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Résumé

This paper is about index policies for minimizing (frequentist) regret in a stochastic multi-armed
bandit model, that are inspired by a Bayesian view on the problem. Our main contribution is to prove
the asymptotic optimality of Bayes-UCB, an algorithm based on quantiles of posterior distributions,
when the rewards distributions belong to a one-dimensional exponential family, for a large class
of prior distributions. We also show that the Bayesian literature gives new insight on what kind
of exploration rates could be used in frequentist, UCB-type algorithms. Indeed, approximations of
the Bayesian optimal solution or the Finite Horizon Gittins indices suggest the introduction of two
algorithms, KL-UCB+ and KL-UCB-H+, whose asymptotic optimality is also established.

1 Introduction

This paper present new analyses of Bayesian-flavored strategies for sequential resource allocation in
an unknown, stochastic environment modeled as a multi-armed bandit. A stochastic multi-armed bandit
model is a set of K probability distributions, ν1, . . . , νK , called arms, with which an agent interacts in
a sequential way. At round t the agent, who does not know the arms’ distributions, chooses an arm At.
The draw of this arm produces an independent sample Xt from the associated probability distribution
νAt , often interpreted as a reward. The arms can indeed be viewed as those of different slot machines,
also called one-armed bandit, generating rewards according to some underlying probability distribution.

In several applications, that range from the motivating example of clinical trials [31] to the more
modern motivation of online advertisement (e.g., [14]), the goal of the agent is to adjust his strategy
A = (At)t∈N in order to maximize the rewards accumulated during his interaction with the bandit model.
Note that the strategy of the agent, also called bandit algorithm, is sequential in the sense that the arm
At is chosen based on the previous observations A1,X1, . . . ,At−1,Xt−1. More precisely, the goal is to
design a sequential strategy maximizing the expectation of the sum of rewards up to some horizon T . If
µ1, . . . , µK denote the means of the arms, and µ∗ = maxa µa, this is equivalent to minimize the regret,
defined as the expected difference between the reward accumulated up to time T by the strategy that
knows the arm with highest mean and always plays it, and the reward accumulated by a strategy A :

R(T,A) ∶= E [Tµ∗ −
T

∑
t=1

Xt] = E [
T

∑
t=1

(µ∗ − µAt)] . (1)

This paper focuses on good strategies in parametric bandit models, in which the distribution of arm
a depends on some parameter θa : he write νa = νθa . Just like in every parametric model, two different
views can be adopted. In the frequentist view, θ = (θ1, . . . , θK) is an unknown parameter whereas in the
Bayesian view θ is a random variable, drawn from a prior distribution Π. The expectation in (1) can thus
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be taken under any of this two probabilistic models, leading in the first setting to the notion of frequentist
regret, that depends on the parameter θ :

Rθ(T,A) ∶= Eθ [
T

∑
t=1

(µ∗ − µAt)] =
K

∑
a=1

(µ∗ − µa)Eθ[Na(T )], (2)

where Na(T ) = ∑
T
t=1 1(At=a) is the number of times arm a has been drawn up to time T , and in the

second case to the notion of Bayesian regret, that depends on the prior distribution Π :

RΠ(T,A) ∶= EΠ
[
T

∑
t=1

(µ∗ − µAt)] = ∫ Rθ(T,A)dΠ(θ), (3)

where EΠ includes an average over θ ∼ Π. Bayesian regret is sometimes referred to as Bayes risk in the
literature, and we will use this terminology in the rest of the paper.

The first bandit strategy was introduced by Thompson in 1933 [31] in a Bayesian framework, and a
large part of the early works on bandit models was adopting the same perspective [9, 7, 18, 8]. Indeed, as
Bayes risk minimization has an exact—yet often intractable—solution, finding ways to efficiently com-
pute this solution was an important line of research. This will be explained in more details in Section 3.
Frequentist regret minimization has no exact solution, however since 1985 and the seminal work of Lai
and Robbins [24], there is a precise characterization of good bandit algorithms in a frequentist sense.
They show that for any uniformly consistent policy A (i.e. such that for all θ,Rθ(A, T ) = o(Tα) for all
α ∈]0,1]), the number of draws of any sub-optimal arm a (µa < µ∗) is asymptotically lower bounded as
follows :

lim inf
T→∞

Eθ[Na(T )]

logT
≥

1

KL(νθa , νθ∗)
, (4)

where KL(ν, ν′) denotes the Kullback-Leibler divergence between the distributions ν and ν′. From (2),
this yield a lower bound on the regret.

This result holds for simple parametric bandit models, including exponential family bandit models
presented in Section 2, that will be our main focus in this paper. It paved the way to a new line of
research, trying to build asymptotically optimal strategies, that is strategies matching the lower bound
(4), for some classes of distributions. Most of the algorithms proposed since then belong to the family
of index policies, that compute at each round one index per arm, depending on the history of rewards
observed from this arm only, and select the arm with largest index. More precisely, they are UCB-type
algorithms, building confidence intervals for the means of the arms and choosing as an index for each arm
the associated Upper Confidence Bound. The design of the confidence intervals has been successively
improved [1, 6, 5, 4, 19, 12] so as to obtain simple index policies for which non-asymptotic upper bound
on the regret can be given. Among them, the KL-UCB algorithm [12] matches the lower bound (4). As
they use confidence intervals on unknown parameters, all these index policies are based on frequentist
tools. However, it is interesting to note that the first index policy was introduced by Gittins in 1979 [18]
to solve a Bayesian multi-armed bandit problem and is based on Bayesian tools, i.e. on exploiting the
posterior distribution on the parameter of each arm.

Note that tools and objectives should be separated : one can compute the Bayes risk of an algorithm
based on frequentist tools or the (frequentist) regret of an algorithm based on Bayesian tools. In this
paper, we focus on the latter and advocate the use of index policies inspired by Bayesian tools for mini-
mizing regret. Our main contribution is to prove the asymptotic optimality of the Bayes-UCB algorithm
introduced by [20] for any exponential bandit models and for a large class of prior distributions. Our
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analysis relies on two ingredients : tight bounds on the tail of posterior distributions, and a deviation
inequality involving alternative exploration rate. This last tool also allow us to prove the asymptotic
optimality of two variants of KL-UCB, called KL-UCB+ and KL-UCB-H+, that display improved empi-
rical performance. Interestingly, the alternative exploration rate used by these two algorithms is already
suggested by asymptotic approximations of the Bayesian exact solution or the Finite-Horizon Gittins
indices.

Over the past few years, another Bayesian algorithm, Thompson Sampling, has become increasingly
popular for its good empirical performance. This randomized algorithm, that draws each arm according
to its posterior probability of being optimal, was introduced in 1933 as the very first bandit algorithm [31]
but the first logarithmic upper bound on its regret dates back to 2012 [2]. Now, this strategy is know to
be asymptotically optimal in exponential family bandit models, for specific choices of prior distributions
[21, 3, 22]. Our experiments of Section 6 highlight that the index policy presented in this paper are also
competitive with Thompson Sampling.

The paper is structured as follow. In Section 2, we introduce the exponential family bandit models
that we consider in the rest of the paper, and the associated Bayesian tools. After recalling the notion
of Bayesian optimal solution and Gittins indices in Section 3, we explain in Section 4 how they suggest
a modification in the KL-UCB algorithm, leading to the KL-UCB+ and the KL-UCB-H+ algorithms.
Section 5 is dedicated to our analysis of the Bayes-UCB algorithm, from which the asymptotic optimality
of KL-UCB+ and KL-UCB-H+ also follows. In Section 6, we investigate numerically the performance
of these three asymptotically optimal, Bayesian-flavored index policies.

Notation We denote by (Ya,s) the sequence of successive rewards generated by arm a in the bandit
model. Given a bandit algorithm, Na(t) = ∑

t
k=1 1(Ak=a) is the number of draws of arm a up to round t.

In particular, when arm At is chosen at round t, the observed reward Xt satisfies Xt = Ya,Na(t). Letting
µ̂a,s =

1
s ∑

s
k=1 Ya,k be the empirical mean of the first s rewards from a, the empirical mean of arm a after

t rounds of the bandit algorithm, µ̂a(t), satisfies

µ̂a(t) = µ̂a,Na(t) =
1

Na(t)

Na(t)
∑
s=1

Ya,s.

2 (Bayesian) exponential family bandit models

In the rest of the paper, we consider the important class of exponential family bandit models, in which
the arms belong to a one-parameter canonical exponential family.

2.1 Exponential families

A one-parameter canonical exponential family is a set P of probability distributions, indexed by
θ ∈ R called the natural parameter, that is defined by

P = {νθ, θ ∈ Θ ∶ νθ has a density fθ(x) = exp(θx − b(θ)) w.r.t ξ},

where Θ =]θ−, θ+[ is an open interval, b a twice-differentiable and convex function (called the log-
partition function) and ξ a reference measure. Examples of such distributions are given in Table 1 below.

If X ∼ νθ, it can be shown that E[X] = ḃ(θ) and Var[X] = b̈(θ) > 0. Thus there is a one-to-one
mapping between the natural parameter θ and the mean µ = ḃ(θ), and distributions in an exponential
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Distribution Density Mean µ Parameter θ b(θ)

Bernoulli B(λ) λx(1 − λ)1−x1{0,1}(x) λ log λ
1−λ log(1 + eθ)

Poisson P(λ) λx

x! e
−λ1N∗(x) λ log(λ) eθ

Gaussian N (λ,σ2) 1√
2πσ2

e−
(x−λ)2

2σ2 λ λ
σ2

σ2θ2

2

(σ2 known)
Gamma Γ(k, λ) λk

Γ(k)x
k−1e−λx1R+(x) k/λ −λ −k log(−θ)

(k known)

TABLE 1 – Examples of exponential families and associated divergence.

family can be alternatively parametrized by their mean. Letting J ∶= ḃ(Θ), for µ ∈ J we denote by νµ the
distribution in P that has mean µ : νµ = νḃ−1(µ). The variance V (µ) of the distribution νµ is related to
its mean in the following way :

V(µ) = b̈(ḃ−1
(µ)).

The Kullback-Leibler divergence between distributions in an exponential family has a closed form
expression as a function of the natural parameters. Letting K(θ, λ) be the Kullback-Leibler divergence
between the distributions parameterized by θ and λ, one has

K(θ, λ) ∶= KL(νθ, νλ) = ḃ(θ)(θ − λ) − b(θ) + b(λ). (5)

We also let d(µ,µ′) be the KL-divergence between the distributions of means µ and µ′ :

d(µ,µ′) ∶= KL(νµ, νµ
′
) = K(ḃ−1

(µ), ḃ−1
(µ′)).

Closed-form for d in the examples of exponential families given in Table 1 are available (see [12]), which
allows to define the associated KL-UCB index :

ua(t) = sup{q ∈ J ∶ Na(t)d(µ̂a(t), q) ≤ log(t logc(t))} .

The exploration rate, which is here log(t logc(t)), controls the probability with which ua(t) is an upper
bound on µa. Using that y ↦ d(x, y) is convex and non-decreasing when y > x, ua(t) can be easily
(approximately) computed in practice, using dichotomic search for example.

2.2 Posterior distributions in exponential families

Assume that θ is drawn from a distribution on Θ that has density h with respect to the Lebesgue
measure, and let (Ys) be a sequence of observations i.i.d. conditionally to θ, with distribution νθ. The
posterior distribution of θ given the first n observations has density

p(θ∣Y1, . . . , Yn)∝ exp (n (θµ̂n − b(θ)))h(θ), with µ̂n =
1

n

n

∑
s=1

Ys.

This distribution depends on two sufficient statistics : the number of observations, n, and the empirical
mean of observations, µ̂n. Indeed, the posterior distribution of θ after n observations is pn,µ̂n , using the
notation

pn,x(I) ∶=
∫I exp(n(θx − b(θ))h(θ)dθ

∫Θ exp(n(θx − b(θ))h(θ)dθ
for I ⊂ Θ.
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A prior distribution on θ with density h defined on Θ is equivalent to a prior distribution on the mean
µ = ḃ(θ) with density f defined on J = ḃ(Θ), where f and h are related by

∀θ ∈ Θ, h(θ) = f(ḃ(θ))b̈(θ) ⇔ ∀u ∈ J, f(u)V (u) = h(ḃ−1
(u)).

The posterior distribution of µ given n observations is also a function of n and µ̂n, and we denote by
πn,x the posterior distribution on µ after n observations with empirical mean x :

πn,x(J ) ∶=
∫J exp(n(ḃ−1(u)x − b(ḃ−1(u))))f(u)du

∫J exp(n(ḃ−1(u)x − b(ḃ−1(u))))f(u)du
for J ⊂ J.

Putting a prior distribution on the mean is often more natural and there exists families of conjugated prior
on the mean, given in Table 2.

Distribution Prior distribution Posterior distribution on µ after n
on µ observations with empirical mean x

B(µ) Beta(a, b) Beta(a + nx, b + n(1 − x))
P(µ) Γ(c, d) Γ(c + nx, d + n)

N (µ,σ2) N (µ0,m
−1
0 ) N (

m0µ0+nxσ−2
m0+nσ−2 , (m0 + nσ

−2)−1)

Γ(k, k/µ) InvΓ(c, d) InvΓ(c + kn, d + knx)

TABLE 2 – Conjugate prior on the mean and associated posterior distributions.

2.3 Exponential family bandit model

In the sequel, we fix an exponential family P and consider a bandit model νµ = (νµ1 , . . . , νµK),
where νµa belongs to P and has mean µa. We restrict our attention to Bayesian bandit models with a
product prior on µ, such that µ1, . . . , µK are independent, and µa is drawn from a prior distribution on
J = ḃ(Θ) that has density fa with respect to the Lebesgue measure. Inspired by the notation introduced
in Section 2.2, we let πa,n,x be the posterior distribution on µa after n observations from this arm that
have yield an empirical mean x. The posterior distribution on µa at the end of round t is therefore

πta ∶= πa,Na(t),µ̂a(t).

The following rewriting of πa,n,x will be very useful in the sequel to obtain tight bounds on the tail of
the posterior distribution.

Lemma 1.

πa,n,x(J ) =
∫J exp(−nd(x,u))fa(u)du

∫J exp(−nd(x,u))fa(u)du
, for all J ⊂ J.
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Proof Let J ⊂ J. One has

πa,n,x(J ) =
∫J exp(n(ḃ−1(u)x − b(ḃ−1(u))))fa(u)du

∫J exp(n(ḃ−1(u)x − b(ḃ−1(u))))fa(u)du
×
e−n(xḃ

−1(x)−b(ḃ−1(x)))

e−n(xḃ−1(x)−b(ḃ−1(x)))

=
∫J exp(−n(x(ḃ−1(x) − ḃ−1(u)) − b(ḃ−1(x)) + b(ḃ−1(u)))fa(u)du

∫J exp(−n(x(ḃ−1(x) − ḃ−1(u)) − b(ḃ−1(x)) + b(ḃ−1(u)))fa(u)du

=
∫J exp(−nd(x,u))fa(u)du

∫J exp(−nd(x,u))fa(u)du
,

using the closed form expression (5) and the fact that θ = ḃ−1(µ).

3 Bayesian optimal solution and Gittins indices

In a Bayesian framework, the interaction of an agent with a multi-armed bandit can be modeled by
a Markov Decision Process (MDP), in which the state Πt is the current posterior distribution over the
parameter of the arms. In exponential bandit models, the posterior over µ is Πt = ⊗π

t
a. There are K

possible actions and when action At is chosen in state Πt, the observed reward Xt is a sample from arm
At, that satisfies, conditionally to the past,

{
Xt ∼ νµ

µ ∼ Πt(At).

The new state is Πt+1 = ⊗πt+1
a with πt+1

a = πta for all a ≠ At and the density of πt+1
At

gets updated
according to

dπt+1
At (u)∝ exp(−(ḃ−1

(u)Xt − b(ḃ
−1

(u))))dπtAt(u).

Bayes risk minimization, or reward maximization under the Bayesian probabilistic model, is equi-
valent to solving this MDP for the finite-horizon criterion, which boils down to finding a strategy of the
form At = g(Πt) for some deterministic function g, that maximizes

EΠ
[
T

∑
t=1

Xg
t ] , (6)

where (Xg
t )t is the sequence of rewards obtained under policy g. From the theory of MDPs (see e.g.,

[28]), the optimal policy is solution of dynamic programming equations and can be computed by induc-
tion. However, due to the very large, if not infinite, state space (the set of possible posterior distributions
over µ), the computation is often intractable. In a slightly different setting, Gittins proved in 1979 [18]
that the apparently intractable optimal policy reduces to an index policy, with corresponding indices later
called the Gittins indices. He considers the discounted Bayesian multi-armed bandit problem, in which
the goal is to find a policy g that minimizes

EΠ
[
∞
∑
t=1

αt−1Xg
t ] ,

for some discount parameter α ∈]0,1[. Interestingly, it was proved in [8] that the discount is necessary
for this reduction to hold : in particular, the policy minimizing (6) is not an index policy.
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However, the notion of Gittins indices is a powerful concept, that can also be defined in a finite
horizon multi-armed bandit. The Finite-Horizon Gittins index of an arm depends on the current posterior
distribution on its mean (π = πta) and on the remaining time to play (r = T − t). It can be interpreted as
the price worth paying for playing an arm with posterior π at most r times. Indeed, for λ > 0 consider
the following game, called Cλ, in which a player can either pay λ and draw the arm to receive a sample
Yt, which results in a reward Yt −λ, or stop playing, which yields no reward. As precisely defined below,
the Gittins index is the critical value of λ for which the optimal policy in Cλ is to stop playing the arm
from the beginning.

Definition 2. The Finite-Horizon Gittins index for a current posterior π and remaining time r isG(π, r) =
inf{λ ∈ R ∶ V ∗

λ (π, r) = 0}, with

V ∗
λ (π, r) = sup

0≤τ≤r
E
Yt

i.i.d∼ νµ
µ∼π

[
τ

∑
t=1

(Yt − λ)] ,

where the supremum is taken over all stopping time τ smaller than r a.s., with the convention ∑0
t=1 ⋅ = 0.

Computing the FH-Gittins indices requires to compute V ∗
λ (π, r) for several values of λ in order to

find the critical value (dichotomic search can be used). Each computation boils down to solving a MDP,
but on a smaller state space : the possible posterior distributions on the mean of a single arm. Even
if it is much easier than the computation of the optimal policy, computing the FH-Gittins indices can
still be costly, and finding efficient methods to do it is still an area of investigation (see [27]). In the
particular case of Bernoulli bandit models with a uniform prior over the mean, the set of (Beta) posterior
is parametrized by two integers (number of zeros and ones observed so far), and for small horizons (up to
T = 1000), it is possible to implement the index policy associated to the Finite-Horizon Gittins indices :

At+1 = argmax
a=1,...,K

G(πta, T − t).

We refer to this index policy as the Finite-Horizon Gittins algorithm. Although this algorithm does not
coincide with the Bayesian optimal solution, we believe it is a good approximation. This is supported
by simulations performed in a two-armed Bernoulli bandit problem, for which we compute the Bayes
risk of the optimal strategy and that of the FH-Gittins algorithm up to horizon T = 70, as presented
in Figure 1. For small horizons, [17] propose a comparison of different algorithms with the Bayesian
optimal solution and similarly notice that the Bayes-risk of FH-Gittins (called Λ-strategy) is very close
to the optimal value, for various choices of prior and horizons.

More interestingly, the FH-Gittins algorithm also appears to perform well when evaluated with res-
pect to the frequentist regret, as illustrated in experiments reported in Section 6 and we believe it is a
good idea to employ this algorithm when it is efficiently implementable, that is for small horizons. The
first theoretical elements to support this claim were recently obtained by [25], who present the first lo-
garithmic upper bound on the regret of the Finite-Horizon Gittins algorithm, in the particular case of
Gaussian bandit models. In this paper, we provide new theoretical guarantees for another Bayesian in-
dex policy, much easier to implement, Bayes-UCB. Before introducing this algorithm in Section 5, we
present in the next section other index policies that can be related to the Finite-Horizon Gittins indices.
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FIGURE 1 – Bayes risk of the optimal strategy (blue) and FH-Gittins (dashed red) estimated using
N = 106 replications of a bandit game, for which the means are drawn from U([0,1])

4 Algorithms inspired by the Bayesian optimal solution

4.1 An asymptotic lower bound on the Bayes risk

The Bayesian optimal solution is introduced in the previous section, but the order of magnitude of
its Bayes risk is not given. In the paper [23], Lai shows that, in exponential family bandit models, the
Bayes risk of any strategy is asymptotically lower bounded by C0(π) log2(T ), when C0(π) is a prior-
dependent constant. He also provides matching strategies, implying in particular that the Bayes risk of
the Bayesian solution is of order log2(T ).

For product prior distributions, which is the particular case studied in this paper, Theorem 3 be-
low provides a lower bound on the Bayes risk that is slightly more general than Lai’s result in the
sense that it does not require the prior distribution on the natural parameter of each arm to have a
compact support. The proof of this result, provided in Appendix B, follows however closely that of
[23]. Before stating Theorem 3, we introduce some useful notation. For a = 1, . . . ,K, we let θ−a =

(θ1, . . . , θa−1, θa+1, . . . , θK) be the vector of ΘK−1 that consists of all components of θ except com-
ponent number a. We let θ∗a = maxi≠a θi, so that θ∗a only depends on θ−a.

Theorem 3. Let H be a prior distribution on ΘK that has a product form, such that each marginal has
a density ha with respect to the Lebesgue measure λ that satisfies ha(θ) > 0 for all θ ∈ Θ. Letting H−a
the marginal distribution of θ−a, that has density∏i≠a hi(θi) with respect to λ⊗K−1, one assume that

∀a = 1, . . . ,K, ∫
ΘK−1

ha(θ
∗
a)dH−a(θ−a) <∞.

Under the prior distribution H , the Bayes risk of any strategy A satisfies

lim inf
T→∞

RH(T,A)

log2(T )
≥

1

2

K

∑
a=1
∫

ΘK−1
ha(θ

∗
a)dH−a(θ−a).

For exponential family bandit models with a product prior, Lai provides the first (asymptotic) prior-
dependent Bayes risk upper bounds, when Θ is compact. Letting [µ−, µ+] = ḃ(Θ), he shows in particular
that the index policy associated to

Ia(t) = sup{q ∈ [µ−, µ+] ∶ Na(t)d(µ̂a(t), q) ≤ log(
T

Na(t)
)} , (7)
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where d(x, y) = d (max(µ−,min(µ+, x)), y)), has a Bayes risk that asymptotically matches the lower
bound of Theorem 3. This index policy is reminiscent of KL-UCB. Beyond the fact that a regularized ver-
sion of the divergence function d is used, the main difference with KL-UCB is the use of log(T /Na(t))
as an exploration rate in place of log t.

While a recent line of research on Bayesian randomized algorithms (e.g. Thompson Sampling) has
provided Bayes risk upper bound in quite general settings ([30, 29]), to the best of our knowledge, no
upper bound scaling in log2(T ) has been obtained for exponential family bandit models since the work
of Lai. [10, 26] provide the first prior-dependent upper bounds on the Bayes-risk of Thompson Sampling,
in a particular case quite different from our setting : a two-armed bandit model in which the means of
the arms are known up to a permutation and the joint prior distribution is thus supported on (µ1, µ2)

and (µ2, µ1). In Section 6.2, we investigate numerically the optimality of the Bayesian index policies
discussed in the rest of the paper with respect to the lower bound of Theorem 3.

4.2 Approximating the Gittins indices

As discussed in the previous section, the FH-Gittins strategy, that is the index policy associated to

Ja(t) = G(πta, T − t),

is conjectured to be a good approximation of the Bayesian optimal policy, yet the above indices re-
main difficult to compute. Building on approximations of the Finite-Horizon Gittins indices that can be
extracted from the literature permits to obtain a related efficient index policy.

Recall from Definition 2 that the Finite-Horizon Gittins index takes the form

G(π, r) = inf {λ ∈ R ∶ V ∗
λ (π, r) = 0} ,

where V ∗
λ (π, r) correspond to the optimal value function associated a calibration game Cλ. In the paper

[11], Burnetas and Katehakis propose tight bounds on the value function V ∗
λ (πa,n,x, r) for exponential

family bandits. These bounds permit to derive asymptotic approximations of the FH-Gittins indices,
when r is large, and to show that, for large values of the remaining time T − t,

Ja(t) ≃ sup{q ∈ [µ−, µ+] ∶ Na(t)d̃(µ̂a(t), q) ≤ log(
T − t

Na(t)
)} . (8)

This approximation is valid under the assumption that Θ is compact : [µ−, µ+] = ḃ(Θ) and d̃ is another
regularization of the divergence function d, such that, for any y, d̃(x, y) = d(x, y) for x > µ− and for
x ≤ µ−,

d̃(x, y) = d(µ−, y) + (ḃ−1
(y) − ḃ−1

(µ−))(µ− − x).

In the particular case of Gaussian bandit models, the work of Chang and Lai ([13]) on the approximation
of discounted Gittins indices can also be adapted to obtain approximations of the Finite-Horizon Gittins
indices, showing the same tendency as in (8) : compared to the corresponding KL-UCB index, here
the log t is replaced by log((T − t)/Na(t)). This alternative exploration rate also appears in the non-
asymptotic lower bound on the Gaussian Gittins index obtained by [25].
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4.3 Alternative exploration rates

The indices (7) and (8) obtained above reveal that asymptotic approximations of the Bayesian optimal
policy or the Finite-Horizon Gittins indices both suggest the use of an alternative exploration rate in the
KL-UCB algorithm, in which the log(t) is replaced by a quantity that decreases when then number of
draws of the arm Na(t) increases.

Interestingly, the use of alternative exploration rates in UCB-type algorithms has appeared before in
the bandit literature. For example the MOSS algorithm [4], associated to the index

µ̂a(t) +

¿
Á
ÁÀ log (T /(KNa(t)))

Na(t)

is designed to be optimal in a minimax sense for bandit models with sub-gaussian rewards : the algorithm
achieves aO(

√
KT ) distribution-independent upper bound on the regret. Besides, it was noticed by [16]

that the use of the exploration rate log(t/Na(t)) in place of log(t) in the KL-UCB algorithm leads to
better empirical performance.

We formally define below two index policies that are variants of KL-UCB. KL-UCB-H+ requires
the knowledge of the horizon T , and is suggested by approximations of the Bayesian optimal strategy or
the Gittins indices, whereas KL-UCB+ is an anytime version of this strategy, that was already shown to
perform well in practice. In the next section we will see that the analysis of the Bayes-UCB algorithm
also give us the asymptotic optimality of these two algorithms, and their practical improvement over
KL-UCB will be illustrated in Section 6.

Definition 4. Let c ≥ 0. We define KL-UCB+ and KL-UCB-H+ with parameter c as the index policies
respectively associated to the indices

u+a(t) = sup{q ≥ µ̂a(t) ∶ Na(t)d(µ̂a(t), q) ≤ log(
t logc t

Na(t)
)} , (9)

uH,+a (t) = sup{q ≥ µ̂a(t) ∶ Na(t)d(µ̂a(t), q) ≤ log(
T logc T

Na(t)
)} . (10)

5 Bayes-UCB : a simple and optimal Bayesian index policy

5.1 Algorithm and main result

The Bayes-UCB algorithm is an index policy that was introduced by [20] in the context of parametric
bandit models. Given a prior distribution on the parameters of the arms, the index used for each arm is
a well-chosen quantile of the (marginal) posterior distributions of its mean. In the particular case of
exponential family bandit models, given a product prior distribution on the means π0 = π0

1 ⊗ ⋅ ⋅ ⋅ ⊗ π0
K ,

the Bayes-UCB index is

qa(t) = Q(1 −
1

t(log t)c
;πta) = Q(1 −

1

t(log t)c
;πNa(t),µ̂a(t)) ,

where Q(α;π) is the quantile of order α of the distribution π (that is, PX∼π(X ≤ Q(α;π)) = α) and c is
a real parameter.

While the efficiency of Bayes-UCB has been demonstrated even beyond bandit models with inde-
pendent arms, the only available regret bound holds for Bernoulli bandit models when a uniform prior
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distribution on the mean of each arm is used. In this section, we provide new regret bounds for general
exponential family bandit models, showing that a slight variant of Bayes-UCB is asymptotically optimal
for a large class of prior distributions.

We fix an exponential family, characterized by its log-partition function b and the interval Θ =]θ−, θ+[
of possible natural parameters. We analyze Bayes-UCB for exponential bandit models satisfying the
following.

Assumption 5. There exists µ−0 > ḃ(θ−) and µ+0 < ḃ(θ+) such that

∀a ∈ {1, . . . ,K}, µ−0 ≤ µa ≤ µ
+
0 .

For the exponential families of Table 1, this assumption requires that the means of all arms are inside
a compact interval that does not contain zero, and neither zero nor one in the Bernoulli case (i.e. there
exists α > 0 such that µa ∈ [α,1−α] for all a). We now introduce a regularized version of the Bayes-UCB
index, that relies on the knowledge of µ−0 and µ+0 , as

qa(t) = Q(1 −
1

t(log t)c
;pNa(t),µ̄a(t)) , (11)

where µ̄a(t) = min (max(µ̂a(t), µ
−
0), µ

+
0).

Theorem 6. Let νµ be an exponential bandit model satisfying Assumption 5. Assume that for all a, π0
a

has a density fa with respect to the Lebesgue measure such that fa(u) > 0 for all u ∈ J = ḃ(Θ). Let
ε > 0. The algorithm that draws each arm once and for t ≥K selects at time t + 1

At+1 = argmax
a

qa(t),

with qa(t) defined in (11), satisfies

∀a ≠ a∗, E[Na(T )] ≤
1 + ε

d(µa, µ∗)
log(T ) + oε (log(T )) .

5.2 Tail bounds for posterior distributions

Just like the analysis of [20], the analysis of Bayes-UCB that we give in the next section relies on
tight bounds on the tails of posterior distributions, that permit to control quantiles. These bounds are
expressed with the Kullback-Leibler divergence function d. Therefore, an additional tool in the proof is
the control of the deviations of the empirical mean rewards from the true mean reward, measured with
this divergence function, which follows from the work of [12].

In the particular case of Bernoulli bandit models, Bayes-UCB uses quantiles of Beta posterior dis-
tributions, and a specific argument, namely the fact that Beta(a, b) is the distribution of the a-th order
statistic among a + b − 1 uniform random variables, permits to relate a Beta distribution (and its tails) to
a Binomial distribution (and its tails). This ‘Beta-Binomial trick’ is also used extensively in the analysis
of Thompson Sampling for Bernoulli bandits proposed by [2, 21, 3]. Note that this argument can only
be used for Beta distribution with integer parameters, which rules out many possible prior distributions.
Using specific arguments, it would also be possible to derive posterior bounds for Gaussian bandit mo-
dels, using known tails bounds for the Gaussian posterior distribution (see Theorem 1.2.3. of [15]). For
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exponential family bandit models, an upper bound on the tail of the posterior distribution was obtained
by [22] when the Jeffrey’s prior is used.

Lemma 7 below present more general results, that hold for any class of exponential family bandit
models and any prior distribution with a density that is positive on J = ḃ(Θ). For such (proper) prior
distributions, we give deterministic upper and lower bounds on the corresponding posterior probabili-
ties πa,n,x([v, µ+[). Compared to the result of [22], which is not presented in this deterministic way,
Lemma 7 is based on a different rewriting of the posterior distribution, given in Lemma 1.

Lemma 7. Let µ−0 , µ
+
0 be such that ḃ(µ−0) > θ

− and ḃ(µ+0) < θ
+.

1. There exists two positive constants A and B such that for all x, v that satisfy µ−0 < x < v < µ+0 , for
all n ≥ 1, for all a ∈ {1, . . . ,K},

An−1e−nd(x,v) ≤ πa,n,x([v, µ
+
[) ≤ B

√
ne−nd(x,v).

2. There exists a constant C such that for all x, v that satisfy µ−0 < v ≤ x < µ+0 , for all n ≥ 1, for all
a ∈ {1, . . . ,K},

πa,n,x([v, µ
+
[) ≥

1

C
√
n + 1

.

The constants A,B,C depend on µ−0 ,µ+0 , b and the prior densities.

5.3 A finite-time analysis

We give here the proof of Theorem 6. To ease the notation, assume that arm 1 is an optimal arm, and
let a be a suboptimal arm.

E[Na(T )] = E [
T−1

∑
t=0

1(At+1=a)] = 1 +E [
T−1

∑
t=K

1(At+1=a)] .

We introduce a truncated version of the KL-divergence, d+(x, y) ∶= d(x, y)1(x<y) and let gt be a decrea-
sing sequence, that will be specified later.

Using that, by definition of the algorithm, if a is played at round t + 1, it holds in particular that
qa(t) ≥ q1(t), one has

(At+1 = a) ⊆ (µ1 − gt ≥ q1(t))⋃ (µ1 − gt ≤ q̄1(t),At+1 = a)

⊆ (µ1 − gt ≥ q1(t))⋃ (µ1 − gt ≤ q̄a(t),At+1 = a) .

This yields

E[Na(T )] ≤ 1 +
T−1

∑
t=K

P (µ1 − gt ≥ q̄1(t)) +
T−1

∑
t=K

P (µ1 − gt ≤ q̄a(t),At+1 = a).

The posterior bounds established in Lemma 7 permit to further upper bound the two sums in the
right-hand side of the above inequality. With C defined in Lemma 7, we introduce t0, defined by

t ≥ t0 ⇒ (µ1 − gt ≥ µ
−
0 and (t log(t)c − 1)2

≥ C2t) .
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On the one hand, for t ≥ t0,

(µ1 − gt ≥ q̄1(t)) = (π1,N1(t),µ̄1(t)([µ1 − gt, µ
+
[) ≤

1

t logc t
)

= (π1,N1(t),µ̄1(t)([µ1 − gt, µ
+
[) ≤

1

t logc t
, µ̄1(t) ≤ µ1 − gt) ,

since by the lower bound in the second statement of Lemma 7,

(π1,N1(t),µ̄1(t)([µ1 − gt, µ
+
[) ≤

1

t logc t
, µ̄1(t) ≥ µ1 − gt)

⊂
⎛

⎝

1

C
√
N1(t) + 1

≤
1

t logc t

⎞

⎠
⊂ (N1(t) ≥ (

t logc t − 1

C
)

2

)

⊂ (N1(t) ≥ t) = ∅.

Now using the lower bound in the first statement of Lemma 7,

(µ1 − gt ≥ q̄1(t)) ⊆ (
Ae−N1(t)d(µ̄1(t),µ1−gt)

N1(t)
≤

1

t logc t
, µ̄1(t) ≤ µ1 − gt)

⊂ (N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ log(

At logc t

N1(t)
)) .

On the other hand,

T−1

∑
t=K

P (µ1 − gt ≤ q̄a(t),At+1 = a)

=
T−1

∑
t=K

P(πa,Na(t),µ̄a(t)([µ1 − gt, µ
+
[) ≥

1

t logc t
,At+1 = a)

≤
T−1

∑
t=K

P(µ̄a(t) < µ1 − gt, πa,Na(t),µ̄a(t)([µ1 − gt, µ
+
[) ≥

1

t logc t
,At+1 = a) (12)

+
T−1

∑
t=K

P (µ̄a(t) ≥ µ1 − gt,At+1 = a) .

Using Lemma 7, the first sum in (12) is upper bounded by

T−1

∑
t=K

P(B
√
Na(t)e

−Na(t)d+(µ̄a(t),µ1−gt) ≥
1

t logc t
,At+1 = a)

≤
T−1

∑
t=K

t

∑
s=1

P(B
√
se−sd

+(µ̄a,s,µ1−gt) ≥
1

t logc t
,Na(t) = s,At+1 = a)

≤
T−1

∑
t=K

t

∑
s=1

P(sd+(µ̄a,s, µ1 − gs) ≤ log(T logc T ) + log(B) +
1

2
log s,Na(t) = s,At+1 = a)

≤
T

∑
s=1

P(sd+(µ̄a,s, µ1 − gs) ≤ logT + c log logT + log(B) +
1

2
log s)

≤
T

∑
s=1

P(sd+(µ̂a,s, µ1 − gs) ≤ logT + c log logT + log(B) +
1

2
log s) +

T

∑
s=1

P(µ̂a,s < µ−0).
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And by Chernoff inequality,

T

∑
s=1

P(µ̂a,s < µ−0) ≤
∞
∑
s=1

exp(−sd(µ−0 , µa)) =
1

1 − e−d(µ
−
0 ,µa)

.

Still using Chernoff inequality, the second sum in (12) is upper bounded by

T−1

∑
t=K

P (µ̂a(t) ≥ µ1 − gt,At+1 = a) ≤
T−1

∑
t=K

P (µ̂a(t) ≥ µ1 − gNa(t),At+1 = a)

≤
T−1

∑
t=K

t

∑
s=1

P (µ̂a,s ≥ µ1 − gs,Na(t) = s,At+1 = a)

≤
T

∑
s=1

P (µ̂a,s ≥ µ1 − gs) ≤
∞
∑
s=1

exp(−sd(µ1 − gs, µa)) ∶= N0 < +∞.

Putting things together, we proved that, if N ∶= max(t0,N0 + (1 − e−d(µ
−
0 ,µa))−1) + 1, one has

E[Na(T )] ≤ N +
T−1

∑
t=K

P(N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ log(

At logc t

N1(t)
))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T1

+
T

∑
s=1

P(sd+(µ̂a,s, µ1 − gs) ≤ logT + c log logT + log(B) +
1

2
log s)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T2

Term T1 is shown below to be of order o(log(T )), as µ̂1(t) cannot be too far from µ1 − gt. Note
however that the deviation is expressed with log(t/N1(t)) in place of the traditional log(t), which makes
the proof of Lemma 8 more intricate. In particular, Lemma 8 applies to a specific sequence (gt) defined
therein, and a similar result could not be obtained for the choice gt = 0, unlike Lemma 9 below.

Lemma 8. Let gt be such that d(µ1 − gt, µ1) =
1

log(t) . If c ≥ 7, for all A, if t ≥ exp(max(
√

3,A−1/7)),

P(N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ log

At logc t

N1(t)
) ≤ e(

1

At log t
+

3 log log t + logA

At log2 t
+

1

At log3 t
) +

1

t2
.

From Lemma 8, one has

(T1) ≤ e
T−1

∑
t=K

log2 t + 3(log t) log log(t) + logA log t + 1

At(log3 t)
+
T−1

∑
t=K

1

t2

≤
e

A
(2 +

3

e
+

logA

logK
)
T−1

∑
t=K

1

t log(t)
+
π2

6

≤
e

A
(2 +

3

e
+

logA

logK
) log logT +

π2

6
.

The following lemma permits to give an upper bound on Term T2.
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Lemma 9. Let f, g, h be three functions such that

f(s) Ð→
s→∞

∞, g(s) Ð→
s→∞

0 and
h(s)

s
Ð→
s→∞

0,

with g and s ↦ h(s)/s non-increasing for s large enough. For all ε > 0 there exists a (problem-
dependent) constant Na(ε) such that for all T ≥ Na(ε),

T

∑
s=1

P (sd+(µ̂a,s, µ1 − g(s)) ≤ f(T ) + h(s)) ≤
1 + ε

d(µa, µ1)
f(T )

+
√
f(T )

¿
Á
ÁÀ8V 2

a π(1 + ε)
3d′(µa, µ1)

2

d(µa, µ1)
3

+ 8(1 + ε)2V 2
a (

d′(µa, µ1)

d(µa, µ1)
)

2
1

1 − e−d(µ
−
0 ,µa)

+ 1,

with Va = supµ∈[µa,µ1] V (µ).

Let ε > 0. Using Lemma 9, with f(s) = log(s)+c log log(s)+log(B), g(s) = gs defined in Lemma 8
and h(s) = 1

2 log(s), there exists problem dependent constants C and D(ε) such that

(T2) ≤
1 + ε

d(µa, µ1)
(logT + c log logT ) +C

√
logT + c log logT +D(ε).

Putting together the upper bounds on (T1) and (T2) yields, for all ε > 0,

E[Na(T )] ≤
1 + ε

d(µa, µ∗)
log(T ) +Oε(

√
log(T )),

which concludes the proof.

◻

5.4 Asymptotic optimality of KL-UCB+ and KL-UCB-H+

A key step in the analysis of Bayes-UCB is the control of the probability of the event

(N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ log

At logc t

N1(t)
) ,

in which the exploration rate log(t/N1(t)) appears. This control is obtained in Lemma 8 which can also
be used to analyze the KL-UCB+ and KL-UCB-H+ algorithms, introduced in Definition 4, that are based
on such alternative exploration rates. The following theorem proves the asymptotic optimality of these
two index policies, that are respectively associated to the indices u+a(t) and uH,+a (t) defined in (9) and
(10), that depend on a parameter c.

Theorem 10. Let c ≥ 7. Each of the index policy associated to the indices defined by (9) and (10)
satisfies, for all ε > 0,

E[Na(T )] ≤
1 + ε

d(µa, µ∗)
log(T ) +Oε(

√
log(T )).
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Proof of Theorem 10 We first give an analysis of the index policy associated to u+a(t). Introducing
gt defined by d(µ1 − gt, µ1) =

1
log(t) , one can write a decomposition similar to that used in the proof of

Theorem 6 :

E[Na(T )] ≤ 1 +
T−1

∑
t=K

P (µ1 − gt ≥ u
+
1(t))

+
T−1

∑
t=K

P(µ1 − gt ≤ u
+
a(t),At+1 = a)

≤ 1 +
T−1

∑
t=K

P(N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ log(

t logc(t)

Na(t)
)) (13)

+
T−1

∑
t=K

P (Na(t)d
+
(µ̂a(t), µ1 − gt) ≤ log (T logc(T )) ,At+1 = a) , (14)

using the definition of u+a(t) and the fact that t logc t/Na(t) ≤ T logc T . Lemma 8 can be applied (with
A = 1) to show that the sum in (13) is of order o(log(T )), while the sum in (14) can be rewritten and
upper bounded using Lemma 9 : for all ε > 0, the result follows from

E
T−1

∑
t=K

t

∑
s=1

1(sd+(µ̂a,s,µ1−gt)≤log(T logc T ))1(At+1=a,Na(t)=s)

≤
T−1

∑
s=1

P (sd+(µ̂a,s, µ1 − gt) ≤ log (T logc(T ))) ≤
1 + ε

d(µa, µ1)
log(T logc(T )) + oε(log(T )).

For the index policy associated to uH,+a (t), using a similar decomposition,

E[Na(T )] ≤ 1 +
T−1

∑
t=K

P (µ1 − gt ≥ u
H,+
1 (t))

+
T−1

∑
t=K

P(µ1 − gt ≤ u
H,+
a (t),At+1 = a)

≤ 1 +
T−1

∑
t=K

P(N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ log(

T logc(T )

Na(t)
)) (15)

+
T−1

∑
t=K

P (Na(t)d
+
(µ̂a(t), µ1 − gt) ≤ log (T logc(T )) ,At+1 = a) . (16)

The sums in (16) and (14) are the same, and lower bounding T logc T by t logc t in each term of the sum
in (15) shows that it is upper bounded by (13). Thus, this index policy is also asymptotically optimal.

6 Numerical experiments

6.1 Regret minimization

We first perform experiments with a moderate horizon T = 1000, which permits to include the Finite-
Horizon Gittins algorithm discussed in Section 3. Figure 2 displays the regret of KL-UCB, Thompson
Sampling and the four Bayesian index policies discussed in this paper, in two instances of two-armed
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FIGURE 2 – Regret on two-armed Bernoulli bandits (µ = [0.05 0.15] (left) µ = [0.75 0.8] (right)) up to
horizon T = 1000, averaged over N = 10000 simulations

Bernoulli bandit problems. The Bayesian index policies display comparable, if not better, performance
than KL-UCB and Thompson Sampling. In particular, FH-Gittins appears to be significantly better than
the other algorithms on the instance with small rewards. For a larger horizon T = 20000, we then run
experiments on a bandit model with continuous rewards that follow an exponential distribution (which
is a particular case of Gamma distribution, with parameter k = 1, see Table 1). In this setting, Bayes-
UCB and Thompson Sampling are implemented using a InvGamma(1,1) prior on the means. In this
setting, Bayes-UCB, KL-UCB+ and KL-UCB-H+ improve over KL-UCB, and are also competitive with
Thompson Sampling. As already noted in several works (e.g. [12]), the Lai and Robbins lower bound,
that is asymptotic, is quite pessimistic for finite (even large) horizons.
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FIGURE 3 – Regret on a five-armed bandit with Exponential distributions with means µ = [1 1.5 2 2.5 3]
up to horizon T = 20000, averaged over N = 50000 simulations
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6.2 Bayes risk minimization

In this paper, Bayes risk minimization and its exact solution is mostly presented as an inspiration
to come up with better algorithms for regret minimization. However, it is also interesting to understand
whether the proposed algorithm are good approximation of the Bayesian solution, i.e. whether they match
the asymptotic lower bound of Theorem 3.

We report here results of experiments in Bernoulli bandit models with a uniform prior of the means.
In this setting, some computations (see Section B.4) show that the lower bound rewrites

lim inf
T→∞

R(T,A)

log2(T )
≥
K − 1

K + 1
.

In particular, we see that the asymptotic rate of the Bayesian regret is (almost) independent of the number
of arms. For several values ofK, we display on Figure 4 the Bayes riskRT (A(T )) of several algorithms,
together with the theoretical lower bound, as a function of log2(T ).
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FIGURE 4 – Bayes risk up to T = 20000 on a Bernoulli bandit model with a uniform prior on the K
arms, for K = 5,10,15,20, averaged over N = 50000 simulations.

For each value of K, we observe that all the algorithms have a Bayes risk that seems to be affine in
log2(T ). For Thompson Sampling, KL-UCB+ and KL-UCB-H+ the slope is close to (K − 1)/(K + 1),
whereas for KL-UCB and Bayes-UCB it is strictly larger. This leads to the conjecture that the first three
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algorithms are asymptotically optimal in a Bayesian sense. It is to be noted that, while the Bayes risk
of these algorithms seems to be of order (K − 1)/(K + 1) log2(T ) + C(K) for large values of T , the
second order term C(K) appears to be increasing significantly with the number of arms. Compared to
Lai and Robbins lower bound on the regret, this lower bound does not appear to be over-pessimistic in
finite time.

7 Conclusion

In the context of exponential family bandit models, this paper provides the first analysis of a Baye-
sian algorithm that holds for a wide class of prior distributions, namely all distributions that have positive
density with respect to the Lebesgue measure. It also provides theoretical justifications for the use of the
KL-UCB+ algorithm together with a new insight on the alternative exploration rate used by this algo-
rithm. An interesting future direction of research would be to better understand the Finite-Horizon Gittins
strategy, which performs well in practice, but whose asymptotic optimality is still to be established.
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The supplementary material is structured as follows. Appendix A presents Pinsker-like inequalities,
that is quadratic approximations of the Kullback-Leibler divergence functions, when the natural parame-
ters of the distributions belong to some compact interval. These inequalities are used throughout Appen-
dix B and Appendix C, respectively dedicated to the proof of the asymptotic lower bound on the Bayes
risk stated in Theorem 3 and to the proof of the posterior tail bounds given in Lemma 7. Appendix D
gathers the proofs of the lemmas introduced in the finite-time analysis of Bayes-UCB.

A Pinsker-like inequalities

For on any compact C ⊂ Θ, one can obtain quadratic approximations of the KL-divergence as a func-
tion of either the natural parameters or the means. These useful inequalities are stated in Proposition 11

Proposition 11. Let C be a compact subset of Θ. Introducing

c1 ∶= inf
θ∈C

b̈(θ) > 0 and c2 ∶= sup
θ∈C

b̈(θ) <∞, (17)

one has

∀(θ, θ′) ∈ (C)
2,

c1

2
(θ − θ′)2

≤ K(θ, θ′) ≤
c2

2
(θ − θ′)2, (18)

∀(x, v) ∈ (ḃ(C))2,
1

2c2
(x − v)2

≤ d(x, v) ≤
1

2c1
(x − v)2. (19)

If (x, v) ∈ (ḃ(C))2 are such that x < v, one has

ḃ−1
(v) − ḃ−1

(x) ≤
1

c1
(v − x). (20)

Proof These three statements follow from Lagrange formulas. For example to derive (19), given that
d(x, y) = K(ḃ−1(x), ḃ−1(y)), it can be shown, using the close form expression (5), that

d

dx
d(x, v) = ḃ−1

(x) − ḃ−1
(v) and

d2

d2x
d(x, v) =

1

b̈(ḃ−1(x))
.

From the second-order Lagrange formula applied to x ↦ d(x, v), there exists c ∈]x, v[ (or ]v, x[) such
that

d(x, v) =
1

2

1

b̈(ḃ−1(c))
(x − v)2

≤
1

2c1
(x − v)2.

The other inequalities are obtained using similar arguments.

B Lower bound on the Bayesian regret

B.1 Proof of Theorem 3

Let A be a bandit algorithm. Introducing

Copt =
1

2

K

∑
a=1
∫

ΘK−1
ha(θ

∗
a)dH−a(θ−a),
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we assume that A satisfies the following : there exists constants C > Copt and T0 > 0 such that

∀T ≥ T0, R
H
(T,A) ≤ C(logT )

2. (21)

Note that if A does not satisfy the above assumption, the desired conclusion follows directly :

lim inf
T→∞

RH(T,A)

log2(T )
≥ Copt.

The Bayes risk of A rewrites

R
H
(T,A) = E[Rθ(T,A)] = E [

K

∑
a=1

(ḃ(θ∗) − ḃ(θa))Eθ[Na(T )]]

=
K

∑
a=1
∫
{θ∈ΘK ∶θa<θ∗a}

(ḃ(θ∗a) − ḃ(θa))Eθ[Na(T )]dH(θ)

Letting Ta be the a-th term in this last sum, one has

Ta = ∫
ΘK−1 ∫{θa∈Θ∶θa<θ∗a}

(ḃ(θ∗a) − ḃ(θa))Eθ[Na(T )]ha(θa)dθa dH−a(θ−a)

= ∫
ΘK−1 ∫

θ∗a−θ−

0
(ḃ(θ∗a) − ḃ(θ

∗
a − t))Eθa,t[Na(T )]ha(θ

∗
a − t)dt dH−a(θ−a),

where θa,t ∶= (θ1, . . . , θa−1, θ
∗
a − t, θa+1, . . . , θK) and θ− denotes the lower bound of Θ : we let Θ =

]θ−, θ+[.
Let γ ∈]0,1[ and let B = [b−, b+] be a compact subset of Θ. For T large enough, more precisely such

that
1/(b− − θ−) < logT < T

1−γ
2 ,

reducing the integration domain by first letting θ−a ∈ B
K−1 and then t ∈ [T−(1−γ)/2, (logT )−1], one can

write

Ta ≥∫
BK−1∫

(logT )−1

T−(1−γ)/2
(ḃ(θ∗a) − ḃ(θ

∗
a − t))Eθa,t[Na(T )]ha(θ

∗
a − t)dtdH−a(θ−a)

≥ (1 − γ)∫
BK−1∫

(logT )−1

T−(1−γ)/2

2ha(θ
∗
a)K(θ∗a − t, θ

∗
a + ζt)Eθa,t[Na(T )]

t
dtdH−a(θ−a).

The last inequality follows from the technical lemma stated below, in which the constant ζ is defined.

Lemma 12. Let γ > 0. There exists ζ ∈]0,1[ and t0 > 0 such that for all θ−a ∈ BK−1 and 0 ≤ t ≤ t0,

∀θ ∈ B,
(ḃ(θ) − ḃ(θ − t))ha(θ − t)

K(θ − t, θ + ζt)
≥ (1 − γ)

2ha(θ)

t
.

Now we need to give a lower bound on Eθa,t[Na(T )], that will subsequently be integrated over
BK−1 × [T −(1−γ)/2, (logT )−1]. Lai and Robbins provide such a lower bound in [24], but under the
assumption (not satisfied here) that, for all α ∈]0,1[, A has a o(Tα) regret on every bandit model.
Moreover their lower bound is asymptotic, which makes it more complicated to integrate. Lemma 13
below provides a non-asymptotic lower bound on Eθa,t[Na(T )], that also follows from a change of
distribution argument.
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Lemma 13. Let ζ ∈]0,1[ and B = [b−, b+] ⊂ Θ. Introducing

eT,t(θ−a) = inf {Eθ[T −Na(T )] ∶ θa ∈ Θ, θ∗a + ζt/2 ≤ θa ≤ θ
∗
a + ζt} ,

for every γ ∈]0,1[ there exists positive constants C1, t1 and T1 (that depend on B, γ and ζ) such that if
t ≤ t1 and Tt2 > T1, ∀θ−a ∈ BK−1,

Eθa,t[Na(T )] ≥
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

⎛

⎝
1 − e−C1 log(Tt2)

−
2t2eT,t(θ−a)

(Tt2)
γ
2

⎞

⎠
.

Using Lemma 13, if T satisfies moreover log(T ) ≥ 1/min(t0, t1, γ/ log(T1)),

Ta ≥ 2(1 − γ)2
(I1(T ) − I2(T ) − 2I3(T )),

where

I1(T ) ∶= ∫
BK−1

ha(θ
∗
a)∫

(logT )−1

T−(1−γ)/2

log(Tt2)

t
dt dH−a(θ−a),

I2(T ) ∶= ∫
BK−1

ha(θ
∗
a)∫

(logT )−1

T−(1−γ)/2

log(Tt2)

t

1

(Tt2)C1
dt dH−a(θ−a),

I3(T ) ∶= ∫
BK−1

ha(θ
∗
a)∫

(logT )−1

T−(1−γ)/2

log(Tt2)

t
t2(Tt2)−

γ
2 eT,t(θ−a)dt dH−a(θ−a).

First, an explicit calculation yields

I1(T ) =
1

4

⎛

⎝
(1 −

2 log log(T )

log(T )
)

2

− γ2⎞

⎠
log2

(T )∫
BK−1

ha(θ
∗
a)dH−a(θ−a),

which shows that

I1(T ) ∼
T→∞

1

4
(1 − γ2

) (∫
BK−1

ha(θ
∗
a)dH−a(θ−a)) log2

(T ).

Then, for every ε > 0, there exists T2(ε) such that for all T ≥ T2(ε), for all t ≥ T−(1−γ)/2,
1/(Tt2)C1 ≤ ε. Hence, for T ≥ T2(ε),

I2(T ) ≤ εI1(T ).

This proves that I2(T ) = o
T→∞

(log2(T )).

Finally, to prove that I3(T ) = o
T→∞

(log2(T )), we start by writing

I3(T ) = ∫

(logT )−1

T−(1−γ)/2

log(Tt2)

t
(Tt2)−

γ
2 t2 (∫

BK−1
eT,t(θ−a)ha(θ

∗
a)dH−a(θ−a))dt.

and we provide an upper bound on the inner integral. First note that if θ is such that θa > θ∗a , one has

Rθ(T,A) ≥ (ḃ(θa) − ḃ(θ
∗
a))Eθ[T −Na(T )].
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Using (21) together with this last inequality, one obtains, for every t,

C log2
(T ) ≥ ∫

{θ∈BK ∶θ∗a+ζt/2<θa<θ∗a+ζt}
RT (A,θ)dH(θ)

≥ ∫
BK−1∫

θ∗a+ζt

θ∗a+ζt/2
(ḃ(θa) − ḃ(θ

∗
a))Eθ[T −Na(T )]ha(θa)dθa dH−a(θ−a)

≥ ∫
BK−1

eT,t(θ−a)∫
θ∗a+ζt

θ∗a+ζt/2
(ḃ(θa) − ḃ(θ

∗
a))ha(θa)dθa dH−a(θ−a).

With B = [b−, b+], let t2 be such that the compact B′ = [b− + ζt2/2, b
+ + ζt2] is included in Θ. As ha is

uniformly continuous and bounded on B′, there exists t2 such that and for all θ∗a ∈ B, for all t ≤ t2,

inf
[θ∗a+ζt/2,θ∗a+ζt]

ha(θ) ≥
2

3
ha(θ

∗
a).

Let t ≤ t2. Introducing c1 = infθ∈B′ b̈(θ) > 0, using the Lagrange formula,

C log2
(T ) ≥

2c1

3
∫
BK−1

eT,t(θ−a)∫
θ∗a+ζt

θ∗a+ζt/2
(θa − θ

∗
a)ha(θ

∗
a)dθa dH−a(θ−a)

=
c1

4
ζ2t2∫

BK−1
eT,t(θ−a)ha(θ

∗
a)dH−a(θ−a).

Finally, if T−
1−γ
2 ≤ t ≤ t2,

∫
BK−1

eT,t(θ−a)ha(θ
∗
a)dH−a(θ−a) ≤

4C

c1ζ2

log2(T )

t2
≤

4C

c1ζ2γ2

(log(Tt2))2

t2
.

For T satisfying log(T )−1 ≤ t2, [T−(1−γ)/2, (logT )−1] ⊆ [T−
1−γ
2 , t2] and

I3(T ) ≤ ∫

(logT )−1

T−(1−γ)/2

log(Tt2)

t
(Tt2)−

γ
2 t2 (

4C

c1ζ2γ2

(log(Tt2))2

t2
)dt

=
4C

c1ζ2γ2 ∫

(logT )−1

T−(1−γ)/2

log(Tt2)

t

⎛

⎝

(log(Tt2))
2

(Tt2)
γ
2

⎞

⎠
dt.

Let ε > 0. As u↦ log2(u)/(uγ/2) tends to zero when u tends to infinity, and Tt2 ≥ T γ for t ≥ T−(1−γ)/2,
there exists a constant T3(ε) such that

for T ≥ T3(ε), for t ≥ T−(1−γ)/2,
(log(Tt2))

2

(Tt2)
γ
2

≤ ε.

Hence, for T ≥ T3(ε),

I3(T ) ≤ ε
4C

c1ζ2γ2 ∫

(logT )−1

T−(1−γ)/2

log(Tt2)

t
dt = ε

C

c1ζ2γ2

⎛

⎝
(1 −

2 log log(T )

log(T )
)

2

− γ2⎞

⎠
log2

(T ),

which proves that I3(T ) = o (log2(T )) .
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Putting everything together, we proved that, for every algorithmA, for every γ > 0, for every compact
B ⊂ Θ,

lim inf
T→∞

RT (A,H)

log2(T )
≥ (1 − γ)2

(1 − γ2
)
1

2

K

∑
a=1
∫
BK−1

ha(θ
∗
a)dH−a(θ−a).

Taking the supremum over all compact set B yields, for every γ > 0,

lim inf
T→∞

RT (A,H)

log2(T )
≥ (1 − γ)2

(1 − γ2
)
1

2

K

∑
a=1
∫

ΘK−1
ha(θ

∗
a)dH−a(θ−a),

provided the integral in the right-hand side is finite. Letting γ go to zero concludes the proof.

B.2 Proof of Lemma 12

Let ζ ∈]0,1[ be fixed . As B = [b−, b+] is strictly included in Θ, there exists t1 such that C ∶=

[b− − t1, b
+ + ζt1] in included in Θ. For (θ, t) ∈ B × [0, t1] we define

f(θ, t) =
(1 + ζ)2t

2

(ḃ(θ) − ḃ(θ − t))ha(θ − t)

K(θ − t, θ + ζt)ha(θ)
.

f is continuous on B × [0, t1] and it can be checked that

lim
(θ,t)→(θ0,0)

f(θ, t) = 1.

As f is uniformly continuous, there exists t0 ≤ t1, such that for all t ≤ t0, for all θ ∈ B,

∣f(θ, t) − 1∣ ≤
γ

2
,

which rewrites

∣
(ḃ(θ) − ḃ(θ − t))ha(θ − t)

K(θ − t, θ + ζt)
−

2ha(θ)

(1 + ζ)2t
∣ ≤

γ

2

2ha(θ)

(1 + ζ)2t

hence, for t ≤ t0, one has

(ḃ(θ) − ḃ(θ − t))ha(θ − t)

K(θ − t, θ + ζt)
≥

1 − γ
2

(1 + ζ)2

2ha(θ)

t
.

Applying this to ζ such that 1 + ζ =

√
1− γ

2

1−γ concludes the proof.

B.3 Proof of Lemma 13

Let ζ ∈]0,1[ be fixed and define t1 and C = [b− − t1, b
+ + ζt1] ⊂ Θ as in the proof of Lemma 12. Let

t ≤ t1 and fix θ−a ∈ B
K−1. First, using Markov inequality,

Eθa,t[Na(T )] ≥
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

Pθa,t (Na(T ) ≥
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

) .

Thus it is sufficient to prove that

Pθa,t (Na(T ) ≤
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

) ≤ e−C1 log(Tt2)
+

2t2eT,t(θ−a)

(Tt2)
γ
2

. (22)
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As t ≤ t1, the set {θa ∶ θ∗a + ζt/2 ≤ θa ≤ θ
∗
a + ζt} is a compact set included in C, therefore there exists

λ ∈ BK−1 × C that attains the infimum in the definition of eT,t(θ−a) :

eT,t(θ−a) = Eλ[T −Na(T )],

with λ−a = θ−a and λa = θ∗a + εt, for some ε ∈ [ζ/2, ζ]. Using Markov inequality,

Pλ (Na(T ) ≤
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

) ≤
Eλ[T −Na(T )]

T −
(1−γ) log(Tt2)
K(θ∗a−t,θ∗a+ζt)

=
eT,t(θ−a)

T (1 −
(1−γ) log(Tt2)
K(θ∗a−t,θ∗a+ζt)T

)
.

Introducing c1 = infθ∈C b̈(θ), using (18) in Proposition 11, for t ≤ t1,

(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)T

≤
2(1 − γ) log(Tt2)

c1(1 + ζ)2(Tt2)
≤

1

2
,

where the last inequality holds to Tt2 large enough. Thus there exists T1 > 0 such that for t ≥ t1 and
Tt2 ≥ T1,

Pλ (Na(T ) ≤
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

) ≤
2eT,t(θ−a)

T
. (23)

Introducing the log likelihood ratio Ln = ∑
n
s=1 log

fθ∗a−t
(Ya,s)

fλa(Ya,s)
, where Ya,s are i.i.d. samples of the

distribution of arm a, one can write

Pθa,t (Na(T ) ≤
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

)

≤ Pθa,t (Na(T ) ≤
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

, LNa(T ) ≤ (1 −
γ

2
) log(Tt2)) (24)

+ Pθa,t

⎛
⎜
⎝

max
n≤ (1−γ) log(Tt

2)
K(θ∗a−t,θ∗a+ζt)

Ln ≥ (1 −
γ

2
) log(Tt2)

⎞
⎟
⎠

(25)

An upper bound on Term (24) follows from a change of distribution argument. Let E be the event

E ∶= {Na(T ) ≤
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

, LNa(T ) ≤ (1 −
γ

2
) log(Tt2)}

As E ∈ FNa(T ), one has

Pλ(E) = Eθa,t [1E exp (−LNa(T ))] ≥ exp(−(1 −
γ

2
) log(Tt2))Pθa,t(E).

Thus, using moreover (23),

(24) ≤ (Tt2)1− γ
2 Pλ(E) ≤ (Tt2)1− γ

2 Pλ (Na(T ) ≤
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

)

≤ 2t2 (Tt2)
− γ

2 eNt(θ−a).

An upper bound of Term (25) follows from a concentration inequality specific to exponential fami-
lies, stated as Lemma 14, whose proof is given below, for the sake of completeness.

26



Lemma 14. Let the (Yi) be i.i.d with distribution νθ and mean µ = ḃ(θ).

P(max
n≤N

n

∑
s=1

(µ − Yi) ≥ x) ≤ exp(−Nd(µ −
x

N
,µ))

Introducing the notation θa = θ∗a − t and

KT =
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

=
(1 − γ) log(Tt2)

K(θa, θ∗a + ζt)
,

the log likelihood ratio can be made explicit, and satisfies, for n ≤KT ,

Ln =
n

∑
s=1

(θa − λa)Ya,s − b(θa) + b(λa)

= (θa − λa)
n

∑
s=1

(Ya,s − ḃ(θa)) + nK(θa, λa).

≤ (λa − θa)
n

∑
s=1

(ḃ(θa) − Ya,s) + (1 − γ) log(Tt2).

Term (25) is upper bounded by

Pθa,t (max
n≤KT

[(λa− θa)
n

∑
s=1

(ḃ(θa)−Ya,s)+(1 − γ) log(Tt2)]≥ (1 −
γ

2
) log(Tt2))

≤ Pθa,t (max
n≤KT

n

∑
s=1

(ḃ(θa) − Ya,s) ≥
γ

2

log(Tt2)

λa − θa
) .

Under θa,t, the sequence Ya,s is i.i.d with distribution νθa . Therefore, using Lemma 14 one obtains, with
the notation µa = ḃ(θa),

(25) ≤ exp(−KTd(µa −
γK(θ∗a − t, θ

∗
a + ζt)

2(1 − γ)(ε + 1)t
, µa)) .

Letting c1 = infθ∈C b̈(θ) and c2 = infθ∈C b̈(θ), from (18) in Proposition 11,

γK(θ∗a − t, θ
∗
a + ζt)

2(1 − γ)(ε + 1)t
∈ [

γ

2(1 − γ)

c1

2
(ζ + 1)2t2;

γ

2(1 − γ)

c2

2
(ζ + 1)2t2] .

Thus, for t small enough, µa and µa −
γK(θ∗a−t,θ∗a+ζt)

2(1−γ)(ε+1)t belong to a compact C′ satisfying C ⊆ C′ ⊆ Θ.

Letting c′2 = supθ∈C′ b̈(θ), using (19),

(25) ≤ exp
⎛

⎝
−
KT

2c′2
(
γK(θ∗a − t, θ

∗
a + ζt)

2(1 − γ)(ε + 1)t
)

2
⎞

⎠

= exp(− log(Tt2)
γ2

8(1 − γ)c′2

K(θ∗a − t, θ
∗
a + ζt)

(1 + ε)2t2
)

≤ exp(− log(Tt2)
γ2c1

8(1 − γ)c′2

c1(1 + ζ)
2

(1 + ε)2
) .
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Letting C1 =
γ2c1

8(1−γ)c′2
c1(1+ζ)2
(1+ε)2 , from the upper bounds obtained on (24) and (25), it follows that

Pθa,t (Na(T ) ≤
(1 − γ) log(Tt2)

K(θ∗a − t, θ
∗
a + ζt)

) ≤ 2t2 (Tt2)
− γ

2 eNt(θ−a) + e
−C1 log(Tt2),

provided that t ≤ t1 and Tt2 ≥ T1, which concludes the proof.

◻

Proof of Lemma 14 The proof follows from the Chernoff technique and a maximal inequality.
Let Sn = ∑ns=1(µ − Yi). For every λ > 0,

P(max
n≤N

Sn ≥ x) = P(max
n≤N

eλSn ≥ eλx) ≤ e−λxE [eλSN ] , (26)

where the last inequality is a consequence of Doob’s maximal inequality applied to Mn = e
λSn , which is

a sub-martingale with respect to the filtration generated by the (Yi). Indeed, using the convexity of the
mapping x↦ eλx,

E [Mn −Mn−1∣Fn−1] = eλSnE [eλ(Sn−Sn−1) − 1∣Fn−1]

≥ eλSnλE [Sn − Sn−1∣Fn−1] = 0.

Using the independence of the Yi and E[eλYi] = exp(b(θ + λ) − b(θ) for any λ ∈ R, it can be show that

e−λxE [eλSN ] = exp(−N [λ(
x

N
− ḃ(θ)) + b(θ) − b(θ − λ)]) .

The exponent is minimized of λ∗ satisfying ḃ(θ − λ∗) = ḃ(θ) − x/N and

e−λ
∗xE [eλ

∗SN ] = exp (−N [ḃ(θ − λ∗)(−λ∗) − ḃ(θ − λ∗) + b(θ)])

= exp(−NK(θ − λ∗, θ)) = exp(−Nd(µ −
x

N
,µ)) .

The conclusion follows by plugging λ∗ in (26).

B.4 The lower bound for Bernoulli bandits

As pointed out by [23], in the particular case in which ha(θ) = q(θ) for all a = 1, . . . ,K, using the
fact that the distribution of maxa∈S θa has density kq(θ)Qk−1(θ) whereQ is the c.d.f. of the distribution
with density q and k = ∣S ∣, the constant in the lower bound can be expressed

1

2

K

∑
a=1
∫

ΘK−1
ha(θ

∗
a)dH−a(θ−a) =

K(K − 1)

2
∫

Θ
q2

(θ)QK−2
(θ)dθ. (27)

Now consider a Bernoulli bandit model with K arms, with a uniform prior distribution on the mean of
each arm. The set of Bernoulli distribution of means µ ∈ [0,1] form an exponential family when each
distribution is parametrized by the natural parameter θ = log(µ/(1 − µ)). This exponential family is
characterized by

Θ = R, b(θ) = log(1 + eθ),
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and the reference measure is the Lebesgue measure. As each mean µa is drawn from a uniform distribu-
tion on [0,1], the associated natural parameter θa is drawn from a distribution on R having respectively
density and c.d.f.

q(θ) =
eθ

(1 + eθ)2
and Q(θ) =

eθ

1 + eθ
.

Using the formula (27), the constant of the lower bound is

K(K − 1)

2
∫

+∞

−∞

eKθ

(1 + eθ)K+2
dθ =

K(K − 1)

2
∫

∞

0

xK−1

(1 + x)K+2
dx

=
K(K − 1)

2

1

K(K + 1)
,

where the integral is computed using by inducting, using a by part integration. Finally, the asymptotic
rate of the Bayes risk for a Bernoulli bandit model with K arms and a uniform prior on their means is

1

2

K − 1

K + 1
log2

(T ).

C Posterior tail bounds

Let µ−, µ+ be such that J ∶= ḃ(Θ) = (µ−, µ+). We give here the proof of Lemma 7, that follows
directly from bounds on

πn,x([v, µ
+
[) ∶=

∫
µ+

v exp(−nd(x,u))f0(u)du

∫J exp(−nd(x,u))f0(u)du

for a function f0 satisfying f0(u) > 0 for all u ∈ J. We fix µ−0 , µ
+
0 such that ḃ(θ−) < µ−0 < µ+0 < ḃ(θ+).

First, we fix a compact C included in Θ such that [µ−1 , µ
+
1 ] ∶= ḃ(C) satisfy

ḃ(θ−) < µ−1 < µ−0 < µ+0 < µ+1 < ḃ(θ+).

We let JC = [µ−1 , µ
+
1 ] and c1 and c2 be the upper and lower bounds on b̈ on C, defined as (17). We will

often use the quadratic bounds on the Kullback-Leibler divergence on this compact, that are stated in
Proposition 11.

Let x, v such that µ−0 < x < v < µ+0 . One has

πn,x([v, µ
+
[) =

∫
µ+

v e−nd(x,u)f0(u)du

∫
µ+

µ− e
−nd(x,u)f0(u)du

. (28)

For any Vn,x ⊂ J,

πn,x([v, µ
+
[) ≤

e−nd(x,v) ∫
µ+

v f0(u)du

∫Vn,x e
−nd(x,u)f0(u)du

≤
e−nd(x,v)

∫Vn,x e
−nd(x,u)f0(u)du

.

We now choose Vn,x = {u ∈ JC ∶
n(x−u)2

2c1
≤ 1}. From (19), nd(x,u) ≤ 1 on Vn,x. Hence

∫
Vn,x

e−nd(x,u)f0(u)du ≥ e−1 inf
u∈JC

f0(u)∫
Vn,x

1du
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and

∫
Vn,x

1du = λ
⎛

⎝
[µ−1 , µ

+
1 ] ∩

⎡
⎢
⎢
⎢
⎢
⎣

x −

√
2c1

n
,x +

√
2c1

n

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

≥ min
⎛

⎝

√
2c1

n
,µ+1 − µ

−
1

⎞

⎠
.

The following inequality yields the upper bound in statement 1 :

πn,x([v, µ
+
[) ≤

e
√

2c1 infu∈JC f0(u)
max(

√
n,

√
2c1

(µ+1 − µ
−
1)

) e−nd(x,v).

As e−nd(x,u) ≤ 1, the denominator in (28) is upper bounded by 1, thus

πn,x([v, µ
+
[) ≥ ∫

µ+

v
e−nd(x,u)f0(u)du ≥ ∫

µ+1

v
e−nd(x,u)f0(u)du.

This last integral can be lower bounded in the following way :

∫

µ+1

v
e−nd(x,u)f0(u)du = e−nd(x,v)∫

µ+1

v
e−n[d(x,u)−d(x,v)]f0(u)du

= e−nd(x,v)∫
µ+1

v
e−n[d(v,u)+(ḃ

−1(u)−ḃ−1(v))(v−x)]f0(u)du

≥ e−nd(x,v)∫
µ+1

v
e
−n[ 1

2c1
(u−v)2+ 1

c1
(u−v)(v−x)]

f0(u)du, (29)

where the last inequality follows from (19) and (20). We let

φ(u) =
1

2c1
[(u − v)2

+ 2(u − v)(v − x)] .

One has φ′(u) = (u − x)/c1, thus φ is strictly increasing on [v, µ+1 ] and it can be checked that φ−1(y) =

x +
√

(v − x)2 + 2c1y. Thus letting y = nφ(u), one has

du =
c1

n
√

(v − x)2 + 2c1y/n
dy,

and

(29) =
c1e

−nd(x,v)

n
∫

n
2c1

[(µ+1−v)
2+2(µ+1−v)(v−x)]

0

e−y
√

(v − x)2 + 2c1y/n
f0(y)dy

≥
c1e

−nd(x,v) minJC f0

n
∫

n
2c1

[(µ+1−v)
2+2(µ+1−v)(v−x)]

0

e−ydy
√

(v − x)2 + (µ+1 − v)
2 + 2(µ+1 − v)(v − x)

≥
c1e

−nd(x,v) minJC f0

n(µ+1 − x)
(1 − e

− n
2c1

(µ+1−v)
2

) .

Finally, using that µ−0 < x and v ≤ µ+0 , one obtains

πn,x([v, µ
+
[) ≥

⎛
⎜
⎜
⎝

c1(1 − e
− (µ

+
1−µ

+
0 )

2

2c1 )minJC f0

(µ+1 − µ
−
0)

⎞
⎟
⎟
⎠

1

n
e−nd(x,v),
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which yields the lower bound in statement 1.
We now prove statement 2. Let x, v such that µ−0 < v ≤ x < µ+0 . As [x,µ+1 ] ⊂ [v, µ+[, one has

πn,x([v, µ
+
[) ≥

∫
µ+1
x e−nd(x,u)f0(u)du

∫[µ−,x[∪]µ+1 ,µ+[
e−nd(x,u)f0(u)du + ∫

µ+1
x e−nd(x,u)f0(u)du

≥
∫
µ+1
x e−nd(x,u)f0(u)du

1 + ∫
µ+1
x e−nd(x,u)f0(u)du

Given that x↦ x/(1 + x) is non-decreasing, we now provide a lower bound on ∫
µ+1
x e−nd(x,u)f0(u)du.

Fx ∶ u ↦
√
d(x,u) is a one-to-one mapping between [x,µ+1 ] and [0,

√
d(x,µ+1)]. Moreover, letting

d′(x,u) = d
dud(x,u) =

u−x
b̈(b−1(u)) =

u−x
V (u) ,

F ′
x(u) =

d′(x,u)

2
√
d(x,u)

∼
u→x

(u − x)/V (u)

2
√

1
2(x − u)

2/V (x)
Ð→
u→x

√
V (x)

2
.

F ′
x is continuous on [x,µ+1 ] and strictly positive, thus the inverse mapping φx ∶ [0,

√
d(x,µ+1)]→ [x,µ+1 ]

is well defined and differentiable. Letting u = φx(y), one has

∫

µ+1

x
e−nd(x,u)f0(u)du = ∫

√
d(x,µ+1)

0
e−ny

2

f0(φx(y))
2
√
d(x,φx(y))

d′(x,φx(y))
dy

≥ inf
u∈JC

f0(u)
2

√
n
∫

√
nd(x,µ+1)

0
e−y

2

√

d(x,φx (
y√
n
))

d′(x,φx (
y√
n
))

dy.

The mapping (x,u) ↦
√
d(x,u)/d′(x,u) is continuous and strictly positive on the compact set S =

{(x,u) ∈ [µ−0 , µ
+
0 ] × [µ−1 , µ

+
1 ] ∶ x ≤ u ≤ µ

+
1} therefore, one can define

c = inf
(x,u)∈S

√
d(x,u)

d′(x,u)
> 0.

For n ≥ 1, one has

∫

µ+1

x
e−nd(x,u)f0(u)du ≥

1
√
n

(2c inf
u∈JC

f0(u)∫

√
d(µ+0 ,µ

+
1)

0
e−y

2

dy) .

Thus there exists a constant C ′ = C ′(µ−1 , µ
+
1 , f0) > 0 such that

πn,x([v, µ
+
[) ≥

C′
√
n

1 + C′
√
n

=
1

(1/C ′)
√
n + 1

,

which concludes the proof.
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D Finite-time analysis

D.1 Proof of Lemma 8

To upper bound

(A) ∶= P(N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ log

At logc t

N1(t)
) ,

we consider two cases in which arm 1 has or not been drawn a lot.

(A) ≤ P(N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ log(

At logc t

N1(t)
) ,N1(t) ≤ log4

(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A1

+ P(N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ log(

At logc t

N1(t)
) ,N1(t) > log4

(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A2

To upper bound term A1, we write

(N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ log(

At logc t

N1(t)
) ,N1(t) ≤ log4

(t))

⊆ (N1(t)d
+
(µ̂1(t), µ1) ≥ log(At) + c log log(t) − 4 log log(t),N1(t) ≤ log4

(t))

⊆ (N1(t)d
+
(µ̂1(t), µ1) ≥ log(At) + 3 log log t) ,

using that c ≥ 7. The self-normalized concentration inequality proved in [12] and stated in Lemma 15
permits to further upper bound A1 :

(A1) ≤ e
log2 t + 3(log t) log log(t) + log(A) log t + 1

At log3 t
.

Lemma 15.
P (∃s ∈ {1, . . . , t} ∶ sd+ (µ1,s, µ1) ≥ δ) ≤ (δ log(t) + 1) exp(−δ + 1).

To upper bound term A2, if t is such that log7 t ≥ A−1, we write

(N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ log(

At logc t

N1(t)
) ,N1(t) ≥ log4

(t))

⊆ (N1(t)d
+
(µ̂1(t), µ1 − gt) ≥ 0,N1(t) ≥ log4

(t))

⊆ (µ̂1(t) ≤ µ1 − gt,N1(t) ≥ log4
(t)) ,

Thus, if t is such that t ≥ exp(
√

3) (which implies log3 t ≥ 3 log t),

(A2) ≤ P (µ̂1(t) ≤ µ1 − gt,N1(t) ≥ log4
(t)) ≤ P (∃s ∈ [⌈log(t)4

⌉; t] ∶ µ̂1,s ≤ µ1 − gt)

≤
t

∑
s=⌈log(t)4⌉

P (µ̂1,s ≤ µ1 − gt) ≤
t

∑
s=⌈log(t)4⌉

e−sd(µ1−gt,µ1)

≤ te−(log t)4d(µ1−gt,µ1) = te−(log t)3
≤ te−3 log t

=
1

t2
.

Combining this with the upper bound on A1 yields the result.
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D.2 Proof of Lemma 9

The quantity to be upper bounded is

(B) ∶=
T

∑
s=1

P (sd+ (µ̂a,s, µ1 − g(s)) ≤ f(T ) + h(s)) .

The function w(q) = d+(µ̂a,s, q) is convex and differentiable and w′(q) =
q−µ̂a,s
V (q) 1(µ̂a,s≤q), thus, if µ̂a,s

is larger than µ−0 ,

d+(µ̂a,s, µ1 − g(s)) ≥ d
+
(µ̂a,s, µ1) − g(s)

µ1 − µ̂a,s

V (µ1)
≥ d+(µ̂a,s, µ1) − g(s)

µ1 − µ
−
0

V (µ1)
.

Therefore

(B) ≤
T

∑
s=1

P(d+(µ̂a,s, µ1) ≤
f(T )

s
+ g(s)

µ1 − µ
−
0

V (µ1)
+
h(s)

s
) +

T

∑
s=1

P(µ̂a,s < µ−0)

≤
T

∑
s=1

P(d+(µ̂a,s, µ1) ≤
f(T )

s
+ r(s)) +

1

1 − e−d(µ
−
0 ,µa)

,

using Chernoff inequality and introducing

r(s) ∶= g(s)
µ1 − µ

−
0

V (µ1)
+
h(s)

s
.

Let ε > 0. One also introduce

KT (ε) ∶= ⌈
(1 + ε)f(T )

d(µa, µ1)
⌉ .

From the assumptions on f, g and h, there exists s0 such that r is non-increasing for s ≥ s0 and one has

KT (ε) Ð→
T→∞

∞ and r(s) Ð→
s→∞

0.

For T such that KT ≥ s0,

(B) ≤KT +
T

∑
s=KT+1

P(d+(µ̂a,s, µ1) ≤
f(T )

s
+ r(KT )) +Ca,

with Ca = 1/ (1 − e−d(µ
−
0 ,µa)). As r(KT )→ 0, there exists Na(ε) such that

T ≥ Na(ε) ⇒ r(KT ) ≤ d(µa, µ1)
ε

1 + ε
.

Then, if T ≥ Na(ε), one has, for all s ≥KT + 1,

f(T )

s
+ r(KT ) ≤ d(µa, µ1)

and there exists µ∗(s) ∈]µa;µ1[ such that d(µ∗(s), µ1) =
f(T )
s +r(KT ). Then, using Chernoff inequality

and the inequality

∀µ > µ′, d(µ,µ′) ≥
1

2 supµ∈[µ′,µ] V (µ)
(µ − µ′)2,
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stated in [12] and that follows from Lagrange equality, one can write

(B) ≤ KT +
T

∑
s=KT+1

P(µ̂a,s > µ∗(s)) +Ca ≤KT +
T

∑
s=KT+1

e−sd(µ
∗(s),µa) +Ca

≤ KT +
T

∑
s=KT+1

e
−s (µ

∗(s)−µa)2

2V 2
a +Ca ≤KT + ∫

∞

KT
e
−s (µ

∗(s)−µa)2

2V 2
a ds +Ca,

where Va = supµ∈]µa,µ1[ V (µ). Using the convexity of x ↦ d(x,µ1), a lower bound on µ∗(s) − µa can
be obtained, as in Appendix 2 of [12] :

µ∗(s) − µa ≥
d(µa, µ1) − [

f(T )
s + r(KT )]

−d′(µa, µ1)

[12] provides a tight bound on the resulting integrals, and using a similar approach concludes the proof :

∫

∞

KT
e
−s (µ

∗(s)−µa)2

2V 2
a ds ≤ ∫

∞

KT
exp

⎛

⎝
−

s

2V 2
a d

′(µa, µ1)
2
(d(µa, µ1) − (

f(T )

s
+ r(KT )))

2
⎞

⎠
ds

≤ f(T )∫

∞

1+ε
d(µa,µ1)

exp(−
uf(T )

2V 2
a d

′(µa, µ1)
2
(d(µa, µ1) − (

1

u
+ r(KT )))

2

)du

≤ f(T )∫

2(1+ε)
d(µa,µ1)

1+ε
d(µa,µ1)

exp
⎛

⎝
−
(1 + ε) (d(µa, µ1) − ( 1

u + r(KT )))
2

2V 2
a d(µa, µ1)d′(µa, µ1)

2
f(T )

⎞

⎠
du

+ f(T )∫

∞
2(1+ε)
d(µa,µ1)

exp(−
uf(T )

2V 2
a d

′(µa, µ1)
2

d(µa, µ1)
2

4(1 + ε)2
)du

≤ f(T )
4(1 + ε)2

d(µa, µ1)
2 ∫

∞

0
exp(−

(1 + ε)v2f(T )

2V 2
a d(µa, µ1)d′(µa, µ1)

2
)dv + 8(1 + ε)2V 2

a (
d′(µa, µ1)

d(µa, µ1)
)

2

≤
√
f(T )

¿
Á
ÁÀ8V 2

a π(1 + ε)
3d′(µa, µ1)

2

d(µa, µ1)
3

+ 8(1 + ε)2V 2
a (

d′(µa, µ1)

d(µa, µ1)
)

2

.
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