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BOUNDED NEGATIVITY AND SYMPLECTIC

4-MANIFOLDS

JOSEF G. DORFMEISTER

Abstract. Let (M,ω) be a symplectic manifold of negative Kodaira
dimension. Let C be an ω-symplectic curve, J-holomorphic for some
J tamed by ω. Then [C]2 is bounded below by a constant depending
only on ω. Related bounded negativity problems for other structures
are also briefly discussed. In particular, the symplectic result implies
the bounded negativity conjecture for complex projective surfaces with
Kodaira dimension κ = −∞.
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1. Introduction

On any oriented closed smooth 4-manifold M there is a skew-symmetric
pairing

H2(M,Z)×H2(M,Z) → H4(M,Z) ∼= Z

(α, β) 7→ α · β = 〈α ∪ β, [M ]〉

where [M ] is the fundamental class of M . This map is called the intersection
form on M . By Poincaré duality, this can also be viewed as a map on
H2(M,Z).

The intersection form has the following geometric interpretation when
viewed as a map on homology: Given two generic representatives of the
classes A,B ∈ H2(M,Z), A · B is the signed sum, corresponding to the
given orientation on M , of the index of their intersection points. This is
generically a finite sum. A2 = A ·A is called the self-intersection number of
a curve in the class A.
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2 JOSEF G. DORFMEISTER

This note is concerned with the following symplectic bounded negativity
question: Given a symplectic manifold (M,ω), is there a lower bound on
the self-intersection numbers for ω-symplectic curves?

An ω-symplectic curve C is any curve which can be made J-holomorphic
for some almost complex structure J tamed by ω, i.e. ω(·, J ·) is positive
definite. In particular, this occurs if and only if all self-intersections of C
are locally positive. Section 2 gives an overview of this and related questions.
Originally this question was considered in the algebraic category.

While this question is generally rather hard to approach, it is possible to
make some progress when M is irrational ruled or rational. In this setting,
a number of factors come into play:

• A full understanding of which classes are representable by symplectic
forms ([15],[19], [23]),
• A rather detailed understanding of the interplay between diffeomor-
phisms of M and their action on homology ([12],[15]),
• The structure of M as a symplectic sum, and
• The stability results in [6].

Together these results will give a proof the following result.

Theorem 1.1. Let M be a manifold of Kodaira dimension −∞ and ω

a symplectic form on M . Let A ∈ H2(M,Z) be representable by an ω-

symplectic curve. Then there exists a positive constant N(M,ω), depending
only on ω, such that

A2 ≥ −N(M,ω).

This result, together with Lemma 2.9, implies the following.

Lemma 1.2. Let X be a smooth projective surface over C birationally equiv-

alent to a geometrically ruled surface. There exists a positive constant b(X)
bounding the self-intersection of reduced irreducible curves on X, i.e.

[C]2 ≥ −b(X)

for every reduced irreducible curve C ⊂ X.

This result is well-known when X is minimal, see the discussion following
Conj. 2.2. Lemma 2.9 gives a bound on the value for b(X) in terms of
N(M,ω).

In some cases a more precise lower bound can be given.

Lemma 1.3. Let M be a ruled manifold and ω a symplectic form on M .

Let A ∈ H2(M,Z) be representable by an ω-symplectic curve.

(1) M ≃ S2 × Σh, h ≥ 0: Fix a ruling on M . Let ω1 be the symplectic

area of the fiber, ω2 the symplectic area of a section. Then

A2 > −2
ω2

ω1
.
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(2) M ≃ S2×̃Σh, h ≥ 1: Fix a ruling on M . Let ω1 be the symplectic

area of the fiber, ω2 the symplectic area of a section. Then

A2 > −2
ω2

ω1
− 1.

(3) M ≃ (S2×Σh)#kCP 2, h ≥ 0: Assume that the symplectic canonical

class Kω of the symplectic form ω is given by Kω = Kst. Fix a

ruling on the trivial minimal model S2 × Σh of M and let ω̃ be the

symplectic form obtained from ω on S2 × Σh under blow-down. If

[ω̃] = ω1S + ω2F , then

A2 > −2
ω2

ω1
− k.

The symplectic canonical class Kω associated to the symplectic form ω

is defined as the first Chern class of the cotangent bundle for any almost
complex structure J tamed by ω:

Kω = c1(T
∗M,J) = −c1(TM, J).

Acknowledgments: I thank Cătălin Ciupercă, Tian-Jun Li and Weiwei
Wu for their interest in this paper.

2. Bounded Negativity Conjectures

This section gives an overview of questions related to bounded negativity.
It is natural to ask such a question in a variety of different categories, placing
different structures on the geometric objects: Given an additional structure
on M , such as an (almost) complex structure or a symplectic structure, is
there a bound on A2 for classes representable by curves compatible with this
additional structure?

Smooth Category: Let M be smooth, is there a lower bound on which
classes can be represented by smooth curves? This has a classical answer:

Lemma 2.1 ([24]; [9], Prop 1.2.3). On a closed, oriented, smooth 4-manifold

M every A ∈ H2(M,Z) can be represented by an embedded surface.

Thus if b− > 0, then there is no lower bound in the smooth category.
If b− = 0, then Donaldson [3] showed that M must have intersection form
⊕m〈1〉.

Algebraic Category: In the algebraic context this question appears in
[11], [1], [2], and others (for a brief history see [2]) and is generally stated as
a conjecture. The classic bounded negativity conjecture is stated as follows:

Conjecture 2.2 (Conj. 3.3.1, [1]). Let X be a smooth projective surface
in characteristic zero. There exists a positive constant b(X) bounding the
self-intersection of reduced irreducible curves on X, i.e.

[C]2 ≥ −b(X)

for every reduced irreducible curve C ⊂ X.
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Note that the condition on the characteristic cannot be weakened, see [11]
for a counterexample due to Kóllar.

This note uses symplectic techniques to prove a part of this conjecture.
For this reason, the base field will always be C and thus consider smooth
complex projective surfaces. It is known that Conj. 2.2 holds in a number
of cases. The following is a partial list:

• For some m > 0 the class −mKX is effective, for example on toric
surfaces and minimal surfaces with Kodaira dimension 0 ([11], [1],
[2]),
• −KX is nef [1],
• X is rational with K2

X > 0 [11],
• X is a S2-bundle, an abelian or hyperelliptic surface or an elliptic
surface of Kodaira dimension 1 and Euler number 0 [2].

In [1] a number of variations on this conjecture are stated, in particular
a weak version which considers bounds on curves of a fixed genus.

Almost Complex Category: Let (M,J) be an almost complex man-
ifold. Consider connected curves in M which can be represented as J-
holomorphic embeddings off a finite set of points. At each of the non-
embedded points the curve will have locally positive self-intersection.

Question 2.3. Let (M,J) be a smooth almost complex 4-manifold. Does
there exist a positive constant b(M,J) bounding the self-intersection of con-
nected J-holomorphic curves C on M , i.e.

[C]2 ≥ −b(M,J)?

Restricting the almost complex structures in this question to Kähler com-
plex structures relates this question to Conj. 2.2. Note however that there
may be many canonical classes KM admitting no almost complex structures
which are Kähler (or even tamed by some symplectic form), for example on
non-minimal ruled surfaces, see [15].

Symplectic Category: Let (M,ω) be a symplectic 4-manifold and C ⊂
M an ω-symplectic submanifold. This means there is some surface Σ and
an immersion i : Σ → M such that i∗ω is symplectic on Σ. Note that
such an immersed surface need not be locally positive at its points of self-
intersection (i.e. the points at which i is not injective). Such a surface must
satisfy [ω] · [C] > 0.

Question 2.4. Let (M,ω) be a symplectic 4-manifold. Does there exist a
positive constant Ns(M,ω) such that

C2 ≥ −Ns(M,ω)

for all connected ω-symplectic submanifolds C?

The following shows that the condition [ω] · [C] > 0 is sufficient to ensure
the existence of a submanifold in the class [C].
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Lemma 2.5 ([13]). Let (M,ω) be a symplectic 4-manifold and A ∈ H2(M,Z)
any class with [ω] · A > 0. Then A is represented by a connected immersed

ω-symplectic submanifold.

This allows us to completely answer question 2.4:

Lemma 2.6. Let (M,ω) be a symplectic 4-manifold and A ∈ H2(M,Z) any
class with [ω] ·A > 0 and A2 < 0. Then there are ω-symplectic submanifolds

of arbitrarily large negative self-intersection.

Notice that due to the possible presence of points of locally negative
self-intersection on the immersed submanifolds, such submanifolds are not
related to the objects considered in the algebraic or complex setting. This
is the reason for restricting to ω-symplectic curves in the following.

Let (M,ω) be a smooth symplectic 4-manifold and let C ⊂ M be a
connected ω-symplectic curve. This means that C is a ω-symplectic sub-
manifold and there is some almost complex structure J tamed by ω mak-
ing C J-holomorphic. In particular, this implies that C is the image of
a J-holomorphic map which is an embedding except at a finite number of
points.

Question 2.7. Let (M,ω) be a symplectic 4-manifold. Does there exist a
positive constant N(M,ω) depending on the symplectic form ω such that

C2 ≥ −N(M,ω)

for all connected ω-symplectic curves C?

Note that N(M,ω) is invariant under rescaling of ω by a positive real
number. A symplectic manifold (M,ω) is said to have symplectic bounded

negativity if it admits such a positive constant.
A consequence of Lemma 2.6 is that any ω-symplectic submanifold repre-

senting the class A ∈ H2(M,Z) with [ω] · A > 0 and A2 < −N(M,ω) must
have points of locally negative self-intersection (and in particular cannot be
embedded).

In the symplectic setting Question 2.7 has not been extensively studied.
Some results are known, for example every minimal symplectic manifold of
Kodaira dimension 0 has symplectic bounded negativity by [14] and adjunc-
tion. Moreover, for spheres in irrational ruled manifolds, the following was
shown in [6].

Lemma 2.8. Let (M,ω) be an irrational ruled manifold with b− = k. As-

sume that A ∈ H2(M,Z) is representable by an ω-symplectic curve with

genus 0. Then

A2 ≥ −k.

Relations among the Categories: Let X be a smooth projective sur-
face over C. Then there exists an embedding of X into a complex projective
space CPn endowing X with a complex structure J . Note that in [11] a
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surface is viewed as already being embedded in some projective space. Un-
der this embedding, the set of reduced irreducible curves in X is in bijection
with the set of J-holomorphic curves on (X,J).

Moreover, (X,J) always admits a Kähler structure ω, hence the set SJ of
symplectic structures tamed by J is non-empty. Furthermore, with respect
to the symplectic manifold (X,ω) for any ω ∈ SJ , any reduced irreducible
curve on X from Conj. 2.2 becomes a ω-symplectic curve in Question 2.7
via the complex structure J .

Thus there is the following connection:

X → (X,J, ω) → (X,ω)
reduced, irreducible → holomorphic → ω − symplectic

This provides a connection between Conj. 2.2 and Question 2.7. The
following Lemma relates the answers.

Lemma 2.9. Let X be a complex projective surface. Let J be the complex

structure on X obtained via an embedding φ into CPn and SJ the set of

symplectic structures ω tamed by J . If (X,ω) satisfies symplectic bounded

negativity for some symplectic structure ω ∈ SJ , then Conj. 2.2 holds. In

this case

b(X) ≤ inf
φ

inf
ω∈SJ

N(X,ω).

Note that by the Kodaira embedding theorem and the scaling invariance
of N(,M, ω), it would suffice to consider only integral forms ω ∈ SJ .

Corollary 2.10. Let X be a complex projective surface. If X has symplectic

bounded negativity for each ω ∈ SX = {ω ∈ Ω2(X) |ω a symplectic form on

X}, then Conj. 2.2 holds.

The converse is not necessarily true, even when allowing J to be almost
complex, as symplectic curves can intersect negatively, while holomorphic
curves cannot. For example, on (S2 × Σh)#4CP 2 let Ei denote the classes
of the exceptional divisors and A = E1 − E2 − E3 − E4 the class of an em-
bedded symplectic −4-sphere obtained via blow-up of 3 points on E1. Then
A · E1 = −1 and hence there is no almost complex structure taming the
symplectic structure such that both E1 and A are represented by embed-
ded pseudoholomorphic curves while both can be represented by embedded
symplectic curves for some ω.

Lemma 2.11. Let (M,ω) be a symplectic 4-manifold. Let Jω be the set of

all almost complex structures on M tamed by ω. Then

sup
J∈Jω

b(M,J) <∞ ⇔ N(M,ω) <∞.

Proof. The key point is this: On (M,ω, J) with J ∈ Jω, each J-holomorphic
curve is also a ω-symplectic curve. On the other hand, every ω-symplectic
curve is J-holomorphic for some J ∈ Jω but not necessarily all such J .

�
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If Question 2.7 has a negative answer for some ω ∈ SM , then a further
interesting question is the following.

Question 2.12. LetM be a manifold with SM 6= ∅. Do there exist symplec-
tic forms ω, ω∞ ∈ SM such that N(M,ω) <∞ but N(M,ω∞) unbounded?
If so, can [ω] = [ω∞]?

Remark: Thus far the focus has been on negativity of curves. What
of bounded positivity? In the symplectic setting, it follows from a result
of Donaldson [4] that on any symplectic manifold (M,ω) if the Poincaré
dual of A ∈ H2(M,Z) is sufficiently close to [ω] ∈ H2(M,R), then kA is
representable by an embedded ω-symplectic curve for any sufficiently large
k ∈ N. As [ω]2 > 0, this implies that A2 > 0 and thus there can be no upper
bound.

The discussions above show, that if no bound exists in the symplectic
setting, no such bound exists for any almost complex structure tamed by
some symplectic form and also for any smooth projective surface over C.

In the smooth case, only manifolds with b+ = 0 satisfy bounded positivity.

3. Geometrically Ruled Manifolds

Let M be a geometrically ruled manifold over a closed surface Σh of genus
h ≥ 0. In particular, fix an orientation on M and fix a ruling

S2 →֒M → Σh.

Further fix an orientation on the fibers. Denote by S ∈ H2(M,Z) the class
of a section and by F ∈ H2(M,Z) the class of the fiber.

The total space M is diffeomorphic to either a trivial bundle S2 × Σh or
the non-trivial bundle S2×̃Σh. Denote the standard canonical classes on M

by Kst = −2S + (2h− 2)F and Kst = −2S + (2h− 1)F respectively.
The symplectic cone CM ⊂ H2(M,R) of classes representable by symplec-

tic forms has been determined in [16], [19], see also [23], [15]:

CM = {α ∈ H2(M,R) | α2 > 0}.

CM decomposes as a disjoint union of cones CM,K , where each cone con-
tains only symplectic classes with symplectic canonical class Kω = K. In
the minimal case, it was shown in [16] that there are only two possible sym-
plectic canonical classes: ±Kst. With regard to the standard canonical class
the cone CM,Kst

is given by

CM,Kst
= {α ∈ H2(M,R) | α2 > 0, α · F > 0}.

Moreover, each class α ∈ CM,Kst
contains a symplectic form ω compatible

with the ruling, i.e. such that ω is non-degenerate along the fibers. It is
shown in [16] ( see also [23], [12]) that every symplectic form ω̃ cohomologous
to ω is diffeomorphic to it. In fact, this diffeomorphism can be chosen to be
identity on homology. This implies the following lemma.
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Lemma 3.1. Let (M,ω) be a symplectic geometrically ruled manifold. Then

it has symplectic bounded negativity if and only if (M, ω̃) has symplectic

bounded negativity for any symplectic form ω̃ with [ω̃] = k[ω] for any k ∈ R
+.

In particular,

N(M,ω) = N(M, ω̃).

Let D(M) ⊂ Aut(H2(M,Z)) be the subgroup generated by Diff(M) on
integral cohomology. If h ≥ 1, then it is shown in [7] that an automorphism
lies in D(M) if and only if it preserves F up to a sign. In particular,
−Id∈ D(M). When M ≃ S2 × S2, −Id∈ D(M) still holds. Finally, when
M ≃ S2×̃S2, then a result of Wall [25] shows that D(M) = Aut(H2(M,Z)).
Moreover, the main result of [16], states that if b+(M) = 1, then D(M) acts
transitively on the set of symplectic canonical classes.

Combining these results we obtain the following useful lemma:

Lemma 3.2. Let M be a geometrically ruled manifold. Let

SM,F = {ω ∈ Ω2(M) | ω is compatible with the ruling, Kω = Kst}.

If bounded negativity holds for each ω ∈ SM,F , then bounded negativity holds

for any symplectic form on M .

Proof. Assume first that M is minimal. Let ω be a symplectic form on M

with Kω = −Kst. Then use the diffeomorphism covered by −Id to switch
to some symplectic form ω̃ with standard canonical class. Note that for
any class A ∈ H2(M,Z) representable by a ω-symplectic curve the effect
of the diffeomorphism is A 7→ −A which preserves A2 while −A admits an
ω̃-symplectic representative.

Now switch from ω̃ to a diffeomorphic and cohomologous symplectic form
compatible with the ruling. The map induced by the diffeomorphism may
change −A to some other class, but it will again preserve the square and
again be representable by a symplectic curve with respect to the new sym-
plectic form.

By assumption, for this symplectic form, bounded negativity holds. As
the square of the class A has been preserved throughout, the result follows.

Now let M ≃ S2×̃S2. Use a diffeomorphism to map ω to ω̃ withKω̃ = Kst

and then a further diffeomorphism to obtain a symplectic form compatible
with the ruling and cohomologous to ω̃. As before, the proof is now complete.

�

We shall first provide a homological classification of those classes of neg-
ative square with the potential to admit symplectic representatives.

Lemma 3.3. Let (M,ω) be a symplectic geometrically ruled manifold and

assume the symplectic structure is chosen such that Kw = Kst and ω is

compatible with the ruling. Assume that A ∈ H2(M,Z) such that A2 < 0
and A is representable by an ω-symplectic curve. Then A = S − kF with

k > 0.
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Proof. Case 1: Assume that M is the trivial bundle with h ≥ 1. In this
case, we can basically repeat the calculation in Thm 4.11, [26]. Consider a
class A = aS + bF on M = S2 × Σh for h ≥ 1. Assume that the class A is
represented by a ω-symplectic curve C and further assume that the curve
admits only transverse self-intersections as singularities (see [20], [21]). Then
the adjunction equality

A2 +KstA+ 2− 2g = 2δ

holds, where δ denotes the number of transverse self-intersections. Smooth-
ing these singular points and projecting to the base surface, it follows from
Kneser, that

g + δ − 1 ≥ a(h− 1).

Therefore, combining these two estimates, one obtains

2ab− 2b+ 2(h− 1)a = 2(g + δ − 1) ≥ 2(h− 1)a

and thus

b(a− 1) ≥ 0.

Assuming that A2 = 2ab < 0, it then follows that a = 1 and b < 0. Hence the
only classes with negative square which can admit symplectic representatives
are S − kF for k > 0.

Case 2: Assume now that M is the non-trivial bundle with h ≥ 1. The
intersection behavior of S and F is

S2 = 1, F 2 = 0, S · F = 1.

A similar calculation employing the adjunction formula as above for a class
A = aS+bF with A2 = a(a+2b) < 0 leads to the inequality (a−1)(a+2b) ≥
0. This implies that a = 1 and a + 2b < 0, which again implies that
A = S − kF with k > 0.

Case 3: Let M ≃ S2×S2. As in the proof of Lemma 3.3, the adjunction
formula provides the equality

2ab− 2a− 2b+ 2− 2g = 2δ

which can be rewritten as

ab− a− b ≥ −1.

The assumption A2 < 0 implies that a 6= 0 6= b. Therefore, this inequality
implies

a(b− 1) ≥ 0 or b(a− 1) ≥ 0

from which the result follows as in the first case in Lemma 3.3. Note that
only the class S − kF can be symplectic with regard to the given ruling.

Case 4: Now let M ≃ S2×̃S2 ≃ CP 2#CP 2. Assume that A = aS + bF

with A2 = a(a + 2b) < 0. To be compatible with the ruling it must have
a > 0. The rest of the calculation using the adjunction formula is identical
to the h ≥ 1 case. �
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This result coincides nicely with Prop. 3.14 in [17]. Note that the curves
in Lemma 3.3 are explicitly excluded in Prop 3.14 when h ≥ 1. Moreover,
when h = 0 it holds that

(Kst +A)2 > 0.

With these results we are now ready to prove that symplectic bounded
negativity holds for geometrically ruled manifolds. This is presumably
known to experts, see [22], we state the result in the context of bounded
negativity and for completeness.

Lemma 3.4. Let M be diffeomorphic to S2 × Σh. Let ω be a symplectic

structure on M in the class [ω] = ω1S + ω2F and A represented by an

ω-symplectic curve. Then (M,ω) has symplectic bounded negativity and

A2 > −2
ω2

ω1
.

Proof. We may assume that A2 < 0. Then A = S − kF and A2 = −2k by
Lemma 3.3.

Consider a symplectic form ω in the class [ω] = ω1S+ω2F with ω1, ω2 > 0,
i.e. [ω] ∈ CM,Kst

. Then for a curve in the class A to be symplectic it must
hold that [ω] · A > 0 and thus

−ω1k + ω2 > 0.

If [ω] ∈ CM,Kst
, then the result follows from the calculation above. If

[ω] ∈ CM,−Kst
, then Lemma 3.2 proves the existence of a lower bound for

A2. More precisely, use the diffeomorphism covered by −Id. This has the
effect of mapping [ω] 7→ −[ω]. This preserves the fraction ω2

ω1
. �

Corollary 3.5. If ω2

ω1
< 1, then (M,ω) admits no negative ω-symplectic

curves.

Proof. If A2 < 0, then A2 = −2k. However, under the given assumption
Lemma 3.4 implies that A2 > −2. �

Now let M be diffeomorphic to S2×̃Σh. Consider a symplectic form ω in
the class [ω] = ω1S+ω2F with standard canonical class Kst = −2S+(2h−
1)F . If A is such that A2 < 0, then Lemma 3.3 and the condition [ω] ·A > 0
imply that

ω1 + ω2 − kω1 > 0.

This further implies that for any A ∈ H2(M,Z)

A2 ≥ 1− 2k > 1− 2
ω2 + ω1

ω1
= −1− 2

ω2

ω1
.

Arguments using diffeomorphisms as in the proof of Lemma 3.4 lead to the
following:

Lemma 3.6. Let M be diffeomorphic to S2×̃Σh. Let ω be a symplectic

structure on M in the class [ω] = ω1S + ω2F and A represented by an

ω-symplectic curve. Then (M,ω) has symplectic bounded negativity.
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A precise estimate for A2 can be given as well. In the h ≥ 1 case, this
has been calculated above.

The h = 0 case has the peculiarity of being the only non-minimal example
in the current discussion. As such, depending on the symplectic canonical
class, the class of the symplectic form can have negative coefficients in the
given basis with respect to the given ruling. The precise lower bound can be
determined by considering an orbit of a symplectic class under D(M): Let
φ1 be the automorphism of H2(M,Z) that fixes S and sends F to 2S − F .
Let φ2 be the automorphism which sends S to −S and F to −2S+F . Note
that these maps are their own inverses. Then

ω1S + ω2F
φ1
←→ ω1S + (2ω1 − ω2)F

l φ2 l φ2

−ω1S + (−2ω1 + ω2)F
φ1
←→ −ω1S − ω2F

Therefore, given [ω] = ω1S + ω2F , if ±(ω1S + ω2F ) ∈ CM,Kst
, then

A2 > −1− 2
ω2

ω1
.

If ±(ω1S + (2ω1 − ω2)F ) ∈ CM,Kst
, then

A2 > −5 + 2
ω2

ω1
.

Note that in the second case, ω1 · ω2 < 0, so the lower bound continues to
be negative.

This proves the following lemma.

Lemma 3.7. Let M be diffeomorphic to S2×̃Σh. Let ω be a symplectic

structure on M in the class [ω] = ω1S + ω2F and A represented by an

ω-symplectic curve. If h = 0, assume further that Kω = Kst. Then

A2 > −1− 2
ω2

ω1
.

4. Ruled Manifolds

In this section M will be the blow-up of a geometrically ruled man-
ifold. Note that after blowing up, the two manifolds (S2 × Σh)#CP 2

and (S2×̃Σh)#CP 2 are diffeomorphic. In this case always consider (S2 ×
Σh)#CP 2 with a given fixed ruling on S2 × Σh and fixed orientations.
The standard basis of H2(M,Z) is given by {S,F,E1, ..., Ek} and denote
by Kst = −2S + (2h− 2)F +

∑
Ei the standard canonical class.

If M is non-minimal, let

E = {A ∈ H2(M,Z) | A is represented by a smooth sphere, A2 = −1}.

The symplectic cone CM ⊂ H2(M,R) of classes representable by symplec-
tic forms has been determined in [19], [16], see also [23], [16]:

CM = {α ∈ H2(M,R) | α2 > 0, α · e 6= 0 ∀e ∈ E}.
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CM decomposes as a disjoint union of cones CM,K , where each cone con-
tains only symplectic classes with Kω = K. When h ≥ 1, one has with
regard to the standard canonical class that

CM,Kst
= {α ∈ H2(M,R) | α2 > 0, α · F > 0, α ·Ei > 0, α · (F − Ei) > 0}.

4.1. Positive Genus Base. Assume that M = (S2 × Σh)#kCP 2 with
h ≥ 1, i.e. M is non-minimal irrational ruled. The case of curves of genus 0
has been stated in Lemma 2.8. Moreover, it is clear that no curves of genus
g < h exist in M . One may thus assume that g ≥ h ≥ 1.

In the geometrically ruled case the symplectic form was always assumed
to be compatible with the ruling. In the current setting the ”correct” sym-
plectic forms to consider are as follows: Let ω ∈ SM be such that (M,ω) can

be decomposed as a symplectic sum of k copies of ((S2×S2)#CP 2, ωi) along
distinct fibers in (S2×Σh, ω0) and that Kω = Kst. Denote the collection of
such symplectic forms by SM,D.

The symplectic sum of two symplectic 4-manifolds (M1, ω1) and (M2, ω2)
along the co-dimension 2 submanifolds Vi ⊂ Mi, where V1 is diffeomorphic
to V2 and [V1]

2 + [V2]
2 = 0, is the smooth manifold

M = M1#V M2 = (M1\NV1) ∪φ (M2\NV2)

obtained by removing a tubular neighborhood NVi of each Vi from Mi and
gluing the two open manifolds along their boundary by an orientation re-
versing diffeomorphism φ together with the symplectic form ω obtained from
the ωi. This operation is easily seen to produce a smooth manifold, that
this is also a symplectic surgery was shown in [8] and [18], see also [10].

Lemma 4.1. Let M be non-minimal irrational ruled. Consider the map

C : SM,D → CM,Kst

given by ω 7→ [ω]. Then this map is a surjection.

Proof. Let α ∈ CM,Kst
. Write α = a1S + a2F +

∑k
i=1 eiEi in the standard

basis of (S2 × Σh)#kCP 2. It must be shown that this class contains a
symplectic form obtained from the symplectic sum of (S2 × Σh, ω0) with k

copies of ((S2 × S2)#CP 2, ωi) along disjoint fibers.
Observe that α must satisfy the following: α2 > 0, α ·Ei > 0 and α · (F −

Ei) > 0. These imply the inequalities

2a1a2 −
∑

e2i > 0 and a1 > −ei > 0.

Let α0 ∈ H2(S2×Σh,R) be α0 = a1S+a20F . Similarly, let αi ∈ H2((S2×
S2)#CP 2,R) be αi = a1S+a2iF+eiEi for i ∈ {1, .., k}. To ensure that all of
these classes are representable by symplectic forms, the following conditions
must be satisfied:

• α2
0 > 0: This implies that a20 > 0.
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• α2
i > 0: This implies that 2a1a2i − e2i > 0 and in particular that

a2i >
e2
i

2a1
> 0.

• αi ·Ei > 0 and α · (F − Ei) > 0: These imply that a1 > −ei > 0.

Choose the symplectic form ω0 to be compatible with the ruling on S2×Σh

and each ωi on (S2×S2)#CP 2 such that they stem from a symplectic form
on the trivial minimal model of M compatible with that ruling.

The symplectic sum will produce a symplectic form ω, compatible with
the ruling in the sense described above, in the class (see [8])

a1S +

(
k∑

i=0

a2i

)

F +
k∑

i=1

eiEi.

Thus, in order to get a symplectic form in the class α, the following must
hold:

(1)
k∑

i=0

a2i = a2.

The classes αi must now be chosen appropriately. Note that a1 and ei are
already fixed by α and in this way automatically satisfy all of the constraints
placed on ei and a1 in both settings. It remains to carefully choose the a2i:

Let a2 =
∑

i
e2
i

2a1
+ ǫ + δ for some choice of ǫ, δ > 0. For i 6= 0, choose

a2i =
e2
i

2a1
+ ǫi for some ǫi ≪ 1. Let a20 = δ and ǫ =

∑

i ǫi. Then

k∑

i=0

a2i = δ +
∑

i

e2i
2a1

+
∑

i

ǫi = a2.

With this choice, each of the αi is representable by a symplectic form,
compatible with the base ruling, such that one can perform the symplectic
sum along disjoint fibers of S2×Σh to obtain a symplectic form in the class
α as needed. �

We now begin a series of reductions which will ultimately reduce the
problem to showing symplectic bounded negativity for ω ∈ SM,D and certain
curve configurations. Let M be a non-minimal irrational ruled manifold

diffeomorphic to (S2 × Σh)#kCP 2.

(1) The main result in [16] shows that given (M, ω̃, C̃), C̃ an ω̃-symplectic
curve, then there is a diffeomorphism taking ω̃ to some symplectic
form ω with Kω = Kst. This maps C̃ to some ω-symplectic curve C

while preserving the self-intersection number.
(2) Let C be a ω-symplectic curve representing A ∈ H2(M,Z). If neces-

sary, perturb C such that it has only transverse self-intersections (see
[20], [21]). The adjunction formula ensures there are at most finitely
many of these. Perform a small blow-up of each of these. Thus ob-
tain a smooth symplectic curve Cb with respect to a symplectic form
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ωb in M#lCP 2 with [ωb] = [ω]+
∑l

i=1 eiEi and [Cb] = A−2
∑l

i=1 Ei.
Note that [ωb] · [Cb] > 0 and, by construction, ei ≪ 1.

The main stability result in [6] (see also Cor. 3.5 therein and
Lemma 4.11, [15]) implies that there exists a ω̃b-symplectic curve

C̃b in the class [Cb] for any symplectic form ω̃b cohomologous to ωb.
Choose ω̃b ∈ SM#lCP 2,D

by Lemma 4.1.

Now blow-down the l exceptional spheres to obtain a curve C̃ ⊂
M , symplectic with respect to a symplectic form ω̃. Ideally this
curve will satisfy the following conditions:
• [C̃] = A and [ω̃] = [ω]
• Under the symplectic sum decomposition given by ω̃, all trans-
verse self-intersections of C̃ as well as all genus is carried by
components lying in S2 × Σh.
• The curve C has only disjoint spheres in (S2 × S2)#CP 2 after
the cut. Assume that all of these spheres intersect at least one
of the two exceptional spheres in the classes E and F − E.

The first property is ensured by the construction above as is the
first part of the second property. If necessary, to ensure the remain-
ing properties hold, blow-down the remaining exceptional spheres
and perform a small blow-up on each of the resulting singularities
on the blown-down curve. This will occur at the cost of a change in
the class [ω], namely the coefficients of the exceptional spheres will
become smaller. The symplectic form thus obtained will still lie in
SM,D.

Theorem 4.2. Let (M,ω) be a non-minimal irrational ruled manifold dif-

feomorphic to (S2×Σh)#kCP 2 endowed with a symplectic structure ω such

that Kω = Kst. Let A ∈ H2(M,Z) be representable by an ω-symplectic curve

C. Let [ω] = ω1S + ω2F +
∑

i eiEi ∈ CM,Kst
. Then

A2 > −2
ω2

ω1
− k.

Proof. Without loss of generality, assume a configuration (M, ω̃, C̃) as de-
scribed above. For convenience, we now drop the tilde.

Let [C] = A = aS + bF +
∑k

i=1 ciEi. Assume that all ci 6= 0, otherwise
blow-down Ei. Observe that the assumption g > 0 and Kω = Kst implies
that A ·Ei > 0 and A · (F −Ei) ≥ 0 by positivity of intersection of pseudo-
holomorphic curves. Therefore

a ≥ −ci > 0.

The symplectic cut decomposes the curve C into components lying in
S2×Σh and in each of the (S2×S2)#CP 2. We consider each case separately.

S2 ×Σh: Let AS2×Σh
=
∑

i Ai with Ai = aiS + biF . Observe that each
curve component Ci with [Ci] = Ai intersects the fiber F along which the
sums are performed locally positively as the original curve C was connected.
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Hence ai > 0. Moreover,

Ai ·Aj = aibj + ajbi ≥ 0

for all i 6= j.
Assume that some Ai has A

2
i < 0. Then it follows from Lemma 3.3 that

Ai = S − kiF with ki > 0. Then

Ai ·Aj = bj − ajk ≥ 0

implies that at most one curve component Ci can have bi < 0 and hence
non-positive square. Thus by Lemma 3.4, with regard to the symplectic
form ω0 obtained in the cut, it follows that

A2
S2×Σh

> −2
ω20

ω1
.

Observe that ω1 = [ω0] · F = [ω] · F while the coefficients of F differ.

(S2×S2)#CP2: Now consider the curve components in (S2×S2)#CP 2.
Let A

(S2×S2)#CP 2 =
∑

Ai with Ai = aiS + biF + ciE. Here S and F are

both represented by spheres, we continue to distinguish the fiber class as
the class along which the symplectic sum is performed.

Note that it is still true that ai ≥ −ci > 0. The curve component Ci

corresponding to the class Ai is obtained in the symplectic cut from the curve
C. The original curve C intersected both E and F − E locally positively.
Hence this also holds for each Ci.

Moreover,
Ai · Aj = aibj + ajbi − cicj = 0.

Assume that there is some class Ai with bi ≤ 0. Then this inequality implies
that Ai is the only class with this property. Hence there is at most one class
A0 = a0S + b0F + c0E with b0 ≤ 0.

Case 1: Assume first that b0 < 0. The curve representing A0 is a blow-
up of a symplectic curve C̃ in S2 × S2. Then our assumptions imply that
[C̃]2 < 0 and Lemma 3.3 shows that a = 1. Let ω̃l be the symplectic form

on S2 × S2 obtained by blowing down ((S2 × S2)#CP 2, ωl) which in turn
was obtained from the symplectic sum decomposition. Denote the class of
ω̃l by [ω̃l] = ω1S + ω2lF . Then [ω̃l] · [C̃] > 0 implies again that

[C̃]2 > −2
ω2l

ω1
.

Recall that a0 ≥ −c0 > 0, which in this case implies that c0 = −1.
Therefore it follows that

A2
0 = [C̃]2 − 1 > −2

ω2l

ω1
− 1.

Case 2: Consider now the remaining components Ai = aiS + biF +
ciE with bi ≥ 0. Recall that (S2 × S2)#CP 2 ≃ CP 2#2CP 2. For the

standard basis {H,E1, E2} of H2(CP
2#2CP 2,Z) we have the coordinate

change formulas

S = H − E1, F = H − E2, E = H − E1 − E2.
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Hence Ai = aiS + biF + ciE = (ai + bi + ci)H − (bi + ci)E1 − (ai + ci)E2.
Observe that ai + bi + ci ≥ 0.

Case 2.1: If ai + bi + ci > 0, then according to Prop 4.5, [26], the class
Ai must be given as Ai = H − E1 − E2 = E. However, this violates ai > 0.
Therefore no such curve can occur.

Case 2.2: If ai+ bi+ ci = 0, then this implies that bi = 0 and ai+ ci = 0.
Thus Ai = ai(S − E), a multiple of the class of an exceptional curve. For
this class to be represented by an embedded sphere, it follows from the
adjunction formula that ai = 1. Thus Ai = S − E and A2

i = −1.
Notice that either Ai = S − E or Ai = S − kiF − E can occur, but

not both as their pairwise intersection is negative. These are the only two

classes of negative self-intersection that can occur in (S2×S2)#CP 2 in this
symplectic cut construction.

In summary: Given M ≃ (S2 ×Σh)#kCP 2, a symplectic form ω on M

allowing for a symplectic sum decomposition of M with [ω] = ω1S + ω2F +
∑

i eiEi , and a curve in the class A lying in the special position as described
above, it follows that:

(1) On (S2×Σh, ωS2×Σh
) with [ωS2×Σh

] = ω1S+ω20F the class AS2×Σh

satisfies the lower bound

A2
S2×Σh

> −2
ω20

ω1
.

(2) On ((S2 × S2)#CP 2, ωl) with [ωl] = ω1S + ω2lF + elEl the class
A

(S2×S2)#CP 2 satisfies the lower bound

A2
(S2×S2)#CP 2

> −2
ω2l

ω1
− 1.

(3) Due to Eq. 1, we have

ω20 +

k∑

l=1

ω2l = ω2

Squares of curves in the symplectic sum are additive, see [5], and hence

A2 = A2
S2×Σh

+

k∑

l=1

A2
(S2×S2)#CP 2

>

> −2
ω20

ω1
+

k∑

l=1

(

−2
ω2l

ω1
− 1

)

= −2
ω2

ω1
− k

�

Let (M,ω,C) be given. The construction reduced the problem as follows:

(M,ω,C)
φ
→ (M,ωst, Cst)→ (M,ωss, Css)
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where the first arrow is a diffeomorphism such that Kωst
= Kst and ωss ∈

SM,D. Note that [ωst] and [ωss] have the same S and F coefficients. More-
over, the whole construction preserved [C]2. We have shown that for any
(M,ωst) the lower bound on the self-intersection is given by −2ω2

ω1
− k. This

in particular implies that M has symplectic bounded negativity for any
symplectic form ω ∈ SM .

Using reflections along −1-spheres in M a lower bound can be explicitly
determined for any ω ∈ SM . It takes the following form:

A2 ≥ −2
β

α
− τ(Kω)− k

where α and β are the coefficients of S and F respectively of the symplectic
form obtained by blowing down the ω-symplectic exceptional curves which
lead to the trivial minimal model. The term τ(Kω) is positive and depends
only on the symplectic canonical class Kω (which is of course determined
completely by ω).

4.2. Spherical Base. The rational case will be discussed in two parts:
First, consider only curves with g > 1. Once a suitable version of Lemma 4.1
has been proven, the argument is mostly the same as in the irrational case.
Note that the condition that g > 0 implies that A ·E ≥ 0 and A ·(F−E) ≥ 0
continue to hold, these played a central role in the arguments to prove The-
orem 4.2.

In the second part spherical symplectic curves will be discussed. Here
the estimates on the intersection behavior with exceptional curves no longer
needs to hold, the Gromov limit of the exceptional curves may have the
spherical symplectic curve as a component and hence negative intersections
are possible. This forms the core of the argument, showing that there are
no curves with A ·E < 0 that contribute to the decomposition.

Lemma 4.3. Let M be rational. Consider the map

C : SM,D → CM,Kst

given by ω 7→ [ω]. Then this map is a surjection.

Proof. In contrast to the irrational ruled case, here the set of exceptional
curves can be very complicated. Thus the symplectic cone of classes repre-
sentable by symplectic forms with canonical class Kst can only be generally
stated as

CM,Kst
= {α ∈ H2(M,R) | α2 > 0, α · E > 0 for all E ∈ EKst

}

where EKst
⊂ E is the set of classes E with Kst ·E = −1.

Let α ∈ CM,Kst
. Note that when M ≃ (S2×S2)#CP 2 the classes Ei, F −

Ei, S − Ei ∈ CM,Kst
and thus α is positive on each of these.

Let α = ω1S + ω2F +
∑

eiEi. Choose the classes αi as in the proof of

Lemma 4.1, noting that the conditions imposed on αi on each (S2×S2)#CP 2

are precisely the positivity conditions on the classes E,F −E,S−E, where
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the condition from S −E is automatically satisfied as the F coefficient and
the E coefficient are given by ω1 and the corresponding ei.

�

It is interesting to note, that once the αi satisfy the homological con-
straints as given in the proof, due to the way the exceptional curves are
constructed in the symplectic sum, the symplectic form produced in the
symplectic sum evaluates positively on every E ∈ EKst

. For example, the

exceptional class S+F −E1−E2−E3−E4 in (S2×S2)#4CP 2 is produced
from the diagonal class S + F in S2 × S2 combined with the exceptional
spheres S − Ei in each ((S2 × S2)#CP 2 summand. The class S + F is
symplectic, so any ω produced in this fashion will automatically evaluate
positively on this exceptional class.

4.2.1. Positive Genus Curves. With this result, the proof of the following
theorem is identical to the proof of Theorem 4.2.

Theorem 4.4. Let (M,ω) be a rational ruled manifold diffeomorphic to

(S2 × S2)#kCP 2 endowed with a symplectic structure ω such that Kω =
Kst. Let A ∈ H2(M,Z) be representable by an ω-symplectic curve C with

g(C) > 0. Let [ω] = ω1S + ω2F +
∑

i eiEi ∈ CM,Kst
. Then

A2 > −2
ω2

ω1
− k.

4.2.2. Spherical Curves. The key point in this section is to show that in
the symplectic cut in the proof of Theorem 4.2 there cannot appear classes
A ∈ H2((S

2 × S2)#CP 2,Z) with A · E < 0 or A · (F − E) < 0. If A2 ≥ 0,
then this follows from standard arguments using pseudoholomorphic curve
techniques.

When A2 < 0, the arguments in the proof of Theorem 4.2 relied crucially
on the two estimates A ·E > 0 and A · (F −E) ≥ 0. These same arguments,
assuming these two inequalities, continue to hold in the spherical case and
one would obtain the same estimate as before for the class A.

Assume now that A2 < 0 where A = aS+bF+cE and a > 0. If A ·E < 0,
then c > 0 and thus A · (F −E) = a+c > 0. On the other hand, if a+c < 0,
then c < 0 and so A · E > 0. Thus the case A · E < 0 and A · (F − e) < 0
does not occur.

Case 1: Assume that A · E < 0 but A · (F − e) ≥ 0. Then a, c > 0.
As A is represented by an embedded sphere in this construction, adjunction
implies that

2ab− c2 − 2a− 2b− c+ 2 = 0

which can be rewritten as

2b(a− 1) = c2 + c+ 2a− 2 > 0.

Thus b > 0. Now switch from (S2 × S2)#CP 2 to CP 2#2CP 2. Then A =
(a+ b+ c)H − (a+ c)E1 − (b+ c)E2 where a+ b+ c > 0. Again Prop. 4.5,
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[26], implies that A = H − E1 − E2 = E and thus a = 0, violating a > 0.
Hence such a curve does not appear.

Case 2: Now let A · E > 0 but A · (F − E) < 0. Thus c < 0 < a and
a+ c < 0.

Case 2.1: Assume first that b > 0. If a + b + c > 0, then again A = E

contradicting a > 0. If a + b + c ≤ 0, then both A · E1 = a + c < 0
and A · E2 = b + c < 0. However, this is impossible due to Theorem 3.4,
[26], which we restate in terms of the current setting: Let J be any almost

complex structure taming the symplectic structure ω on CP 2#2CP 2. Then
at least two of the classes {E1, E2,H −E1−E2} are represented by smooth
J-holomorphic embedded spheres.

This would imply that A must intersect those two exceptional spheres
non-negatively, which is in contradiction to the calculations above.

Case 2.2: Assume now that b < 0. Blow-down along E to get a curve
Cb in S2 × S2 in the class Ab = aS + bF with A2 = 2ab < 0. Thus by
Lemma 3.3, A = S − kF . Observe that by adjunction this is an embedded
sphere, thus any blow-up of this curve would have intersection 1 with the
exceptional curve E. However, by assumption 1 = a < −c. Thus such a
curve cannot appear.

Case 2.3: Let b = 0. Then A = aS + cE and A2 = −c2. The adjunction
formula shows that

−(c2 + c)
︸ ︷︷ ︸

≤0

−2a
︸︷︷︸

<0

+2 = 0

and thus a = −c = 1 in violation of a+ c < 0. Hence this case also does not
occur.

Therefore we may assume that every component in (S2 × S2)#CP 2 sat-
isfies A · E > 0 and A · (F − E) ≥ 0, thus reducing the calculation to
precisely that which can be found in the proof of Theorem 4.2. This proves
the following theorem.

Theorem 4.5. Let (M,ω) be a rational ruled manifold diffeomorphic to

(S2 × S2)#kCP 2 endowed with a symplectic structure ω such that Kω =
Kst. Let A ∈ H2(M,Z) be representable by an ω-symplectic curve C with

g(C) = 0. Let [ω] = ω1S + ω2F +
∑

i eiEi ∈ CM,Kst
. Then

A2 > −2
ω2

ω1
− k.

As in the irrational ruled case, the result for general (M,ω) can be ob-
tained via a diffeomorphism taking ω to some symplectic form with standard
canonical class.

This completes the proof of Theorem 1.1.
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Birkhäuser, Basel, 1994.

[22] McDuff, Dusa. Symplectomorphism groups and almost complex structures. Essays
on geometry and related topics, Vol. 1, 2, 527–556, Monogr. Enseign. Math., 38,
Enseignement Math., Geneva, 2001.



BOUNDED NEGATIVITY AND SYMPLECTIC 4-MANIFOLDS 21

[23] Salamon, Dietmar. Uniqueness of symplectic structures. Acta Math. Vietnam. 38
(2013), no. 1, 123-144.
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