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Abstract

The theory of interface localization in near-critical planar systems at phase coexistence is

formulated from first principles. We show that mutual delocalization of two interfaces,

amounting to interfacial wetting, occurs when the bulk correlation length critical exponent ν

is larger than or equal to 1. Interaction with a boundary or defect line involves an additional

scale and a dependence of the localization strength on the distance from criticality. The im-

plications are particularly rich in the boundary case, where delocalization proceeds through

different renormalization patterns sharing the feature that the boundary field becomes irrel-

evant in the delocalized regime. The boundary delocalization (wetting) transition is shown

to be continuous, with surface specific heat and layer thickness exponents which are related

and can take values that we determine.
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1. Interfacial phenomena are extremely relevant for a variety of applications in physics, chem-

istry and material science, and are the subject of extensive theoretical, experimental and nu-

merical study (see e.g. [1, 2, 3, 4, 5, 6, 7]). A central aspect, underlying the rich phenomenology

of wetting, is that of the localization of an interface to a boundary, on a defect, or with respect

to a second interface. From the theoretical point of view, the one of interest for this paper,

the study is made difficult by the need of implementing a proper description of the interface,

as well as by the non-perturbative nature of localization. If, in addition, one wants to extend

the analysis to the case, particularly interesting, of proximity to bulk criticality, the need of

taking into account renormalization effects makes the problem especially challenging. In three

dimensions this reflects into the fact that all approaches rely on phenomenological grounds (see

[7]). In two dimensions an important difference has been made by exact results [8] obtained for

the square lattice Ising model with a boundary [9] or a line of weakened bulk bonds (defect)

[10, 11], in the whole range of subcritical temperatures relevant for the coexistence of phases and

the presence of interfaces separating them. These results provided support for the indications

of solid-on-solid [12, 13, 14] and random walk [15] approaches, which however do not include

near-critical fluctuations and cannot yield conclusive statements or dependences on critical in-

dices. This becomes transparent going to the problem of mutual delocalization of two interfaces,

which corresponds to interfacial wetting and implies the existence of a third phase; here the

Ising model does not help, and no specific conclusion has been available.

In this paper we study interface localization in near-critical two-dimensional systems at phase

coexistence within the field theoretical framework (see [16]) which accounts at the fundamental

level for all properties of the near-critical region. This allows us, in the first place, to avoid phe-

nomenological descriptions of the interactions in favor of the operator formalism which exhibits

the dependence on universality classes and critical indices. While this step generalizes to higher

dimensions, in the two-dimensional case that we consider the analysis acquires in predictivity

from the correspondence between interfaces and trajectories of topological quantum excitations

in imaginary time. In this way we obtain, in particular, the following results. Interfacial wetting

occurs when the correlation length critical exponent ν is larger than or equal to 1. Localization

on a defect line persists arbitrarily close to criticality, despite the fact that its strength tends

to zero if the defect parameter has negative mass dimension. An interface delocalizes from a

boundary sufficiently close to criticality, and in the delocalized regime the boundary field be-

comes irrelevant in the renormalization group sense. This delocalization transition is continuous,

with allowed values of the interfacial specific heat exponent αS = −4k, k = 0, 1, 2, . . .; for the

layer thickness exponent, usually considered as independent, we obtain βS = αS/2− 1.

2. We will consider two-dimensional statistical systems with values of the bulk parameters

corresponding to coexistence of different phases. In particular, we are interested in the regime

in which such a system is close to a second order phase transition point, to which we refer in

the following as the critical point. This means that the bulk correlation length ξ is much larger

than microscopic scales and that the system admits a continuous description in terms of a field
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theory specified by a reduced Hamiltonian

Hbulk = Hcritical + λ

∫
d2xΦ(x) , (1)

where Hcritical is the reduced Hamiltonian of the critical point, λ measures the distance from

criticality, and Φ(x) is the operator which drives the system away from criticality. The fact that

we are at phase coexistence in two dimensions ensures that ξ is finite for λ 6= 0, and that the

operator Φ(x) is relevant (or marginally relevant) in the renormalization group sense, with a

scaling dimension XΦ ≤ 2, the equality corresponding to the marginally relevant case. It follows

from (1) that

λ ∼ ξXΦ−2 , (2)

or conversely ξ ∼ λ−ν with ν = 1/(2 − XΦ). The two-dimensional Euclidean field theory (1)

is the continuation to imaginary time of a relativistically invariant quantum field theory in one

spatial dimension. Within the quantum description, the coexisting phases of the statistical

system correspond to degenerate vacuum states |0a〉, with a = 1, 2, . . . labeling the different

phases. In a (1+1)-dimensional quantum field theory with degenerate vacua the elementary

excitations have a topological nature, and correspond to the kinks a|b connecting a vacuum a to

a vacuum b 6= a. Being a relativistic particle, a kink a|b carries energy and momentum (e, p) =

(mab cosh θ,mab sinh θ), where mab ∼ 1/ξ is the kink mass and θ is the rapidity parameter. If,

for two given phases a and b, the elementary kink a|b connecting the corresponding quantum

vacua exists, its trajectory in imaginary time yields an interface separating phases a and b in

the statistical system, with mab exactly equal to the interfacial tension [17, 18]. If a|b does not

exist, instead, going from |0a〉 to |0b〉 necessarily requires a multi-kink excitation, say a two-kink

one a|c|b yielding two interfaces enclosing a macroscopic layer of a third phase c. Hence we

see that this latter phenomenon, known as interfacial wetting, is actually determined by the

vacuum connectivity structure of the underlying quantum theory. As we now explain, this in

turn depends on the value of the critical exponent ν.

The problem can be restated as follows. Given a two-kink state a|c|b, there is interfacial

wetting only if the two kinks do not allow for a stable bound state a|b which, by definition

of bound state, would have a mass mab smaller than the total mass mac + mcb of the state

a|c|b, and would lead, via free energy minimization, to a single interface along which phase c is

confined in a thin layer. The existence of a bound state is a property which does not change

along the renormalization group trajectory defined by (1), and can then be investigated in the

tail of the trajectory, where particle kinetic energies are much smaller than their masses and

non-relativistic potential theory applies. In particular, we can use the result that an attractive

potential on a line produces at least a bound state [19]. On the other hand, it was shown in

[18, 20] through the exact study of the unbound regime that the kinks have fermionic statistics

which accounts for the mutual avoidance of the interfaces. With reference to (1), non-interacting

fermions correspond to a Hamiltonian bilinear in the fermions, where Φ provides the mass term

and XΦ = ν = 1 (a single fermion species corresponds to the Ising model, with λ ∼ Tc − T ).
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Hence the attractive regime corresponds either to XΦ < 1 or to XΦ > 1. A simple way to fix

the issue is to consider the three-state Potts model. Indeed, given a two-kink state a|c|b, the

permutational symmetry of the model implies the existence of the bound state a|b with the same

mass of a|c and c|b. Since this model has XΦ = 4/5 [21], the binding regime corresponds to

XΦ < 1. Conversely, interfacial wetting occurs for XΦ ≥ 1, i.e. ν ≥ 1.

A basic illustration of this general result is provided by the Blume-Capel model [22, 23], i.e.

an Ising model in which non-magnetic sites (vacancies) are also allowed. As the temperature is

lowered the model exhibits an ordering transition which is continuous up to a vacancy density

ρc, and becomes first order above ρc. The first order line, along which the ferromagnetic phases

+ and − coexist with the disordered phase 0, corresponds to (1) with Hcritical describing the

tricritical point at ρc, λ ∼ ρ − ρc, and XΦ = 6/5 [24]. Since ν > 1, the state +|0|− does not

bind, and a wetting layer of the disordered phase forms in-between the ferromagnetic phases.

The absence of bound states can be checked within the exact scattering solution [25, 26], which

does not exhibit bound state poles. While interfacial properties in the Blume-Capel model have

been the subject of several Monte Carlo investigations (see in particular [27, 28, 29, 30]), it is

hard to distinguish numerically between interfacial wetting and weak binding, i.e. the formation

of a bound state with mass (interfacial tension) m+− only slightly smaller than 2m+0. The

sharp and general answer we are giving to this type of question provides a benchmark for future

simulations.

3. We now consider the bulk theory (1) in presence of a defect line (or grain boundary),

and address the question of the localization of an interface by the defect. Using the notation

x = (x1, x2) for a point on the plane, the presence of the defect along the line x1 = 0 corresponds

to adding to (1) the term

Hdefect = −g

∫
d2x δ(x1)Ψ(x) , (3)

where Ψ(x) is an operator of the bulk theory with scaling dimension XΨ, so that g has the

dimension of a mass to the power 1 − XΨ. Within the one-dimensional quantum description

with x2 corresponding to imaginary time, the term (3) introduces an external potential centered

at x1 = 0 and vanishing as x1 → ±∞. The problem of the interface in presence of the defect

maps to that of a kink in this potential. Here and in the rest of the paper the kinks remain

excitations of the bulk theory (1), so that (2) and mab ∼ 1/ξ continue to hold1.

If the defect is able to bind the kink, the energy of the bound state takes the form Ebound =

mf(z) < m, where f is a function of the dimensionless combination

z = g/m1−XΨ , (4)

and we drop indices on the kink mass m. The difference 1 − f(z) measures the distance from

the unbinding threshold, and then the strength of localization. The attractive regime is on one

side, say g > 0, of the non-interacting point g = 0. As before, at the tail of renormalization

1The defect also preserves the topological charge of the bulk (g = 0) states; for neutral (charged) states the

order parameter takes equal (different) values at x1 = ±∞.
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group trajectories (large m) we can use the non-relativistic result that an attractive potential is

binding, and conclude that the interface is localized for all positive g. But in turn this means

localization for all positive z, and then also for small m. Binding vanishes as g → 0, i.e. f(z) → 1

as z → 0. It then follows from (4) that, as criticality is approached (m → 0) for a fixed defect

strength g, the localization strength vanishes if XΨ > 1.

For a defect realized as a line of weakened bonds, Ψ coincides with the energy density

operator ε, and we already quoted the values Xε = 1 and 4/5 for the Ising and three-state Potts

models, respectively. The Ising model with this type of defect is the case for which the absence

of a delocalization transition was derived from the lattice in [10]; it is also the only defect case,

among those relevant for critical phenomena, which is exactly solvable [31]. It has the peculiarity

that z = g, so that the localization strength does change as criticality is approached; the exact

form of f(g) can be deduced from the field theoretical solution of [31].

A different realization of the defect in the Ising model has been studied numerically in [32],

where annealed vacancies were allowed along a line. Snapshots of the interface at temperatures

sufficiently close to criticality show wide fluctuations for small vacancy density ρD, and clear

localization on the defect for larger values of ρD. Within our framework, the Ising defect

studied in [32] corresponds to g ∼ ρD and XΨ > 2. Indeed, since in the Ising model the only

non-magnetic relevant operator is the energy density ε, the operator which creates the vacancies

must be irrelevant; it is actually known [33] that its scaling dimension is equal to 4. Since our

analysis escludes a delocalization transition, the wide fluctuations of the interface at small ρD

must be interpreted as weak localization rather than delocalization.

It was shown in [11] for the lattice Ising model with a line of weakened bonds that depinning

from the defect can be obtained inducing, through suitable boundary conditions, the interface

to form (in average) an angle φ with the direction of the defect. Within our framework, this

situation amounts to adding a left-right asymmetry (related to φ) across the defect, which

substantially modifies the analysis. Indeed, the non-relativistic limit now corresponds to an

asymmetric potential well, which may or may not produce a bound state depending on the

parameters of the well [19].

4. We finally consider the problem of the localization of the interface by a boundary. We then

consider the system on the half-plane x1 ≥ 0, so that the reduced Hamiltonian is now given by

(1) (with the understanding that both Hcritical and the integral are restricted to x1 ≥ 0) plus a

boundary term

Hboundary = µ

∫
dx2 ΦB(x2) , (5)

where ΦB(x2) is a boundary operator with scaling dimension XΦB
, and the coupling µ has

dimension of a mass to the power 1 −XΦB
. We also imply that the case µ = 0 corresponds to

unconstrained, or free, boundary degrees of freedom.

The truncation to x1 ≥ 0 of the space on which the particles live no longer preserves the

topological charge, so that interfaces can be created as the boundary parameter µ is varied. In

particular, let us denote by |0a〉B the states of the boundary system that for µ = 0 reduce to the
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degenerate ground states; the expectation value of the order parameter operator on these states

tends for x1 → +∞ to the value va it takes in the bulk phase a. Generically, the boundary

field µ splits the degeneracy, and we indicate by |0a〉B the ground state and by |0b〉B one of the

excited states. The latter corresponds to the ground state plus excitations, and a single kink

excitation a|b is allowed, since topological charge is not preserved. For µ small enough the order

parameter in the excited state still tends to vb for x1 → ∞, and the kink must be bound to the

boundary to ensure this property. For the scaling Ising model with a boundary magnetic field

such a bound state has been exhibited in [34] as a pole of the exact kink reflection amplitude on

the boundary; the kink unbinds when the field becomes strong enough. In general, the energy

of the bound state is

Eb = Ea +mab cos θ0 , (6)

where Ea,b is the energy of the state |0a,b〉B , and the rapidity θ = iθ0 of the bound kink is purely

imaginary to make Eb−Ea smaller than the unbinding threshold mab. As observed in [35], since

mab is the interfacial tension between phases a and b, and Ea (resp. Eb) the interfacial tension

between the boundary and phase a (resp. b), θ0 emerges as the contact angle of phenomenological

wetting theory. θ0 is a function of the dimensionless combination

s = µ/m
1−XΦB

ab . (7)

Binding is stronger when Eb − Ea is small, i.e. for µ small, and consequently s small. As s

increases binding weakens until a delocalization (or boundary wetting) transition takes place

for a value sw at which θ0(sw) = 0. For XΦB
< 1, i.e. when the boundary operator is relevant

on the boundary, it follows from (7) that the interface will be delocalized sufficiently close to

criticality (mab → 0).

The alternative scenario, i.e. XΦB
> 1 and binding growing as mab decreases, namely when

the interface fluctuates more, is not plausible. Understanding why it does not occur is instructive

about the role of boundary operators in wetting phenomena. Consider for this purpose the case

in which µ is a boundary magnetic field which for positive values favors phase a. It is then easy

to see that the analysis we performed above applies only to the case of a relevant boundary

operator. Indeed it requires that the boundary magnetization, which is responsible for the

creation of the kink a|b in |0b〉B and goes as µXΦB
/(1−XΦB

), is small for µ small, and then that

XΦB
< 1. Notice that µ = 0 corresponds to free boundary spins, and µ = +∞ to boundary

spins maximally polarized (fixed) in the direction a. These are scale (actually conformally [36])

invariant boundary conditions, and a boundary magnetic operator relevant at µ = 0 induces a

boundary renormalization group flow from free to fixed, i.e. towards the boundary fixed point

with less degrees of freedom. This is what happens in the Ising model, where XΦB
equals 1/2

at the free boundary point and is larger than 1 at the fixed boundary point [36]. On the other

hand, a boundary magnetic operator irrelevant at µ = 0 requires the presence of an intermediate,

partially polarized boundary fixed point at µ = µ∗, where it becomes relevant. The above

analysis of the localization of the interface can then be repeated starting from this intermediate

fixed point, replacing µ with µ − µ∗, and leads to the same conclusions. A partially polarized
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boundary fixed point is known to occur in the Blume-Capel model, for which XΦB
= 3/2 at

µ = 0, and the vacancies make possible that the fixed point at µ∗ has more degrees of freedom

than that at µ = 0 [37, 38].

A situation different from that analyzed so far arises if |0a〉B and |0b〉B are states whose

degeneracy is preserved by the boundary operator. In the Ising model, for example, modifying

the boundary bond coupling from the bulk value J to a value J0 (µ ∼ J − J0) preserves the

degeneracy of |0+〉B and |0−〉B . In such a case, for mab large we can use the non-relativistic

result that a potential well at the extremity of the half-line produces a bound state only if it

is sufficiently deep [19]. Hence the interaction, if attractive, localizes the interface for s large

enough, beyond a threshold sw. Since, as already observed, for µ fixed localization cannot

increase as mab decreases, we conclude from (7) that XΦB
> 1 at the free boundary condition

point µ = 0. This prediction can be checked to be true in the Ising, Blume-Capel and Potts

cases, for which boundary operators are classified [36, 37, 38, 39]. Putting all together, we see

that localization at a boundary can follow different paths, but allows for the general conclusions

that the interface delocalizes as bulk criticality is approached, and that the delocalized regime

corresponds to an irrelevant boundary operator.

The Ising lattice solution of [9] is obtained for fixed boundary spins and bonds coupling

them to the adjacent spin column weakened from the bulk value J to J0. The overall effect is

that of a boundary magnetic field varying from zero to infinity as J0 varies from zero to J , and

the solution exhibits the wetting transition at sw which, within our classification, falls into the

energy splitting class.

In general, for fixed µ, (2) and (7) select a wetting transition value λw of the bulk parameter.

The relation (1−cos θ0) ∝ (λ−λw)
2−αS defines the interfacial (or surface) specific heat exponent

αS [3, 4], and the transition is said to be continuous (or ”critical”) if αS < 1. While the contact

angle is phenomenologically set to zero in the delocalized regime 0 < λ < λw, it is important

to realize that analytically unbinding implies that the bound state pole in the kink-boundary

scattering amplitude slides through a branch point into a second sheet of the complex energy

plane [19]. Within the rapidity parameterization this means that the position iθ0 of the pole

changes sign at λw, i.e.

θ0 ∝ (λ− λw)
2k+1 , k = 0, 1, 2, . . . , (8)

so that αS = −4k; clearly, the value k = 0 is the one expected in the generic case, and corre-

sponds in particular to the Ising solution of [9]. Eq. (8) also makes clear that αS is not affected

by renormalization, a feature that presumably persists in higher dimensions; experimental and

numerical estimates for near-critical three-dimensional wetting are consistent with the value

αS = 0 [7]. A second exponent βS ≤ 0, usually regarded as independent, describes the diver-

gence of the wetting layer thickness l ∝ (λ− λw)
βS [3, 4]. We have to identify l with the inverse

of the modulus mabθ0 (θ0 ≪ 1) of the momentum of the bound kink2, so that βS = αS/2 − 1,

with a generic value βS = −1, to be contrasted with the logarithmic divergence of l observed

2The imaginary momentum causes the exponential decay of the wave function e
ipx1 far from the boundary.
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for near-critical wetting in three dimensions [7].

5. In summary, we showed how the theory of interface localization in near-critical planar

systems at phase coexistence can be formulated from first principles. This allowed us to show

that, remarkably, the binding of two interfaces (and then interfacial wetting) is determined by

the value of the bulk correlation length critical exponent. The strength of localization on a defect

line may renormalize towards zero approaching criticality, but this is not sufficient to induce a

delocalization transition. The latter occurs through different patterns in the boundary case, with

the unifying feature that the boundary field becomes irrelevant in the delocalized (wet) regime.

We showed that the surface specific heat and layer thickness exponents of the transition are not

affected by renormalization and, contrary to usual assumptions, are related, with allowed values

that we determined identifying the analytic mechanism underlying the wetting transition.
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