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There are several inequalities in physics which limit how well we can process physical systems
to achieve some intended goal, including the second law of thermodynamics, entropy bounds in
quantum information theory, and the uncertainty principle of quantum mechanics. Recent results
provide physically meaningful enhancements of these limiting statements, determining how well one
can attempt to reverse an irreversible process. In this paper, we apply and extend these results to
give strong enhancements to several entropy inequalities, having to do with entropy gain, information
gain, and complete positivity of physical evolutions. Our first result is a remainder term for the
entropy gain of a quantum channel. This result implies that a small increase in entropy under the
action of a unital channel is a witness to the fact that the channel’s adjoint can be used as a recovery
channel to undo the action of the original channel. We apply this result to pure-loss, quantum-
limited amplifier, and phase-insensitive quantum Gaussian channels, showing how a quantum-limited
amplifier can serve as a recovery from a pure-loss channel and vice versa. Our second result regards
the information gain of a quantum measurement, both without and with quantum side information.
We find here that a small information gain implies that it is possible to undo the action of the original
measurement if it is efficient. The result also has operational ramifications for the information-
theoretic tasks known as measurement compression without and with quantum side information. We
finally establish that the reduced dynamics of a system-environment interaction are approximately
CPTP if and only if the data processing inequality holds approximately.

Keywords: approximate reversibility, recoverability, entropy gain, information gain, completely positive,

quantum relative entropy

I. INTRODUCTION

The second law of thermodynamics constitutes a fun-
damental limitation on our ability to extract energy from
physical systems [24]. The data processing inequality
represents a limitation on our ability to process informa-
tion, being the basis for most of the important capacity
theorems in quantum information theory [34]. The un-
certainty principle of quantum mechanics places a limi-
tation on how well we can measure incompatible observ-
ables [10, 15]. These seemingly disparate statements have
a common mathematical foundation in an entropy in-
equality known as the monotonicity of quantum relative
entropy [19, 29], which states that the quantum relative
entropy cannot increase under the action of a quantum
channel. More precisely, the quantum relative entropy
between two density operators ρ and σ is defined as [30]

D(ρ‖σ) ≡ Tr{ρ [log ρ− log σ]}, (1)

and the monotonicity of quantum relative entropy states
that

D(ρ‖σ) ≥ D(N (ρ)‖N (σ)), (2)

where N is a quantum channel.
Recently, researchers have explored refinements of

these statements in various contexts, with the common
theme being to understand how well one can attempt to

reverse an irreversible process. One of the main technical
developments which has allowed for these refined state-
ments is a strengthening of the monotonicity of quantum
relative entropy of the following form [35]:

D(ρ‖σ) ≥ D(N (ρ)‖N (σ)) − logF (ρ, (R ◦N )(ρ)), (3)

where F (ω, τ) ≡ ‖√ω√τ‖21 is the quantum fidelity [28]
between two density operators ω and τ , and R is a recov-
ery channel with the property that it perfectly recovers
the σ state, in the sense that σ = (R ◦ N )(σ) (see also
[17, 26] for later developments and [11] for an impor-
tant earlier development with conditional mutual infor-
mation). Several applications follow as a consequence.
Ref. [32] gave an application in thermodynamics, prov-
ing that if the free energies of two states are close and
if it is possible to transition from one state to another
via a thermal operation such that there is an energy gain
in the process, then one can approximately reverse this
thermodynamic transition without using any energy at
all. Ref. [5] showed how to tighten the uncertainty prin-
ciple in the presence of quantum memory [3] with another
term related to how much disturbance a given measure-
ment causes, thus unifying several aspects of quantum
physics, including measurement incompatibility, entan-
glement, and measurement disturbance, in a single en-
tropic uncertainty relation. Finally, Ref. [35] has given
an increased understanding of many well known entropy
inequalities in quantum information, such as the joint
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convexity of quantum relative entropy, the non-negativity
of quantum discord, the Holevo bound, and multipartite
information inequalities.

In this paper, we continue with this theme and derive
several new results:

1. First, we give a strong improvement of the well
known statement that the quantum entropy can-
not decrease under the action of a unital quantum
channel (a channel which preserves the identity op-
erator). The bound that we derive has a rather
simple proof, following from the operator concav-
ity of the logarithm (related to the method used in
[26]). The main physical implication of this result
is that if the entropy gain under the action of a
unital channel is not too large, then it is possible
to reverse the action of this channel by applying its
adjoint (which is a quantum channel in this case).

2. Next, we consider the information gain of a quan-
tum measurement, a concept introduced in [14] and
subsequently refined in [4, 7, 36, 37]. The informa-
tion gain of a quantum measurement quantifies how
much data we can gather by performing a quantum
measurement on a given state. It has an opera-
tional interpretation as the rate at which a sender
needs to transmit classical information to a receiver
in order for them to simulate a quantum measure-
ment on a given state [37]. Here, we prove that if
the information gain is not too large, then it is pos-
sible to reverse the action of the measurement and,
in the operational context, one can also simulate
the measurement well on average without sending
any classical data at all. The result also applies
if the measurement is performed on one share of a
bipartite state.

3. Finally, we give a refinement of the recent link
between the data processing inequality and com-
plete positivity of a linear map [6]. In [6], it was
shown that the data processing inequality holds
if and only if the reduced dynamics of an evolu-
tion are completely positive. Here, we show how
this result holds approximately, which should al-
low for experimental tests if desired. That is, we
show that the data processing inequality holds ap-
proximately if and only if the reduced dynamics of
an evolution are approximately completely positive
(see Section V for precise statements).

The rest of the paper is devoted to giving more details
and explanations of these results. We begin in the next
section by setting notation, definitions, and reviewing the
prior literature in more detail. We then follow with each
of the aforementioned results and conclude in Section VI
with a summary.

II. PRELIMINARIES

This section reviews background material on quantum
information, all of which is available in [34]. Let L(H)
denote the algebra of bounded linear operators acting
on a Hilbert space H. Let L+(H) denote the subset of
positive semi-definite operators. We also write X ≥ 0 if
X ∈ L+(H). An operator ρ is in the set D(H) of den-
sity operators (or states) if ρ ∈ L+(H) and Tr{ρ} = 1.
The tensor product of two Hilbert spaces HA and HB

is denoted by HA ⊗ HB or HAB. Given a multipartite
density operator ρAB ∈ D(HA⊗HB), we unambiguously
write ρA = TrB {ρAB} for the reduced density operator
on system A. We use ρAB, σAB , τAB, ωAB, etc. to denote
general density operators in D(HA ⊗ HB), while ψAB,
ϕAB, φAB , etc. denote rank-one density operators (pure
states) in D(HA ⊗ HB) (with it implicit, clear from the
context, and the above convention implying that ψA, ϕA,
φA may be mixed if ψAB, ϕAB, φAB are pure). A purifi-
cation |φρ〉RA ∈ HR ⊗HA of a state ρA ∈ D(HA) is such
that ρA = TrR{|φρ〉〈φρ|RA}. An isometry U : H → H′

is a linear map such that U †U = IH. Often, an identity
operator is implicit if we do not write it explicitly (and
should be clear from the context).
Throughout this paper, we take the usual conven-

tion that f(A) =
∑

i f(ai)|i〉〈i| when given a func-
tion f and a Hermitian operator A with spectral de-
composition A =

∑

i ai|i〉〈i|. So this means that
A−1 is interpreted as a generalized inverse, so that
A−1 =

∑

i:ai 6=0 a
−1
i |i〉〈i|, log (A) = ∑

i:ai>0 log (ai) |i〉〈i|,
exp (A) =

∑

i:ai 6=0 exp (ai) |i〉〈i|, etc. Throughout the pa-
per, we interpret log as the binary logarithm. We employ
the shorthand supp(A) and ker(A) to refer to the support
and kernel of an operator A, respectively.
A linear map NA→B : L(HA) → L(HB) is posi-

tive if NA→B (σA) ∈ L(HB)+ whenever σA ∈ L(HA)+.
Let idA denote the identity map acting on a system A.
A linear map NA→B is completely positive if the map
idR ⊗ NA→B is positive for a reference system R of ar-
bitrary size. A linear map NA→B is trace-preserving if
Tr {NA→B (τA)} = Tr {τA} for all input operators τA ∈
L(HA). It is trace non-increasing if Tr {NA→B (τA)} ≤
Tr {τA} for all τA ∈ L+(HA). A quantum channel is
a linear map which is completely positive and trace-
preserving (CPTP). A positive operator-valued measure
(POVM) is a set {Λm} of positive semi-definite oper-
ators such that

∑

mΛm = I. For X,Y ∈ L(H), let
〈X,Y 〉 ≡ Tr{X†Y } denote the Hilbert–Schmidt inner

product. The adjoint (MA→B)
†
of a linear map MA→B

is the unique linear map satisfying

〈YB,MA→B(XA)〉 = 〈(MA→B)
† (YB), XA〉, (4)

for all XA ∈ L(HA) and YB ∈ L(HB). A linear
map MA→B is unital if it preserves the identity, i.e.,
MA→B(IA) = IB . It then follows that a linear map is
unital if and only if its adjoint is trace preserving. A
linear map MA→B is subunital if MA→B(IA) ≤ IB, and
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this is equivalent to the adjoint of MA→B being trace
non-increasing.
A quantum instrument is a quantum channel that ac-

cepts a quantum system as input and outputs two sys-
tems: a classical one and a quantum one. More formally,
a quantum instrument is a collection {N x} of completely
positive trace non-increasing maps, such that the sum
map

∑

xN x is a quantum channel. We can write the
action of a quantum instrument on an input operator C
as the following quantum channel:

C →
∑

x

N x(C) ⊗ |x〉〈x|, (5)

where {|x〉} is an orthonormal basis labeling the classical
output of the instrument.
The trace distance between two quantum states ρ, σ ∈

D(H) is equal to ‖ρ− σ‖1. It has a direct operational
interpretation in terms of the distinguishability of these
states. That is, if ρ or σ are prepared with equal proba-
bility and the task is to distinguish them via some quan-
tum measurement, then the optimal success probability
in doing so is equal to (1 + ‖ρ− σ‖1 /2) /2. The fidelity

is defined as F (ρ, σ) ≡
∥

∥

√
ρ
√
σ
∥

∥

2

1
[28], and more gen-

erally we can use the same formula to define F (P,Q) if
P,Q ∈ L+(H). Uhlmann’s theorem states that [28]

F (ρA, σA) = max
U

|〈φσ|RAUR ⊗ IA|φρ〉RA|2 , (6)

where |φρ〉RA and |φσ〉RA are purifications of ρA and σA,
respectively, and the optimization is with respect to all
isometries UR. The same statement holds more gener-
ally for P,Q ∈ L+(H). The direct-sum property of the
fidelity is that

√
F (ωXS , τXS) =

∑

x

√

pX(x)qX(x)
√
F (ωx

S , τ
x
S ), (7)

for classical–quantum states

ωXS ≡
∑

x

pX(x)|x〉〈x|X ⊗ ωx
S , (8)

τXS ≡
∑

x

qX(x)|x〉〈x|X ⊗ τxS . (9)

The relative entropy D(P‖Q) between P,Q ∈ L+(H),
with P 6= 0, is defined as

D(P‖Q) = Tr{P [logP − logQ]} (10)

if supp(P ) ⊆ supp(Q) and as +∞ otherwise. The relative
entropy D(P‖Q) is non-negative if Tr{P} ≥ Tr{Q}, a
result known as Klein’s inequality [18]. Thus, for density
operators ρ and σ, the relative entropy is non-negative,
and furthermore, it is equal to zero if and only if ρ =
σ. The quantum relative entropy obeys the following
property:

D(P‖Q) ≥ D(P‖Q′), (11)

for P,Q,Q′ ∈ L+(H) such that Q ≤ Q′. The follow-
ing relationship between fidelity and quantum relative
entropy is well known (see, e.g., [20]):

D(P‖Q) ≥ − logF (P,Q). (12)

The quantum entropy H(ρ) of a density operator ρ is
H(ρ) = −Tr{ρ log ρ}. We often write this as H(A)ρ if
ρA is the density operator for system A. The conditional
entropy of a bipartite density operator ρAB is equal to
H(A|B)ρ ≡ H(AB)ρ −H(B)ρ. The mutual information
is equal to I(A;B)ρ = H(A)ρ − H(A|B)ρ. The condi-
tional mutual information of a tripartite state ρABC is
equal to I(A;B|C)ρ = H(B|C)ρ −H(B|AC)ρ. The fol-
lowing identities are well known (see, e.g., [34]):

H(A)ρ = −D(ρA‖IA), (13)

H(A|B)ρ = −D(ρAB‖IA ⊗ ρB), (14)

I(A;B)ρ = D(ρAB‖ρA ⊗ ρB). (15)

The following “recoverability theorem” is an enhance-
ment of the monotonicity of quantum relative entropy
(mentioned in (3)) and was proved recently in [17], by an
extension of the methods from [35]:

D(ρ‖σ) ≥ D(N (ρ)‖N (σ)) − logF (ρ, (R ◦N )(ρ)), (16)

where ρ ∈ D(H), σ ∈ L+(H), N : L(H) → L(H′) is a
quantum channel, and R is a recovery quantum channel
of the following form:

R(Q) ≡ Tr{(I −ΠN (σ))Q}τ

+

∫ ∞

−∞

dt p(t) Rt/2
σ,N (Q), (17)

where ΠN (σ) is the projection onto the support of N (σ),

τ ∈ D(H), p(t) ≡ π

2
[cosh(t) + 1]−1 (18)

is a probability distribution on t ∈ R, Uω,t(X) ≡
ωitXω−it for ω positive semi-definite,

Pσ,N (Q) ≡ σ1/2N †
(

N (σ)−1/2QN (σ)−1/2
)

σ1/2 (19)

is a completely positive, trace non-increasing map known
as the Petz recovery map [22, 23], and Rt

σ,N is a rotated
or “swiveled” Petz recovery map, defined as

Rt
σ,N ≡ Uσ,−t ◦ Pσ,N ◦ UN (σ),t. (20)

In fact, the following stronger statement holds [17]

D(ρ‖σ) ≥ D(N (ρ)‖N (σ))

−
∫ ∞

−∞

dt p(t) logF (ρ, (Rt/2
σ,N ◦ N )(ρ)), (21)

which will be useful for our purposes here. The inequality
in (16) implies the following one:

I(A;B|C)ρ ≥ − logF (ρABC ,RC→AC(ρBC)), (22)
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where RC→AC is defined from (17), taking σ = ρAC and
N = TrA. This follows from the definition we gave for
I(A;B|C)ρ, the equality in (14), and the inequality in
(16). Similarly, the following holds as well:

I(A;B|C)ρ ≥ −
∫ ∞

−∞

dt p(t) logF (ρABC ,Rt/2
σ,N (ρBC)),

(23)
taking σ = ρAC and N = TrA.

III. ENTROPY GAIN

It is well known that the quantum entropy cannot de-
crease under the action of a unital quantum channel [33]:

H(N (ρ)) ≥ H(ρ), (24)

where ρ ∈ D(H) and N : L(H) → L(H′) is a unital quan-
tum channel. This entropy inequality follows as a simple
consequence of the monotonicity of quantum relative en-
tropy, established by picking σ = I in (2) and applying
that N is unital, whereby

−H(ρ) = D(ρ‖I) ≥ D(N (ρ)‖N (I)) (25)

= D(N (ρ)‖I) (26)

= −H(N (ρ)). (27)

This entropy inequality has a number of applications in
quantum information and other contexts.
The following theorem leads to an enhancement of

(24):

Theorem 1 Let ρ ∈ D(H) and let N : L(H) → L(H′)
be a positive and trace-preserving map. Then

H(N (ρ)) −H(ρ) ≥ D(ρ‖(N † ◦ N )(ρ)). (28)

Proof. This follows because

H(N (ρ)) −H(ρ)

= Tr{ρ log ρ} − Tr{N (ρ) logN (ρ)} (29)

= Tr{ρ log ρ} − Tr{ρN †(logN (ρ))} (30)

≥ Tr{ρ log ρ} − Tr{ρ log(N † ◦ N )(ρ)} (31)

= D(ρ‖(N † ◦ N )(ρ)). (32)

The second equality is from the definition of the adjoint.
The inequality follows from operator concavity of the log-
arithm and the operator Jensen inequality for positive
unital maps [9] (see also [26, Lemma 3.10]).
If N is additionally subunital, then Theorem 1 implies

that N † is trace non-increasing, which in turn implies
that D(ρ‖(N † ◦ N )(ρ)) ≥ 0 by Klein’s inequality. Thus,
in this case, we obtain a significant strengthening of the
well known fact that the entropy increases under the ac-
tion of a unital quantum channel. The resulting entropy

inequality also leads to an interpretation in terms of re-
coverability, in the sense discussed in [35]. That is, we
can take the recovery channel to be

R(Y ) ≡ N †(Y ) + Tr{(id−N †)(Y )}τ, (33)

where τ ∈ D(H), and we get that

H(N (ρ))−H(ρ) ≥ D(ρ‖(R ◦N )(ρ)) (34)

by applying (11), because (R ◦ N )(ρ) ≥ (N † ◦ N )(ρ).
Note that R is a positive map if N is.
Thus, what we find is an improvement over what we

would get by applying (16) or the main result of [26].
First, there is a mathematical advantage in the sense
that N is not required to be a channel, but it suffices for
it to be a positive map. This addresses the main open
question of [26] for a very special case. Some might also
consider this to be a physical advantage as well, given the
controversy over positive versus completely positive maps
for the description of quantum dynamical evolutions (see,
e.g., [6] and references therein). Second, the remainder
term in (34) features the quantum relative entropy and
thus is stronger than the − logF bound in (16) (cf. (12))
and the “measured relative entropy” term from [26].

A. Application to bosonic channels

Theorem 1 finds application for practical bosonic chan-
nels that have a long history in quantum information
theory, in particular, the pure-loss and quantum-limited
amplifier channels, and even all phase insensitive Gaus-
sian channels [31]. A pure-loss channel is defined from
the following input-output Heisenberg-picture relation:

b̂ =
√
ηâ+

√

1− ηê, (35)

where â, b̂, and ê are the field-mode annihilation oper-
ators representing the sender’s input, the receiver’s out-
put, and the environmental input of the channel. The
parameter η ∈ [0, 1] represents the average fraction of
photons that make from the sender to receiver. For the
pure-loss channel, the environment is prepared in the vac-
uum state. Let Bη denote the CPTP map corresponding
to this channel. A quantum-limited amplifier channel
is defined from the following input-output Heisenberg-
picture relation:

b̂ =
√
Gâ+

√
G− 1ê†, (36)

where â, b̂, and ê have the same physical meaning as given
for the pure-loss channel. The parameter G ∈ [1,∞) rep-
resents the gain or amplification factor of the channel.
For the quantum-limited amplifier channel, the environ-
ment is prepared in the vacuum state. Let AG denote
the CPTP map corresponding to this channel.
One of the critical insights of [16] is that these channels

are “almost unital,” in the sense that

Bη(I) = η−2I, AG(I) = G−2I, (37)
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and that their adjoints are strongly related, in the sense
that

B†
η = η−2A1/η, (38)

A†
G = G−2B1/G. (39)

Observe that the pure-loss channel is superunital and the
amplifier channel is subunital. These facts allow us to
apply Theorem 1 and the fact that D(ρ‖cσ) = D(ρ‖σ)−
log c for c > 0 to find that

H(Bη(ρ))−H(ρ) ≥ D(ρ‖(A 1
η
◦ Bη)(ρ)) + 2 log η, (40)

H(AG(ρ))−H(ρ) ≥ D(ρ‖(B 1
G
◦ AG)(ρ)) + 2 logG.

(41)

These bounds demonstrate that a quantum-limited am-
plifier suffices as a reversal channel for a pure-loss chan-
nel and vice versa. Note that the reversal is only good if
the entropy does not change too much (i.e., if η ≈ 1 or
G ≈ 1). We can also conclude that

H((AG ◦ Bη)(ρ))−H(ρ) ≥
D(ρ‖(A1/η ◦ B1/G ◦ AG ◦ Bη)(ρ)) + 2 log [ηG] , (42)

because

(AG ◦ Bη)
† = [ηG]−2 A1/η ◦ B1/G. (43)

The above bound applies to any phase insensitive quan-
tum Gaussian channel, given that any such channel can
be written as a serial concatenation of a pure-loss channel
and a quantum-limited amplifier channel [8, 13].

B. Optimized entropy gain

In [1], the minimal entropy gain of a quantum channel
was defined as

G(N ) ≡ inf
ρ
[H(N (ρ)) −H(ρ)] , (44)

and the following bounds were established for a channel
with the same input and output Hilbert space H:

− log dim(H) ≤ G(N ) ≤ 0. (45)

Applying Theorem 1 gives the following alternate lower
bound for the entropy gain of a quantum channel:

G(N ) ≥ inf
ρ
D(ρ‖(N † ◦ N )(ρ)). (46)

C. Entropy gain in the presence of quantum side

information

A generalization of the entropy inequality in (34) holds
for the case of the conditional quantum entropy, found
by applying the same method:

Corollary 2 Let ρAB ∈ D(HA⊗HB) and N : L(HA) →
L(HA′) be a positive and trace-preserving map. Then

H(A′|B)σ −H(A|B)ρ

≥ D(ρAB‖((NA→A′)
† ◦ NA→A′)(ρAB)), (47)

where σA′B ≡ (NA→A′ ⊗ idB)(ρAB).

Proof. This follows by applying Theorem 1 and defini-
tions. From Theorem 1, we can conclude that

H(A′B)σ −H(AB)ρ

≥ D(ρAB‖((NA→A′)
† ◦ NA→A′)(ρAB)). (48)

Consider also that

H(A′B)σ −H(AB)ρ

= H(A′B)σ −H(B)σ − [H(AB)ρ −H(B)ρ] (49)

= H(A′|B)σ −H(A|B)ρ, (50)

where we have used that H(B)ρ = H(B)σ. Combining
these gives (47).

IV. INFORMATION GAIN

Let {N x} constitute a quantum instrument, where
each N x : L(HA) → L(HA′) is a completely positive,
trace-non-increasing map. Groenewold originally defined
the information gain of a quantum instrument {N x},
when performed on a quantum state ρA, as follows [14]:

H(ρA)−
∑

x

pX(x)H(ρxA′ ), (51)

where

ρxA′ ≡ N x
A→A′(ρA)

pX(x)
, pX(x) ≡ Tr{N x

A→A′(ρA)}. (52)

This definition was based on the physical intuition that
information gain should be identified with the entropy
reduction of the measurement. However, it was later re-
alized that the entropy reduction can be negative, and
that this happens if and only if the instrument is not an
efficient measurement [21] (such that each N x consists of
a single Kraus operator [12]).
Apparently without realizing the connection to Groe-

newold’s information gain of a measurement, Winter con-
sidered the operational, information-theoretic task [37]
of determining the rate at which classical information
would need to be communicated from a sender to a re-
ceiver in order to simulate the action of the measurement
on a given state (if shared randomness is allowed for free
between sender and receiver). He called this task “mea-
surement compression,” given that the goal is to send the
classical output of the measurement at the smallest rate
possible, in such a way that a third party would not be
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able to distinguish the output of the protocol performed
on many copies of φρRA from the same number of copies
of the following state:

σRX ≡
∑

x

TrA′{(idR ⊗N x
A→A′)(φ

ρ
RA)} ⊗ |x〉〈x|X , (53)

where φρRA is a purification of ρ and {|x〉} is an orthonor-
mal basis for the classical output X of the measurement.
He found that the optimal rate of measurement compres-
sion is equal to the mutual information of the measure-
ment I(R;X)σ.
After Winter’s development, Ref. [7] suggested that

the information gain of the measurement should be de-
fined as its mutual information. The advantage of such
an approach is that the mutual information I(R;X)σ
is non-negative and has a clear operational interpreta-
tion. Furthermore, it is equal to the entropy reduction
in (51) for efficient measurements [7] and thus connects
with Groenewold’s original intuition.
Winter’s result was later extended in two different di-

rections. First, Ref. [36] allowed for a correlated initial
state ρAB, shared between the sender and receiver before
communication begins. In this case, the optimal rate
at which the sender needs to transmit classical informa-
tion in order to simulate the measurement is equal to
the conditional mutual information I(R;X |B)ω, where
the conditional mutual information is with respect to the
following state:

ωRBX ≡
∑

x

TrA′{(idR ⊗N x
A→A′)(φ

ρ
RAB)} ⊗ |x〉〈x|X ,

(54)
and φρRAB is a purification of ρAB. We can thus call
I(R;X |B)ω the information gain in the presence of quan-
tum side information (IG-QSI), and the information-
processing task is known as measurement compression
with quantum side information [36]. In general, the IG-
QSI is smaller than I(RB;X)ω, which is the rate at which
classical communication would need to be transmitted if
the receiver does not make use of the B system. The
other extension of Winter’s result was to determine the
rate required to simulate the instrument on an arbitrary
input state, and the optimal rate was proved to be equal
to the optimized information gain

max
ρ

I(R;X)σ, (55)

where the optimization is with respect to all input states
ρA leading to a purification φρRA [4].

A. Information gain without quantum side

information

In what follows, we demonstrate how the refined en-
tropy inequality in (16) has implications for the informa-
tion gain of a quantum measurement, both without and

with quantum side information. We begin with the fol-
lowing result, which applies to the setting without quan-
tum side information:

Theorem 3 Let ρ ∈ D(HA) and {N x} be a quantum

instrument, where each N x : L(HA) → L(HA′). Then

the following inequality holds

I(R;X)σ ≥ − logF (σRX , σR ⊗ σX). (56)

If the quantum instrument is efficient, then the above

inequality implies that

I(R;X)σ ≥ −2 log

[

∑

x

pX(x)
√
F (Ux

A′→A(φ
ρx

RA′ ), φ
ρ
RA)

]

,

(57)
for some collection {Ux

A′→A}, where each Ux
A′→A is an

isometric quantum channel, φρx

RA′ is a purification of ρxA′

defined in (52), and pX(x) is defined in (52).

Proof. The inequality in (56) is a simple consequence of
(15) and (12). The inequality in (57) follows because

√
F (σRX , σR ⊗ σX) =

∑

x

pX(x)
√
F (φρx

R , φρR). (58)

Applying Uhlmann’s theorem (see (6)), we can conclude
that there exist isometric channels Ux

A′→A such that
F (φρx

R , φρR) = F (Ux
A′→A(φ

ρx

RA′), φ
ρ
RA) for all x.

The implication of the inequality in (57) is that if the
information gain of the measurement is small, so that

I(R;X)σ ≈ 0, (59)

then it possible to reverse the action of the measure-
ment approximately, in such a way as to restore the post-
measurement state to the original state with a fidelity

∑

x

pX(x)
√
F (Ux

A′→A(φ
ρx

RA′ ), φ
ρ
RA) ≈ 1. (60)

We can thus view this result as a one-sided information-
disturbance trade-off. [7, Theorem 1] contains an ob-
servation related to this, but the result here is stronger
because it makes a statement about average fidelity and
restoration of the full state on both systems RA. The
observation above is also related to the general one from
[25] (upon which [7, Theorem 1] relies), but the result
given here is again stronger: an inability to find correc-
tion isometries, which leads to a small fidelity, is a witness
to having a large information gain I(R;X)σ, due to the
presence of the negative logarithm in (57).
The inequality in (57) also has an operational implica-

tion for Winter’s measurement compression task. If the
information gain is small, so that (59) holds, then the
sender and receiver can simulate the measurement with
a high fidelity per copy of the source state, in such a way
that the sender does not need to transmit any classical
information at all. The receiver can just prepare many
copies of ρA locally, perform the measurements, and de-
liver the outputs of the measurements as the classical
data. This situation occurs because the reference system
R is approximately decoupled from the classical output,
in the sense that F (σRX , σR ⊗ σX) ≈ 1 if I(R;X)σ ≈ 0.
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B. Information gain with quantum side information

We can readily extend the above results to the case of
quantum side information, by employing the inequality
in (22). This leads to the following theorem:

Theorem 4 Let ρAB ∈ D(HA ⊗ HB) and {N x} be a

quantum instrument, where each N x : L(HA) → L(HA′ ).
Then the following inequality holds

I(R;X |B)ω ≥

−2

∫ ∞

−∞

dt p(t) log

[

∑

x

pX(x)
√
F (ωx

RB,Rx,t/2
B (ωRB))

]

,

(61)

where

ωRBX ≡
∑

x

TrA′{N x
A→A′(φ

ρ
RAB)} ⊗ |x〉〈x|X , (62)

φρRAB is a purification of ρAB,

ωx
RBA′ ≡ N x

A→A′(φ
ρ
RAB)

pX(x)
, (63)

pX(x) ≡ Tr{N x
A→A′(φ

ρ
RAB)}, (64)

{pX(x)Rx,t/2
B } is a quantum instrument defined by

Rx,t/2
B (ωRB) ≡ (ωx

B)
1−it

2 ω
1+it

2

B (ωRB)ω
1−it

2

B (ωx
B)

1+it
2 ,
(65)

and p(t) is defined in (18). If the instrument {N x} is

efficient, then the following inequality holds as well:

I(R;X |B)ω ≥ −2

∫ ∞

−∞

dt p(t) log

[

∑

x

pX(x)
√

Fx,t

]

,

(66)

for some collection {Ux,t
A→A′}, where

Fx,t ≡ F (ωx
RBA′ , (Rx,t/2

B ⊗ Ux,t
A→A′)(φ

ρ
RBA)) (67)

and each Ux,t
A→A′ is an isometric quantum channel.

Proof. We begin by proving the inequality in (61). Con-
sider that

I(R;X |B)ω ≥

−
∫ ∞

−∞

dt p(t) logF (ωRBX ,Rt/2
B→BX(ωRB)), (68)

which is a direct consequence of (23). By a direct calcu-
lation, we find that

Rt/2
B→BX(ωRB) =

∑

x

pX(x)|x〉〈x|X ⊗Rx,t/2
B (ωRB). (69)

This then leads to the inequality in (61), by applying
the direct sum property of fidelity. The inequality in

(66) is an application of Uhlmann’s theorem, after ob-

serving that the rank-one operatorRx,t/2
B (φρRBA) purifies

Rx,t/2
B (ωRB) and the rank-one operator ωx

RBA′ purifies
ωx
RB. The aforementioned operators are rank-one if the

measurement is efficient (which is what we assumed in
the statement of the theorem).
The implications of Theorem 4 are similar to those

of Theorem 3, except they apply to a setting in which
quantum side information is available. If the information
gain of the measurement is small, so that

I(R;X |B)ω ≈ 0, (70)

then it possible to reverse the action of the measure-
ment approximately, in such a way as to restore the post-
measurement state of systems RA′ to the original state
on systems RA with a fidelity larger than

∫ ∞

−∞

dt p(t)
∑

x

pX(x)
√

Fx,t ≈ 1. (71)

This follows from the concavity of the fidelity. The rever-
sal operation consists of two steps. First, Bob performs

the instrument {pX(x)Rx,t/2
B }. He then forwards the out-

comes to Alice, who performs a channel corresponding
to the inverse of the isometric quantum channel Ux,t

A→A′ .
Then, the average fidelity is high if the information gain is
small. We can view this result as a one-sided information-
disturbance trade-off which extends the aforementioned
one without quantum side information.
The inequality in (66) also has an operational implica-

tion for measurement compression with quantum side in-
formation [36]. If the IG-QSI is small, so that (70) holds,
then the sender and receiver can simulate the measure-
ment with a high fidelity per copy of the source state,
in such a way that the sender does not need to transmit
any classical information at all. The receiver can just

perform the instrument {pX(x)Rx,t/2
B } with probability

p(t) on the individual B systems of many copies of ρAB

and deliver the classical outputs of the measurements
as the classical data. This situation occurs because the
X system of ωRBX is approximately recoverable from B
alone, in the sense that

∫∞

−∞
dt p(t)

∑

x pX(x)
√

Fx,t ≈ 1

if I(R;X |B)ω ≈ 0. This latter result might have implica-
tions for quantum communication complexity (cf. [27]).

V. COMPLETE POSITIVITY

This section demonstrates how the inequality in (22)
and the Alicki–Fannes–Winter inequality [2, 38] lead to a
robust version of the main conclusion of [6], which links
the data processing inequality to complete positivity. Let
us recall the operational framework considered in [6].

1. At some time t = τ , we fix a tripartite configura-
tion, i.e., an arbitrary tripartite density operator
ρRQE , describing the initial correlations between
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the system Q, its environment E, and a reference
R. It can be helpful to imagine that the dynamics
are “frozen” at the intermediate time t = τ , when
the correlations between R, Q, and E are arbitrary.

2. We move to the next instant in time, i.e., t =
τ + ∆. We assume that the system-environment
pair evolves from τ to τ + ∆ according to some
unitary operator V , while the reference R remains
unchanged.

3. Denoting by Q′ and E′ the system and the envi-
ronment after the evolution described by V has
taken place, the tripartite configuration ρRQE has
evolved to the tripartite configuration σRQ′E′ =

(IR ⊗ VQE)ρRQE(IR ⊗ V †
QE).

4. We then look at the reduced reference-system dy-
namics (i.e., the transformation mapping ρRQ to
σRQ′) and check whether they are compatible with
the application of a completely positive trace-
preserving linear map on the system Q alone. More
explicitly, we check whether there exists a com-
pletely positive trace-preserving linear map E , map-
ping Q to Q′, such that σRQ′ = (idR ⊗EQ)(ρRQ).

Theorem 5 Fix a tripartite configuration ρRQE . Sup-

pose that the data processing inequality holds approx-

imately for all joint system-environment evolutions

VQE→Q′E′ , i.e.,

I(R;Q′)σ ≤ I(R;Q)ρ + ε, (72)

where ε > 0 and

σRQ′E′ = VQE→Q′E′ρRQEV
†
QE→Q′E′ . (73)

Then the conditional mutual information is nearly equal

to zero:

I(R;E|Q)ρ ≤ ε, (74)

and the reduced dynamics are approximately CPTP, i.e.,

to every unitary interaction VQE→Q′E′ , there exists a

CPTP map EQ→Q′ such that

− logF (σRQ′ , EQ→Q′ (ρRQ)) ≤ ε. (75)

Proof. We begin by proving (74) with the same ap-
proach used in [6]. Consider the particular evolution in
which Q′ = QE and system E′ is trivial. The assumption
that data processing holds approximately gives that

I(R;Q)ρ + ε ≥ I(R;Q′)σ = I(R;QE)ρ. (76)

We can rewrite this inequality using the chain rule for
conditional mutual information as

ε ≥ I(R;QE)ρ − I(R;Q)ρ = I(R;E|Q)ρ, (77)

which proves (74). Now, from the inequality in (22), we
know that there exists a recovery map RQ→QE such that

I(R;E|Q)ρ ≥ − logF (ρRQE ,RQ→QE (ρRQ)) (78)

Since the fidelity is invariant with respect to unitaries,
we find (abbreviating VQE→Q′E′ as V ) that

F (ρRQE , EQ→QE (ρRQ))

= F
(

V ρRQEV
†, VRQ→QE (ρRQ)V

†
)

(79)

= F
(

σRQ′E′ , VRQ→QE (ρRQ)V
†
)

(80)

≤ F
(

σRQ′ ,TrE′

{

VRQ→QE (ρRQ)V
†
})

, (81)

where the inequality follows from monotonicity of fidelity
under the discarding of subsystems. By defining the map

EQ→Q′ (·) ≡ TrE′

{

VQE→Q′E′RQ→QE (·)V †
QE→Q′E′

}

,

(82)
we find that

ε ≥ − logF (σRQ′ , EQ→Q′ (ρRQ)) , (83)

establishing (75).

Theorem 6 Suppose that the reduced dynamics are ap-

proximately CPTP, i.e., that to every unitary interaction

VQE→Q′E′ leading to

σRQ′ = TrE′

{

VQE→Q′E′ρRQEV
†
QE→Q′E′

}

, (84)

there exists a CPTP map EQ→Q′ such that

1

2
‖σRQ′ − EQ→Q′ (ρRQ)‖1 ≤ ε, (85)

where ε ∈ [0, 1]. Then the quantum data processing in-

equality is satisfied approximately, in the sense that

I(R;Q′)σ ≤ I(R;Q)ρ

+ 2ε log |R|+ (1 + ε)h2(ε/ (1 + ε)), (86)

and the conditional mutual information is nearly equal to

zero as well:

I(R;E|Q)ρ ≤ 2ε log |R|+ (1 + ε)h2(ε/ (1 + ε)). (87)

Proof. This follows directly from the assumption in (85),
the Alicki–Fannes–Winter inequality, and the quantum
data processing inequality:

I(R;Q′)σ

= H(R)σ −H(R|Q′)σ

= H(R)E(ρ) −H(R|Q′)σ

≤ H(R)E(ρ) −H(R|Q′)E(ρ)

+ 2ε log |R|+ (1 + ε)h2(ε/ (1 + ε))

= I(R;Q′)E(ρ) + 2ε log |R|+ (1 + ε)h2(ε/ (1 + ε))

≤ I(R;Q)ρ + 2ε log |R|+ (1 + ε)h2(ε/ (1 + ε)). (88)

The inequality for conditional mutual information follows
the same reasoning we used to arrive at (77).
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VI. CONCLUSION

We have shown how recent results regarding recover-
ability give enhancements to several entropy inequalities,
having to do with entropy gain, information gain, and
complete positivity. Our first result is a remainder term
for the entropy gain of a quantum channel, which for
unital channels is stronger than that which is obtained
by directly applying the results of [17, 26]. This result
implies that a small increase in entropy under a unital
channel is a witness to the fact that the channel’s ad-
joint can be used as a recovery channel to undo the ac-
tion of the original channel. Our second result regards
the information gain of a quantum measurement, both
without and with quantum side information. We find
here that a small information gain implies that it is pos-
sible to undo the action of the original measurement (if
it is efficient). The result also has operational ramifica-
tions for the information-theoretic tasks known as mea-

surement compression without and with quantum side
information. We finally provide a robust extension of the
main result of [6], establishing that the reduced dynamics
of a system-environment interaction are approximately
CPTP if and only if the data processing inequality holds
approximately.
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