,Rn) * ﬁ (520)

Observe that uz/gn € L'7(R?*) N L*(R?) and applying Hélder’s inequality gives

P07 tta ol 100 R3) < M| ba o || £/ oy || e, ol 1072 (R
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hence ¢, g, tar, € L'*°(R®) N L®°(R?). It follows that ——u;/g + ér,ur, € L7(R3) N
L>=(R?). Decompose

o 7 )
ga,Rn = (_gua/}?% + ¢a7Rnua7Rn> * (ﬁXBl(O)) + (_guz/li + ¢a7Rnua7Rn> * (ﬁXBI(O)C) ?

then as ﬁXBl(O) € LP(R3) for all p; € [1,3), ﬁXBf(o) € LP2(R3) for all p, € (3, 00] applying
Young’s inequality yields

7/3
||ga RnHLoo (R3) < ||g a/Rn - ¢G7Rnuaan||L2(R3) ’ﬁXBl(O) L2(R3)
7/3
130k, = Gumatima lms) |[Fxemor|

hence [16, Lemma I1.25] implies that g, g, is a continuous, bounded function vanishing
at infinity. In addition, g, g, solves

5
—Aga,r, = —guZ/f;n + ®a, R Ua, Ry, (5.21)

in distribution. Combining (5.18) and (5.21), it follows that
_A<ua,Rn - ga,Rn) =0,

in distribution, so by Weyl’s Lemma w, g, — ga,r, is harmonic [12]. As w4 g, — Ga,r, €
L>=(RR?), Liouville’s Theorem implies u, g, — ga.r, 1S constant [12]. Suppose that u, g, —
Ga,r, = C # 0, then as g, g, decays at infinity

lim u, g, () =c#0,
T—00

which contradicts u, z, € L'?(R?). It follows that u,p, = gar, hence u,p, decays
uniformly at infinity.

Step 2 The argument in [18] is now adapted to show the Solovej estimate for Yukawa
systems (5.13)

190ui/}§ = ¢a R, + CS + (1,

For convenience, in the following argument u, g, , @a,r,, Ma,r, Will be denoted as u, ¢, m.
As u solves (5.8a)

—Au + §u7/3 —ou =0,
following the proof of [18, Proposition 8], w = u*® is non-negative and satisfies
—Aw+§( w—¢)w < 0. (5.22)
Let A € (0,2) and define
v(x) = ' — ¢ = (C(N) + ),
where C(A) = (9/4)m*A72(2 — X\)~! > 0. The expression (5.8b) can be written as
—A¢ +a*¢ = dr(m — w*?). (5.23)

Combining (5.22) and (5.23), it follows that

Av(z) > — S

(3w gb)w 4rw®? + drm — a%o.
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The aim is to prove that v < 0 by showing that S = {x|v(z) > 0} is empty. As u, ¢ are
continuous functions decaying at infinity, it follows that v is continuous, S is bounded,
open and v = 0 on 9S. Over S,

Av > ? (v+ 2w — Aw + (C(\) + @) w — drw®? + drm — a6
Z?A(g w+C’()\)+a2)w—47rw3/2+47rm—a2¢
( MG - w—47rw1/2—|— %C(A)) w+ %a2w+4wm—a2¢.
The value of C'()) is chosen to ensure that

4\

AN(E —
Mw — drw'/? + ?C()\) >0,

3

hence as m is non-negative and v > 0 in S

Av > %azw +4drm — a®¢
> a®(Aw — ¢) = a*(v+ (C(A\) + a?)) > a*(C(A) +a*) > 0.
As v satisfies

—Av <0 in S,
v=0 ondS,

it follows that both v < 0 and v > 0 on S, hence S is non-empty and v < 0 on R?. So for
all A € (0,2) and all z € R?

Mt3(z) < o(x) + C()\) + a®.

The right-hand side is minimised by choosing A = 1%, which yields the desired estimate
(5.13).

Step 8 The aim is to show that there exists ag = ag(w), Ry = Ro(w) > 0 such that for
all 0 < a < ag and R,, > Ry, uar, > 0 on R3 by following the argument used in [6,
Proposition 2.2].

First recall the energy minimisation problem (5.7)

1,"V(mp,) = inf { EMW(y,mpg,) ’ Vo e LA(R3),v € L3 (R3),v > 0}

where
1
EMW(y,mp ) = / |Vol? +/ v 4 —D,(mp, —v: mg, —v?). (5.24)
R3 R3 2
By showing that for large R,, and small a > 0
I, "V (mg,) = By (ta,r, me,) < BV (0,mp,), (5.25)

it follows that w4 g, # 0, hence by the Harnack inequality wu, g, > 0 on R3 [12]. An
admissible test function ¢, is constructed to satisfy: for sufficiently large R,

I7"W(mg,) < EX"™(¢u, mp,) < EX™V(0,mpg,) = §Da(mRmmRn)-



CONVERGENCE FROM YUKAWA TO COULOMB IN THE TFW MODEL 16

For £ > 0, let ¢, = €1, and consider the difference

By (etba,mp,) — Eq" (0, mp, )
_ 2 \V4 2 D 2 E—4D ( 2 2) 4 10/3 10/3 (5 26)
=& ‘ wa‘ - a(mRnuwa) + 9 a wmwa € wa : :

For small € > 0, the right-hand side of (5.26) is shown to be negative by first proving that
there exists ag, Cy > 0 such that for all 0 < a < ag

/ IVal? = Da(mg,, ¢3) < —% a <0. (5.27)
R3

Let ¢y € CX(B1(0)) satisfy ¢g > 0, and 19 = 1 on Bj/3(0), then define 9,(z) =
a®?1y(azx), for a € (0,1].
Using the definition of v, gives

Dulma ¥2) = [ mn, <Y ui = [ (e 40 (o) do
R3 B1/24(0)

Yy
efa"y‘
= ag/ / mg, () dz dy. (5.28)
B3 \ /By /24(~y)NBg,, (0) i

First consider for R’ > 0

—aly| R 4 ,
/ € dy = 47?/ re ™ dr = —;T (1 — e R (1+ aR’)) ,
B (0) |y 0 a

hence choosing R’ = (4a)~! ensures that
—alyl 4

/ gy =T sy s T (5.20)
Bl/4a(0) |y| a

Now choose a* = min{1, (4Ry) '} and suppose R, > Ry. Then for all y € By j4,(0), it
follows from the triangle inequality that Bg,(0) C Bi/2q(—y) N B, (0), hence

/ mg, (z) de > / m(z) dx > ¢o > 0. (5.30)
B1/24(—y)NBRr,, (0)

B, (0)

Applying (5.29)—(5.30) to (5.28), it follows that for all 0 < a < a* and R,, > Ry

Dy(mp,,¥2) = / (Mg, * Ya) V2

R3
e_a‘yl
> a3/ / mg, (x) dz dy
&\ J By 20 (—4)N B, (0) ]
—aly|
= coa3/ € dy > Oy = Cy a. (5.31)
B1 /44(0) |y 10

Using a change of variables

[ wep=a [ vap-ce (5.32)
Bl/a(o) BI(O)
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Now define ap = min{a*, 2%’1}, then for any 0 < a < ay and R,, > Ry, combining (5.31)—
(5.32) yields (5.27)

C, C,
/W%F (i, 1) < Cra® = Coa < La—Cpa= -La<o

Using that ag,e € (0, 1], the remaining terms in (5.26) can be estimated using a change
of variables
4

cta
—mwgﬁg+ﬂ“/%%=—imw&@+ém%/%w
< Do(v5, ¥3) / z/zw/?’) tag =: Coe’ay. (5.33)

Applying the estimates (5.27)-(5.33) to (5.26) and choosing 0 < & < min{l, (5%)"/?}
yields the desired result (5.25)

Co
Ey™(eta,mp,) — E; "V (0,mp,) < (026 — 7) £2ag < 0.

Step 4 The aim is to show a uniform upper bound for ¢, g,, which together with (5.13)
yields the uniform estimate (5.14)

[t 72 ) + [ Gamll Loy < C(M) +a? < C(M) +1,

where the constant is independent of a and R,,. This will be proved by adapting the
argument used to show uniform regularity for finite systems with Coulomb interaction
[11, 6].

As u, g, > 0, re-arranging the Solovej estimate (5.13) gives the uniform lower bound

Ga,r, = —(Cs +a?). (5.34)

If ¢4 R, is non-positive, then (5.14) holds as

et 172 gy + 16, | Lo ey < 2(Cs +a?) < 2(Cs +1).

Instead, suppose that qu R, 18 MoON-zero at some point in R3. As shown in Step 1, ¢4 r, is
a continuous function that decays at infinity, hence there exists z, g, € R?® such that

o i (Ta,r) = 08 g, oo @) > 0. (5.35)

Without loss of generality, assume that z, r, = 0.

In Step 1, it was shown that u, g, , Par, € L®(R?), Vu, g, € L*(R?), ¢o r, € H'(R?).
Consequently, applying [11, Lemma 6.1] implies that
Lor, =—A+ B3 — ¢q,R, 15 a nON-negative operator.

Choose ¢ € C’OO(Bl(O)) satisfying 0 < ¢ < 1, ¢ = 1 on By5(0) and [p, ¢* = 1, then
for y € R?, define ¢, € C°(Bi(y)) by ¢, = p(- —y). As L, g, is non-negative

5
<s0y,La,Rns0y>=/3 Vipl” + / (3 u)n, %Rn) 7y =0,
R

which can be re-arranged and expressed using convolutions as

5
3 <Ui/1?%n * @ ) > (%Rn * @7 —/ |V<P|2)
R3 +

= (¢a,Rn * % — C)+ (5.36)
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Observe that ¢, g, * p? solves

A (¢ar, * %) + a* (Pa,r, *¢*) = 47 (mp, * > — uz’Rn x 7). (5.37)
The first term can be estimated uniformly

(ma, * %) () = / s ) dy

< / m(y) dy < Co|[m||r2 @s) < ColM. (5.38)
Bi(x)

For the second term, using the convexity of ¢ — ¢3/2 for ¢t > 0 and the fact that [ * =1,
applying Jensen’s inequality and (5.36) implies that
)
4m ui,Rn * p?(x) > gui,Rn * 0 (x)
5}
=3 / Uk, (T = )¢ (y) dy
R3

_5 4/3 3/2 9
=5 [ (wha=0)" P a

5 3/2
4/3
> 2 < / uln (@ —y)e?(y) dy)
R3
3/2

5
_ §<u3{gn 522 > (Gap, +0* — C)7". (5.39)

Combining the estimates (5.37)—(5.39) yields
—A (%,Rn * @2) +a® (¢a,Rn * SOQ) + (%,Rn x % — 0)1/2 < CoM.

Observe that as ¢, g, is a continuous function that decays at infinity, ¢, g, *p? also shares
these properties. Now consider the set

S={2€R|¢yr, x> —C >0},

it follows that S is open and bounded and that ¢, g, * 9> — C = 0 on dS. Observe that
the constant function h = (CoM)?/? satisfies

—Ah+a*(h+C)+ 12 > > =CoM  on S,
0= gzﬁmRn*goQ—CSh in 08,
so by the maximum principle ¢q g, * p? < C(1 + M?3) over S, and also on S¢, hence
Gar, * 9" < C(1+ M) (5.40)
Applying (5.34), it follows that
TR * P = p, * O+ Gan, *@° < Cs+a’ + C(L+ MP)=C(1+ M*P) + d.

(5.41)
Additionally,
—AﬁbIRn < —AébIRn + a’ ;L,Rn = (—A%,Rn + a2¢a,Rn) X{$a,rn >0}
= 47 (mpg, — uian) X{do.r, >0} < ATMR, X(p0.r,>0) < 4TMR, . (5.42)
From this point onwards, following the proof of [11, Proposition 6.2] verbatim with the

estimates (5.41)—(5.42) gives
63 r, | ey < C(L+ M) + a®. (5.43)
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Combining (5.34)—(5.43) with the Solovej estimate (5.13), yields the desired estimate
(5.14)

[t 1% oy + G0 Loy < C(1+ M) +a® < C(1+ M).

Then, as in the proof of [1 1, Proposition 6.2], applying elliptic regularity estimates to the
system (5.8) yields the desired estimates (5.9)—(5.10).

[tta, ro |l s w3y < C(M),
[Ga.r Nl 2wy < C(M). -
unif

Proof of Proposition 5.3. The proof follows the steps used to show Proposition 5.2. Steps
1, 2 and 4 hold verbatim and Step 3 is modified to instead show that for any ay > 0
and m € M2(M,w), there exists Ry = Ry(ap,w) > 0 such that for any 0 < a < gy and
R, > Ry, the unique minimiser u, , of (5.7) satisfies

Uqr, >0 on R (5.44)

Recall the energy minimisation problem (5.7)

1T () — in { ET™ (0, mi,)

Vo e LA(R3),v € L3 (R3),v > 0}

where
1
E™W (v, mp / |Vl + / 0193 4 2D (mg, —v*, mg, —v%).
R3

A family of test functions ¢, is now constructed to satisfy: for large R,
1
It follows from (5.45) that
I, (mg,) = B, (o, me,) < Eg7(0,mp,), (5.46)

which implies that u, g, # 0, hence by the Harnack inequality u, g, > 0 on R? [12], hence
(5.44) holds.

Let ¢g, € C°(Bag, (0)) satisfy g, > 0 and g, =1 on Byg, (0). Then let £ > 0 and
consider the difference

4
—¢ ( [ 19in - <mRn,¢zn>)+5—Da<¢zn,wén>+el°/3 [oRe s

2
Applying (5.1) of Lemma 5.1, there exists Ry > 0 such that for any R, > Ry
/ [V, ~ Dalme,, ¥3,) < ~CoR, (5.48)
R

The remaining terms in (5.47) can be estimated for 0 < & < 1, using Young’s inequality
for convolutions and Cauchy—Schwarz by

o4
Da(%zqnaw}zn /wlo/g < —D (XBQRn((JyXBQRn(O)) + 64/ 1

Bsg, (0)

IA
/—\

Yol X, 0 a0y + [ 01 ) X
<C(l+a )Rt = C3e*R2. (5.49)
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Combining the estimates (5.48)—(5.49) and choosing 0 < ¢ < gy = min{l,(z%’g)lﬂ}
ensures that

E;"™(egr,, mr,) — B,V (0,mg,) < (=Co 4+ Cse®) 2R}, < 0,
hence the desired estimate (5.45) holds. O

Proof of Proposition 3.2. First suppose that spt(m) is bounded, then by Proposition 5.2
there exists ag > 0 such that for all 0 < a < ay and sufficiently large R,,, m = mpg, and
hence (uq, ¢0) = (Uq,R, s Pa,r,) sOlves (2.3) and satisfies the desired estimate (3.3).

Now suppose spt(m) is unbounded, then the estimates (5.9)—(5.10) of Proposition 5.2
guarantee that for all 0 < a < ap and R, sufficiently large, the sequences uq g, , @a r, are
bounded uniformly in HZ (R3). Consequently, there exist u,, ¢, € H2 (R3) N L>®(R?)

unif nif
such that along a subsequence u, g, ,dar, converges to u,,¢., weakly in H?*(Bg(0)),
strongly in H*(Bg(0)) for all R > 0 and pointwise almost everywhere. It follows from the

pointwise convergence that u, > 0 and
[ta| Lo @3) + l|@all oo sy < C(M).
Passing to the limit of the equations (5.8) in distribution shows the limit (u,, ¢,) solves
D

— Au, + guz/?’ — Pallg = 0,

— A¢y + a’¢, = dr(m — u?).
Following the argument used to prove (5.9)—(5.10) in this instance yields the desired
estimate (3.3) holds
@) + [|Pallm2_ms) < C(M). O]

Proof of Proposition 3.1. This holds from applying Proposition 5.3 and following the proof
of Proposition 3.2 in the unbounded case verbatim. O

[eall 2

unif

Proposition 5.4. There exists a. = ac.(M,w) > 0 and cq. pw > 0 such that for all
m € Mpe(M,w) and 0 < a < a. the corresponding Yukawa ground state (uq, ¢q) is
unique and the electron density u, satisfies
inf u,(x) > o prw > 0. (5.50)
z€R3
Proof of Proposition 5.4. The proof of Proposition 5.4 closely follows the proof of [I1,
Proposition 6.2] and [6, Theorem 6.10]. The estimate (5.50) is shown by contradiction,
so suppose that for any a. > 0

inf inf inf u,(z) =0,
0<a<ac meM 2 (M,w) z€R3

hence there exists sequences a, | 0 satisfying a,, < a; for all n € N, (m,,) C Mp2(M,w)

and (z,) C R?® such that for all n € N the ground state (u,, ¢,), corresponding to m,,
with Yukawa parameter a,,, satisfies

(5.51)

As guf‘/g — opu, € L2 _(R?), u, € H!

loc

(R3) and u,, > 0 solves

nif

5
Lyu, = (—A + guf/?’ — gbn) U, =0,
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applying the Harnack inequality [19], and observing that the coefficients of L,, are uni-
formly estimated by Proposition 3.1, this yields a uniform Harnack constant, hence for

all R > 0, there exists C' = C(R, a;, M) > 0 such that for all n € N
C
sup  up(z) < C  inf  w,(z) < —.
z€BR(zn) z€EBR(zn) n

It follows that the sequence of functions w, (- +x,) converges uniformly to zero on compact
sets. Consider the ground state (u,, ¢,) corresponding to the nuclear distribution m,,.

By the Harnack inequality, it follows that u, (-4, ) converges uniformly to 0 on compact
subsets. Recall that ¢, satisfies

—Ad, + ai(bn = dm(m, — ui)
in distribution. In addition, ¢, and m,, satisfy

(- + @a)llze gy + [6a(- + @)ooy < Clar, M).

It follows that along a subsequence ¢, (- + x,) converges to ¢, weakly in H2(Bg(0)),
strongly in H'(Bg(0)) for all R > 0 and pointwise almost everywhere. Also, m, (- +
r,) converges to m, weakly in L?*(Bg(0)) for all R > 0. By the Lebesgue-Besicovitch
Differentiation Theorem [10], m € M2:(M,w). As a, | 0, passing to the limit of

—Aoy (- + ) + aigbn(- +x,) =47 (mn( +x,) — ui( + xn))
shows that 5 is a distributional solution of
— A = 4rin. (5.52)
The argument of [6, Theorem 6.10] is now used to show that for all R > 0

/ m(z) dz < CR. (5.53)
Br(0)
As m € Mp2(M,w), this leads to the contradiction that for all R > 0
woR? —wy < / m(z) dz < CR.
Br(0)

To show (5.53) choose ¢ € C°(By(0)) such that 0 < ¢ < 1 and ¢ = 1 on B;(0). Let
R > 0, then testing (5.52) with ¢(-/R) gives
1 ~
—— o(2)(Ap)(z/R) dz = 47T/ m(z)e(z/R) dz. (5.54)
R Bsr(0)

Bar(0)

The left-hand side can be estimated by
! b By (0
[ e i Ban0)
B>r(0)

where the constant C' > 0 is independent of R. As m > 0, combining (5.54)—(5.55) yields

R2 < (16l e r3) [ A 10
(5.53)

< CR, (5.55)

/BR(O) me) de < / m(z)e(z/R) dz < CR.

B3r(0)
The contradiction ensures that there exists a. > 0 and ¢, a > 0 such that for all
m € Mp2(M,w) and 0 < a < a., the corresponding Yukawa electron density u, satisfies

inf ug(z) > coonrw > 0. O
l‘eR3 bl )
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Consequently, for 0 < a < a., the electron density satisfies inf u, > 0, hence the arguments
of [6, Chapter 6] can be applied verbatim to guarantee the uniqueness of the ground state

(ta, Pa)-

Remark 5. Theorem 3.5 provides an additional proof of Proposition 5.4. Let ag > 0
and m € Mj2(M,w), then for any 0 < a < ag, [I1, Propositions 3.1 and 3.2] and
Proposition 3.1 guarantees that there exist corresponding Coulomb and Yukawa ground
states (u, @), (Ua, ¢a), respectively satisfying infu > ¢pr,, > 0 and u, > 0. Then applying
(3.6) of Theorem 3.5 implies

Ug(z) > u(w) — |Jua — vl peows) > eare — C'a®,

hence for all 0 < a < a, := min{ay, (02%7)1/2}

inf ug(z) > cp — C'a® >

1
—c > 0.
z€R3 - 2 Mw

g

The proof of Proposition 3.3 requires the following result, which extends the lower
bound on u, from 0 < a < a. to arbitrary a > 0.

Proposition 5.5. Let ag > a. > 0 and m € Mp2(M,w), then for all 0 < a < ag the
corresponding Yukawa ground state (uq, ¢,) is unique and there exists Cqarw > 0 such
that the electron density u, satisfies
inf we(x) > om0 > 0. (5.56)
z€R3
Due to the length of the argument, the proof of Proposition 5.5 is postponed to the
Appendix, which can be found on Page 30.

Proof of Proposition 3.3. Combining Proposition 5.4 and Proposition 5.5 yields the de-
sired result. U

Proof of Corollary 3.4. This is identical to the proof of [11, Corollary 6.3], using the
estimates (5.9)-(5.10) to provide the initial regularity. O

5.2. Proof of main results. The proofs of Theorems 3.5, 3.7 and 3.8 closely follow the
proofs of [11, Theorems 3.4 and 3.5], which adapts the uniqueness of the TFW equations
6, 3].

First, two alternative sets of assumptions on nuclear distributions my, ms are given. In
the following, (ug, @) denotes the corresponding Coulomb ground state solving (2.2), i.e
the ground state with Yukawa parameter a = 0.

(A) Let k=0, my € Mp2(M,w), my : R® — Ry satisfy
Imallrz (@sy < M,

then by Proposition 3.2 there exist o’ = a/(w, my) > 0 such that for all 0 < a; <
ay < a' there exists (u1, ¢1) = (Ut,ar5 P1,a1) (U2, P2) = (Ug,a,, P2.4,) sOlving either
(2.2) or (2.3) corresponding to ma, satisfying inf u; > 0, ug > 0 and

luallms, o) + 1 D2ll 12 rey < C(M). (5.57)

In addition, assume either my Z 0 and us > 0 or mg = uy = ¢y = 0.

Observe that (A) assumes that us > 0, while Theorems 3.5 (with & = 0) and
3.7 only require either u, > 0 or ug, > 0. The restriction u, > 0 will be lifted via
a thermodynamic limit argument in the third part of its proof on page 26.
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(B) Let ag > 0, k € Ng, my,mg € Myn(M,w), 0 < a; < ag < ag and let (ug, ¢r) =
(Ulays Pray)s (Ug, p2) = (U2,4,, P2.4,) denote the corresponding ground states. (Note
that (B) implies (A), with @’ = ag and M' = C(ag, M).)
In addition, for both (A) and (B), define
w=up —ug, Y= — ¢y,

and suppose that there exists R € H* ..(R3), where k' € {k, k+2}, such that (w, ) solves

unif

5
— Aw + 3 (u17/3 u;/?’) — Q11U + Paus =0, (5.58a)
— AY + ajy = 47 (u3 — ui) + R. (5.58b)

Lemma 5.6. Suppose that either (A) or (B) holds, then there exist C = Ca(M, M’ w),
v =ya(M, M w) >0 orC=Cglay, k', M,w),y = vp(ap, M,w) > 0, independent of both
a1, az, such that for any § € H,

O wl|? + o 2) < C/ " R|? 5.59
/ (||Z| e 3 ed)eso [ SR 65
In particular, for any y € R3,
S omw)P+ Y 0™(y) < 0/ > 0 R(x) e (5.60)
o |[<k+2 |oca | <K' |BI<k’
Further, if both a; = ay =0, then C = Cg(k', M,w),y = vp(M,w).

One of the key steps in proving Lemma 5.6 is showing

2¢2 C R 2 2 2v 2 )
[wesc([ moes [ weuiver), (5.61)

where the constant C is independent of a;,as. However, due to the presence of the
additional term in (5.58b), the argument in [11, Lemma 6. 4] directly yields

& [ weso([ mes [ weme). (5.62)

where the left-hand constant tends to 0 as a; — 0. Instead, (5.61) is obtained by closely
following the proof in the Coulomb setting.
In the following proof, all integrals are taken over R3.

Proof of Lemma 5.6. The argument closely follows the proof of [I1, Lemma 6.7]. This
proof describes the key steps of the argument and additional details are provided in [11].

Case 1. Suppose (B) holds, so my,mg € Mpyx(M,w), so by Corollary 3.4 (or [I1,
Corollary 3.3] if either a; = 0) for i € {1, 2}

||ui||H§;;1(R3) + ||¢i||H"j;ri§(R3) < C(ag, k, M, w)

and by Proposition 5.4 infuy,infus > ¢, > 0 (if for ¢ € {1,2} a; = 0 then by [11,
Proposition 3.2] infu; > cpr,, > 0). Let £ € H'(R?), then testing (5.58a) with wé? and
re-arranging yields

[Iv@or+ 3 [+ uute -5 [ oue +v [ue
< [wrvep s+ [ vt - ), (5.63)
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where v = $(u 4/3+u4/3) > 1 if)Mw >0 (or v > %cj‘v/[gw > 0 when a; = as = 0). As

Uy, ug >0, [ll Lemma 6.2] implies that
L=—A+ 53wy +uy®) — 161 + ¢o)
is a non-negative operator, hence (5.63) can be expressed as
1
(we, Lwe) +v [wier < [wvep+ 5 [oed - et (5.64)

Then, testing (5.58b) with ¥¢? and re-arranging and using a; > 0 gives

[vwers [Ivwor+a [ve s [re i [oai-ie. 6o

Combining (5.64) and (5.65) and further re-arrangement yields

we.swe) +v e s o [ivope <o [rugs [wrriver). Goo)

From this point, the proof of [11, Lemma 6.7] follows verbatim to show the estimate:
there exists C,~y > 0 such that for all £ € H,

/( Z |8a1w|2—|— Z |8a2w|2>£ <C/ ZmﬁR‘f (5.67)
R? la |<k+4 o | <k+2 B8]<k

If ¥’ = k, then this is the desired estimate (5.59). Alternatively, if & = k+2, the remaining
estimate is shown by adapting the proof of [11, Lemma 6.6]. Recall (5.58b), that ¢ solves

—AY = —ajyp + 4 (uj —ul) + R € HEFZ(R?), (5.68)
hence by standard elliptic regularity [9] 1 € H"(R?). It follows that
/ S 0 AGPE < K M w / SO (10°0P + 10°RE + 0Pt €. (5.69)
|a|<k+2 |8|<k+2

In addition, applying integration by parts, for any k; < k + 2

> [esesc([ X wrares [ 5 ptere). 6o

| =k1+2 |B1|=k1 |Ba|=k1+1
hence combining (5.67)—(5.70) for k; = k + 2 gives

> [levresce( [ X wrares [ 5 0more)

|o|=k+4 |B1]|=k~+2 |B2|=k-+3
< (/ > vt [ Y 8%|§)
|B1|=k+2 |B2|=k+2
< c/ S (0P + |0 R + 0Pwl?) €
15l <ht2
< c/ > |0PRPPE (5.71)
1B <h+2

Inserting (5.71) into (5.67) yields the desired estimate (5.59)

/R( > 1o+ ) |5’“2¢|2)§ <C/ > |0°R%.

lar| <k-+4 laz| <k’ |BI<k’
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Let y € R?, then applying (5.67) with £(z) = e "*¥ € H_ and following the proof of
[11, Lemma 6.6] yields the remaining estimate (5.60).
Case 2. Suppose (A) holds, then by Proposition 5.2

|l s sy + 1101122

unif(RS M)’
2|7z

M")
unif ’

and infuy > ¢y pw > 0 (if @ = 0 then infuy > ¢pry, > 0) and ug > 0. Other than this,
the argument of Case 1 holds verbatim to obtain (5.59)—(5.60). O

) <O
@) + [[02llm2_@sy < C(

Proof of Corollary 3.6. As m € Mpyx(M,w), applying Lemma 5.6(B) with 0 < a; <
ay < ap and R = (a2 — a?)¢py € HFZ(R?). Then applying Lemma 5.6 case (B) with
£(z) = e vl € H yields

> (w107 )P) <O —ad) [ 3 (0P dn

|oo| <k+2 18| <k+2

As ¢y € HM2(R?), and for all z € R and A C By(2), sup,c4 e 21 < Clinfoeq e 1l it

unif

follows that

> (ru)P + 0 v) < C@—a) [ 3 @Peaw)Pe i do

|a|<k+2 R |8|<k+2
< 063~ a)0allg e [ o e < Cla - )
unif R3

where the final constant is independent of y € R? hence the desired estimate (3.7)
holds. U

Proof of Theorem 3.5. For 0 < a < ag, applying Corollary 3.6 with a; = 0,a, = a yields
the desired estimate (3.6). O

Proof of Theorem 3.8. Let 0 < a < ag, then as my, my € Myx(M,w) for k € Ny, applying
Lemma 5.6(B) with a; = as = a and R = 4w(m; — my) € HE (R?) yields the desired

estimate (3.12). O

Proof of Theorem 3.7. The proof closely follows and adapts the argument used to show
[11, Theorem 3.4].

As m; € Mp2(M,w), by Proposition 3.3 for all @ > 0 there exists a unique ground
state (w4, 1) corresponding to m;. It remains to show that ms and its corresponding
solution satisfy the conditions of Lemma 5.6(A).

Case 1. Suppose spt(my) is bounded and my # 0. Since my € L2 (R3), it follows that
my € L*(R?) and since my > 0 and my # 0, it follows that [ms > 0. For a > 0, consider
the minimisation problem

IaTFW(mQ) = inf { E;FFW(v,mz)

v GHl(R?’),vZO}.

By Proposition 5.2, there exists ag = ag(ms) > 0 such that for all 0 < a < ag, the
minimisation problem yields a unique solution (ug 4, ¢2,) of (2.3), satisfying us, > 0 and

(3.9)
luzallis @) + lbsallie me < COM),

independently of a. Consequently, applying Lemma 5.6(A) with 0 < a1 = ay < d’ <1
and R = 4m(my —my) € H* (R?) yields the desired estimate (3.10).

unif
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Case 2. Suppose my = us = ¢o = 0, then by definition (ug, ¢2) solve (2.2) and (A) is
satisfied, so applying Lemma 5.6(A) with 0 < a3 = as < d’ =1 and R = 4w(my; — my) €
HE (R3) yields the desired estimate (3.10).

Case 3. Suppose spt(ms) is unbounded. By Proposition 5.2, there exists ag = ag(msg) >
0 such that for all 0 < a < ay, there exists (ug 4, ¢2,) solving (2.3) and satistying us , > 0.
As it is not guaranteed that us, > 0, it is not possible to apply Lemma 5.6(A) di-
rectly to compare (ujq, ¢1,4) With (ug,, ¢2,). Instead, by following the proof of Propo-
sition 5.2, a thermodynamic limit argument is used to construct a sequence of functions
(U2,4.R,s P2.0.R, ) Which satisfy (A) for sufficiently large R,, and converge to (u2q, ¢2.4) as
R, — oo.

Let R, 1 co and define my p, = ms - X5y, (0), then as my € L2 (R?), my > 0 and
ms # 0, it follows that mo g, € L'(R?) and for sufficiently large R,, ['mag, > 0. By
Proposition 5.2, there exists Ry = Ro(ma), a9 = ag(ms) > 0 such that for all R, > Ry

and 0 < a < a¢ the minimisation problem
ve HY(R?), v > 0,/ v? :/ Mo, R, } :
R3 R3

defines a unique solution (ug 4 r,, $2.4.r,) to (2.3), satisfying us . g, > 0 and

®) + [|02.0,R, |2 w3y < C(M'), (5.72)

unif

I (1my ) = inf { ET™ (4, )

|t2,0, R, || 4

unif

where the constant is independent of a, ap and R,. Passing to the limit in (5.72),
there exist us, € Hy ((R?), ¢, € H2 +(R?) such that, respectively, along a subsequence
U2, Rs P2.a.R, CONVETEES 10 U a, P24, weakly in H*(Bg(0)) and H?(Bg(0)), strongly in
H?*(Bg(0)) and L*(Bg(0)) for all R > 0 and for all |o| < 2, 0%us 4 r,, P2.4.r, CONVErges
to 0%Usg,q, ¢o2,, pointwise. It follows that (us,, ¢2,) is a solution of (2.3) corresponding to
ma, satisfying us, > 0 and (3.9)

®) + 162052, msy < C(M).

In addition, for 0 < a < a' = ag, (U}, ) = (U14, P14) and (uh, ¢) = (U24.R,s P2.0.R,)
satisfy (A) for all R, > Ry, so by Lemma 5.6 that there exist C,~ > 0, independent of a,
aop and R,, such that for R, > Ry and any £ € H,

[ (0= )P+ X 1000 = 20 )€

|ar|<4 || <2

< C/ (my — ma, g, )?E2, (5.73)
R3

[2,a]| s

unif

and for any y € R3,

D107 (w10 = wsar )W)+ [($10 = G20,m,) ()]

|1 |<2

< C/ |(my — m27Rn)(l‘)|26727|1'7y| dz. (5.74)
RS

Using the pointwise convergence of (u2.4.g,, $2.4.r,) t0 (U2.4, P2.4), applying the Dominated
Convergence Theorem and sending R,, — oo in (5.73)—(5.74) gives the desired estimates
(3.10)—(3.11). 0
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5.3. Proof of Applications. Proving Theorem 4.1 first requires establishing the exis-
tence, uniqueness and regularity of solutions to the linearised TFW Yukawa equations.

Fix Y = (Y})jen € YVi2(M,w) and let m = my € M2(M,w). Let Ve R¥*\ {0}, k € N
and for h € [0, 1] define

V" ={Y;+0;hV |j €N}, (5.75)
and the associated nuclear configuration
mp(x) = m(x) +n(z — Y — hV) —n(z — Y). (5.76)

By [11, Lemma 6.7], there exist (M’ ,w') such that my € YVr2(M’' ') for all h € [0, 1],
hence by Proposition 3.1 for all @ > 0 there exists a corresponding ground state (uq p, Pa.p)-
Also, let (ug, $o) = (a0, Pap). Corollary 4.3 is now used to compare (ugp, @qpn) With
(g, @q) to rigorously linearise the TFW Yukawa equations.

Lemma 5.7. Letag > 0, Y € Y2(M,w) and let m = my € Mp2(M,w). Also, let k € N,
V e R3\ {0} and hog = min{1, |V|~t}. For h € [0, hy] define

mp(x) = m(z) +n(x — Yy — hV) — n(z = Yy),

then for all 0 < a < ag and h € [0, hg] there exists a unique Yukawa ground state
(Ua,hy Pa,n) corresponding to my. There exist C = C(ag, M',w'"), v0 = Yo(ao, M',w') > 0,
independent of a, h and |V|, such that for all 0 < a < ag and h € [0, ho|

> (10 (wan = wa) (@)] +10%(ban — ¢a)(@)]) + [(mn — m)(x)| < Che 4, (5.77)

|a[<2
||ua7h — ua||H4(R3) + ||¢a,h — ¢a||H2(]R3) S C||mh — m”LQ(RS) S Ch (578)
Moreover, for all 0 < a < ag, the limits
u, = lim Yah = Ua 5 = lim 7%’]1 ~ m = lim Mn = M
R0 h 7 7% koo h h—0 h

exist and (g, ,) is the unique solution to the linearised TFW Yukawa equations

— AT, + (3—95ui/3 — %) Uy — Uad, = 0, (5.79a)
— A¢, +a*p, = 41 (M — 2u4Ty) - (5.79b)
Moreover, U, € HY(R?), ¢, € H*(R3),m € C=(R®) and satisfy
Y (10T ()] + 107, (2)]) + m(x)| < Cem Y, (5.80)
|or| <2
ol a2y + [[@all sy < ClITll 2o, (5.81)

where C' = Cl(ag, M', "), vo = Yo(ao, M',w’") > 0 are independent of a and |V|.

Proof of Lemma 5.7. The first step is to show the uniqueness of the linearised Yukawa

solution (%, ¢,) to (5.79). Let 0 < a < ag and suppose (w,v) € H(R3) x H(R?) solves

— Aw + (3—95%1/3 — %) w —u,y =0, (5.82a)
— AY + a*p = —8mugi). (5.82b)

Testing (5.82a) with w yields

35
|Vw|2 +/ (gui/B - ¢a) w2 = / uaw'lvz)-
R3 R3 R3
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Then as u, > 0, by [I1, Lemma 6.2] L, = —A + 35 4/ s ¢, is a non-negative operator.
In addition, by Prop051t10n 3.3 inf u, 2 Cao, M > O hence there exists ¢y > 0 such that

CO/ w2 < E 4/3 2 < <w’Law>+E/ U4/3U}2
R3 9 Jrs 9 Jrs

35
— |Vw|2+/ (9 43 _ gba) w —/ UgW). (5.83)
R3 R3 R3

Then testing (5.82b) with éw gives

L (/R ol | w?) —— [ o, (5.84)

and adding (5.83)—(5.84) yields

1
OSco/er—( |V@/}|2+a2/ @Z)Q)SO,
R3 & R3 R3

hence w = ¢ = 0 almost everywhere, so (5.79) has a unique solution in H'(R?) x H!(R?).
Now, Proposition 3.2 and Proposition 5.4 imply that for 0 < a < ag and h € [0, ho| the
ground state (uqp, Pa,n) satisfies

e gy + Nunliz ey < Clan, MY, (5.85)
inf wgp(x) > copmrrw >0, (5.86)
z€R3

independently of a, h and |V|. Then following the proof of [I1, Lemma 6.8], for all
0 < a < apand h € [0,hg], the estimates (5.77)-(5.78) hold. In addition, there exist
U, € HY(R3) and ¢, € H*(R?) such that along a subsequence h,, (which may depend

on a) such that “ete—=e Pa, o e converge to U, € H*(R®), ¢, € H2(R®) respectively,
weakly in H*(R?) and Hz(R3), strongly in H3(Bg(0)) and H'(Bg(0)) for all R > 0 and
pointwise almost everywhere, along with their derivatives. In addition, it follows that
(Ua, ¢,) satisfy (5.80)—(5.81).

To verify that (T, ®,) are independent of the sequence chosen, passing to the limit in
the equations

7/3 7/3
_A (ua,hn - ua) + 2 3 uah — Ua gba,hnua,hn - gbaua

h 3  h, B h,

gba hn (l ¢a,hn - ¢a — Ar mp, —m . “Z,hn - UZ
B, ha, B ’

gives that (T, ¢,) solve the linearised Yukawa equations (5.79) pointwise,

- Aﬂa + (%ui/i’, - ¢a) Ea - uaaa = Oa

— A¢, +a*¢, = 41 (M — 2ually,) ,

=0,

where m(z) = hlimo (mhn;—m)(a:) =—-Vnx—-Y;)-V.

Clearly m is independent of the sequence h,,, so as (W4, ¢,) is the unique solution to the

linearised Yukawa system (5.79), it is independent of the sequence (h,). It then follows
that Ug h—Ua ¢a,h7¢a
D

, —25—= converge to Uy, ¢, as h — 0 as stated above. U
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Proof of Theorem 4.1. Let 0 < a < ag and h € [0, ho|, then recall (4.4)
E2a(Y" ) = [Vitan + " + 5 (IVunl® +%07,,)

Applying Lemma 5.7 and using the pointwise convergence of uq,p, ¢g,n, =5, %’hh_% to
Ug, Pa, Uq, @, as h — 0, along with their derivatives, it follows that
EraY: ) =& u(Y:- 10 1 _ —
2. )h 20(Y5) — 2Vu, - Vu, + guz/?’ﬂa + e (nga -Vo, + aZgbagba) .
As u, € W (R3), ¢, € L™®(R?) and V¢, € L? (R?) and (5.80) holds
> (10°Ta(@)] + 0B, (w)]) + [m(x)| < Ce ek,
ja|<2

it follows that dy, &2, € L' (R?) and

Y; 1
/ 0650V 7) de =2 [ Vu,- Vi, + 10 ',
RS

8Yk; R3 3 R3 “
1 _ _
+ = (Vo Vo, + a’dad,) - (5.87)
47'(' R3

An identical argument shows that dy, &, € L'(R?) and

0& .(Y; x) / 10/ 7
AN Qe = 2 Vu, - Vi, + — /3a
/3 Y, T , U u+3 3ua U

o /R (9l — 2u4T) + 3, (m — ) (5.88)

Using that ¢, and ¢, solve (2.3b) and (5.79b), respectively,

1 [ - _ ) - B
5 R3 (ba(m B uz) - 8_7T R3 (ba(_A(ba + CL2(]5a) = g /R3 (v(ba : v(ba + a2¢a¢a)
! a1
=5 J, Oe(mA% *g,) = 5 | Ga( — 2u,Th). (5.89)

Combining (5.87)—(5.89) and using that u, solves (2.3a), —Au, + guz/B — ¢qug = 0, the
estimate (4.8) follows

0&1 (Y ;) / 0E4(Y; )
2N e = e CA Sl e |
/Ra v, T oy

5)
=2 (/ vua ' vaa +3 / uz/gﬂa - ¢auaﬂa) + ¢am = gbam'
R3 3 Jrs R3 R3 R3
Now recall the corresponding result for the Coulomb case [11, (4.21)], that 0y, &1, Oy, & €

L'(R3) and
/Rs oY, e O o ?

Applying (3.6) of Theorem 3.5 and (5.80) of Lemma 5.7 yields the desired estimate (4.9),
for i € {1,2}

060  OEN .
/Rg <6Yk - ayk) (Y3 2) do

< / 160 — Bl < Clldu — Dl / e dy < Ca?. 0
R3 R3
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Proof of Proposition 4.2. This holds directly from applying Theorem 3.7 and following
the proof of [11, Proposition 4.1] verbatim. O

Proof of Corollary 4.5. This holds directly from applying Theorem 3.8 and following the
proof of [11, Corollary 4.2] verbatim. O

Proof of Corollary 4.4. This holds directly from applying Theorem 3.8 with k£ = 0 and
following the proof of [11, Theorem 4.3] verbatim. O

6. APPENDIX
The purpose of this section is to prove Proposition 5.5.

Proposition 5.5. Let ag > a. > 0 and m € M2(M,w), then for all 0 < a < ag the
corresponding Yukawa ground state (uq, o) is unique and there exists Cqpr > 0 such
that the electron density u, satisfies

inf we(x) > om0 > 0. (5.56)
z€R3

The proof of Proposition 5.5 adapts the argument described in [6, Remark 4.16, Lemma
4.14], which shows that the periodic Yukawa ground state is bounded below and hence
unique. The proof requires the following result.

Lemma 6.1. For any ag > 0 and m € Mp2(M,w), there ezists Ry = Ro(ao, w), Vag Mmw >
0 such that for all 0 < a < ag and R,, > Ry

inf wu,p () > Ve mw > 0. 6.1
Lot R () = Vag 1, (6.1)

Then, sending R,, — oo in (6.1), it follows that for all 0 < a < ay

inf wu,(z) >v >0
+€B1(0) a( )_ ao,M,w )

hence u, > 0. Then following the proof of [6, Lemma 4.14] gives the desired estimate
(5.56). As the argument used in [0, Lemma 4.14] is also necessary to show Lemma 6.1, it
is followed closely in this instance and for the proof of Proposition 5.5, only the necessary
changes in the argument are described.

Proof of Lemma 6.1. 1t is first shown that there exists R}, > 0 such that for all0 < a < a,
. . . Cac,Mw

inf inf inf ugpr m(r)>—"=>0, 6.2

Ry >Rl meM 2 (M,w) 2€B1(0) o () Z 2 (6:2)

then it remains to show that there exists Ry > 0 such that for all a. < a < ag

inf inf inf g g () = Can 10 > 0. 6.3
RnZRomEMLQ(M,w)xeBI(O) R, ( ) 0,M, ( )

By Proposition 5.4, for any m € M2(M,w), 0 < a < a., the Yukawa ground state
electron density u, satisfies
inf u,(x) > coomw >0,
z€R3
and by Remark 3 following Proposition 4.2

[t = U Ry || oo (B (0)) < Cle™TH,

It follows that (6.2) holds for R, > R} :==1+~~! log(QC’cgcl’MM) and any z € B;(0)

Cac,M,w > Cac,M,w

> 0.
2 = 2

Ua,R, (T) > Uqa(T) — Cle D) > Cae,Mw —
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The estimate (6.3) is shown by contradiction, so suppose that for all Ry > 0
inf  inf inf inf g R, m(z) =0, (6.4)

ac<a<ao Rn>Ro meM 2 (M,w) z€B1(0)
where g g, m solves (2.3a) corresponding to mg, = m - X5, (0)-
Hence for each k € N there exist sequences (ax) C (ac, agl, Ry, T 00, my € Mp2(M,w)
and xy € B;(0) such that My, R, = my - XBg, (0) satisfies for all k € N

uak,Rnk,ﬁ’bk (l‘k‘) S P

k

For convenience, in this argument ug, g, m, and my g, are referred to as uy and my,
respectively. By the Harnack inequality, for fixed k¥ € N and any R’ > 1 there exists
C(R',ag, M) > 0 such that

C(R',ag, M
sup ug(x) < C  inf  wg(x) < M,
2€Bp (0) x€BR/(0) k

(6.5)

so it follows that wu; converges uniformly to 0 on any compact subset as k — oco. For
R > 0 and k € N, define the energy functional acting on v satisfying Vv € L?(Bg(0))
and v € L'%3(Bg(0)) by

E(v;k, R) :/ |Vv|2+/ vw/?’—/ (my * Yy, ) v?
Br(0) Br(0) Br(0)

1
+ 5/ (U2 . XBR(O) * Yak) U2 —|—/ (Uz . XBR(O)C * Yak) ’U2. (66)
Br(0) Br(0)

Then consider the corresponding variational problem
I(k,R) = inf {E(v; k., R) ' Vo € L*(Bg(0)),v € L'3(Bg(0)),v|opx0) = Uk } (6.7)

The construction of the energy and the boundary condition of (6.7) ensures that wy, is the
unique minimiser of (6.7) for each R > 0. To prove this, observe that E(v;k, R) can be
expressed as

B(v:k, R) = /

B

1

+ §Dak (mk - UQXBR(O)a my — U2XBR(O)) - §Dak (mk, mk) .

As 'Y, and the Yukawa interaction term are non-negative, it follows that

1 1
E(v;k,R) > / |Vol? +/ V103 — —D,, (my, my) > —=D,, (mg, my) > —o0,
Br(0) Br(0) 2 2

|Vv|2+/ v10/3+/ (uz-XBR(O)C *Yak)v2
r(0) Br(0) Br(0)

1

so as E(v;k, R) is bounded below, I(k, R) is well-defined. Any minimising sequence v,
satisfies

10/3
IVUnll72(8,(0) + ||Un||L1{)/3(BR(O)) < C(k, R, ag, M),

hence there exists v, g such that Vo, g € L*(R?), vz € L'/3(R3). Moreover, along a
subsequence Vv, converges to Vv p weakly in L?*(R3), v, converges to v r, Weakly in
LS(R?) and L'9/3(R?), strongly in LP(Bx(0)) for all p € [1,6) and R > 0 and pointwise
almost everywhere. Moreover, vy, r satisfies

E(”k,R; k7 R) = [(k7 R)7
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and solves
5 7/3 2 2
—AUkr + U Rt (M = VR * XBa(0) = Ui, * XBr(0)) Vi = 0, (6.8)
Vk,R = Uk on 8BR<O)

It is straightforward to verify that w, solves (6.8). Define the alternate minimisation
problem

inf { E(\/p;k, R) ’ Vp e L*R?),pc L3R?),p >0 } . (6.9)

Due to the strict convexity of p — E(\/p;k, R), it follows that p, = uj is the unique
minimiser of (6.9), hence wy, is the unique minimiser of (5.7).
As uy — 0 uniformly as k — oo, it follows that for any fixed R > 0

E(ug;k,R) -0 as k — oo. (6.10)
To verify (6.10), observe that

E(ug; k, R) = / |Vuy|? +/ u,io/?’ — / (my x Yy, ) u
Br(0) Br(0) Br(0)

1
+ 5 / (ui * XBgr(0) * Yak) Ui + / (“2 * XBgr(0)¢ * Yak) Ui
Br(0) Br(0)

Clearly
0< / u," < CRYugl| L 0y — 0 a8 b — 0. (6.11)
BRr(0)

The term my, * Y,, can be estimated by
I Yo | sy < Clae, M), (6.12)
where the constant C(a., M) is independent of & € N. From (6.12) it follows that

[ g s Vo) ud] < Vol [
Br(0)

Br(0)
< C’a;?’MRSHukH%w(BR(O)) — 0 as k — oo. (6.13)
To show (6.12), let T' C R® be a semi-open unit cube centred at the origin, so R? =
{T+i|ieZ®}. Foranyze€R?

e~k |yl e—ak\yl
(e Vo) @] < [ et =)< dy =3 [ e = )| dy
R3 6Z3 F+Z ‘y‘
<C m ak\ \’ ak\ \’
zGZZS ” k”L“mf L2(04i) L2(I'+i)
CM _CM
<CM —alil < 2 . 6.14

As the estimate (6.14) is independent of k € N and z € R?, (6.12) holds. Estimating the
remaining terms gives
1

5/3 o (uit - XBr) * Yar) ur < k]| T (5y0)) Par (X Br(0)> XBr(0)) (6.15)
R

< CQJQR?)”U/]Q”%OO(BR(O)) —0as k — o0, (616)
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| oo o) 0 < X Vol [k
BR(O) BR(O)

< CRBHukH%OO(RC*) ”YakHLl(R?’) HukH%w(BR(O))
< C(ao, M)R3

- 2
ac

||uk||%oo(BR(0)) — 0 as k — o0. (6.17)

For the final term, integration by parts yields

ou
/ [Vug|* = —/ upAug +/ U
Br(0) Br(0) oBp(0)  ON

< Cllug || w2 e ms) (R + R2)||Uk||L°°(m)

< C((lo, M)R3||uk||L°°(BR(O)) — 0 as k — oo. (618)
Collecting (6.11)—(6.18), it follows that for fixed R > 0, E(u; k, R) — 0 as k — oco. A
family of test functions ¢.x € H'(Bg(0)) is now constructed, satisfying the boundary
condition ¢. x|oBg0) = ur of (6.7) such that for sufficiently large R > 0 and small € > 0,
there exists a constant C'; > 0 such that for all large £ € N
E(Sps,k; ka R) S _Cl < Oa (619)
contradicting the fact that E(ug; k, R) — 0 as k — o0, as (6.19) implies
E(uk; k, R) < E((p&k; k, R) <-C;<0.

Lemma 5.1 will be used to prove (6.19) by showing that there exists R}, > Ry and k; € N
such that choosing R, = R{, and k > k; ensures

/ [Vibry |* + / ((ui  XBygy (0 — mk) x Yak) Ui < -1 (6.20)
By (0) B,y (0)

Recall Lemma 5.1, that there exists Cy = Cy(ac, ag,w) > 0 and Ry = Roy(ac, ag,w) > 0
such that for any a. < a < ag and R, > Ry

/ Vi, 2 — Dalmn, 0% ) < —CoR?, (6.21)
R3

The following term can be estimated and decomposed as

[ o) V) W < [ (6 o) V)
Byr, (0)

Byr,, (0)

N

_ / (42 - Xoon, (0 ) * Yor) + / (42 Yoo, 01 0) * Yo ) - (6:22)
Byg,, (0) Byr,, (0)

The first term of (6.22) can be expressed as

efak|$*y|
/ ((ui . XBSRn(O)C) * Yak) = / ui(y) / 7| = dr | dy.
Burg,, (0) Bgg, (0)¢ Bygr,(0) 1T —Y
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By the triangle inequality |z — y| > v hence

92
[ (X, 0) +Ya)
Byrg, (0)

o—aclyl/2 e—aclyl/2
< ||uk||%oo(R3)/ / dr | dy = C’Ri/ dy
Bsg,, (0)° Byg,, (0) |y Bsg,, (0)° |y

= CaZ2R% (1 + dacRy) e~ 4%Fn < Ca 2R3 =20,

As e72e<Bn 5 () as R, — o0, there exists Ry > 0 such that for R,, > R,
C
/ ((uf - XBan, 0)) * Ya,) < Ca*Rie ™ < —2RY. (6.23)
Bur,, (0) 4

Now define R = max{ Ry, Ry, (2Cy)~'/3} and choose R,, = R}. The second term of (6.22)
can be estimated using Young’s inequality for convolutions

/ <<uz " XBgpy (0~Bypy (0)) * Yak) < / <<Uz : XBSR6(0)> * Y;1k>
B, (0) B, (0)

< CR,03||Yak||L1(R3)||Uk||%oo(3 ) = CGEZRBBHWH%OO(BB%(O))-
As u, — 0 on compact sets, there exists k1 € N such that & > k; ensures that
_ Co
[ (6 Xm0 g 0) #Yor) < Ca R op < RS- (620)
Byry, (0) 0 0 0

4R} © 4R (©

0
S8Ry, (

Choose R,, = Rj, and recall that R, 1 0o, hence there exists ky € N such that R,, > Rj
for all k > ks, so it follows that my > mpg,. Collecting the estimates (6.21), (6.22)—(6.24)
with R, = R} and observing that ¢ R} > 1 yields the desired estimate (6.20)

/ |va6|2+/ ((ui 'XB4R/ (0)e —mk) *Yak> wlz%
By gy (0) By gy (0) 0

= / |V¢R6|2 = Da(may, ¢12%6) + / ((uz " XBgp (0)C> * Yak)
R3 B 0

4R() (0)

AR (CRY B
B4R6 (0)

Co Co Co
4 4 2
Now choose R = 4R + 2 such that 1 = ¢p, € CF(Br_2(0)) satisfies the estimate (6.20)
for all a. < a < ag. Then let £ € C™(R3) satisfy 0 < £ <1, =10n B ,(0), £ =0on
Bgr_2(0) and for £ > 0, define ¢ € H'(R?) by

e k() = ep(x) + E(x)ur(z). (6.25)

It follows from the definition that ¢, ; satisfies the boundary condition from (6.7), that
©ekloBr(0) = ur. Observe that as v and &-uy, have disjoint support, the energy E(¢p. x; k, R)
can be decomposed as

E(per; k, R) = E(e; k, R) + E(§uy; k, R)

+ 52/ ((guk)Q * XBg(0) * Y;Ik) ?/)2-
BRr(0)

< —CoRP+ — R+ —R{ = R < —1.
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Recall that v satisfies (6.20), so for 0 <& <1
E(et;k, R) +¢* =& (/ |V¢IZ+/ ((uk - XBr() — M) *Y;lk)wz)
Br(0) Br(0)

84
+e'3 wlo/g + = (wz * XBg(0) * }ak) w2 + ¢t
2
Br(0) Br(0)

—e2 + C\OBR3 + Cg4a,;2R3 + ¢*
—e? 4 Cet = —&% 4 Ot

VARVAN

Choosing € = £y = min{1, (2C5)~/?} implies that (6.26) holds

2
(Eow k R) 80 + 0380 < —6—20 = —Cl < 0. (626)

Now consider

E(éw: k. R) = / V()2 + / €)™ — [ (myx Yar) (€m)?
Br(0) Bgr(0) Bgr(0)

+ % /BR(O) ((guk) " XBg(0) * Yak) (fuk)z +/ (uz - XBr(0) * Yak) (fuk)Q

Br(0)

Using that 0 < € < 1, |[V€] € L*®(R3), u, — 0 as k — oo and following the proof of
(6.10), it follows that E(&ug; k, R) — 0 as k — oo. For the remaining term

0< 53/ ((€ur)® - XBr() * Ya) ¥* < CepllunlZo 80 ”Yak”Ll(R?’)/ 0%
Br(0) Br(0)

Ce
= a—20”uk”%°o(BR(0)) — 0 as k — oo. (627)

C

It follows that there exists ky € N such that for all k¥ > ks

E(&ug; k, R) + 53/ ((Eur)? - XBRo) * Yo, ) ¥ < €. (6.28)

BRr(0)

Combining (6.26) and (6.28), for k& > max{k;, ko} yields the desired estimate (6.19).
E(@eo ik, R) = E(eoths kb, R) + E(€uy; k, R)

+ E(2)/ ((guk)Q " XBgr(0) * Yak) ¢2
Br(0)
S E(50¢a k:aR) +561 S _Cl < 07
which contradicts the initial assumption (6.4). O

Proof of Proposition 5.5. The estimate (5.56) is shown by contradiction, so suppose there
exists ag > a. such that

inf inf inf ugm(x) =0, (6.29)

ac<a<ao meM ;o (M,w) z€R3
hence for each k € N, there exists aj, € (ac, ag), my € Mp2(M,w) and z;, € R? such that
Uay my, (T1) < % Without loss of generality, assume that x; = 0 for all £ € N, otherwise

translate uq, m,. For convenience, ug, ,, will be referred to as wy in this argument. By
the Harnack inequality, it follows that u; converges uniformly to 0 on compact sets.
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For R > 0 and k£ € N, define the energy functional acting on v satisfying Vv €
L%(Bg(0)) and v € L'%3(Bg(0)) by

E(v;k,R) = / |Vol? +/ 0103 / (my, * Yy, ) v*
Br(0) Br(0) Br(0)

1
+5 / (V% - XB(o) * Ya,) 0 + / (up - XBro) * Yo, ) v°.  (6.30)
Br(0) Br(0)

Then consider the corresponding variational problem

I(k, R) = inf {E(v; k, R)

Vv € L*(Bg(0)),v € L*3(Br(0)), v|apa0) = w } (6.31)

The construction of the energy (6.30) and the boundary condition of (6.31) ensures that
uy is the unique minimiser of (6.31) for each R > 0. It follows that for any fixed R >
0, I(k,R) — 0 as k — oo. Then by following the construction used in the proof of
Lemma 6.1, there exists R > 0 and ¢, such that for sufficiently small ¢ > 0 and
sufficiently large k € N

I(k,R) = E(u; k, R) < E(pep; k, R) < —Cy < 0,

which contradicts the fact that I(k, R) — 0 as kK — oo, hence the desired estimate (5.56)
holds.

Consequently, as for all @ > 0 and m € M2(M,w), the electron density satisfies
inf u, > 0, the argument presented in [6, Chapter 6] can be applied verbatim to guarantee
the uniqueness of the corresponding ground state (ugq, ¢q)- U
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