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THE LOCAL-TO-GLOBAL PRINCIPLE FOR TRIANGULATED

CATEGORIES VIA DIMENSION FUNCTIONS

GREG STEVENSON

Abstract. We formulate a general abstract criterion for verifying the local-to-global
principle for a rigidly-compactly generated tensor triangulated category. Our approach
is based upon an inductive construction using dimension functions. Using our criterion
we give a new proof of the theorem that the local-to-global principle holds for such
categories when they have a model and the spectrum of the compacts is noetherian. As
further applications we give a new set of conditions on the spectrum of the compacts
that guarantee the local-to-global principle holds and use this to classify localising
subcategories in the derived category of a semi-artinian absolutely flat ring.
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1. Introduction

The local-to-global principle is a powerful and striking property of a support theory on
a triangulated category. Roughly speaking, it asserts that given some notion of support
for objects of a triangulated category T, taking values in a topological space X , one
can reconstruct any object from the “pieces of that object supported at points of X”.
It was originally christened and formulated in support theoretic language by Benson,
Iyengar, and Krause in [BIK11], although it is worth noting the idea already appears
in Neeman’s work on localising subcategories in the unbounded derived category of a
commutative noetherian ring [Nee92] (in particular see his Lemma 2.10). The validity of
the local-to-global principle has many deep consequences. For instance it implies that the
notion of support in question is fine enough to detect whether or not an object is zero,
reduces the computation of the lattice of (sufficiently nice) localising subcategories to
understanding certain distinguished localising subcategories, and provides a good theory
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2 GREG STEVENSON

of functorial filtrations and Postnikov towers, with respect to a dimension function on
the associated support variety, for the triangulated category. It is thus a fundamental
question to determine in which contexts one has access to the local-to-global principle;
this is precisely the question with which we concern ourselves in this article.
Let us now be a bit more concrete: let T be a rigidly-compactly generated tensor trian-

gulated category and denote by SpcTc the spectrum, in the sense of Balmer [Bal05], of its
compact objects. If SpcTc satisfies certain “reasonableness conditions” then canonically
associated to every point x ∈ SpcTc there is a tensor idempotent object Γx1 such that
tensoring an object with Γx1 gives a sort of “x-torsion and x-local” approximation of that
object. By definition the local-to-global principle holds if for every A ∈ T there is an
equality of localising tensor ideals

loc⊗(A) = loc⊗(Γx1⊗A | x ∈ SpcTc)

i.e. the smallest localising tensor ideal containing A coincides with the smallest localising
tensor ideal containing the Γx1⊗A.
In [Ste13] Proposition 6.8 it was shown that the local-to-global principle holds providedT

arises as the homotopy category of a monoidal model category and SpcTc is a noetherian
topological space. On the other hand in [Ste14] it was shown, by somewhat ad hoc
methods, that there are examples where the spectrum of the compacts is not noetherian
but the local-to-global principle holds. The aim of this note is to rectify this situation
by providing a general abstract criterion, namely Theorem 3.7, framed in the language
of dimension functions on spectral spaces, to check the validity of the local-to-global
principle. The proof is of a somewhat different flavour to the author’s original proof and
is based upon the inductive construction of objects from the filtrations provided by the
dimension functions. It is closer in spirit to the proof of [BIK11, Theorem 3.4] and the
constructions in [Ste12]. In fact it gives a slightly sharper statement, showing that one
can build A from the Γx1⊗A without using tensor products.
Using this abstract criterion we give a new proof in Theorem 4.7 of the local-to-global

principle when SpcTc is noetherian and in Theorem 5.6 we prove the local-to-global
principle under a different set of assumptions on SpcTc generalising the examples of
[Ste14]. As an amusing aside our methods allow one to drop the assumption that T comes
from a stable model category in many cases.
As an application of Theorem 5.6 we complete the classification problem that was studied

in [Ste14]. In that article a classification of the localising subcategories of D(R) was given
in the case R is the absolutely flat approximation of a commutative ring with noetherian
spectrum. Such rings are semi-artinian—every non-zero module has non-zero socle. On
the other hand, it was shown that if R is an absolutely flat ring which is not semi-artinian
then the local-to-global principle fails. In Theorem 6.3 we complete this to an honest
dichotomy, proving that D(R) satisfies the local-to-global principle for any semi-artinian
absolutely flat ring. Moreover, for such rings R we use this to show that the localising
subcategories of D(R) are in bijection with subsets of SpecR.

2. Preliminaries

This section contains some brief reminders on various results, constructions, and topics
that will be of use in the sequel together with some pertinent references. We begin with
some fairly detailed recollections on the theory of spectral spaces. We then discuss, mostly
to fix notation, some notions from tensor triangular geometry.
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2.1. Spectral spaces. Spectral spaces form the natural topological framework for sup-
port theory in tensor triangulated categories; by Stone duality they correspond to coherent
frames and these are precisely the lattices which appear when studying tensor ideals in
essentially small tensor triangulated categories. They are thus also the natural context
for investigating the local-to-global principle. We give here the relevant definitions as well
as fixing notation and recording some results we will need.

Definition 2.1. Let X be a topological space. We say X is a spectral space if it is quasi-
compact, T0, has a basis of quasi-compact open subsets closed under finite intersections,
and every non-empty irreducible closed subset has a (necessarily unique) generic point. A
morphism f : Y −→ X of spectral spaces, namely a continuous map of topological spaces,
is spectral if it is quasi-compact, i.e. the preimage of every quasi-compact open subset of
X is quasi-compact in Y . We say that Y is a spectral subspace of X if Y is a subspace of
X such that the inclusion is spectral.

Given a spectral space X and x ∈ X we denote the closure of x by V(x) and say x
specialises to y if y ∈ V(x). We also fix notation for the subset

Z(x) = {y ∈ X | x /∈ V(y)},

which is just the set of points not specialising to x.

Definition 2.2. A subset V ⊆ X is Thomason if V is a (possibly infinite) union of closed
subsets with quasi-compact open complements.

Example 2.3. Both X and ∅ are always Thomason subsets. Further examples are given
by the subsets Z(x) for x ∈ X—these are Thomason as the complement of Z(x) is just
the intersection of the quasi-compact opens containing x. If X is noetherian then the
Thomason subsets are just the specialisation closed ones.

We next discuss the constructible topology on a spectral space.

Definition 2.4. The constructible topology on X is generated by the collection of quasi-
compact open subsets of X and their complements as a subbasis of open subsets. We
denote X together with this topology by Xcon. Given a subset V ⊆ X we say it is
proconstructible if it is closed in the constructible topology. We say that X carries the
constructible topology if X = Xcon.

We now state some important facts concerning the constructible topology on X .

Proposition 2.5. Let X be a spectral space. The space Xcon is a quasi-compact Hausdorff
spectral space such that

(Xcon)con = Xcon.

Furthermore, given a subset Y of X the following two conditions are equivalent:

(1) Y is proconstructible, i.e. closed in Xcon;
(2) Y with the subspace topology is spectral and Y −→ X is a spectral map, i.e. Y is

a spectral subspace of X.

Proof. The proof of the first part of the proposition can be found in [Sta15, Tag 08YF].
We give a (fairly detailed) sketch of the proof of the second part of the proposition,

starting with (1) implies (2). Let Y be a proconstructible subset of X and equip it
with the subspace topology. First observe that the quasi-compact open subsets of Y are
precisely the intersections of quasi-compact open subsets of X with Y . Indeed, if U is a
quasi-compact open in X then it is proconstructible, and so the open subset U ∩ Y of Y



4 GREG STEVENSON

is also proconstructible, as Y is. Hence U ∩ Y is quasi-compact by virtue of being closed
in a quasi-compact Hausdorff space whose topology is finer than the topology on X . On
the other hand, if W is a quasi-compact open in Y , then there exists an open U in X
such that W = U ∩ Y . Since X is spectral we can write U as a union Ui, over some index
set I, of quasi-compact open subsets. As W is quasi-compact with W ⊆ ∪iUi there exists
some finite set of indices i1, . . . , in with W ⊆ ∪n

j=1Uij = U ′. It follows that W = U ′ ∩ Y

with U ′ quasi-compact as desired.
We note this already shows that the inclusion Y −→ X is quasi-compact. Moreover, the

only requirement for Y to be spectral which does not follow immediately is that irreducible
closed subsets have generic points. To this end, suppose V ⊆ Y is an irreducible closed
subset and denote by W the closure of V in X . As V is closed in Y we have W ∩ Y = V .
Using this, one readily checks that V is compact in Xcon and that W is irreducible in X .

In particular, W has a unique generic point x and we proceed by showing x ∈ V . If x /∈ V
then for each v ∈ V we can find a quasi-compact open subset Uv of X such that v /∈ Uv

and x ∈ Uv; this is a consequence of X being T0 and having a basis of quasi-compact open
subsets, the other possibility that x /∈ Uv and v ∈ Uv being excluded by the fact that this
would imply v /∈ V(x) = W . Thus

V ⊆
⋃

v∈V

X \ Uv

and it follows from compactness of V in Xcon that there are a finite set v1, . . . , vn of points
in V with

V ⊆

n
⋃

i=1

X \ Uvi .

However, irreducibility of W together with the fact that the right hand side of the above
expression is closed implies W would then be contained in some X \Uvi which is absurd,
as none of these closed subsets contains x. Thus x ∈ V and we see that V is the closure
of {x} in Y as desired.

In order to show (2) implies (1) one checks that Y con i
−→ Xcon is again continuous (we

omit the details, but they can be found in [Sta15, Tag 08YF]). Given this one just observes
that Y con is compact, hence its image under i is compact and thus closed in Xcon, i.e.
proconstructible, since the latter space is Hausdorff. �

Lastly we introduce visible points, the relevance of which will become clear when we
discuss supports below.

Definition 2.6. We say a point x ∈ X is visible if there exist Thomason subsets V and
W such that

{x} = V \ (V ∩W).

Lemma 2.7. Let X be a spectral space with X = Xcon. Then every point of X is visible.

Proof. As noted in Example 2.3 for every x ∈ X the subset Z(x) is Thomason. As X
is Hausdorff every point is closed, i.e. there are no non-trivial specialisation relations, so
Z(x) = X \ {x}. We can thus take X itself and Z(x) as a pair of Thomason subsets
witnessing the visibility of x. �

The main abstract fact we will need concerning visible points is that visibility passes to
subspaces.
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Lemma 2.8. Let X be a spectral space and let i : Y −→ X be a spectral subspace. If
y ∈ Y is visible as a point of X, i.e. i(y) is visible, then y is visible in Y . In particular,
if every point of X is visible then every point of Y is visible.

Proof. Let X , Y , and y be as in the statement, i.e. y is a visible point of X lying in
the proconstructible subset Y , and choose Thomason subsets V and W of X such that
{x} = V \ (V ∩ W). Since i : Y −→ X is spectral the preimage of a closed subset of
X with quasi-compact complement is such a subset of Y . We immediately deduce from
this observation that i−1V and i−1W are Thomason subsets of Y which then witness the
visibility of y as a point of Y . �

2.2. Tensor triangular geometry. Let us now give a whirlwind tour of some aspects of
support theory for rigidly-compactly generated tensor triangulated categories. We define
the main players and the functors which we will use throughout but are sparing with the
motivation and details. A thorough treatment of these ideas can be found in [BF11] and
[Ste13].

Definition 2.9. A tensor triangulated category is a triple (K,⊗,1), where K is a trian-
gulated category and

−⊗− : K× K −→ K

is a symmetric monoidal structure on K with unit 1 and with the property that, for all
k ∈ K, the endofunctors k ⊗− and −⊗ k are exact.

Remark 2.10. Throughout we shall not make explicit the associativity, symmetry, and
unit constraints for the symmetric monoidal structure on a tensor triangulated category.
By standard coherence results for monoidal structures this will not get us into any trouble.

Definition 2.11. Let K be an essentially small tensor triangulated category. Assume
that K is closed symmetric monoidal, i.e. for each k ∈ K the functor k ⊗ − has a right
adjoint which we denote hom(k,−). These functors can be assembled into a bifunctor
hom(−,−) which we call the internal hom of K. By definition one has, for all k, l,m ∈ K,
the tensor-hom adjunction

K(k ⊗ l,m) ∼= K(l, hom(k,m)),

with corresponding units and counits

ηk,l : l −→ hom(k, k ⊗ l) and ǫk,l : hom(k, l)⊗ k −→ l.

The dual of k ∈ K is the object

k∨ = hom(k,1).

Given k, l ∈ K there is a natural evaluation map

k∨ ⊗ l −→ hom(k, l),

which is defined by following the identity map on l through the composite

K(l, l)
∼

// K(l ⊗ 1, l)
K(l⊗ǫk,1,l)

// K(k ⊗ k∨ ⊗ l, l)
∼

// K(k∨ ⊗ l, hom(k, l)).

We say that K is rigid if for all k, l ∈ K this natural evaluation map is an isomorphism

k∨ ⊗ l
∼
−→ hom(k, l).

Our main interest will be in certain compactly generated tensor triangulated categories,
namely the rigidly-compactly generated ones.
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Definition 2.12. A rigidly-compactly generated tensor triangulated category T is a com-
pactly generated tensor triangulated category such that the full subcategory Tc of compact
objects is rigid. Explicitly, not only is Tc a tensor subcategory of T, but it is closed under
the internal hom (which exists by Brown representability) and is rigid in the sense of
Definition 2.11.

Fix a rigidly-compactly generated tensor triangulated category T. We say that a full
replete subcategory L of T is localising if it is closed under suspensions, cones, and arbitrary
coproducts and it is a localising tensor ideal if it is in addition closed under tensoring with
arbitrary objects of T. A full replete subcategory M of Tc is thick if it is closed under
suspensions, cones, and direct summands and one defines a thick tensor ideal in the
obvious way. Given classes of objects S ⊆ T and S′ ⊆ Tc we denote by

loc(S), loc⊗(S), thick(S′), and thick⊗(S′)

the smallest localising subcategory, localising tensor ideal, thick subcategory, and thick
tensor ideal containing S or S′ respectively.
As in [Bal05] we can associate to Tc its spectrum SpcTc which is the set of prime tensor

ideals in Tc i.e. those proper thick tensor ideals P such that if t⊗ t′ ∈ P then one of t or
t′ lies in P. This is endowed with a topology by declaring a basis of closed subsets to be
given by the supports of objects t ∈ Tc:

supp t = {P ∈ SpcTc | t /∈ P}.

A key fact, which we exploit throughout the whole paper, is the following theorem of
Buan, Krause, and Solberg.

Theorem 2.13 ([BKS07]). The space SpcTc is spectral in the sense of Definition 2.1.

Next let us recall the generalised Rickard idempotents which allow us to extend the
support to arbitrary objects of T (in favourable situations) and introduce the local-to-
global principle.
Let V be a Thomason subset of SpcTc. There is, by [Bal05, Theorem 4.10], a unique

thick tensor ideal in Tc associated to V , namely

T
c
V = {t ∈ T

c | supp t ⊆ V}.

We set

ΓVT = loc(Tc
V).

There is an associated smashing localisation sequence

ΓVT
//

oo T
//

oo LVT

and we denote the corresponding acyclisation and localisation functors by ΓV and LV

respectively. By [BF11, Theorem 4.1] ΓVT is not only a smashing subcategory but a
smashing tensor ideal. Thus there are associated tensor idempotents ΓV1 and LV1 which
give rise to the acyclisation and localisation functors by tensoring. It is these idempotents
that are used to define the support; the intuition is that, for X ∈ T, the object ΓV1⊗X
is the “piece of X supported on V” and LV1 ⊗ X is the “piece of X supported on the
complement of V”.

Definition 2.14. Let x be a visible point of SpcTc and choose Thomason subsets V and
W such that

{x} = V \ (V ∩W).
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We define a tensor-idempotent

Γx1 = (ΓV1⊗ LW1).

Following the intuition above, for an object X ∈ T, the object Γx1⊗X is supposed to be
the “piece of X which lives only over the point x ∈ SpcTc”.

Remark 2.15. Given any other Thomason subsets V ′ and W ′ of SpcTc with the property
that V ′ \ (V ′ ∩ W ′) = {x} we can define a similar object by forming the tensor product
ΓV′1⊗ LW′1. By [BF11, Corollary 7.5] any such object is uniquely isomorphic to Γx1.

The objects Γx1 are used to define a notion of support on all of T. We will assume
from this point onward that every point of SpcTc is visible—this guarantees that there
are enough of the objects Γx1. We will, given A ∈ T, often write ΓxA as shorthand for
Γx1⊗A.

Definition 2.16. For A ∈ T we define the support of A to be

suppA = {x ∈ SpcTc | ΓxA 6= 0}.

Our main interest in this article is the following definition.

Definition 2.17. We say T satisfies the local-to-global principle if for each A in T

loc⊗(A) = loc⊗(ΓxA | x ∈ SpcTc).

The local-to-global principle was originally introduced by Benson, Iyengar, and Krause
in [BIK11] and considered in the general form stated above in [Ste13]. In the latter paper
it is shown that it holds in significant generality provided SpcTc is noetherian. The aim
of this paper is to weaken this hypothesis by giving a different argument, which actually
proves a slightly stronger statement. What the arguments have in common is the need
for a reasonable theory of homotopy colimits. We close the preliminaries with a quick
discussion of what is necessary to ensure we have access to such homotopy colimits.

Definition 2.18. We will say the tensor triangulated category T has a (monoidal) model
if it occurs as the homotopy category of a stable monoidal model category.

If T has a model in the above sense then we can use the rich theory of homotopy colimits
that have been developed in the framework of stable model categories.

Remark 2.19. Of course instead of requiring that T arose from a stable monoidal model
category we could, for instance, ask that T was the underlying category of a stable
monoidal derivator. In fact we will only use homotopy colimits of shapes given by or-
dinals so one could use a weaker notion of a stable monoidal “derivator” only having
homotopy left and right Kan extensions for certain diagrams; to be slightly more precise
one could just ask for homotopy left and right Kan extensions along the smallest full
2-subcategory of the category of small categories satisfying certain natural closure con-
ditions and containing the ordinals (one can see the discussion before [Gro13] Definition
4.21 for further details).

3. Dimension functions and the general criterion

In this section we introduce spectral dimension functions and use them to formulate a
general inductive approach to proving the local-to-global principle. We begin by intro-
ducing the dimension functions we will consider. Let us fix some spectral space X and
denote by Ord the class of ordinals.
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Definition 3.1. We call a function dim: X −→ Ord a dimension function if

(i) dim does not take limit ordinal values i.e. dimx is not a limit ordinal for any
x ∈ X ;

(ii) for x ∈ X and y ∈ V(x) we have dim y ≤ dimx;
(iii) for x ∈ X and y ∈ V(x) such that dim y = dimx we have x = y.

Given a dimension function we set, for α ∈ Ord,

X≤α = {x ∈ X | dimx ≤ α} and X>α = X \X≤α = {x ∈ X | dimx > α}.

We define the dimension of X relative to the dimension function to be the least ordinal α
such that X = X≤α and denote it by dimX . Such an ordinal is guaranteed to exist since
X has a set of points and the class of ordinals is well-ordered.
Finally we say dim: X −→ Ord is spectral if X≤α is a Thomason subset of X for all

α ∈ Ord.

Some of the reasoning behind the use of the adjective spectral is demonstrated by the
following lemma.

Lemma 3.2. Let X be a spectral space and dim a spectral dimension function on X.
Then for each ordinal α the subset X>α equipped with the subspace topology is a spectral
subspace of X.

Proof. Let α be an ordinal. By definitionX≤α is Thomason i.e. it can be written as a union
of closed subsets with quasi-compact open complements. Thus X>α is an intersection of
quasi-compact opens. In particular,X>α is proconstructible and hence a spectral subspace
of X by Proposition 2.5. �

In order to give our criterion for the local-to-global principle we will have to consider
families of spectral dimension functions on classes of spectral spaces. We next introduce
the relevant definitions, starting with the families of spectral spaces we require.

Definition 3.3. Let X be a class of spectral spaces. We say X is subspace closed if it
contains all spectral subspaces of its members. More explicitly, we require that if X ∈ X
and Y −→ X is the inclusion of a spectral subspace of X then Y ∈ X .

Remark 3.4. Many interesting properties of spectral spaces give rise to subspace closed
classes. For instance, the class of noetherian spectral spaces (Lemma 4.4), the class of
spectral spaces all of whose points are visible (Lemma 2.8), and the class of spectral spaces
carrying the constructible topology and having Cantor-Bendixson rank are all subspace
closed (Lemma 5.2) and see Definition 5.1 for details on Cantor-Bendixson rank).

Definition 3.5. Let X be a subspace closed class of spectral spaces and

D = {dimX : X −→ Ord | X ∈ X}

a class of spectral dimension functions on the spaces in X . We say D is compatible with
X if for all X ∈ X , x ∈ X , and α ∈ Ord

dimX(x) = α+ 1 if and only if dimX>α(x) = 0.

Remark 3.6. In all of our examples compatibility will come for free as our dimension
functions will be defined recursively, via some topological property, using the X>α.

We now have enough terminology to state our main abstract result.
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Theorem 3.7. Let X be a subspace closed class of spectral spaces, such that for each
X ∈ X every point of X is visible, and let D be a compatible class of spectral dimension
functions. Suppose for any rigidly-compactly generated tensor triangulated category T with
Y = SpcTc ∈ X we have for all A ∈ T that

ΓY≤0
A ∈ loc(ΓxA | x ∈ Y≤0).

Then if S is any rigidly-compactly generated tensor triangulated category with a monoidal
model and Spc Sc ∈ X we have

A ∈ loc(ΓxA | x ∈ suppA) ∀A ∈ S.

The theorem is, at first glance, perhaps somewhat abstruse. The intuition is that,
given a rigidly-compactly generated tensor triangulated category S as in the theorem, the
corresponding dimension function gives a filtration of Spc Sc and hence of S (see [Bal07]
and [Ste12] for more details on such filtrations). This filtration gives a functorial way of
building any A ∈ S from the ΓxA by taking cones and homotopy colimits. The upshot of
our compatibility assumption is that inspecting this process one sees that at each successor
ordinal α+1 a new approximation of A is obtained by attaching copies of ΓxA for points
x which are of dimension 0 in X>α. Thus one can deduce the ΓxA build A provided one
understands what happens at points of dimension 0, which is precisely what we assume
in the theorem. As we shall see in the examples this hypothesis is not unreasonable as for
some naturally occurring dimension functions the 0 dimensional points are topologically
distinguished in some way and so easier to work with.
Before proving the theorem we need a technical lemma which is, in some sense, a

generalisation of [Ste13, Lemma 6.6]. As the proofs are rather similar we only sketch the
argument here.

Lemma 3.8. Let S be a rigidly-compactly generated tensor triangulated category with a
monoidal model and suppose dim is a spectral dimension function on X = Spc Sc. For a
limit ordinal λ there is, for every object A in S, an isomorphism

hocolim
κ<λ

ΓX≤κ
A ∼= ΓX≤λ

A.

Proof. As dim does not take limit ordinal values we have

X≤λ =
⋃

κ<λ

X≤κ,

and since dim is spectral all of the subsets occuring in this expression are Thomason.
Thus, by the classification of thick tensor ideals of Sc [Bal05, Theorem 4.10] we have

S
c
X≤λ

=
⋃

κ<λ

S
c
X≤κ

where the category on the right is a thick tensor ideal by virtue of being a union of a
chain of such. Hence the collection of objects

{s ∈ S
c | ∃ κ < λ with supp s ⊆ X≤κ}

generates ΓX≤λ
S.

For A ∈ S consider the triangle

hocolim
κ<λ

ΓX≤κ
A −→ ΓX≤λ

A −→ Z −→ Σhocolim
κ<λ

ΓX≤κ
A.

As ΓX≤λ
S is localising, and hence closed under homotopy colimits, the first two terms of

the triangle are contained in ΓX≤λ
and thus so is Z. In order to complete the proof it
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is sufficient to show that Z ∼= 0 or equivalently that no object in the generating set for
ΓX≤λ

S we have exhibited above has a non-zero morphism to Z. For κ < λ and s ∈ Sc

with supp s ⊆ X≤κ we have s ∼= ΓX≤κ
s, so by adjunction

Hom(s, Z) ∼= Hom(ΓX≤κ
s, Z)

∼= Hom(s,ΓX≤κ
Z).

One then proceeds, as in [Ste13, Lemma 6.6], by showing ΓX≤κ
Z is zero. �

Proof of the theorem. Let S be as in the theorem, set X = Spc Sc ∈ X and denote by
dimX the associated spectral dimension function. We prove, by transfinite induction,
that for every α ∈ Ord and A ∈ S we have

ΓX≤α
A ∈ loc(ΓxA | x ∈ X≤α).

By hypothesis the base case α = 0 holds.
We begin with the case of successor ordinals: suppose the result holds for ordinals less

than or equal to α and consider X≤α+1. As dimX is spectral the subset X≤α is Thomason
and so, for A ∈ S, we can consider the localisation triangle

ΓX≤α
ΓX≤α+1

A −→ ΓX≤α+1
A −→ LX≤α

ΓX≤α+1
A −→ ΣΓX≤α

ΓX≤α+1
A

for the smashing localisation associated to X≤α. We view LX≤α
ΓX≤α+1

A as an object
of LX≤α

S. Note that, since X is subspace closed and SpcLX≤α
Sc ∼= X>α, the base case

applies to LX≤α
S as it is again a rigidly-compactly generated tensor triangulated category.

In LX≤α
S we have isomorphisms

LX≤α
ΓX≤α+1

A ∼= ΓX≤α+1
LX≤α

A ∼= ΓX≤α+1∩X>α
LX≤α

A.

By compatibility of the dimension functions on X we have

X≤α+1 ∩X>α = (SpcLX≤α
S
c)≤0

so the hypothesis of the theorem applies to yield

ΓX≤α+1
LX≤α

A ∈ loc(ΓxΓX≤α+1
LX≤α

A | x ∈ X≤α+1∩X>α) = loc(ΓxA | x ∈ X≤α+1∩X>α).

On the other hand, by the inductive hypothesis, we have

ΓX≤α
ΓX≤α+1

A ∼= ΓX≤α
A ∈ loc(ΓxA | x ∈ X≤α) ⊆ loc(ΓxA | x ∈ X≤α+1).

This shows that both ΓX≤α
ΓX≤α+1

A and LX≤α
ΓX≤α+1

A lie in loc(ΓxA | x ∈ X≤α+1)
and so, by the localisation triangle, we deduce that ΓX≤α+1

A also lies in this localising
subcategory as desired.
It remains to prove the induction step for limit ordinals. Suppose then λ is a limit

ordinal and the inductive hypothesis holds for κ < λ. For A ∈ S we have, by Lemma 3.8,
an isomorphism

hocolim
κ<λ

ΓX≤κ
A ∼= ΓX≤λ

A.

By inductive hypothesis each ΓX≤κ
A lies in loc(ΓxA | x ∈ X≤λ). Thus ΓX≤λ

A is also lies
in this subcategory as localising subcategories are closed under homotopy colimits.
The statement of the theorem now follows: as X is a set there exists an ordinal β such

that X = X≤β and one just applies, for A ∈ S, what we have proved to

ΓX≤β
A = ΓXA ∼= A.

�
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Remark 3.9. One sees from the proof that one could, instead of considering all rigidly-
compactly generated tensor triangulated categories with spectrum in X , just consider
some quotient closed collection of such tensor triangulated categories.
The theorem can also be weakened as follows: we can ask in the hypothesis only that

for any rigidly-compactly generated tensor triangulated category T with Y = SpcTc ∈ X
then given any A ∈ T we have

ΓY≤0
A ∈ loc⊗(ΓxA | x ∈ Y≤0)

i.e. only asking that the local-to-global principle holds for dimension zero points rather
than the stronger statement that the ΓxA generate ΓY≤0

A without using the tensor prod-
uct.

The theorem immediately implies the local-to-global principle in the form that was
recalled in Definition 2.17. As alluded to in the above remark it is in fact stronger as we
have exhibited A as an object of the localising subcategory generated by the ΓxA not just
the tensor ideal they generate.

Corollary 3.10. Suppose S is as in the theorem, whose conditions we assume to be
verified. Then the local-to-global principle holds for S. Moreover, for every A ∈ S we have
suppA = ∅ if and only if A ∼= 0. Furthermore these properties hold for the action of S
on any other compactly generated triangulated category.

Proof. Let A ∈ S. Then, by the theorem, we have

A ∈ loc(ΓxA | x ∈ suppA) ⊆ loc⊗(ΓxA | x ∈ suppA).

On the other hand it is immediate that ΓxA ∼= Γx1⊗A ∈ loc⊗(A). We thus conclude

loc⊗(A) = loc⊗(ΓxA | x ∈ suppA)

i.e. the local-to-global principle holds as claimed.
One then proves the remaining statements exactly as in [Ste13, Theorem 6.9] using the

local-to-global principle. �

As an amusing aside we observe that the formulation of our result also allows one to
remove the hypothesis of the existence of a model in certain cases.

Corollary 3.11. Let X and D be a subspace closed class of spectral spaces and a com-
patible collection of dimension functions verifying the hypotheses of the theorem. If S is a
rigidly-compactly generated tensor triangulated category with Spc Sc ∈ X and

dim(Spc Sc) < ω + ω,

then A ∈ loc(ΓxA | x ∈ suppA) for objects A of S.

Proof. Due to the dimension restriction on Spc Sc one only needs homotopy colimits in-
dexed by ω in order for the induction in the proof of the theorem to reach Spc Sc. Since a
suitable theory of ω-indexed homotopy colimits exists in any triangulated category with
small coproducts the proof of the theorem goes through. �

Remark 3.12. Of course Corollary 3.10 is also valid when the above corollary holds.

We close the section with a final abstract lemma which gives a condition under which
one can check the hypothesis of the theorem.
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Lemma 3.13. Let X be a subspace closed class of spectral spaces and D a compatible
class of spectral dimension functions. Suppose for any X ∈ X and x ∈ X≤0 the subset
{x} is Thomason (so in particular closed). Then for any rigidly-compactly generated
tensor triangulated category T with X = SpcTc ∈ X we have

ΓX≤0
A ∈ loc(ΓxA | x ∈ X≤0)

for every A ∈ T.

Proof. We have assumed each point in X≤0 is a Thomason subset and so, by the classifi-
cation of thick tensor ideals of Tc [Bal05, Theorem 4.10], we see

T
c
X≤0

= thick(
⋃

x∈X≤0

T
c
{x}).

Thus, taken together, the objects of the Tc
{x} for x ∈ X≤0 give a set (up to choosing

isomorphism classes) of compact generators for ΓX≤0
T.

Let A be an object of T. For each point x ∈ X≤0 we have a natural map

ΓxA = Γ{x}A = ΓV(x)A −→ A,

inducing the first map in the following triangle in ΓX≤0
T

∐

x∈X≤0

ΓxA
f

−→ ΓX≤0
A −→ Z −→ Σ

∐

x∈X≤0

ΓxA.

We will show Z ∼= 0 proving the first map is an isomorphism and hence proving the lemma.
Let x be a point in X≤0 and t ∈ Tc

{x}. We have t ∼= Γxt so, by adjunction, every map

t −→ ΓX≤0
A factors uniquely via the natural map ΓxA −→ ΓX≤0

A and hence via the
map f in the above triangle. Similarly every map t −→

∐

x∈X≤0
ΓxA factors uniquely via

ΓxA and we thus see f induces an isomorphism

Hom(t,
∐

x∈X≤0

ΓxA)
∼
−→ Hom(t,ΓX≤0

A).

From this we deduce that Hom(t, Z) ∼= 0. We have already observed above that such t
give a set of generators for ΓX≤0

T and so Z ∼= 0 as claimed. Hence f is an isomorphism

ΓX≤0
A ∼=

∐

x∈X≤0

ΓxA

and the latter object certainly lies in loc(ΓxA | x ∈ X≤0). �

Remark 3.14. The lemma is phrased so as to be maximally compatible with the theorem
rather than for maximal strength. All that is really needed is that X = SpcTc is equipped
with a dimension function such that every point in X≤0 is Thomason. Moreover, one
concludes that ΓX≤0

A actually decomposes as a sum of the ΓxA.

4. Categories with noetherian spectrum

This section is devoted to demonstrating that one deduces the local-to-global principle
for rigidly-compactly generated tensor triangulated categories with noetherian spectrum
and a monoidal model, as originally proved in [Ste13, Theorem 6.9], from Theorem 3.7.
In fact, as previously noted, the version we state and prove here is slightly stronger: we
show no tensor products are required to build an object from its local pieces and the need
for a model is removed in many cases. This latter fact seems to be more of a curiosity
than anything else, but could potentially be of future interest.
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To begin let us introduce the dimension function we will be concerned with, namely a
transfinite version of the Krull dimension (we note our definition is slightly different from
the ordinal valued Krull dimension of [Kra70]).

Definition 4.1. Let X be a noetherian spectral space. We define a function

KdimX : X −→ Ord

in terms of the subsets X≤α by transfinite recursion. For x ∈ X we set KdimX(x) = 0 if
and only if x is closed i.e. X≤0 is just the set of closed points of X . For a limit ordinal λ
we set X≤λ = ∪κ<λX≤κ. Finally, given α ∈ Ord such that X≤α has been defined we say
KdimX(x) = α+1 if and only if x is a closed point in X \X≤α = X>α with the subspace
topology.

It is straightforward to show this gives a family of dimension functions of the sort we
have considered in the last section.

Lemma 4.2. Let X be a noetherian spectral space. Then KdimX is a dimension function
on X.

Proof. By construction KdimX does not take limit ordinal values. For the remaining
two conditions suppose we are given y ∈ V(x) with KdimX(x) = α + 1. By definition
this means V(x) ∩ X>α = {x}. So either y = x or y 6= x and then y /∈ X>α and thus
KdimX(y) < KdimX(x). �

Lemma 4.3. Let X be a noetherian spectral space. For every α ∈ Ord the subspace X≤α,
defined in terms of KdimX , is Thomason and so KdimX is a spectral dimension function.

Proof. As X is noetherian it is enough to show X≤α is specialisation closed. We proceed
by transfinite induction. Clearly X≤0, which is just the set of closed points of X , is
specialisation closed which verifies the base case. For the successor ordinal case suppose
X≤α is specialisation closed. We have

X≤α+1 = X≤α ∪ {x ∈ X>α | x closed in X>α},

which is specialisation closed: x is closed in X>α if and only if V(x) ∩ X>α = {x} i.e.,
every specialisation of x lies in the specialisation closed subset X≤α ⊆ X≤α+1. Finally
the limit ordinal case is clear as any union of specialisation closed subsets is specialisation
closed. �

In fact it is also easy to see the class of noetherian spectral spaces is subspace closed
and the Krull dimension gives a compatible family of dimension functions.

Lemma 4.4. If X is a noetherian spectral space and i : Y −→ X is a spectral subspace
then Y is noetherian. In other words, the class of noetherian spectral spaces is subspace
closed.

Proof. The space Y is noetherian if and only if every open subset of Y is quasi-compact.
Let U be an open subset of Y . Then there exists an open U ′ in X such that U = i−1(U ′).
As X is noetherian U ′ is quasi-compact and since i is spectral this implies U is also
quasi-compact. Since U was arbitrary this shows Y is noetherian. �

Lemma 4.5. Let X be the subspace closed class of noetherian spectral spaces. Then
{KdimX | X ∈ X} is a class of spectral dimension functions compatible with X .

Proof. For each X ∈ X the last two lemmas show KdimX is a spectral dimension function
on X and the compatibility condition is immediate from the definition of KdimX . �



14 GREG STEVENSON

We also easily verify that our criterion Theorem 3.7 applies.

Lemma 4.6. Let T be a rigidly-compactly generated tensor triangulated category with
noetherian spectrum SpcTc = X. Then for all A ∈ T we have

ΓX≤0
A ∈ loc(ΓxA | x ∈ X≤0),

where X≤0 is defined with respect to KdimX .

Proof. By definition of the Krull dimension X≤0 consists precisely of the closed points of
X . As X is noetherian every closed subset is Thomason and so, in particular, for every
x ∈ X≤0 the subset {x} is Thomason. Thus we can conclude by applying Lemma 3.13. �

Applying Theorem 3.7 and Corollary 3.11 we obtain the following result (cf. [Ste13,
Theorem 6.9]).

Theorem 4.7. Suppose T is a rigidly-compactly generated tensor triangulated category
with noetherian spectrum. Assume T satisfies at least one of the following two conditions:

(1) T has a monoidal model;
(2) KdimSpcTc SpcTc < ω + ω.

Then for every object A of T we have

A ∈ loc(ΓxA | x ∈ suppA).

In particular, the local-to-global principle holds for the action of T on itself and for every
A ∈ T we have suppA = ∅ if and only if A ∼= 0. Furthermore these properties hold for
the action of T on any other compactly generated triangulated category.

Proof. As stated before the theorem, given the results of this section one can immediately
apply either Theorem 3.7 or Corollary 3.11. As noted in Corollary 3.10 the usual state-
ment of the local-to-global principle follows immediately. One then proves the remaining
statements exactly as in [Ste13, Theorem 6.9]. �

5. Categories with constructible spectrum

We now provide a new application of Theorem 3.7 generalising [Ste14, Lemma 4.20]
and extending the classification result obtained in said paper to derived categories of
arbitrary semi-artinian absolutely flat rings. Throughout we make a great deal of use of
the constructible topology and related concepts; some reminders on these concepts can
be found in Section 2.1. We start with some recollections on the Cantor-Bendixson rank
of a space.

Definition 5.1. Let X be a spectral space. Denote by X≤0 the set of isolated, i.e. open,
points in X and let X>0 = X \X≤0. Suppose X≤α has been defined and denote by X>α

the complement of X≤α. We define

X≤α+1 = X≤α ∪ {x ∈ X>α | x is open in X>α}.

For a limit ordinal λ we set

X≤λ =
⋃

κ<λ

X≤κ.

If there is an ordinal α such that X≤α = X then the least such ordinal β is the Cantor-
Bendixson rank of X . In this case we write CBrkX = β and say X has Cantor-Bendixson
rank. If there is no such ordinal we say the Cantor-Bendixson rank of X is undefined.
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If X has Cantor-Bendixson rank this gives rise to a dimension function on X by setting,
for x ∈ X ,

CBrk(x) = min{α ∈ Ord | x /∈ X>α}.

We note that compatibility of CBrk with the class of spectral spaces with Cantor-Bendixson
rank is immediate from the definition.

Lemma 5.2. If X is a spectral space with Cantor-Bendixson rank and i : Y −→ X is a
spectral subspace then Y has Cantor-Bendixson rank. In other words, the class of spectral
spaces with defined Cantor-Bendixson rank is subspace closed.

Proof. We claim that for every ordinal α there exists an α′ ≥ α such that Y>α ⊆ X>α′ .
This suffices since, by the assumption that X has Cantor-Bendixson rank, there exists an
ordinal β with X>β = ∅ yielding

∃ β′ ≥ β such that Y>β ⊆ X>β′ = ∅.

This implies Y>β = ∅ and so CBrkY ≤ β.
We now prove the claim by transfinite induction. For the base case, let α′ be the least

ordinal such that X≤α′ ∩ Y 6= ∅ i.e. the least Cantor-Bendixson rank in X of a point in
Y . We note that α′ must be a successor ordinal. Indeed, if α′ were a limit ordinal then
we would have

∅ 6= X≤α′ ∩ Y = (
⋃

κ<α′

X≤κ) ∩ Y =
⋃

κ<α′

(X≤κ ∩ Y ),

showing there exists a κ < α′ with X≤κ ∩ Y 6= ∅ contradicting the minimality of α′. So
α′ − 1 exists and satisfies X≤α′−1 ∩ Y = ∅ from which we deduce Y>−1 = Y ⊆ X>α′−1.
Next suppose α is an ordinal for which there exists an α′ ≥ α with Y>α ⊆ X>α′ . We

can consider the inclusions

Y>α+1 ⊆ Y>α ⊆ X>α′

and apply the argument used for the base case to the composite inclusion. This furnishes
us with an α′′ such that

Y>α+1 ⊆ (X>α′)>α′′−1 = X>α′+α′′−1

as required.
Finally, suppose λ is a limit ordinal such that for every α < λ there is an α′ > α with

Y>α ⊆ X>α′ , and fix such a family of ordinals α′. Then, since the X>α′ form a descending
chain, we have

Y>λ =
⋂

α<λ

Y>α ⊆
⋂

α′

X>α′ ⊆ X>λ′

where λ′ is the supremum of the ordinals α′. Thus the claim holds, which proves the
statement as indicated at the beginning of the proof. �

Lemma 5.3. Let X be a spectral space such that X = Xcon and X has Cantor-Bendixson
rank. Then CBrk is a spectral dimension function on X.

Proof. As X = Xcon a subset of X is Thomason if and only if it is open (see e.g. [Ste14,
Lemma 3.5]). We proceed by transfinite induction, the base case being trivial as X≤0 is
a union of open points. Suppose α ∈ Ord and X≤α is open. By definition

X≤α+1 = X≤α ∪ {x ∈ X>α | x is open in X>α}.
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If x ∈ X≤α+1 \X≤α, that is to say is open in X>α, then there is an open neighbourhood
U of x such that U ∩X>α = {x} i.e., U \ {x} ⊆ X≤α. Thus U is an open neighbourhood
of x contained in X≤α+1 showing X≤α+1 is open. If λ is a limit ordinal then

X≤λ =
⋃

κ<λ

X≤κ.

By the induction hypothesis each X≤κ is open and thus X≤λ is also open. �

Now that we have shown the Cantor-Bendixson rank gives a family of spectral dimen-
sion functions on the subspace closed class of constructible spectral spaces with Cantor-
Bendixson rank we are in a position to apply Theorem 3.7 and prove the local-to-global
principle. We do so after the following lemma, which is somewhat of an aside, demon-
strating that isolated points in the spectrum of a rigidly-compactly generated tensor tri-
angulated category produce particularly nice idempotent objects.

Lemma 5.4. Let T be a rigidly-compactly generated tensor triangulated category whose
spectrum, X = SpcTc, carries the constructible topology and has Cantor-Bendixson rank.
Then for x ∈ X≤0, where X≤0 is defined in terms of the Cantor-Bendixson dimension
function, the localisation triangle

Γ{x}1 −→ 1 −→ L{x}1 −→ ΣΓ{x}1

is split. In particular the object Γx1 ∼= Γ{x}1 is compact.

Proof. Let x ∈ X≤0 so x is open i.e., Thomason inX . Since x is also closed its complement
Z(x) is also a Thomason subset of X . This observation gives rise to localisation triangles
(corresponding to smashing localisations)

Γ{x}1 −→ 1 −→ L{x}1 −→ ΣΓ{x}1 and ΓZ(x)1 −→ 1 −→ LZ(x)1 −→ ΣΓ{x}1.

Tensoring the first triangle with ΓZ(x)1 and the second with L{x}1 yields isomorphisms

L{x}1 ∼= ΓZ(x)1⊗ L{x}1 ∼= ΓZ(x)1.

By the unicity of Γx1 (see [BF11, Corollary 7.5]) we have isomorphisms

Γ{x}1 ∼= Γx1 ∼= LZ(x)1.

From these two collections of isomorphisms we see

Hom(L{x}1,ΣΓ{x}1) ∼= Hom(ΓZ(x)1,ΣLZ(x)1) ∼= 0.

Thus the triangle

Γ{x}1 −→ 1 −→ L{x}1 −→ ΣΓ{x}1

splits and Γ{x}1 ∼= Γx1 is a summand of 1 and hence compact. �

Lemma 5.5. Let T be a rigidly-compactly generated tensor triangulated category whose
spectrum, X = SpcTc, carries the constructible topology and has Cantor-Bendixson rank.
Given any A ∈ T we have

ΓX≤0
A ∈ loc(ΓxA | x ∈ X≤0),

where X≤0 is defined with respect to CBrk.

Proof. Let x be a point of X≤0. Then, by definition, {x} is an open subset of X . Thus
its complement is closed and hence quasi-compact. This shows {x}, which is also a closed
subset, is Thomason. Having verified this condition we can appeal to Lemma 3.13 to
finish the proof. �
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Theorem 5.6. Suppose T is a rigidly-compactly generated tensor triangulated category
whose spectrum carries the constructible topology and has Cantor-Bendixson rank. In
addition suppose T satisfies at least one of the following two conditions:

(1) T has a monoidal model;
(2) CBrkSpcTc < ω + ω.

Then for every object A of T we have

A ∈ loc(ΓxA | x ∈ suppA).

In particular, the local-to-global principle holds for the action of T on itself and for every
A ∈ T we have suppA = ∅ if and only if A ∼= 0. Furthermore these properties hold for
the action of T on any other compactly generated triangulated category.

Proof. We first note that, as recalled in Lemma 2.7, every point of a spectral space
equipped with the constructible topology is visible. So, by what we have thusfar proved
in this section, either Theorem 3.7 or Corollary 3.11 applies. The remaining statements
are a consequence of Corollary 3.10. �

6. An application to absolutely flat rings

In [Ste14] it was shown that the local-to-global principle holds for derived categories of
certain absolutely flat rings (the definition of absolutely flat is recalled below) and does
not hold in certain other cases. The theorem of the last section, Theorem 5.6, allows
us to prove the local-to-global principle in the remaining cases (cf. Remark 4.22 of the
aforementioned paper).
First we recall the relevant definitions; further details and motivation can be found in

[Ste14].

Definition 6.1. Let R be a commutative ring with unit. We say R is absolutely flat (also
known as von Neumann regular) if for every r ∈ R there exists some x ∈ R satisfying

r = r2x.

Definition 6.2. Let S be a ring (not necessarily absolutely flat). We say S is semi-
artinian if every non-zero homomorphic image of S, in the category of S-modules, contains
a simple submodule.

Given a prime ideal P ∈ SpecR we denote by k(P ) the corresponding residue field,
which is just RP in the case R is absolutely flat.

Theorem 6.3. Let R be a semi-artinian absolutely flat ring. Then D(R) satisfies the
local-to-global principle. In particular the residue fields of R generate the derived category
D(R). Moreover, there is an order preserving bijection

{

subsets of SpecR
}

τ
//

oo

σ

{

localising subcategories of D(R)
}

,

where for a localising subcategory L and a subset W ⊆ SpecR we set

σ(L) = {P ∈ SpecR | k(P )⊗ L 6= 0} and τ(W ) = loc(k(P ) | P ∈ W ).

Proof. Let R be a semi-artinian absolutely flat ring as in the statement. Then SpecR
is certainly spectral and carries the constructible topology (see [Oli67, Proposition 5] for
example for the second statement). By [Gar79, Theorem 4] (or see [Trl96] which is more
easily obtained) the space SpecR ∼= SpcDperf(R) has Cantor-Bendixson rank. Finally,
it is a standard fact that D(R) is the homotopy category of a stable monoidal model
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category. So we can apply Theorem 5.6 to deduce that D(R) satisfies the local-to-global
principle.
Given a prime ideal P ∈ SpecR we have k(P ) ∼= RP

∼= ΓPR (see [Ste14, Lemma 4.2] and
the discussion following it) from which it is immediate, by an application of the local-to-
global principle to the stalk complex R, that the residue fields generate. The classification
result is also an immediate consequence of the local-to-global principle and follows as in
the proof of [Ste14, Theorem 4.23]. �
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